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Abstract

Key message The Douglas fir provenance Three Valley

was found most suitable for planting in mid-Sweden.

Greenhouse tests can most likely predict how different

Douglas fir provenances will perform in the field.

Abstract The need for species that will grow well through

ongoing climate change has increased the interest in

Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] in

Sweden. One of the most common problems seen in

plantations of Douglas fir seedlings is damage caused by

late spring frost, known to be highly correlated with the

timing of bud burst. The objective of this study was to

investigate spring-related bud development under Nordic

conditions of seven Douglas fir provenances and to com-

pare data with a local provenance of Norway spruce (Picea

abies (L.) Karst). Results from a field trial and a green-

house-based study were compared. The interior Douglas fir

provenances exhibited an earlier bud burst than coastal

provenances, both in the greenhouse and in the field trial.

When comparing differences within the groups of interior

and coastal Douglas fir provenances, no differences could

be found. The local Norway spruce, only grown in the

greenhouse, showed an intermediate bud development

profile similar to the interior Douglas fir provenance Three

Valley. We therefore suggest that Three Valley could be

planted at the same locations as the investigated local

provenance of Norway spruce in mid-Sweden. To avoid

spring frost damage the Douglas fir seedlings need to be

frozen stored and planted late in spring. Planting under

shelterwood can also help protect the seedlings from spring

frost damages. As similar results for bud development

patterns of Douglas fir and Norway spruce provenances

were obtained from the greenhouse and field trials,

greenhouse tests could facilitate selection of provenances.

Keywords Temperature sum � Greenhouse � Field study �
Norway spruce � Pseudotsuga menziesii � Picea abies �
Sweden

Introduction

The need to find suitable species to grow through ongoing

climate change (IPCC 2014) has increased interest in

Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) in

Sweden. The most common tree species in Sweden, Nor-

way spruce (Picea abies L. Karst) is one of the species that

will have difficulty coping with higher temperatures and

increased risk of wind damage (Spiecker et al. 1996).

Douglas fir is attractive, because its commercially valuable

wood (Hermann and Lavender 1999) and potentially fast

growth (Karlberg 1961; Nord-Larsen et al. 2009). The

species also has a wide site adaptability, and capacity to

adapt to changing environmental conditions (Isaac-Renton

et al. 2014). Douglas fir has been grown, to a small extent,

in the very south of Sweden since the early 1900s (Mar-

tinsson and Winsa 1986; Lemoine and Wirten 1988).

However, more extensive use has been hindered by, among

other reasons, access to seedlings of suitable provenances

and concern about damage by agents such as pine weevil
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(Hylobius abietis) and frost (Witte 1948; Kardell 2013,

Wallertz and Malmqvist 2013; Wallertz et al. 2014).

Frost damage to seedlings is a well-known problem

when growing Douglas fir in Sweden as well as its natural

range (Newsome et al. 1990; Wallertz et al. 2013). The

susceptibility to frost, both in spring and autumn, differs

widely among provenances (Snäll 2000; O’Neill et al.

2001; Hansen 2007). In Europe, excluding the most

northern parts, provenance trials and practical experience

cover mostly coastal provenances. In a future climate these

experiences would be advantageous for more northern

growing sites (Eilmann et al. 2013; Isaac-Renton et al.

2014; Chakraborty et al. 2016). In Norway, Finland and

Sweden, provenance trials found the interior provenances

to be superior to the coastal (Kurkela 1981; Magnesen

1987; Martinsson and Kollenmark 2001). Since spring frost

hardiness and bud burst occurrence are highly correlated

(Howe et al. 2003; Søgaard et al. 2008), the time of bud

burst is a useful indicator of a species suitability for a

particular location (Hannerz 1999; Howe et al. 2003;

Anekonda et al. 2004; Gould et al. 2011). Christophe and

Birot (1979) and Edman (1997) were unable to show a

correlation between bud burst occurrence and latitude or

elevation of Douglas fir provenances. Instead, Edman

(1997) found a strong correlation between longitude and

bud burst occurrence; families from the most eastern parts

of British Columbia showed an earlier bud burst in spring

than those from the western parts, also shown earlier by,

e.g., White et al. (1979). However, Lavadinovic et al.

(2009) concluded that increasing elevation of Douglas fir

results in earlier bud burst, but this is unaffected by latitude

and longitude. The climate of Pacific Northwest America,

where Douglas fir provenances suitable for Nordic condi-

tions grow, differs significantly between regions (Hermann

and Lavender 1990). It varies from extreme maritime in

coastal areas to continental in the Rocky Mountains with an

intermediate climate between those regions. The climate in

southern Sweden is characterised by mild winters, occa-

sionally interrupted by cold periods caused by continental

weather systems from the east or north. In winter and

spring, this can make the temperature periodically shift

between being above-zero and sub-zero over a few hours,

increasing the risk of frost damage (SMHI 2016).

As temperatures rise during spring, many biological

processes start in plants, for example bud burst in conifers,

which could be described as the start of the growing season

(Sarvas 1972). The annual process of bud development

includes several stages, from bud set in autumn to bud burst

in spring the following year. For conifers, the most

important parameter initiating bud set is an increase in

night length. The ‘‘critical night length’’ (when 50% of a

population starts to set bud) depends on the origin or

provenance of the trees (Ekberg et al. 1979; Dormling and

Lundkvist 1983). The temperature during bud set is known

to affect bud size as well as the time of bud burst the

following spring (Dormling et al. 1968; Grossnickle 2000).

After termination of bud set, seedlings start to build up

their cold hardiness (Bigras et al. 2001) and enter a state of

dormancy (Dormling et al. 1968; Ekberg et al. 1979;

Fuchigami and Nee 1987), where no apical shoot growth

occurs. About 15–30 days of chilling is required for Nor-

way spruce seedlings to break the dormancy state, and in

southern Scandinavia, this condition has normally been met

by November or December (Hannerz et al. 2003). The next

step in the annual growth cycle is bud burst, a process that

starts after some weeks with temperatures C?5 �C and,

thereafter, a period with increased temperature [?5 �C
(Sarvas 1972; Cannell and Smith 1983; Hannerz 1999).

When the number of accumulated degree days (daily mean

temperature[5 �C) reaches a certain threshold, specific for

different species of conifers, buds start growing (Gross-

nickle 2000). The sum of accumulated temperature (TSum)

is commonly used as a measure for describing the differ-

ence in time for bud burst among different temperate tree

species (Cannell and Smith 1983) as well as between

provenances of, for example, Norway spruce (Hannerz

1994b; Morén and Perttu 1994; Hannerz 1999).

Terminal buds of Douglas fir seedlings, from many seed

sources, have a chilling requirement of about 50 days at

0–5 �C (Campbell 1974, Grossnickle 2000) to break dor-

mancy. Campbell and Sugano (1979) found that interior

provenances of Douglas fir have a lower chilling require-

ment than coastal provenances, the same trend as in Silver

birch and Scots pine (Leinonen 1996). When dormancy is

broken, temperatures higher than ?5 �C force bud burst

through accumulation of heat units (Bailey and Harrington

2006), and accumulated heat sums can be used to describe

geographical variations in the timing of bud burst if the

chilling requirements have been met. Hannerz et al. (2003)

reported that provenances of Norway spruce from Sweden

had a shorter chilling requirement compared to prove-

nances from Denmark and Germany.

Previously, it has been shown that freezing tolerance in

autumn varies among different provenances of Douglas fir

(Malmqvist et al. 2016). For successful establishment of

Douglas fir seedlings under Nordic conditions, they must

be able to withstand early spring frost as well as autumn

frost. As little is known about how spring-related bud

development of Douglas fir provenances are affected by

Nordic conditions, the objective of this study was (1) to

investigate spring-related bud development of seven Dou-

glas fir provenances, (2) to compare data with the native

Norway spruce (Picea abies (L.) Karst) to relate the two

species to each other, and 3) to study the freezing tolerance

of buds at different development stages.
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Materials and methods

Seven provenances of Douglas fir from British Columbia,

Canada, and one Swedish provenance of Norway spruce

were used in a greenhouse study. Six Douglas fir prove-

nances were used for the field study. Table 1 shows the

details of each provenance. The greenhouse study was

carried out at the Vassbo research station, Sweden

(60�310N, 15�310E), and the field study near the Asa

Experimental forest and research station, Sweden

(57�100N, 14�450E).

The greenhouse study

At the Vassbo research station, seeds were sown on May

13, 2013 in 90 ml containers, 40 cavities per container tray

(Svepot Air 90, Svenska Skogsplantor AB, Sweden). The

seedlings were grown in a greenhouse at mean day/night

temperatures of 25/20 �C until June 28 (Fig. 1). After that,

the seedlings were moved outdoors. On September 25,

2013, the seedlings were moved back into the greenhouse,

which allowed natural night length, with the air tempera-

ture set to a minimum of ?7 �C to avoid sub-zero tem-

peratures. The air temperatures in a ventilated radiation

shield at 1.3 m above ground outside and 1.6 m above

ground in the greenhouse (Fig. 1) were measured and

logged every 5 min, using an automated data logger

(Campbell Scientific CR1000, UK). Daily values were

based on the mean of 15 min averages for 24 h from

midnight to midnight. From March 12 to May 19, 2014,

bud development of the terminal bud was measured once a

week on eight randomly selected seedlings in each of four

container trays. The four container trays of each prove-

nance were randomly distributed. The TSum were calculated

using the threshold value ?5 �C in accordance with Han-

nerz (1994a):

TSum ¼
X

ðTi � 5�Þ; ð1Þ

where TSum is the temperature sum in �C and Ti is the daily

mean temperature in �C.
TSum in the greenhouse were calculated from January 1,

2014 (Fig. 1).

The field study

The field site near the Asa research station is included in a

large survey study of survival and damage of Douglas fir in

Sweden, described by Wallertz et al. (2013). The site was

planted with 2-year-old Douglas fir seedlings of six dif-

ferent provenances (Table 1) in May 2009, after site

preparation the same spring. The following year, the bud

development of the terminal bud was measured once a

week on 20 healthy seedlings for each provenance, i.e.,

seedlings with visible damage were excluded at the first

inventory. The seedlings were randomly selected among

the seedlings measured in the survey study (Wallertz et al.

2013). For one of the provenances, Caycuse River, only 10

healthy seedlings could be found and measured. Air tem-

peratures were recorded with a data logger (Campbell

Scientific CR10, UK) from the beginning of January until

the end of July 2010 at the Asa research station, 6 km from

the field study site. The air temperature (�C) was measured

at 1.7 m above ground in a ventilated radiation shield in an

open clearing. Daily values were based on 10 min averages

using a 60 s scan interval, using the mean value from

midnight to midnight for each day. TSum were calculated

from the beginning of the growing season, defined by

Morén and Perttu (1994) as 4 days in a row with a daily

mean temperature above ?5 �C. This condition was met on

April 25, 2010 (Fig. 2).

Table 1 Origin of Douglas fir

seeds collected in British

Columbia, Canada, and Norway

spruce seeds collected in

Sweden

Species Provenance Latitude Longitude Altitude (m) Specification

Douglas fir Caycuse River 48�500N 124�290W 550 Coastala

Douglas fir Ladysmith 48�570N 123�580W 549 Coastala

Douglas fir Bella Coola 52�250N 126�150W 150 Coastala

Douglas fir Bowser Heaman 49�260N 124�410W Unknown Coastalb,d

Douglas fir Three Valley 50�550N 118�270W 710 Interiora

Douglas fir Anstey Arm 50�580N 118�580W 610 Interiora

Douglas fir Larch Hills 50�480N 119�000W 670 Interiora

Norway spruce Öhn, Österfärnebo 57�000N 16�440Ec 60 Interior/coastalb,d

a Seeds collected in stands
b Seed orchard
c Longitude of the seed orchard
d Only used at the Vassbo Research station

Trees (2017) 31:1987–1998 1989

123



Bud development in the greenhouse and in the field

Bud development was assessed using the Krutzsch index

(Krutzsch 1973). The index was originally designed for

Norway spruce, but was in this study used for Douglas fir,

as well (Fig. 3). The reason for using the Krutzsch index

instead of scales specifically developed for Douglas fir

(Thomson and Moncrieff 1982; Bailey and Harrington

2006; Harrington et al. 2010) was that we had a special

interest in comparing the early bud burst patterns of Nor-

way spruce and Douglas fir, which are included in the

Krutzsch index (stages 1 and 2) but not in the specific

Douglas fir scales.

Freezing tolerance of buds

On April 7, 2014, the freezing tolerance of the buds prior to

bud burst (stages 1 and 2 of the Krutzsch index) was tested

by measuring the electrolyte conductance caused by

freezing to -5 �C. The freezing test, carried out on the

local Norway spruce, interior Douglas fir provenance Three

Valley, and coastal Douglas fir provenance Ladysmith

(Table 1), was based on methods described by Lindström

et al. (2014) and Malmqvist et al. (2016). In this study, only

buds at stages 1 and 2 were frozen. The buds were ran-

domly collected from seedlings grown in the same con-

tainer trays as the seedlings designated for the greenhouse

study of bud development measurements. To prepare three

Fig. 1 Air temperature, daily

average, maximum and

minimum temperatures

recorded from May 8, 2013 to

July 28, 2014 (above). From

May 8, 2013 to June 28, 2013,

the temperature was measured

inside the greenhouse and from

June 29, 2013 to September 25,

2013, it was measured at the

outdoor holding area.

Greenhouse temperatures were

logged as the seedlings were

moved indoors on September

25, 2013. The temperature sums

(lower graph), that is the sum of

daily mean temperatures

exceeding ? 5 �C from January

1, 2014 to July 31, 2014, were

calculated in accordance with

Hannerz (1994a)

1990 Trees (2017) 31:1987–1998
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replicates of each bud development stage, 30 buds of each

development stage and seed origin were picked from the

upper half of the seedlings. Each sample contained 10

buds. The samples were slowly frozen (2.5 �C h-1) to the

target temperature of -5 �C. After 1 h at -5 �C, the

samples were slowly thawed (2.5 �C h-1) to ?5 �C. To
each sample, 40 ml of deionised water were added, and

thereafter, the samples were put in a shaker for 24 h. The

electrolytic conductivity was measured using a conductiv-

ity meter (Model Hach SensIon 5). To calculate the elec-

trolytic leakage from cells caused by freezing the buds to

-5 �C, the samples were autoclaved and the total elec-

trolytic leakage measured. The electrolytic leakage caused

by freezing the buds to -5 �C was calculated as the

difference between the total electrolytic leakage of frozen

buds and the natural leakage from unfrozen buds (see

Lindström et al. 2014).

Statistical analyses

Differences in bud development between provenances at

certain times were carried out using Fisher’s exact test (Zar

2010). Fisher’s exact test was used due to a small sample

size in one of the provenances in the field study and it also

fitted the experimental design in the greenhouse study.

Differences in freezing tolerance of buds were statistically

analysed using the independent samples t test with equal

variances assumed according to Leven’s test for equality of

Fig. 2 Air temperature, daily

average, maximum and

minimum temperatures

recorded from January 1, 2010

to July 31, 2010 (above). The

temperature sums (lower

graph), that is the sum of daily

mean temperatures

exceeding ? 5 �C from April

25, 2014 to July 31, 2014, were

calculated in accordance with

Hannerz (1994a)

Trees (2017) 31:1987–1998 1991
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variances. The analyses were carried out using IBM SPSS

Statistics, version 23.

Results

Bud development in the greenhouse

Bud burst appeared earlier for the interior Douglas fir

provenances compared to both the coastal Douglas fir

provenances and Norway spruce (Table 2). On April 1,

2014, the bud burst (reached or passed stage 3 of the

Krutzsch index) of the interior Larch Hills was 81%,

Anstey Arm 71%, and Three Valley 38%, while, among the

coastal provenances, the proportion of seedlings that

showed bud burst ranged between 5 and 14% at this date.

Norway spruce showed an intermediate timing of bud burst

with 28% of the seedlings reaching or passing stage 3 on

April 1 (Fig. 4).

One week later, on April 8, more than 80% of all

seedlings of the interior Douglas fir provenances had burst

buds (reached or passed stage 3). By mid-April, all

provenances as well as Norway spruce had a proportion of

80% or more of seedlings that exhibited bud burst (Fig. 4).

Bud development in the field

When the field measurements started on May 19, 2010,

more than 50% of the seedlings from all provenances had

reached or passed stage 1, indicating that bud development

had started (Fig. 5). No seedlings of coastal origin exhib-

ited bud burst at this date, in contrast to the interior

provenances, where the percentages exhibiting bud burst

were Larch Hills 45%, Anstey Arms 35%, and Three

Valley 13%. One week later, on May 26, all provenances

except Caycuse River had a high proportion of seedlings

which showed bud burst and many of them had begun their

shoot elongation. On May 26, the differences in bud burst

Fig. 3 Classification of bud

development stages was used

for both Norway spruce and

Douglas fir Krutzsch (1973).

Stages 1–8 (shown in these

pictures for Douglas fir) are

defined and scored as follows: 1

buds slightly swollen, 2 buds

swollen, green to grey–green in

colour, bud scales still closed, 3

burst of bud scales, tips of

needles emerging, 4 needles

elongated to about double the

bud length, 5 first spread of

needles, buds now have the

appearance of a painter’s brush,

6 elongation of shoot, basal

needles not yet spread, 7

differentiation of shoot, basal

needles spread, 8 all needles

more or less spread, new buds

developing. The first

development stage 0, a dormant

bud, is not shown

Table 2 Probability of no differences in bud burst stages on April 1, 2014 between Norway spruce, three interior and four coastal Douglas fir

provenances (for provenances, see Table 1) was tested using Fisher’s exact test

Bud burst stages Proportion of seedlings, % Fisher’s exact test, p values

Coastal Interior Norway sp. Coastal vs Interior Interior vs Norway sp. Coastal vs Norway sp.

[3 10 66 28 \0.00001 0.00007 0.00075

0–2 90 34 72

The Krutzch index C3 = the bud has burst; 0–2 = the bud has not burst. Each tested provenance consisted of 32 seedlings

1992 Trees (2017) 31:1987–1998

123



patterns between coastal and interior provenances were

significant (Table 3).

Summer bud set in the field

The seedlings in the field study were monitored until

they reached stage 8 of the Krutzsch index (stage 8: all

needles more or less spread, new buds developing). The

interior provenances formed their new buds earlier in

comparison to the coastal provenances. On June 24,

2010, more than 70% of the seedlings of the interior

provenances had set bud, while the coastal provenances

did so later. Among the coastal provenances, no bud set

was recorded for Caycuse River at this date, while 40%

of the Bella Coola and 55% of Ladysmith had set bud

(Fig. 6).

Freezing tolerance of buds

The freezing test of buds to -5 �C in early spring showed

that the buds of Norway spruce and Douglas fir were

already sensitive to freezing when they were slightly

swollen (stage 1, see Fig. 3). The buds of the Norway

spruce and Douglas fir provenances (Ladysmith, coastal,

and Three Valley, interior) were severely damaged after

freezing to -5 �C, as electrolytic leakage from freezing

exceeded 50% on average for all tested treatments. The

average electrolyte leakage of unfrozen control samples of

Norway spruce was 41% and for Douglas fir 28%. No

significant differences regarding electrolyte leakage after

freezing were found between species (p = 0.258) or

between the two provenances of Douglas fir (p = 0.650).

However, for buds that had reached stage 2 of bud devel-

opment (stage 2, see Fig. 3), the electrolytic leakage was

significantly higher than for buds that had reached stage 1,

regardless of species or provenance (p = 0.035).

Fig. 4 Proportion (%) of

greenhouse-grown seedlings in

different spring-related bud

development stages, using the

Krutzsch index (1973), for the

seven Douglas fir provenances

and Norway spruce in spring

2014, on March 12, upper left,

March 19, upper right, March

25, middle left, April 1, middle

right, April 10, bottom left, and

April 16, bottom right. TSum in

degree days (dd) indicated for

each date. TSum accumulated

from January 1. N = 32

Trees (2017) 31:1987–1998 1993
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Discussion

In our study, the interior Douglas fir provenances showed

an earlier bud burst in spring than the coastal provenances,

which was in agreement with earlier findings (Campbell

and Sugano 1979; Edman 1997). This trend could be

compared with differences among Norway spruce seed-

lings where northern provenances showed earlier bud burst

compared to southern provenances (Hannerz et al. 2003).

Bud burst patterns were similar for the local Norway

spruce and the interior Douglas fir provenances in the

greenhouse study. Of the interior Douglas fir provenances,

Anstey Arms and Three Valley had a similar shoot

development pattern during spring. Apart from bud burst, a

previous study by Malmqvist et al. (2016) showed similar

timing of bud set by the Three Valley provenance and the

local Norway spruce. In addition, Malmqvist et al. (2016)

showed that the development of freezing tolerance in

autumn occurred at the same time for these specific

provenances of Norway spruce and Douglas fir. The similar

timing of the start and termination of growth, as well as the

timing of the winter hardening processes, both suggests

Fig. 5 Proportion (%) of field-

grown seedlings in different

spring-related bud development

stages, according to the

Krutzsch index (1973), for six

Douglas fir provenances

(Table 1) in late spring 2010, on

May 19, upper left, May 26,

upper right, June 2, bottom left,

and June 10, bottom right. TSum
in degree days (dd) indicated for

each date. TSum accumulated

from the date (April 25) when

the vegetation period started

according to Morén and Perttu

(1994). N = 10–20

Table 3 Probability of no differences in bud burst stages on May 26 2010 between three interior and three coastal Douglas fir provenances (for

provenances, see Table 1) was tested using Fisher’s exact test

Bud burst stages Proportions of seedlings, % Fisher’s exact test, p values

Coastal Interior Coastal vs interior

[3 62 88 0.00154

0– 2 38 12

The Krutzsch index C3 = the bud has burst; 0–2 = the bud has not burst. Each tested provenance consisted of 10–20 seedlings

1994 Trees (2017) 31:1987–1998
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that the Three Valley provenance of Douglas fir could be

successfully planted at the same locations as the local

Norway spruce in mid-Sweden. This method to relate two

species to each other by studying, for example, bud

development in spring might be a way of predicting per-

formance of species or provenances to a new site using

knowledge from a well-known native species of local

origin.

No significant differences in bud burst could be seen

within the groups of interior and coastal provenances, even

though the origin of the provenances differs in elevation

and latitude. However, bud development had already begun

at the first measurement, so more frequent observations

might have been able to detect eventual differences in bud

burst patterns.

If the chilling requirements have been met for dormancy

release, temperature sums can be used to describe varia-

tions in the timing of bud burst among provenances of

Douglas fir (Cannell and Smith 1983; Bailey and Har-

rington 2006) as well as for Norway spruce (Hannerz

1994a, b, 1999). When calculating the accumulated tem-

perature sum, the threshold value of ?5 �C for when the

growing season starts has been commonly used by, for

example, Sarvas (1972), Cannell and Smith (1983), Morén

and Perttu (1994), Hannerz (1994a, b, 1999), and Hannerz

et al. (2003). Hannerz (1994a) showed a sharp decrease in

frost risk when bud burst was delayed from TSum 120 dd to

TSum 180 dd. The Belarusian provenances of Norway

spruce (TSum 180 dd to burst of bud) are often used in

southern Sweden to reduce damage from late spring frost.

In our field study, all Douglas fir provenances except the

coastal Caycuse River had a majority of the seedlings burst

bud at TSum 122, which is comparable to the local Norway

spruce provenance from latitude 60� (Hannerz 1994a).

Already at 68 dd, a high proportion of the interior prove-

nances had reached stage 2 in the Krutzsch index and

consequently susceptible to frost. In the greenhouse study,

the accumulated temperature sum is not comparable to

outdoor values, because the temperature never falls below

?5 �C. The total accumulated temperature sum in the

greenhouse, therefore, depends on when we decide to start

measuring. In our case, we chose to start on January 1,

2014. This resulted in very high TSum before buds started to

grow, despite the early start of bud burst (mid-March) in

the greenhouse study compared to the field study. A pos-

sible explanation for the high requirement of accumulated

temperature before the buds started to burst in the green-

house could be that the chilling requirement took longer to

be met due to non-optimal chilling temperatures. This

could have slowed bud development despite the high

forcing temperatures during early spring in the greenhouse.

The effect of non-optimal chilling temperatures postponing

the start of bud development has previously been shown by

Bailey and Harrington (2006). Harrington et al. (2010) also

suggested that temperatures that are some degrees above

freezing are the most effective in satisfying the chilling

requirement for dormancy release, while higher autumn

temperatures, as occurred in the greenhouse, would not be

as effective.

Despite the differences in environmental prerequisites

for seedlings in the greenhouse and the field, the time laps

between the bud development stages (1–4) were approxi-

mately the same once the buds had started to grow. As the

same trends and relationships between the growth of

provenances during bud development can be seen in the

greenhouse trial and the field trial, we suggest that green-

house trials in some cases might replace field trials.

Greenhouse trials could be used as an easy way to map

differences between provenances and predict field perfor-

mance. This could facilitate more rapid selection of Dou-

glas fir provenances in Sweden.

The observations of shoot elongation and bud set during

early summer showed that all provenances of Douglas fir

and Norway spruce formed new buds. This early bud set

suggests a possible further growth, appearing as Lammas

growth or free growth (von Wühlisch and Muhs 1986),

which can make seedlings more susceptible to frost dam-

age during autumn and winter (Anekonda et al. 1998).

In spring, during bud burst, Langvall and Ottosson

Löfvenius (2002) observed shoots of Norway spruce to be

sensitive to frost when newly flushed (from stage 3 of the

Krutzsch index). For Douglas fir, Aitken and Adams (1997)

showed that spring frost both killed buds and also severely

damaged newly flushed shoots. In our study, buds from

Norway spruce as well as Douglas fir were already very

sensitive to sub-zero temperatures when slightly swollen

(from stage 1 of the Krutzsch index), indicating that the

Fig. 6 Proportion (%) of field-grown seedlings that reached stage 8

of the Krutzsch index (all needles more or less spread, new buds

developing) (Krutzsch 1973), during June and early July 2010 at the

Asa experimental site. N = 10–20
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period of high sensitivity to late spring frost starts at the

earliest bud development stages. The freezing test showed

high leakage values from freezing buds of both species and

both provenances of Douglas fir in their earlier bud

development stages (1–2), and the leakage increased sig-

nificantly between stages 1 and 2. We also noticed high

leakage levels from unfrozen control samples that could be

due to leakage caused by cutting off the buds from the

stem. The open surface area in the cross section will be

proportionally large compared to cutting the top 2 cm of

the shoot, which is a common procedure when using the

SELdiff-25-method (Lindström et al. 2014). Usually, the

natural leakage from unfrozen controls in this latter case

varies between 5 and 10% which should be compared with

28–41% natural leakage from unfrozen buds in this study.

Even though we have had high natural leakage values from

buds frozen to -5 �C, increased leakage values definitely

indicate severe damage from freezing.

Since climate change might increase the frequency of

temperature backlashes causing frost damage in spring

(Jönsson et al. 2004; Langvall 2011), it is increasingly

important to consider the bud development patterns of

provenances when choosing seed sources. In addition,

actions to protect seedlings at the planting site should be

considered. Silvicultural measures such as use of shelter-

wood systems, planting on slopes, and mechanical site

preparation can reduce the damage from late spring frost and

increase seedling survival (Newsome et al. 1990; Langvall

2000; Langvall and Örlander 2001; Nilsson et al. 2010). The

use of frozen stored seedlings planted late in spring will

diminish the risk of serious damage from late spring frost the

first year, and the years to come, the increasing tree height

will conduce towards reduced risk. At a tree height taller

than 1–2 m, the apical shoot and upper branches are above

the coldest air (Morén and Perttu 1994).
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skogsskötsel, examensarbete, 1988-1 Swedish University of

Agricultural Sciences Department of Forest Ecology and Man-

agement (in Swedish)
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