Skip to main content

Advertisement

Log in

Genetics of IgA nephrology: risks, mechanisms, and therapeutic targets

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

This article has been updated

Abstract

IgA nephropathy (IgAN) is a genetically complex multifactorial trait. Over the past decade, population-based genome-wide association studies (GWAS) have identified more than 30 IgAN risk loci, providing novel perspectives on both the epidemiology of the disease and its underlying molecular mechanisms. In addition, the association between IgAN and galactose-deficient IgA1 (Gd-IgA1) presented another avenue for genetic exploration due to the heritability of the elevated serum Gd-IgA1 levels. These endeavors also yielded and enabled refinement of polygenic risk scores, which may help identify specific groups of individuals at significantly increased risks, leading to stratifications of medical treatments. In this review, we aim to explore the existing evidence for genetic causation in IgAN. We summarize the state of genetic research in IgAN and how it has led to the reformulation of the new pathogenesis model and novel therapeutic targets.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 25 April 2024

    The original online version of this article has been revised: the link to the Graphical Abstract was missing and has been added.

References

  1. Lai KN, Tang SC, Schena FP, Novak J, Tomino Y, Fogo AB, Glassock RJ (2016) IgA nephropathy. Nat Rev Dis Primers 2:16001

    PubMed  Google Scholar 

  2. Li M, Yu XQ (2018) Genetic determinants of IgA nephropathy: eastern perspective. Semin Nephrol 38:455–460

    CAS  PubMed  Google Scholar 

  3. Kiryluk K, Sanchez-Rodriguez E, Zhou XJ, Zanoni F, Liu L, Mladkova N, Khan A, Marasa M, Zhang JY, Balderes O, Sanna-Cherchi S, Bomback AS, Canetta PA, Appel GB, Radhakrishnan J, Trimarchi H, Sprangers B, Cattran DC, Reich H, Pei Y, Ravani P, Galesic K, Maixnerova D, Tesar V, Stengel B, Metzger M, Canaud G, Maillard N, Berthoux F, Berthelot L, Pillebout E, Monteiro R, Nelson R, Wyatt RJ, Smoyer W, Mahan J, Samhar AA, Hidalgo G, Quiroga A, Weng P, Sreedharan R, Selewski D, Davis K, Kallash M, Vasylyeva TL, Rheault M, Chishti A, Ranch D, Wenderfer SE, Samsonov D, Claes DJ, Akchurin O, Goumenos D, Stangou M, Nagy J, Kovacs T, Fiaccadori E, Amoroso A, Barlassina C, Cusi D, Del Vecchio L, Battaglia GG, Bodria M, Boer E, Bono L, Boscutti G, Caridi G, Lugani F, Ghiggeri G, Coppo R, Peruzzi L, Esposito V, Esposito C, Feriozzi S, Polci R, Frasca G, Galliani M, Garozzo M, Mitrotti A, Gesualdo L, Granata S, Zaza G, Londrino F, Magistroni R, Pisani I, Magnano A, Marcantoni C, Messa P, Mignani R, Pani A, Ponticelli C, Roccatello D, Salvadori M, Salvi E, Santoro D, Gembillo G, Savoldi S, Spotti D, Zamboli P, Izzi C, Alberici F, Delbarba E, Florczak M, Krata N, Mucha K, Pączek L, Niemczyk S, Moszczuk B, Pańczyk-Tomaszewska M, Mizerska-Wasiak M, Perkowska-Ptasińska A, Bączkowska T, Durlik M, Pawlaczyk K, Sikora P, Zaniew M, Kaminska D, Krajewska M, Kuzmiuk-Glembin I, Heleniak Z, Bullo-Piontecka B, Liberek T, Dębska-Slizien A, Hryszko T, Materna-Kiryluk A, Miklaszewska M, Szczepańska M, Dyga K, Machura E, Siniewicz-Luzeńczyk K, Pawlak-Bratkowska M, Tkaczyk M, Runowski D, Kwella N, Drożdż D, Habura I, Kronenberg F, Prikhodina L, van Heel D, Fontaine B, Cotsapas C, Wijmenga C, Franke A, Annese V, Gregersen PK, Parameswaran S, Weirauch M, Kottyan L, Harley JB, Suzuki H, Narita I, Goto S, Lee H, Kim DK, Kim YS, Park JH, Cho B, Choi M, Van Wijk A, Huerta A, Ars E, Ballarin J, Lundberg S, Vogt B, Mani LY, Caliskan Y, Barratt J, Abeygunaratne T, Kalra PA, Gale DP, Panzer U, Rauen T, Floege J, Schlosser P, Ekici AB, Eckardt KU, Chen N, Xie J, Lifton RP, Loos RJF, Kenny EE, Ionita-Laza I, Köttgen A, Julian BA, Novak J, Scolari F, Zhang H, Gharavi AG (2023) Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy. Nat Genet 55:1091–1105

    CAS  PubMed  Google Scholar 

  4. Neugut YD, Kiryluk K (2018) Genetic determinants of IgA nephropathy: western perspective. Semin Nephrol 38:443–454

    CAS  PubMed  Google Scholar 

  5. Zhang Z, Zhang Y, Zhang H (2022) IgA nephropathy: a Chinese perspective. Glomerular Dis 2:30–41

    PubMed  Google Scholar 

  6. Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, Eitner F, Snyder HJ, Choi M, Hou P, Scolari F, Izzi C, Gigante M, Gesualdo L, Savoldi S, Amoroso A, Cusi D, Zamboli P, Julian BA, Novak J, Wyatt RJ, Mucha K, Perola M, Kristiansson K, Viktorin A, Magnusson PK, Thorleifsson G, Thorsteinsdottir U, Stefansson K, Boland A, Metzger M, Thibaudin L, Wanner C, Jager KJ, Goto S, Maixnerova D, Karnib HH, Nagy J, Panzer U, Xie J, Chen N, Tesar V, Narita I, Berthoux F, Floege J, Stengel B, Zhang H, Lifton RP, Gharavi AG (2012) Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet 8:e1002765

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tolkoff-Rubin NE, Cosimi AB, Fuller T, Rublin RH, Colvin RB (1978) IGA nephropathy in HLA-identical siblings. Transplantation 26:430–433

    CAS  PubMed  Google Scholar 

  8. Kiryluk K, Julian BA, Wyatt RJ, Scolari F, Zhang H, Novak J, Gharavi AG (2010) Genetic studies of IgA nephropathy: past, present, and future. Pediatr Nephrol 25:2257–2268

    PubMed  PubMed Central  Google Scholar 

  9. Schena FP, Cerullo G, Rossini M, Lanzilotta SG, D’Altri C, Manno C (2002) Increased risk of end-stage renal disease in familial IgA nephropathy. J Am Soc Nephrol 13:453–460

    PubMed  Google Scholar 

  10. Hoy WE, Hughson MD, Smith SM, Megill DM (1993) Mesangial proliferative glomerulonephritis in southwestern American Indians. Am J Kidney Dis 21:486–496

    CAS  PubMed  Google Scholar 

  11. Shi M, Yu S, Ouyang Y, Jin Y, Chen Z, Wei W, Fang Z, Du W, Wang Z, Weng Q, Tong J, Pan X, Wang W, Krzysztof K, Chen N, Xie J (2021) Increased lifetime risk of ESRD in familial IgA nephropathy. Kidney Int Rep 6:91–100

    PubMed  Google Scholar 

  12. Shimozato S, Hiki Y, Odani H, Takahashi K, Yamamoto K, Sugiyama S (2008) Serum under-galactosylated IgA1 is increased in Japanese patients with IgA nephropathy. Nephrol Dial Transplant 23:1931–1939

    CAS  PubMed  Google Scholar 

  13. Kiryluk K, Moldoveanu Z, Sanders JT, Eison TM, Suzuki H, Julian BA, Novak J, Gharavi AG, Wyatt RJ (2011) Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schönlein purpura nephritis. Kidney Int 80:79–87

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gharavi AG, Moldoveanu Z, Wyatt RJ, Barker CV, Woodford SY, Lifton RP, Mestecky J, Novak J, Julian BA (2008) Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol 19:1008–1014

    PubMed  PubMed Central  Google Scholar 

  15. Hastings MC, Moldoveanu Z, Julian BA, Novak J, Sanders JT, McGlothan KR, Gharavi AG, Wyatt RJ (2010) Galactose-deficient IgA1 in African Americans with IgA nephropathy: serum levels and heritability. Clin J Am Soc Nephrol 5:2069–2074

    PubMed  PubMed Central  Google Scholar 

  16. Lin XJ, Ding JX, Zhu L, Shi SF, Jiang L, Zhao MH, Zhang H (2009) Aberrant galactosylation of IgA1 is involved in the genetic susceptibility of Chinese patients with IgA nephropathy. Nephrol Dial Transplant 24:3372–3375

    CAS  PubMed  Google Scholar 

  17. Lomax-Browne HJ, Visconti A, Pusey CD, Cook HT, Spector TD, Pickering MC, Falchi M (2017) IgA1 glycosylation is heritable in healthy twins. J Am Soc Nephrol 28:64–68

    CAS  PubMed  Google Scholar 

  18. Kiryluk K, Li YF, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, Fasel D, Lata S, Prakash S, Shapiro S, Fischman C, Snyder HJ, Appel G, Izzi C, Viola BF, Dallera N, Del Vecchio L, Barlassina C, Salvi E, Bertinetto FE, Amoroso A, Savoldi S, Rocchietti M, Amore A, Peruzzi L, Coppo R, Salvadori M, Ravani P, Magistroni R, Ghiggeri GM, Caridi G, Bodria M, Lugani F, Allegri L, Delsante M, Maiorana M, Magnano A, Frasca G, Boer E, Boscutti G, Ponticelli C, Mignani R, Marcantoni C, Di Landro D, Santoro D, Pani A, Polci R, Feriozzi S, Chicca S, Galliani M, Gigante M, Gesualdo L, Zamboli P, Battaglia GG, Garozzo M, Maixnerová D, Tesar V, Eitner F, Rauen T, Floege J, Kovacs T, Nagy J, Mucha K, Paczek L, Zaniew M, Mizerska-Wasiak M, Roszkowska-Blaim M, Pawlaczyk K, Gale D, Barratt J, Thibaudin L, Berthoux F, Canaud G, Boland A, Metzger M, Panzer U, Suzuki H, Goto S, Narita I, Caliskan Y, Xie JY, Hou P, Chen N, Zhang H, Wyatt RJ, Novak J, Julian BA, Feehally J, Stengel B, Cusi D, Lifton RP, Gharavi AG (2014) Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 46:1187–1196

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sanchez-Rodriguez E, Southard CT, Kiryluk K (2021) GWAS-based discoveries in IgA nephropathy, membranous nephropathy, and steroid-sensitive nephrotic syndrome. Clin J Am Soc Nephrol 16:458–466

    CAS  PubMed  Google Scholar 

  20. Buren M, Yamashita M, Suzuki Y, Tomino Y, Emancipator SN (2007) Altered expression of lymphocyte homing chemokines in the pathogenesis of IgA nephropathy. Contrib Nephrol 157:50–55

    CAS  PubMed  Google Scholar 

  21. Kennel-De March A, Béné MC, Hurault de Ligny B, Kessler M, Faure GC (1997) Enhanced expression of CD31 and CD54 on tonsillar high endothelial venules in IgA nephropathy. Clin Immunol Immunopathol 84:158–165

    CAS  PubMed  Google Scholar 

  22. Batra A, Smith AC, Feehally J, Barratt J (2007) T-cell homing receptor expression in IgA nephropathy. Nephrol Dial Transplant 22:2540–2548

    CAS  PubMed  Google Scholar 

  23. Kiryluk K, Li Y, Moldoveanu Z, Suzuki H, Reily C, Hou P, Xie J, Mladkova N, Prakash S, Fischman C, Shapiro S, LeDesma RA, Bradbury D, Ionita-Laza I, Eitner F, Rauen T, Maillard N, Berthoux F, Floege J, Chen N, Zhang H, Scolari F, Wyatt RJ, Julian BA, Gharavi AG, Novak J (2017) GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet 13:e1006609

    PubMed  PubMed Central  Google Scholar 

  24. Gale DP, Molyneux K, Wimbury D, Higgins P, Levine AP, Caplin B, Ferlin A, Yin PR, Nelson CP, Stanescu H, Samani NJ, Kleta R, Yu XQ, Barratt J (2017) Galactosylation of IgA1 is associated with common variation in. J Am Soc Nephrol 28:2158–2166

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang YN, Zhou XJ, Chen P, Yu GZ, Zhang X, Hou P, Liu LJ, Shi SF, Lv JC, Zhang H (2021) Interaction between GALNT12 and C1GALT1 associates with galactose-deficient IgA1 and IgA nephropathy. J Am Soc Nephrol 32:545–552

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cox SN, Sallustio F, Serino G, Loverre A, Pesce F, Gigante M, Zaza G, Stifanelli PF, Ancona N, Schena FP (2012) Activated innate immunity and the involvement of CX3CR1-fractalkine in promoting hematuria in patients with IgA nephropathy. Kidney Int 82:548–560

    CAS  PubMed  Google Scholar 

  27. Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, Sanna-Cherchi S, Men CJ, Julian BA, Wyatt RJ, Novak J, He JC, Wang H, Lv J, Zhu L, Wang W, Wang Z, Yasuno K, Gunel M, Mane S, Umlauf S, Tikhonova I, Beerman I, Savoldi S, Magistroni R, Ghiggeri GM, Bodria M, Lugani F, Ravani P, Ponticelli C, Allegri L, Boscutti G, Frasca G, Amore A, Peruzzi L, Coppo R, Izzi C, Viola BF, Prati E, Salvadori M, Mignani R, Gesualdo L, Bertinetto F, Mesiano P, Amoroso A, Scolari F, Chen N, Zhang H, Lifton RP (2011) Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43:321–327

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Coppo R, Amore A, Peruzzi L, Vergano L, Camilla R (2010) Innate immunity and IgA nephropathy. J Nephrol 23:626–632

    PubMed  Google Scholar 

  29. Coppo R, Camilla R, Alfarano A, Balegno S, Mancuso D, Peruzzi L, Amore A, Dal Canton A, Sepe V, Tovo P (2009) Upregulation of the immunoproteasome in peripheral blood mononuclear cells of patients with IgA nephropathy. Kidney Int 75:536–541

    CAS  PubMed  Google Scholar 

  30. Wang YN, Gan T, Qu S, Xu LL, Hu Y, Liu LJ, Shi SF, Lv JC, Tsoi LC, Patrick MT, He K, Berthier CC, Xu HJ, Zhou XJ, Zhang H (2023) MTMR3 risk alleles enhance Toll Like Receptor 9-induced IgA immunity in IgA nephropathy. Kidney Int 104:562–576

    CAS  PubMed  Google Scholar 

  31. Kaur G, Batra S (2016) Emerging role of immunoproteasomes in pathophysiology. Immunol Cell Biol 94:812–820

    CAS  PubMed  Google Scholar 

  32. Yewdell JW (2005) Immunoproteasomes: regulating the regulator. Proc Natl Acad Sci U S A 102:9089–9090

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bracke M, Nijhuis E, Lammers JW, Coffer PJ, Koenderman L (2000) A critical role for PI 3-kinase in cytokine-induced Fcalpha-receptor activation. Blood 95:2037–2043

    CAS  PubMed  Google Scholar 

  34. Launay P, Grossetête B, Arcos-Fajardo M, Gaudin E, Torres SP, Beaudoin L, Patey-Mariaud de Serre N, Lehuen A, Monteiro RC (2000) Fcalpha receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-Iga complexes in patients and CD89 transgenic mice. J Exp Med 191:1999–2009

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Xie J, Kiryluk K, Li Y, Mladkova N, Zhu L, Hou P, Ren H, Wang W, Zhang H, Chen N, Gharavi AG (2016) Fine mapping implicates a deletion of CFHR1 and CFHR3 in protection from IgA nephropathy in Han Chinese. J Am Soc Nephrol 27:3187–3194

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Maillard N, Wyatt RJ, Julian BA, Kiryluk K, Gharavi A, Fremeaux-Bacchi V, Novak J (2015) Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol 26:1503–1512

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sallustio F, Cox SN, Serino G, Curci C, Pesce F, De Palma G, Papagianni A, Kirmizis D, Falchi M, Schena FP (2015) Genome-wide scan identifies a copy number variable region at 3p21.1 that influences the TLR9 expression levels in IgA nephropathy patients. Eur J Hum Genet 23:940–948

    CAS  PubMed  Google Scholar 

  38. Liu L, Kiryluk K (2018) Genome-wide polygenic risk predictors for kidney disease. Nat Rev Nephrol 14:723–724

    PubMed  PubMed Central  Google Scholar 

  39. Sukcharoen K, Sharp SA, Thomas NJ, Kimmitt RA, Harrison J, Bingham C, Mozere M, Weedon MN, Tyrrell J, Barratt J, Gale DP, Oram RA (2020) IgA nephropathy genetic risk score to estimate the prevalence of IgA nephropathy in UK Biobank. Kidney Int Rep 5:1643–1650

    PubMed  PubMed Central  Google Scholar 

  40. Zhou XJ, Qi YY, Hou P, Lv JC, Shi SF, Liu LJ, Zhao N, Zhang H (2014) Cumulative effects of variants identified by genome-wide association studies in IgA nephropathy. Sci Rep 4:4904

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shi M, Ouyang Y, Yang M, Yang M, Zhang X, Huang W, Wang W, Wang Z, Zhang W, Chen X, Pan X, Ren H, Chen N, Xie J (2018) IgA nephropathy susceptibility loci and disease progression. Clin J Am Soc Nephrol 13:1330–1338

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Smerud HK, Bárány P, Lindström K, Fernström A, Sandell A, Påhlsson P, Fellström B (2011) New treatment for IgA nephropathy: enteric budesonide targeted to the ileocecal region ameliorates proteinuria. Nephrol Dial Transplant 26:3237–3242

    CAS  PubMed  Google Scholar 

  43. Cheung CK, Barratt J, Liew A, Zhang H, Tesar V, Lafayette R (2023) The role of BAFF and APRIL in IgA nephropathy: pathogenic mechanisms and targeted therapies. Front Nephrol 3:1346769

    PubMed  Google Scholar 

  44. Suzuki Y, Mathur M, Barratt J, Engler F, Yarbrough J, Sloan S, Oldach D (2021) MO258 Safety, tolerability, pharmacokinetics and pharmacodynamics of VIS649, an APRIL-neutralizing IgG2 monoclonal antibody, in healthy volunteers: phase 1, randomized, double-blind, placebo-controlled, single ascending dose study. Nephrol Dial Transplant 36(gfab104):0016

    Google Scholar 

  45. Barratt J, Tumlin JA, Suzuki Y, Kao A, Aydemir A, Zima Y, Appel G (2020) MO039 The 24-week interim analysis results of a randomized, double-blind, placebo-controlled phase ii study of atacicept in patients with IgA nephropathy and persistent proteinuria. Nephrol Dial Transplant 35:gfaa140.MO039

  46. Barratt J, Hour B, Kooienga L, Roy S, Schwartz B, Siddiqui A, Tolentino J, Iyer SP, Stromatt C, Endsley A, Lo J, Glicklich A (2022) POS-109 Interim results of phase 1 and 2 trials to investigate the safety, tolerability, pharmacokinetics, pharmacodynamics, and clinical activity of BION-1301 in patients with IgA nephropathy. Kidney Int Rep 7:S46

    Google Scholar 

  47. Barratt J, Tumlin J, Suzuki Y, Kao A, Aydemir A, Pudota K, Jin H, Gühring H, Appel G (2022) Randomized phase II JANUS study of atacicept in patients with IgA nephropathy and persistent proteinuria. Kidney Int Rep 7:1831–1841

    PubMed  PubMed Central  Google Scholar 

  48. Mathur M, Barratt J, Chacko B, Chan TM, Kooienga L, Oh KH, Sahay M, Suzuki Y, Wong MG, Yarbrough J, Xia J, Pereira BJG (2024) A phase 2 trial of sibeprenlimab in patients with IgA nephropathy. N Engl J Med 390:20–31

    CAS  PubMed  Google Scholar 

  49. Lafayette R, Maes B, Lin C, Barbour S, Phoon R, Kim SG, Tesar V, Floege J, Jha V, Barratt J (2023) #3848 ORIGIN trial: 24-wk primary analysis of a randomized, double-blind, placebo-controlled PH2B study of atacicept in patients with IgAN. Nephrol Dial Transplant 38:gfad063a_3848

  50. Lv J, Liu L, Hao C, Li G, Fu P, Xing G, Zheng H, Chen N, Wang C, Luo P, Xie D, Zuo L, Li R, Mao Y, Dong S, Zhang P, Zheng H, Wang Y, Qin W, Wang W, Li L, Jiao W, Fang J, Zhang H (2023) Randomized phase 2 trial of telitacicept in patients with IgA nephropathy with persistent proteinuria. Kidney Int Rep 8:499–506

    PubMed  Google Scholar 

  51. Lenert A, Niewold TB, Lenert P (2017) Spotlight on blisibimod and its potential in the treatment of systemic lupus erythematosus: evidence to date. Drug Des Devel Ther 11:747–757

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hartono C, Chung M, Perlman AS, Chevalier JM, Serur D, Seshan SV, Muthukumar T (2018) Bortezomib for reduction of proteinuria in IgA nephropathy. Kidney Int Rep 3:861–866

    PubMed  PubMed Central  Google Scholar 

  53. Zhang H, Rizk DV, Perkovic V, Maes B, Kashihara N, Rovin B, Trimarchi H, Sprangers B, Meier M, Kollins D, Papachristofi O, Milojevic J, Junge G, Nidamarthy PK, Charney A, Barratt J (2024) Results of a randomized double-blind placebo-controlled Phase 2 study propose iptacopan as an alternative complement pathway inhibitor for IgA nephropathy. Kidney Int 105:189–199

    CAS  PubMed  Google Scholar 

  54. Zipfel PF, Wiech T, Rudnick R, Afonso S, Person F, Skerka C (2019) Complement inhibitors in clinical trials for glomerular diseases. Front Immunol 10:2166

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lafayette RA, Rovin BH, Reich HN, Tumlin JA, Floege J, Barratt J (2020) Safety, tolerability and efficacy of narsoplimab, a novel MASP-2 inhibitor for the treatment of IgA nephropathy. Kidney Int Rep 5:2032–2041

    PubMed  PubMed Central  Google Scholar 

  56. Kim MJ, McDaid JP, McAdoo SP, Barratt J, Molyneux K, Masuda ES, Pusey CD, Tam FW (2012) Spleen tyrosine kinase is important in the production of proinflammatory cytokines and cell proliferation in human mesangial cells following stimulation with IgA1 isolated from IgA nephropathy patients. J Immunol 189:3751–3758

    CAS  PubMed  Google Scholar 

Download references

Funding

Support was provided by National Science Foundation of China (82370709); Beijing Nova Program Interdisciplinary Cooperation Project (20230484426); Academy of Medical Sciences–Newton Advanced Fellowship (NAFR13\1033); Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2019-I2M-5–046, 2020-JKCS-009); National High Level Hospital Clinical Research Funding (Interdisciplinary Clinical Research Project of Peking University First Hospital, 2022CR41); China International Medical Foundation (Z-2017–26-2202–2); and the Joint Institute (JI) Collaboration Scholars Program at the University of Michigan Medical School. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-jie Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical Abstract

(PPTX 587 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, S., Zhou, Xj. & Zhang, H. Genetics of IgA nephrology: risks, mechanisms, and therapeutic targets. Pediatr Nephrol (2024). https://doi.org/10.1007/s00467-024-06369-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00467-024-06369-7

Keywords

Navigation