
ORIGINAL PAPER

Evaluation of different approaches for modelling individual tree
seedling height growth

Sven Wagner Æ Palle Madsen Æ Christian Ammer

Received: 3 April 2008 / Revised: 7 January 2009 / Accepted: 13 January 2009 / Published online: 12 February 2009

� The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract We compared different approaches for model-

ling height growth of individual beech seedlings in a

controlled factorial experiment as well as in field data from

naturally regenerated beech seedlings under the canopy of

overstorey mature beech trees. Several competition indices,

a model of overstorey fine root density, relative photo-

synthetically active radiation (PAR) values, and soil water

values were used in these approaches. In the factorial

experiment relative PAR and soil water content were

measured and used for the prediction of seedlings height

growth. In the field experiment this was done by using

relative PAR and estimated fine root biomass as a surrogate

for below ground resource availability. The latter approach

was compared with a model where we used various com-

petition indices representing the impact of overstorey trees

on beech seedlings. Our results suggested that (1) models

which combine resource based growth functions are suit-

able for the prediction of individual height growth of beech

seedlings. Resource based models offer the opportunity to

investigate on the independent multiplicative effect of

irradiance and water supply and their interactions on tree

seedlings. It was (2) shown that a combined model could be

used not only to predict individual height growth of beech

seedlings in a controlled experiment but also in the field.

The model parameters of a pure light response function for

the controlled factorial experiment are comparable to those

obtained in the field study. The results showed (3) that the

precision of predicting beech seedlings height growth is

comparable between the model types tested within this

study. Approximately half of the observed variation in

seedlings relative height growth rate could be explained.

However, the simple competition index approach provides

no information on the environmental factors constraining

tree seedlings growth; whereas the multiplicative combined

models can be used to get a better understanding of growth

dynamics in the field.

Keywords Resource-based model � Fagus sylvatica (L.) �
Competition index � Regeneration ecology

Introduction

It is widely accepted that the canopy density of overstorey

trees has a strong impact on survival and growth of under-

story seedlings and saplings (Beaudet and Messier 1998;

Collet et al. 2001, 2002; Claveau et al. 2002; Kneeshaw et al.

2002). This knowledge is utilized in practical silviculture for

the control of competition processes in mixtures of natural

regeneration and seedling morphology (Wagner 1999;

Wagner and Lundqvist 2004). The regarding silvicultural

techniques are based on the fact that a mature stand deter-

mines the resource availability of other functional groups
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within forest ecosystems and hence reduces growing space

(sensu Oliver and Larson 1996). Growing space can there-

fore be seen as a surrogate to resource availability in so far,

as overstorey trees affect the resource pool, e.g. of seedlings

by their leaves and roots (Aussenac 2000; Collet et al. 2001).

For many purposes it is sufficient to know that growing

space, which can be easily expressed by competition indices,

affects seedling survival and growth. For a profound

understanding of regeneration dynamics and the ecologi-

cally founded further development of natural regeneration

techniques however, it is essential to identify the factors

influencing growth and shape of seedlings and saplings

(Aussenac 2000). Moreover, examining these factors and

their interactions may reveal mechanisms of both succession

and managed natural regeneration processes (see Grubb

et al. 1996; Battaglia et al. 2000).

One approach to study the effect of environmental factors

and their interactions is to focus on the response of seedlings

to limited resources (Goldberg 1990). However, this

approach requires efficient measurement techniques for the

evaluation of resource availability. As a consequence of the

ongoing improvements in measurement technique which

have been achieved, e.g. in photosynthetically active radi-

ation (PAR)-sensors (overview in Dohrenbusch 1995) or in

hemispherical photography (Chazdon and Field 1987; Rich

1990; Wagner et al. 2004), particularly the knowledge about

the importance of PAR on survival and growth of seedlings

has been improved very much (e.g. von Lüpke 1987;

Comeau et al. 1993; Pacala et al. 1996; Collet et al. 1997;

van Hees 1997; Gardiner and Hodges 1998; Welander and

Ottosson 1998; Coates and Burton 1999; Williams et al.

1999; Kaelke et al. 2001; Aranda et al. 2002; Ammer 2003).

In contrast to light, knowledge about the importance of

belowground resources for seedling vitality and growth has

been increased much less although some progress is

achieved (Havranek and Benecke 1978; Reed et al. 1983;

Flaig and Mohr 1990; Tognetti et al. 1994; Madsen 1995;

Gerhardt 1996; Khan et al. 1996; van Hees 1997; Ammer

2002; Machado et al. 2003). In order to overcome the

problem of how to get sound data of the belowground

resource availability for individual seedlings, research on

belowground resources has often been carried out under

laboratory conditions but only rarely in the field. This is due

to the fact that laboratory experiments provide the possi-

bility to distinguish the effects of belowground resource

availability on plant performance from aboveground factors

like the PAR. Such a distinction is, however, much harder to

achieve under natural conditions. Field research on the

interactions between PAR and belowground resources and

their effect on tree seedling growth are therefore a chal-

lenging and inspiring task. However, up to now the few

investigations on this subject revealed contradicting results

(Canham et al. 1996; Walters and Reich 1997; Finzi and

Canham 2000; Drever and Lertzman 2001; Aranda et al.

2002; Machado et al. 2003; van Hees and Clerkx 2003;

Ricard et al. 2003; Sack 2004).

An elegant method to avoid laborious field measurements

when assessing belowground resource availability has been

reported by Kuuluvainen and Pukkala (1989). These authors

calculated the amount of overstorey tree roots and used the

calculated data for the evaluation of the abundance of Scots

pine seedlings. The concept behind this approach is deduced

from the ‘‘ecological field theory’’ which was developed by

Wu et al. (1985). It takes the finding into account, that the

amount of overstorey tree fine root biomass is related to soil

moisture (Gerhardt 1996; Ammer 2002). In fact Ammer and

Wagner (2002) and Lee et al. (2004) have shown that it is

possible to predict the fine root biomass of mature trees by

the application of tree root distribution models. Such model

approaches take advantage from the fact that in contrast to

radiation availability on the forest floor, belowground

resources are affected more or less radialsymmetrically from

the tree trunk (Wu et al. 1985), whereas light availability is

influenced by a single tree heterogeneously in respect to

azimuth directions on the northern hemisphere. Seedling

growth may therefore be modelled using a combination of

real resource information (e.g. PAR) and a surrogate for

belowground resource availability of seedlings (Wagner

1999; Ammer et al. 2008).

Against this background the main objective of the

present study was to test whether such a model which

combines measured data of the aboveground resource PAR

with data on the belowground resource availability derived

by a fine root distribution model, yields better or equal

results than explaining seedling growth by classic compe-

tition indices reflecting limited growing space. For this

purpose we (1) derived a model for the height growth of

beech seedlings in a factorial experiment which combines

the resources light and soil moisture. Data from this

experiment was used to find an appropriate combination of

the functions describing the relationship between light and

growth and soil moisture and growth. We then (2) tried to

answer the question whether the derived method of a

multiplicative combined factor model is also suitable to

model height growth of naturally regenerated beech seed-

lings under the canopy of overstorey mature beech.

Methods

Experimental designs

Controlled factorial experiment

The experiment was carried out on farmland in 1990–1991

at the Højbakkegaard agricultural experimental station
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20 km west of Copenhagen, Denmark. A two-factorial

split-plot design randomized in two blocks was used with

light, i.e. ‘‘relative PAR’’ (see ‘‘PAR-measurements’’) as

the whole-plot factor and soil moisture, i.e. ‘‘SW’’ as the

sub-plot factor. Each of the two factors was regulated to

four levels making a total of 16 different treatments. In

total this experiment comprised 32 containers.

May 1st 1990 15 beech nuts were sown in each of the

20 l containers (40 cm tall and diameter 25 cm). When all

seedlings had emerged they were randomly thinned to

seven seedlings in each container. The growth medium of

each container was 18 l of homogenized soil, which orig-

inated from a A-horizon of a 139-years old beech stand

(18% clay and base saturation 37%).

Shading curtains were placed by June 2nd (3 weeks

after seedling emergence) to regulate the relative light

intensity to 3, 10, 30 and 65% in the four light treatments.

The experiment was located at an experimental area,

which was automatically covered by a glass roof during

rain. Additionally, irrigation and soil moisture measure-

ments were carried out to control the soil moisture

treatments. Madsen (1994, 1995) has described the exper-

iment in greater detail.

Field experiment

Six gaps of 20–30 m diameter in a 110-year old 15 ha

beech stand were created in March 1988 succeeding a light

beech mast in October 1987. European beech (Fagus

sylvatica L.) accounts for 88.9% of the basal area and 91%

of tree number of that stand. The top height of the over-

storey beech trees was 33 m. The stand is located in the

forest district Göttinger Wald, Lower Saxony, Germany

(51�300N, 9�480E; 310 m elevation). The soil is calcareous

limestone bedrock topped by a fairly heterogeneous loess

cover. The loess cover extents 0–40 cm in height giving pH

(KCl) values of the soil from 6.5 to 4.5 depending on the

thickness of the layer which is correlated to base saturation

values between 90 and 50% (Meiwes and Beese 1988). The

humus layer is classified as F-Mull. Precipitation reaches

680 mm a year, 340 mm falls from May to September;

summer drought can be observed occasionally. The mean

temperature from May to September is 14�C.

After the cuttings the entire area was fenced immedi-

ately and sample units of 0.5 m2 were established on the

gaps and in the surrounding stand to perform regeneration

measurements. In each gap 20 sample units were located in

the northern, eastern, western and southern part of the gap

as well as in the middle of the gap. Four sample units were

placed in the closed stand, southward to each correspond-

ing gap.

Germination of beech seedlings took place in spring

1988 and the seedlings grew up without any weed control.

Thus the true radiation environment of a particular seedling

changed from year to year depending on its height rela-

tionship to the surrounding vegetation (Jobidon 1994).

However, it is not known to what extent the ground veg-

etation affected soil water availability as well. At the end of

the third vegetation period the height (in millimetres) of

each seedling was measured and the radiation level above

each sample unit related to open field conditions was

assessed by means of hemispherical photography (see

‘‘PAR-measurements’’).

Data collection

PAR-measurements

‘‘Photosynthetically active radiation’’ is a wavelength

range (400–700 nm). However, for ease of writing in this

paper ‘‘relative PAR’’ is understood as the relative radia-

tion intensity at 400–700 nm wavebands (lmol m-2 s-1)

measured at the forest floor in relation to the radiation

intensity at 400–700 nm wavebands above canopy.

(1) Measurements in the factorial experiment

A LI-COR Quantum Sensor placed below and above the

curtains determined the light levels below the shading

curtains.

(2) Measurements in the field

Above every sample unit on the experimental area a

hemispherical photography was taken under overcast con-

ditions (obscured overcast sky condition—sensu Grant

et al. 1996) with a Canon� AE-1 camera and a Canon

7.5 mm, f/5.6 lens on an AGFA�-ORTHO film. The zenith

luminance was measured in advance within an angle of

view of 5� (Wagner 1994, 1998; Clearwater et al. 1999);

three stops of over-exposure were established. A photo-

graph of an optical density wedge was taken on each film,

allowing establishing film density function in the lab. With

the method proposed by Wagner (1998) the photographs

were analysed using the professional imaging software

OPTIMAS�. The method has been proven to yield very

high degree of accuracy (Wagner 1996) as, e.g. penumbra

effects can be taken into account. The method allows for

corrections of vignetting of the lens as well as for hetero-

geneous luminance distribution of an overcast sky (Wagner

2001).

‘‘Relative PAR’’ in relation to open field was computed

assuming 60% of overcast conditions and 40% of clear

sky conditions (clear sky condition—sensu Grant et al.

1996) within the vegetation period (Biederbick 1992).

This relative radiation value was considered to be rep-

resentative to all seedlings on that particular sample unit.

However, this individual seedlings radiation level cannot
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be interpreted as equal for succeeding years. Thus it is not

straightforward to relate the total height of the seedlings

simply to the measured radiation level. Instead, individual

height at the end of the fourth vegetation period

was measured and the RGR of seedling height was cal-

culated as:

p ¼ Ht þ 1� Htð Þ=Ht ð1Þ

with ‘‘p’’ as the RGR, ‘‘H’’ the height value and ‘‘t’’

year.

Assessment of below ground resources and indices

indicating limited growing space

Several different approaches were applied to estimate the

intensity of factors important for the growth of beech

seedlings besides relative PAR. Key variables chosen in

this regard are below ground resource availability on the

one hand and growing space on the other hand.

The belowground resource was directly measured in the

factorial experiment, i.e. soil moisture. In the field experi-

ment it was statistically derived by using a proxy:

the modelled overstorey trees’ root density. The latter

approach is statistic by nature and has to be distinguished

from models that are based on eco-physiological processes at

the process level (e.g. Rötzer et al. 2008; Gayler et al. 2006;

Zhang et al. 2006). Growing space was computed by classi-

cal position dependent competition indices algorithms.

(1) Assessment of below ground resources

Measurement of soil moisture in the factorial experi-

ment: The target levels of soil moisture were 100, 80, 60

and 40% of field capacity in the bottom 14–28 cm of the

containers, which was equivalent to 34.0, 27.2, 20.4 and

13.6 vol.% soil water content—further referred to as

‘‘SW.’’ The soil moisture measurements were carried out

by TDR technique (Topp et al. 1980; Rundell and Jarrel

1991) in 0–14 cm and 0–28 cm depth before irrigation,

which was carried out weekly in the growing seasons. The

soil moisture data made it possible to calculate the soil

moisture in 14–28 cm depth and the amount of water

necessary to reach the target moisture in 14–28 cm depth

of each container.

Assessments in the field: Overstorey trees root density

was derived from a fine root distribution model for beech.

Fine root intensity of overstorey trees was estimated for

each sample unit by a model developed by Nielsen and

Mackenthun (1991). The model follows Wu et al. (1985)

who suggested models reflecting ‘‘ecological fields’’ of

overstorey tree roots which do not consider patchiness of

root systems but which assume that tree roots are distrib-

uted simply distance dependent and radialsymmetrical to

the tree trunk. This is particularly important belowground,

where fine root distribution and the effects on water and

nutrient resources are spatially tightly coupled while in

contrast aboveground radiation effects can be measured far

away from leaves. The model of Nielsen and Mackenthun

(1991) predicts the amount of fine root (B2 mm in diam-

eter) in a zone of 45 cm soil depth per area soil surface (mg

dry weight per cm2 soil surface) by the following equation:

RIS(dbh; dist) ¼ A dbh=2ð Þ2p
� �D

� ��
1þ B exp Cdistð Þ½ �

ð2Þ

where ‘‘RIS’’ is the root intensity of a single tree, ‘‘dbh’’ is

its diameter at breast height in decimetre, ‘‘dist’’ is the

distance from the point of interest to the middle of the tree

trunk in centimetres and A, B, C and D are parameters of

the model which are taken from Wagner (1999; A = 7.38,

B = 0.223, C = 0.00825, D = 0.573) for beech in a mixed

stand. With these parameter values the root intensity

declines monotonously with increasing distance to the trees

trunk. The computed root intensity of this model depends

on the diameter of the tree and is supposed to diminish

further away from the trees trunk than 7 m. Based on this

equation the amount of fine root biomass at a given point

was computed by summing up the calculated fine root

biomasses of all neighbouring trees at this point. Hence it is

assumed that the total amount of fine roots at a given point

results from additive contributions of the surrounding trees,

located \7 m from the point of interest. No interactions

between tree roots are taken into account (Nielsen and

Mackenthun 1991). This results in:

RI ¼
Xn

i¼1

RISi ð3Þ

where ‘‘RI’’ is the total root intensity in a particular spot

and ‘‘RISi’’ is the contribution of the i-th tree to that total.

All surrounding trees which contributed to the root inten-

sity were considered.

The value of this index is highest when the amount of

overstorey fine root estimated is maximal (RI). As the

scales of different indices are different, a normalisation was

performed as follows:

IRI ¼ 1� RI

RIðmaxÞ
ð4Þ

with ‘‘RI(max)’’ as the maximum value of the index in that

particular stand and ‘‘IRI’’ as the inverse root intensity. The

statistically derived root density of overstorey trees is

nothing else but a belowground position dependent com-

petition index.

(2) Indices indicating limited growing space based on

aboveground information
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As outlined in the introduction height growth of beech

seedlings was analysed by using common indices indi-

cating growing space as independent variables (CI1 to

CI3).

CI1 is an adaptation of the competition index of Hegyi

(1974):

CI1 ¼
Xn

j¼1

dbhj

distij
ð5Þ

where j represents the overstorey trees within a virtual

reverse cone according to Pretzsch et al. (2002). For the

determination of the overstorey trees within the cone, its

vertex was assumed to be perpendicular to the position of

each seedling. The angle which defines the width of the

cone was 60�. The index itself is calculated by the sum of

the diameters in breast height (dbh) of all selected over-

storey trees divided by their distance to the subject

seedling i.

CI2 represents the competition index of Pukkala and

Kolström (1987)

CI2 ¼
Xn

j¼1

aj ð6Þ

where j represents the overstorey trees determined as for

CI1. The index is calculated by the sum of the angles which

result by the virtual tangents from the subject tree seedling

position in 1.3 m height to the each overstorey tree which

laterally touch the stem in the same height.

CI3 represents an index according to El Kateb (1991):

CI3 ¼
N2

ba
ð7Þ

for the calculation of this index the overstorey trees are also

determined as for CI1. The index is the ratio of the square

of overstorey tree number (N) and the corresponding basal

area (ba).

Modifications of these indices where tested in addition.

This means that we used a cone width of 90� and a radius

of 15 m around the subject tree seedling for the identifi-

cation of relevant overstorey trees. However, both

modifications led to nearly identical results (not shown).

The values of all indices are highest when growing

space is minimal. As the scales of the different indices are

different, a normalisation was performed as follows:

ICIi ¼ 1� CIi

CIi max

ð8Þ

with ‘‘CIimax’’ as the maximum value of the index ‘‘i’’ in

that particular stand and ‘‘ICIi’’ as the inverse value of that

competition index ‘‘i’’.

Data evaluation

In this study two single factor models were applied:

(1) following Drever and Lertzman (2001) and Lin et al.

(2002) the Michaelis–Menten function was applied in

the case of relative PAR and (2) the Mitscherlich

function was applied in all other factors, i.e. SW, IRI and

ICI. These models were either applied as single factor

models or as combined models based on single factors

each. The combination of two factors was modelled by a

multiplicative approach (see, e.g. Tilman 1982; Reed

et al. 1983). Thus, taking the combination of relative

PAR and SW, the following equations were applied to

predict the height growth of a seedling:

DH ¼ Hp PAR; SWð Þ ð9Þ

where

p PAR; SWð Þ ¼ A PAR� Bð Þ= A=Cð Þ þ PAR� Bð Þð Þ½ �

� 1� expð�DSW)ð Þ2
h i

ð10Þ

‘‘DH’’ refers to height growth of a subject seedling in

a given year with height ‘‘H’’ in the previous year,

‘‘p’’ is the relative growth rate (RGR) of that indi-

vidual plant in the current year, depending on the

specific conditions, e.g. radiation and soil water in the

environment of the subject seedling represented by

the availability of the resources relative PAR and SW

in the previous year. Likewise we tested the effect of

relative PAR and IRI instead of relative PAR and SW.

The parameters were estimated by use of Eq. 9 and

standard non-linear regression technique (SPSS 12.0).

To test whether the height growth of the seedlings was

significantly depending on both, relative PAR and

additional factors, a stepwise approach was used.

First, significance of bivariate correlation between

relative PAR and the relative height growth value was

tested. Second, the Michaelis–Menten function was

parameterized with relative PAR as the only inde-

pendent variable. Third, the bivariate correlation

between the residuals resulting from this parameteri-

zation and the additional factor was computed and

tested for significance. Finally, the two-factor func-

tion (Eq. 10) was applied if the previously mentioned

correlation revealed to be significant. As indepen-

dence between the two ‘‘explaining’’ variables is a

prerequisite for application of the two-factor model

we observed the correlations carefully, e.g. evaluated

bivariate correlation coefficients between the two

independent variables.
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(2) Models using indices of growing space availability

We took the general relation

DH ¼ Hp ICIið Þ ð11Þ

and

PðICIiÞ ¼ A 1� exp �DICIið Þð Þ2
h i

ð12Þ

using the Mitscherlich function where ‘‘A’’ represents

the asymptotic RGR and ‘‘D’’ is a scaling factor for

the index in regard.

Results

Controlled factorial experiment

The relevance of relative PAR to the relative height growth

rate (‘‘p’’) is obvious as is the relevance of soil moisture

(SW) to the residuals of the pure relative PAR model

(Table 1). There was no significant correlation between

relative PAR and SW (Table 1).

The application of the combined resource use model

(Eq. 10) to the measured growth rates of the single trees

yielded the parameter estimates given in Table 2 for the

factorial experiment. From this an asymptote value for the

2-year-old beeches of more than 200% relative height

growth rate can be taken (A = 2.31). This means that 1-

year-old beech seedlings might triple height in the second

growth season if the conditions, i.e. resource availability

are optimal. In addition the goodness of fit is shown in

Fig. 1 and in Table 2 (seventh column). Thus 54% of the

observed variation in individual tree height growth could

be explained by a model which combines information on

light and soil moisture and integrate these resources within

a multiplicative growth function. Figure 1 provides infor-

mation on the residuals of the height growth model with

respect to the two independent variables relative PAR and

SW. Relative PAR and SW were not correlated to the

residuals of the combined resource model of Eq. 10

(Table 1). Merely the residuals of the model with respect to

seedlings height of the previous year were not as evenly

distributed as for the two resources (Fig. 1).

Field experiment

As the model used in ‘‘Controlled factorial experiment’’

revealed reasonable results we tested the combined

resource model for the prediction of beech seedling in the

field. The analysis of the field data showed a significant

relationship between relative PAR and the relative height

growth rate (‘‘p’’) of the seedlings (Table 1) which is

comparable to the controlled factorial experiment. More-

over, applying the one-resource use model based on

relative PAR, IRI showed significant correlations to the

residuals (Table 1). This means that IRI provides addi-

tional information which could be used modeling

combined resources as shown in Eqs. 9 and 10. In contrast

to the factorial experiment however, there is an albeit weak

but significant correlation between relative PAR and IRI

(Table 1). Parameter estimates of the field experiment

using relative PAR and IRI in a model of two combined

resources are shown in Table 2. The asymptote value for 4-

year-old beeches amounted to 48% relative height growth

rate. This means that a 3-year-old beech would add nearly

50% of its actual height in the fourth growing season at

maximum if conditions are optimal under the given con-

ditions, i.e. if best resource availability in the field

experiment is given. The goodness of fit, when using the

full combined resource use model (Eq. 9), can be seen

from Fig. 2 and Table 2 (seventh column). Nearly 50% of

the variation in individual seedling height growth could be

explained by the model (Table 2, column 7). Residual plots

of the combined resource use model with respect to the

three independent variables relative PAR, IRI and h are

presented in Fig. 2. It is evident from this figure and

Table 1 that there is no significant correlation between the

residuals and the three independent variables.

Table 1 Bivariate correlation coefficients for the two models based on one and two combined resources

Factorial experiment Field experiment

One resource

Relative PAR , p 0.222 P = 0.003 Relative PAR , p 0.175 P = 0.000

SW , resid 0.551 P = 0.000 IRI , resid 0.121 P = 0.008

Relative PAR , SW -0.073 P = 0.287 Relative PAR , IRI -0.129 P = 0.005

Two resources

Relative PAR , resid 0.033 P = 0.667 Relative PAR , resid -0.021 P = 0.652

SW , resid -0.114 P = 0.134 IRI , resid -0.087 P = 0.056

h , resid -0.276 P = 0.000 h , resid -0.046 P = 0.311

N 174 482
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In addition to the resource based prediction of beech

seedling growth a simple model using growing space

availability expressed by several indices (CI1 to CI3) was

comparatively tested. This approach (Eq. 11) yielded the

parameter estimates given in Table 3. It is evident that the

differences between the indices in explaining beech seed-

ling height growth are small. The best prediction of relative

height growth showed index CI2 (Table 3; Fig. 3).

Although the goodness of fit is satisfying (Fig. 3a) it seems

that a slight bias is to be observed in so far, that neither the

highest measured values are predicted very well nor are the

lowest. Residuals of the growing space model (Eq. 12)

taking index CI2 into account were neither significantly

correlated to ICI2 nor to initial height (Fig. 3). However,

residuals were correlated to relative PAR (r = 0.117,

P = 0.010). A look at the estimates of this index reveals an

asymptote value for the investigated 4-year-old beech

seedlings of approximately 42% relative height growth rate

(Table 3). This means that a 3-year old beech would add

around 40% of its actual height in the fourth growing

season at maximum if the conditions are optimal.

Discussion

Is a model combining resource based growth functions

suitable for the prediction of individual height growth

of beech seedlings?

To answer the first question outlined in the introduction,

we used existing data from the controlled factorial

experiment. It is evident that both relative PAR and SW

Table 2 Parameter estimates and asymptotic standard error values for the combined resource use model (Eq. 12)

A B C D N r2

Factorial experiment 2.31 ± 0.23 338.4 ± 98.2 0.02 5.93 ± 0.67 174 0.54

Field experiment 0.48 ± 0.03 87.9 ± 30.8 0.02 3.52 ± 0.55 482 0.49

The value of C was determined in advance

Fig. 1 Factorial experiment; goodness of fit of the combined resource use model and bisector (a) and the corresponding residuals in relation to

relative PAR (b), soil moisture (SW) (c) and initial height (d)

Trees (2009) 23:701–715 707
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are relevant resources for the height growth of beech

seedlings (Tables 1, 2; Fig. 1). This finding is well known

from previous studies (Burschel and Schmaltz 1965a;

Tognetti et al. 1994; Madsen 1994, 1995; van Hees 1997;

Collet et al. 2001, 2002; Ammer 2002). However, to our

knowledge there exists no investigation where the

appropriateness of a multiplicative approach of modelling

relative PAR and soil water effect on height growth of

beech seedlings has been tested. Such an approach has so

far merely been presented for a combination of growth

functions for tree seedlings response to light and nitrogen

supply by Reed et al. (1983). In general, as stated by

Coomes and Grubb (2000) ‘‘little is known from experi-

ments about the combined effects of water shortage and

shade’’. It is therefore noticeable that the factorial

experiment revealed not only the result that the avail-

ability of soil moisture strongly influences seedling

growth under different radiation regimes, but also the

suitability of a multiplicative approach for the reasonable

combination of growth functions. However, applying the

multiplicative approach to our data resulted in a system-

atic weakness of the model in predicting height growth if

high radiation availability was combined with poor water

supply (Fig. 4). These conditions led to an extreme low

increment which is contradicted by the idea of stable

asymptotic relative PAR reaction of the plants over the

whole range of soil moisture (Sack 2004). Nevertheless,

the combined resource use model approach presented here

offers the opportunity to investigate the independent

multiplicative effect of irradiance and water supply

combinations on woody species as suggested by Sack and

Grubb (2002). Thus, the applicability of a combined

resource use model was proven successfully in height

growth modelling of beech (Table 1; Fig. 1).

While the growth of the seedlings in this experiment was

not restricted by nutrient availability (Madsen 1994) the

only belowground factor modified within the experiment

Fig. 2 Field experiment; goodness of fit of the combined resource use model and bisector (a) and the corresponding residuals in relation to

relative PAR (b), IRI (c) and initial height (d)

Table 3 Parameter estimates and asymptotic standard error values

for the growing space model

Index A D N r2

CI1 0.405 ± 0.012 7.570 ± 2.620 482 0.474

CI2 0.416 ± 0.015 5.152 ± 1.146 482 0.478

CI3 0.419 ± 0.012 6.157 ± 1.220 482 0.476
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was water supply. As a consequence the parameterisation

of the combined resource use model should yield parameter

values of the Michaelis–Menten portion (‘‘B’’ and ‘‘C’’) for

true relative PAR response. This means that without

belowground resource constraints this parameterisation

should hold true and should therefore be considered ‘‘pure

relative PAR dependent’’ (Shainsky and Radosevich 1991;

Mou and Fahey 1993).

Is it possible to predict individual height growth

of beech seedlings in the field by a model which

combines measured (light) and estimated (belowground

resources) resource availability?

Against the background of the results of the factorial

experiment and the physiological plausibility of combined

resource use models (Smith and Huston 1989; Holmgren

et al. 1997; Battaglia et al. 2000) it was expected that the

chosen approach is also suitable to parameterise field data.

As in the factorial experiment, water and not nutrients was

likely to be the limiting belowground resource in the field

experiment. This assumption is based on site characteristics

like the pH (KCl) values of the soil, which range from 6.5

to 4.5 and the fact that the humus layer was classified as F-

Mull. Ignoring the fact that there was a weak correlation

between relative PAR and IRI (Table 1, fourth column)

which will be discussed in the following, the multiplicative

approach yielded satisfying results also for the field data

(Table 2; Fig. 2).

Separating the effect of light and belowground resources

in the field requires a broad range of values of both vari-

ables. To distinguish between the effects of relative PAR

and a radial symmetric belowground resource within one

experiment it is necessary to minimize the correlation

between these two resources. This can experimentally be

achieved by gap creation. In higher latitude on the northern

hemisphere a high relative PAR-intensity on the northern

edge of a gap and a low relative PAR-intensity on the

southern part of a gap can be found (Canham et al. 1990).

In contrast to relative PAR, assuming a distance depen-

dency of fine root density distribution (Ammer and Wagner

2005; Zerihun et al. 2007), root density is constant in a

particular distance to the gap edge (Brockway and Outcalt

1998; Ammer and Wagner 2002; Müller and Wagner

2003). However, while in the controlled factorial experi-

ment no significant correlation between relative PAR and

Fig. 3 Field experiment; goodness of fit of the index based model and bisector (a) and the corresponding residuals in relation to ICI2 (b) and

initial height (c)
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SW values was observed, a weak but significant correlation

was given in the field experiment between relative PAR

and IRI although we carried out the investigation using

gaps.

Beside the independency of above- and belowground

resources, the detection of resource effects on seedling

growth is facilitated by a high variation of the resource in

regard. This means that for example investigations which

failed to identify a significant impact of soil moisture status

on seedling growth (Burschel and Schmaltz 1965b; Pacala

et al. 1994) presumably did not provide a resource varia-

tion which was high enough to do so. The stand

investigated here matches the requirement of high water

resource variability in so far that steep gradients of soil

moisture availability were likely to occur in stands with

large gaps and shallow soils. In such stands the variety of

stand densities ranges from gaps to closed stand sections.

The assumption that a high variation of soil moisture can

be found in heterogeneously stocked mature stands was

recently confirmed by Ammer and Wagner (2002). Like

relative PAR which is attenuated by overstorey trees to

very low light levels [in beech forests down to 2% com-

pared to open field conditions (Larcher 1994; Mayer et al.

2002)] overstories can also drastically reduce soil moisture

available for seedlings (Aranda et al. 2002). The idea of

stand density as being a steering feature to soil water

supply for seedlings is supported by work of Riegel et al.

(1995), Walters and Reich (1997) and Coomes and Grubb

(2000) who pointed out the distinct relationship between

fine root mass and soil moisture and nutrient availability.

Belowground resource availability is therefore supposed to

be inversely related to the fine root intensity of overstorey

trees. Based on this idea, which was promoted by Wu et al.

(1985), we used IRI as a rough estimator for soil moisture

availability. In fact Ammer and Wagner (2002) could show

that fine root biomass predicted by models which integrate

information about tree dimension and spatial distribution is

correlated to soil moisture. Moreover, Ammer et al. (2008)

recently showed that modelled fine root biomass of over-

storey trees could partly explain variation in early seedling

growth. Indeed the goodness of fit of the combined

resource use model was fairly satisfying and the residuals

were well balanced (Fig. 2).

Because IRI is radial symmetric, the parameterisation of

the combined resource use model should yield parameter

values of the Michaelis–Menten portion (‘‘B’’ and ‘‘C’’) for

true relative PAR response. The parameterisation should

therefore hold true without belowground resource con-

straints. As hypothesised in the introduction it should be

considered ‘‘pure relative PAR dependent’’ and parameters

should be comparable to those of the factorial experiment.

Looking at the pure relative PAR response of the rela-

tive height growth of beech seedlings of both experiments

in Fig. 5, two features are obvious: the two beech cohorts

differ markedly in the value of the asymptotic RGR given

unlimited relative PAR supply (2.3 versus 0.45) and the

curves both pass through their steepest portions when rel-

ative PAR supply is \10%. Both features lead to almost

identical curves when the ratio of the two asymptote values

is taken as a factor for the conversion of one curve into the

Fig. 4 Three-dimensional surface plot of radiation (relative PAR in

portion of 1) and water (soil water content in portion of 1) impact on

relative length growth rate of beech seedlings in the factorial

experiment. Open and solid dots show values of the relative growth

rate of each of the two plots per factor combination. The surface is

computed by local linear regression. The low rlgr-value at relative

PAR = 0.6 and SW = 0.15 is commented in the discussion

Fig. 5 Model function graphs of predicted relative height growth rate

in relation to relative PAR (Michaelis–Menten portion for true

relative PAR response of combined resource use model, Eq. 10) for

the factorial experiment (dashed line) and the field experiment (solid
line)
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other. In other words: if the Michaelis–Menten function

parameterised for the 4-year-old beeches of the field

experiment is multiplied with a value of 4.8 (ratio 2.31 to

0.48, the values of the parameter ‘‘A’’ in Table 2) a func-

tion results which is fairly the same than the one resulting

from the parameterisation for the 2-year-old beeches of the

factorial experiment. Thus, the Michaelis–Menten function

of one experiment can simply be converted to the

Michaelis–Menten function of the other experiment by

multiplication with a constant. This finding is important in

regard to parameterisation techniques for regeneration

models in so far that a complete parameterised light

response curve from controlled conditions (e.g. in the lab)

might be taken to field data. Thus, parameter estimates will

be more confident allowing for reduction of parameters to

be estimated from field data, i.e. instead of three parame-

ters of Michaelis–Menten function only one is necessary

(asymptote).

However, the different value of the asymptote (‘‘A’’)

cannot fully be explained by the availability of relative

PAR. Keeping in mind that the RGR is supposed to be (1)

determined by endogen plant properties (e.g. age: Wenk

et al. 1990; Ammer et al. 2004) and (2) by environmental

properties (e.g. availability of resources: Thomas and

Weiner 1989) and that soil moisture availability or

belowground competition by overstorey tree roots was

implemented in the models, only endogen plant properties

remain as explaining variables for the different asymptotic

values of the two growth functions.

In growth and yield research several functions have been

developed to describe the age effect on RGR assuming no

resource limitations, e.g. open field conditions (see Wenk

et al. 1990; Weiner and Thomas 2001). These functions

follow the assumption of a more or less steep decline of the

RGR within the first years. Thus, the difference in the RGR

level (value of the asymptote) between the two experiments

might simply be explained by differences in age or initial

height of the beeches. While a 1-year old 8 cm tall beech

seedling in the factorial experiment yielded 9.6 cm height

increment in the second year at average and a 1-year-old

11 cm tall beech seedling in the field experiment yielded

8.4 cm in the second year—both more than 0.7 RGR—a 3-

year old 27 cm tall beech seedling of the field experiment

yielded only 10.7 cm height increment in the fourth year.

This corresponds to a RGR of approximately 0.4 (Table 4).

To yield the same RGR as the 1-year-old 11 cm tall

seedling 3-year old 27 cm seedling would have had to

grow 20 cm in the following year. In this phase of seedling

development RGR values of the asymptote are thus not

probable to stay constant over subsequent years (see second

and third year in Table 4). This is in accordance to the

findings of Brand (1986), Kneeshaw et al. (1998) and

Ammer et al. (2004). In contrast to these authors Collet

et al. (2002) could not find any effect of beech seedling age

on any parameter of seedling growth. Another explanation

for the differences in the true relative PAR-response of the

two cohorts may be differing carry-over effects. As Löf and

Welander (2000) pointed out biomass production of beech

seedlings is influenced by previous year drought. In con-

trast to the seedlings of the factorial experiment the

saplings of the field study could have been affected thereof.

Is a model based on a traditional index for growing

space availability more suitable for the prediction

of beech seedling’s height growth than a resource based

model?

A easy way to determine the effect of overstorey trees on

seedlings is to use competition indices (Herling 2005).

Such indices integrate the limitation of above- and

belowground resource availability to a dimensionless value

which increases which decreasing growing space. Many of

these indices are distance dependent and radial symmetric

(Bachmann 1998).

The results of the present study show that the variation

of beech seedling’s height growth which could be

explained by either a model where the initial height and a

competition index served as independent variables or by a

model where initial height and above- and belowground

resources were used as independent variables was more or

less comparable (Table 3). Thus with both approaches

approximately half of the observed variation in seedlings

RGR could be explained. Note that the differences between

the two approaches regarding the zone affected by an

overstorey tree (radial symmetric in the case of the growing

space indices, but radial symmetric (belowground resource

availability) and radial asymmetric (relative PAR consid-

ering direct radiation) in the case of the combined resource

use model) obviously did not influence the predictive

ability of a model. However, qualitatively there is a big

difference between the two concepts. While the growing

space-index approach provides no information on the

environmental factors constraining tree seedlings growth,

the multiplicative combined resource model can be used to

Table 4 Mean height (MH) and mean height increment (MHI) in cm; RGR in brackets

MH, year 1 MHI, year 2 MH, year 2 MHI, year 3 MH, year 3 MHI, year 4 N

Factorial experiment 8.28 9.60 (1.16) 17.88 174

Field experiment 11.05 8.37 (0.76) 19.42 7.72 (0.40) 27.14 10.68 (0.39) 482
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get a better understanding of growth dynamics in the field.

In fact there is for example an ontogenetic variation in the

relative influence of light and belowground resources in

beech seedling growth (Ammer et al. 2008). In addition, we

observed a slight bias in the simple competition index

model (see Fig. 3a) which might be due to the lack of any

relative PAR-information in this model. Taking the radial

symmetrical character of the competition index into

account it is possible that the beeches received less relative

PAR on the southern part of the gaps compared to western

or eastern parts. This is not indicated by the any of the

tested competition indices. This interpretation is in fairly

good concordance with the less obvious bias in Fig. 2a,

where relative PAR-information and the radial symmetrical

root competition index are combined. However, only in the

factorial experiment the model is free of any bias (Fig. 1a)

indicating a problem of the field experiment which cannot

be fully explained.

Comparing the different competition indices tested in

our study it can be stated, that the type of the index and the

underlying approach of selecting overstorey trees affecting

growing space seem not to be very important for the

amount of explained variation (Table 3).

Conclusions

The present study attempted to model the height growth

of single beech seedlings in the field. According to

Goldberg (1990) seedling growth is the response on

resource availability determined by the presence and

dimension of overstorey trees. Given a maximum RGR

development over age, a stable RGR, i.e. a stable form of

the response curve of a species to resource limitation

within the years of seedling stage might be expected. This

assumption is confirmed by the results of our study.

Based on various physiological responses Aranda et al.

(2002) demonstrated the high importance of the light/

water interactions for beech under canopies of different

closure. Taking the findings of Aranda et al. (2002) and

the results of the present study into account, it can be

concluded that the combined resource use model approach

is appropriate for modelling height growth of beech

seedlings in the field by using an indirect method of

estimating belowground resource availability. From a

silvicultural point of view the application of such models

is of great interest in order to get rough estimations of the

growth potential of seedlings under given conditions. For

this purpose however, models using competition indices

which require only easy to measure data, are suitable as

well. However, it might be helpful to develop competition

indices which include belowground factors, especially

when predicting seedling growth. Realistic predictions of

height growth are for example important for controlling

inter (tree) specific competition and weed interference and

for planning partial-cutting treatments and predicting their

long-term consequences (Drever and Lertzman 2001).

Nevertheless, only the combined resource use model

approach provides an improved ecophysiological under-

standing of seedling growth in the field. The implementation

of the underlying functions into generalised models of forest

productivity (e.g. Landsberg and Waring 1997) may be an

option.
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