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Precision of allometric scaling equations for trees can be improved
by including the effect of ecological interactions
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Abstract Allometric scaling relationships of the form

Y = aXb are widely utilized in many types of models and

analyses of tree structure. They are often viewed as static

relationships where both the scaling exponent (b) and the

normalization constant (a) obtain empirical values that are

fixed within a single set of data. Among different sets of

data, their values can show environmental variability.

However, there have been only few attempts to give a

mechanistic interpretation for this variability. We used

field data to demonstrate how the scaling relationships in

trees can be modified by ecological interactions. Moreover,

we show how such processes can be incorporated into the

scaling models to improve the fit and the information

content of the scaling equations. When fixed theoretical

scaling exponents were used instead of empirical expo-

nents and when the effect of competitive interactions

between trees was described by separate submodels that

predicted the value of the normalisation constant in the

scaling equations, it was possible to obtain 4–10%

improvement in the model fit of three different structural

scaling relationships. Our results suggest that unexplained

variation in the values of the scaling parameters can be

substituted by an identified effect of ecological factors on

the value of the normalisation constant. This agrees with

recent theoretical suggestions stating that ecological factors

can directly influence the value of normalisation constants.
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Introduction

Allometric scaling relationships of the form Y = aXb are

widely used in the analysis of tree structure. They can be

used as models themselves, or as components of larger

models. In practical situations, the purpose is often to

obtain shortcut formulas for estimating hard-to-measure

variables by using data from those that can be quantified

more easily. For example, allometries allow the estimation

of tree mass (Johansson 2007) or leaf area (Ford and Vose

2007) from stem diameter measurements.

The scaling relationships are often viewed as static

relationships in which both the scaling exponent (b) and the

normalization constant (a) obtain empirical values that are

fixed within a single set of data. The procedure has been

used as almost a standard (Henry and Aarssen 1999), and

this partially stems from the convention of examining

theoretical predictions of the value of the scaling exponent

statistically (White et al. 2007). However, the theoretical

values have been suggested as being poor at predicting the

environmental or phylogenetic variability that seems to

characterise empirical data (McKechnie et al. 2006; Dun-

can et al. 2007; Jeyasingh 2007; White et al. 2007).

There have been only a few attempts to give a mecha-

nistic explanation for the statistical variability although

both the scaling exponent and the normalization constant

may have an interpretation based on biological processes

(Kozłowski et al. 2003; Etienne et al. 2006; Mäkelä and
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Valentine 2006; Chown et al. 2007; Enquist et al. 2007;

Price et al. 2007). As an alternative, some process-based

models use conditional values of a and b, or additional

variables to modify the values of a and b, instead of

attempting to give a direct interpretation of the values of a

and b by themselves (Duursma et al. 2007; Holdo 2007).

The use of static relationships in process-based tree

models, and to some extent in statistical tests of theoretical

values, can be misleading if the variability and its potential

causes are not considered. For example, the scaling

between woody mass and foliage mass seems to be

strongly linked to the crown ratio of trees (Mäkelä and

Valentine 2006). Crown ratio together with other crown

parameters are, in turn, influenced by the amount of com-

petition in the neighbourhood (Ilomäki et al. 2003; Kantola

and Mäkelä 2004). Thus, the predictions are likely to be

somehow biased, if a model uses any static scaling rela-

tionship that is directly or indirectly linked to crown ratio

to predict stem properties in competing trees. In general, it

appears that within constrained limits both scaling expo-

nents and normalisation constants are strongly linked to the

morphological and physiological traits of branching net-

works in plants (Enquist et al. 2007; Price et al. 2007).

Hence, they can be modified by any factor that influences

the formation of those networks, such as competition.

In this study, we used a field trial to demonstrate how the

scaling relationships in trees can be modified by competi-

tive processes, and how these processes can be incorporated

into the scaling relationships to improve the information

content of the scaling equations. We investigated the rela-

tionship between stem diameter and tree height, as well as

between basal diameter of a branch and both the number of

leaves and branch length. The study operates at the scale of

ecological interactions by investigating the potential effect

of neighbouring trees on the scaling of target trees. We

operated with statistical models, and hence do not attempt

to translate these ecological effects into physiological or

molecular process-based models that would mechanistically

explain the scaling relationships. For simplicity, we

restricted our demonstrative analyses with the assumption

of constant scaling exponents.

Material and methods

Scaling data

The scaling data were measured at study plots where silver

birch (Betula pendula Roth) was growing in mixtures

together with Scots pine (Pinus sylvestris L.), black alder

[Alnus glutinosa (L.) Gaertner], Siberian larch (Larix sib-

irica Ledeb.), or other individuals of silver birch. The study

trees were individual silver birches selected on the basis of

having mainly one tree species surrounding each of them,

in order to distinguish the influence of different species.

Study sites were experimentally established or otherwise

planted as mixed stands representing Myrtillus forest site

types, and mostly consisted of up to 50 m 9 50 m plots

where silver birch was abundant together with at least one

of the other tree species studied. Pubescent birch (B. pu-

bescens Ehrh.) was also frequently found, and some

individuals of Norway spruce [Picea abies (L.) Karsten]

were typically present in the undergrowth. The number of

silver birch individuals selected for the study was 73

growing in 12 study sites with a median shortest site-to-site

distance of 15 km along a southwest–northeast transect

between the latitudes 60�N and 63�N, and longitudes 21�E

and 29�E, in the boreal forest zone in Finland.

The neighbour trees were defined as trees that were

either touching or had the potential of touching the study

tree crown by growing their current branches straight

through an open space within a 5-m radius cylinder centred

at the stem base of the study tree. This definition empha-

sised the potential effect of crown interactions between

neighbours. The neighbour species, in turn, was defined as

the one with the sum of diameters at breast height being

over half of the total sum of the breast height diameters of

all the neighbour trees. The mean of the sum of diameters

for the main neighbour species was larger than 80%.

The design of the sampling scheme conformed to a

fractional factorial design in which the study site and

neighbour species were the classification variables. All the

species combinations were not present at all sites, but the

observed combinations were partially overlapping to

facilitate the analysis of ecologically pertinent effects

(Zaluski and Golaszewski 2006). The two competition

indices and the height of the study trees were used as

continuous variables. Tree height was included to obtain a

control for potential differences in developmental stage

even though height within individual sites was rather uni-

form (average coefficient of variation being 18%). Within

each site, there were typically two or three trees measured

per available species combination (two to four combina-

tions per site) and the size and age of both the study trees

and their neighbouring trees was as uniform as possible.

Across all the sites, the age of the study trees varied from 4

to 30 years.

Three different scaling relationships predicted in the

literature were studied. The first was the relation between

the basal diameter of the stem (D) and tree height (H),

which has been suggested to scale as H � D2/3 (e.g. Niklas

and Spatz 2004). The second was the relation between

branch radius (r) and number of leaves (L) suggested to

scale as L � r2 (West et al. 1999). The third was the

relation between branch radius and branch length (l) as

l � r2/3 (West et al. 1999).
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The height of each tree was measured after felling.

Basal diameter at about 20 cm above the ground was

measured at two perpendicular directions and the mean of

these values was used. For each branch in the study trees,

branch diameter was measured with a calliper to obtain

branch radius, and branch length was estimated by mea-

suring a straight line from the base of the branch to the

most distant shoot of the same branch. Leaf number was

estimated for each sample of at least two branches per

tree by counting the number of leaf-producing shoots

(hereafter shoot number). Shoot number gives a good

estimate of leaf number because the majority of foliage in

birch is located in short shoots that usually bear two

leaves.

The influence of the neighbouring trees was character-

ised by two competition indices (CI1 and CI6) that had the

best explanatory power (lowest AIC, see Comparing three

methods to estimate scaling parameters) to explain the

allometric and other structural characteristics of silver

birch in the present data (Vehanen and Kaitaniemi,

unpublished results). The indices were selected from

among the group of indices used by Rouvinen and Ku-

uluvainen (1997) to study crown competition:

CI1 ¼
Xn

j¼1

arctan Dj=Lij

� �
ð1Þ

CI6 ¼
Xn

j¼1

arctan Hj � 0:8Hi

� �
=Lij

� �
; Hj [ 0:8Hi ð2Þ

where i denotes study tree, j neighbouring tree and n is the

number of competitors in a radius of 5 m from the study

tree. CI1 is the sum of angles of sectors where the width of

a sector is the diameter (D) of neighbour tree at the breast

height and the length of the sector (L) is the distance

between the stem bases of the study tree and the neighbour

tree. CI1 also acts as a substitute for the actual size of

neighbours, because it correlated with the sum of breast

height diameters of the neighbour trees (r = 0.89,

N = 73).

CI6 indicates the sum of angles of sectors between the

study tree and a neighbour tree. The height of one sector

(H) is the height of a neighbour tree above 80% of the

study tree height, and the length of the sector is the distance

between the study tree and a neighbour tree. CI1 and CI6

describe different aspects of competition because their

correlation was only moderate (r = 0.42).

Comparing three methods to estimate scaling

parameters

We used three different approaches to determine the values

of the parameters in the studied scaling relationships. Tree-

specific values were used because it is conventional to

calculate average values of the size variables for each

independent observational unit in an allometric analysis

(Niklas 1994). For branch length, we used the tree-specific

averages of branch radius and branch length. For shoot

number, we used tree-specific averages of the radius and

shoot number of the sample branches.

The first approach was ‘‘traditional’’ and both the

normalisation constant and the scaling exponent were

allowed to obtain their empirical values as determined by

fitting an allometric scaling function to the data (Proc

NLIN, SAS Institute Inc., Cary, NC, USA). In the second

approach, we set the scaling exponents to their theoretical

values and used nonlinear regression (Proc NLIN) to

determine the value of the normalisation constant alone.

Because the purpose of the models was predicting the

scaling relationships, it was not necessary to account for

measurement error in the scaling variables (Warton et al.

2006).

The third approach was a multistep procedure where the

normalisation coefficients were first calculated individually

for each tree or each branch using the theoretical expo-

nents. The tree-specific averages of these coefficients were

then subjected to an analysis by which the effect of

neighbouring species on their value was examined. The

explanatory variables in the analyses were: study site,

neighbour species, the two competition indices, and the

height of the study trees. Study tree height was used to

account for the potential effects of developmental stage.

Interactions among these variables were also examined

(excluding study site). The analyses were conducted using

the SAS procedure GENMOD, which can be also used for

continuous data (Orelien 2001). GENMOD uses maximum

likelihood estimation that is suitable for unbalanced data,

although with some uncertainty for small samples (Everitt

and Pickles 2004). However, this was not a critical issue

because GENMOD was used primarily as a tool for model

selection and the actual statistical significance of the

parameter values was only meant to point towards poten-

tially important explanatory factors, i.e., not used for

formal hypothesis testing.

Model selection based on Akaike’s Information Crite-

rion (AIC, Akaike 1973) was used to identify the most

efficient set of explanatory variables for predicting the

values of the normalisation constants. AIC simultaneously

maximizes the model fit and minimizes the number of

parameters such that the model with the lowest value of

AIC is judged the best. AIC of a candidate model i is

calculated as AICi = -2 log Li + 2Vi, where Li is the

maximum likelihood of the model i, and Vi is the number

of parameters estimated from the data for the model i. In

this study, the final models with the lowest AIC were used

to calculate the value of normalisation constant in the three

scaling relationships examined.
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The fit between the observed values and the values

predicted by the different scaling relationships estimated

with the three approaches was compared using both the

coefficient of determination (r2) and AIC value. AIC was

used to control the possibility that changes in the model fit

could be a simple consequence of the increased number of

parameters due to the use of submodels to predict the value

of the normalisation constant.

Results

Neighbouring trees had a clear effect on the value of the

normalisation constant in all three scaling relationships. The

model that best predicted the normalisation constant in the

relationship between basal diameter and tree height included

study site (v11
2 = 83.8, P \ 0.0001), neighbouring species

(v3
2 = 10.0, P = 0.02) and the interaction neighbouring

species by CI6 (v4
2 = 22.9, P = 0.0001). The best model for

the relationship between branch radius and shoot number

included the effect of neighbouring species (v3
2 = 8.1,

P = 0.04) and the interaction of neighbouring species with

both CI1 (v4
2 = 21.5, P = 0.0003) and CI6 (v4

2 = 9.6,

P = 0.05). In the relationship between branch radius and

branch length, the best model included study site (v9
2 = 11.7,

P = 0.23, branch length data missing for one site), neigh-

bouring species (v3
2 = 16.7, P = 0.0008), and the interaction

CI6 by neighbouring species (v4
2 = 9.7, P = 0.05).

The three approaches for estimating scaling parameters

produced clearly different outcomes (Fig. 1). Using the

model-predicted normalisation constant with a fixed scal-

ing exponent improved the fit of the scaling equation for

tree height by 10% (r2 = 0.95) compared with either of the

two alternative scaling equations (r2 = 0.84–0.85). The

improvement was also true, if the penalty due to the

number of parameters behind the value of normalisation

constant was taken into account (the value of AIC

decreased with DAIC \ -25). For shoot number, the fit of

the two scaling equations with empirical normalisation

constant and with either empirical or constant scaling

exponent was the same (r2 = 0.47), but the fit was

improved by 8% when model-predicted normalisation

constant was used with a fixed exponent (r2 = 0.55).

However, the use of AIC suggested a penalty due to the

number of parameters compared with the alternative scal-

ing equations (AIC increased with DAIC [ 15). For branch

length, the use of model-predicted normalisation constant

with constant exponent improved the fit by 4% (r2 = 0.83)

compared with the equation with empirical normalisation

constant and constant exponent (r2 = 0.79), and by 6%

compared with the purely empirical equation (r2 = 0.77).

Again, AIC suggested penalty due to the number of

parameters (DAIC [ 28).

Discussion

The fit between the data and three different scaling models

was consistently improved by including the effect of

competitive ecological interactions in separate submodels

that predicted the value of the normalisation constant in the

scaling equations. This is consistent with the concept that

ecological factors can directly influence the value of the

normalisation constant. Competition, for example, pre-

sumably affects photosynthetic rate (Robinson et al. 2001)

that has been suggested to be an integral component of

many normalisation constants in plant allometries (Enquist

et al. 2007). Our analyses suggest a procedure of how these

effects can be incorporated into statistical models.
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Fig. 1 The fit of different scaling equations of the form Y = aXb in

three different scaling relationships in silver birch (Betula pendula).

Black dots denote observed values, black lines the fit of equations

where a theoretical scaling exponent (b) was used, dashed lines the fit

of equations where both normalisation constant (a) and b were

determined empirically, and white dots are values predicted by

equations where a submodel was used to predict a whereas a

theoretical value was used for b
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Although the use of AIC suggested a penalty for the

number of parameters in the submodels and that the

improvement was true in only one of the three cases, it

must be noted that large part of the penalty was caused by

the use of site-specific parameters for up to 12 study sites.

Obviously study site is not a good parameter, if more

generic applications for the models are sought. Study site

was only retained to show the potential for identifying the

factor(s) underlying its unspecified effect. The effects of

study site and neighbouring species could probably be

replaced by a more specific mechanism such as light

interception or soil mediated factors.

In general, the balance between the number of param-

eters and the fit of a model is a more complex issue than

using just a simple statistical criterion to make decisions

(Haefner 1996). If it is possible to gain a consistent 8%

increase in the fit of an economically important model by

adding just few parameters that are cheap to measure, then

it surely is worth the effort, even though a statistical cri-

terion suggests the opposite. For example, an extensive set

of equations have been created to predict a number of tree

traits that are allometrically scaled, and are used for various

economically important purposes covering different

aspects of forest mensuration. These include: carbon

cycling, nutrient cycling, validation of process-based forest

models, forest and greenhouse gas inventories etc. (Zianis

et al. 2005). These equations operate with ground-mea-

sured variables describing just single target trees. They

often include complex polynomial terms where tree height

(H), stem diameter (D) or both are included in various

combinations with additional parameters and exponents.

However, it is known that competition modifies stem pro-

portions, such as slenderness index (D/H) (Ilomäki et al.

2003). Thus it appears likely that the inclusion of neigh-

bourhood effects could be used as an alternative for such

complex terms where both H and D contribute. In remote

sensing, for instance, a problem is that the estimates of

stem properties have remained poorer than in ground

measurements (Korpela and Tokola 2006). By using

remotely sensed data to calculate competition indices and

by including the tree heights and crown dimensions of both

the target trees and their neighbours into equations that

translate remotely sensed data into stem properties, it might

be possible to improve the fit of estimates to correspond

with ground measurements.

The improvement of model fit relied on the use of fixed

scaling exponents, which is a feature that might be con-

troversial as there is continuous disagreement on the

constancy of the scaling exponents (Chown et al. 2007;

White et al. 2007). However, our results and comparable

studies suggest that much of the inconsistency might be a

statistical artefact, and relate to the variation of the value of

the normalisation constant (Kaitaniemi 2004). Even if there

remains disagreement, it will be possible to experiment

with alternative values of the scaling exponent and choose

a combination that gives the best fit for a model that also

includes an interpretation of the value of the normalisation

constant. Fixing exponents can increase the predictive

power of allometries when there is variability in normali-

zation constants. This variability can be accounted for by

measuring additional ecological factors at the level of the

individual. Fitting both exponents and normalizations at the

level of the individual (Mäkelä and Valentine 2006; Price

et al. 2007), and accounting for relationships between these

parameters and ecological factors, could even further

increase the predictive power of allometries. However,

because of the strong interdependence between the two

parameter values (Lumer 1939), one of the scaling

parameters may have to be set to a predetermined value

before the value of the other can be accurately estimated

using merely statistical fit.
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