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Abstract
Pediatric acute kidney support therapy (paKST) programs aim to reliably provide safe, effective, and timely extracorporeal 
supportive care for acutely and critically ill pediatric patients with acute kidney injury (AKI), fluid and electrolyte derange-
ments, and/or toxin accumulation with a goal of improving both hospital-based and lifelong outcomes. Little is known about 
optimal ways to configure paKST teams and programs, pediatric-specific aspects of delivering high-quality paKST, strategies 
for transitioning from acute continuous modes of paKST to facilitate rehabilitation, or providing effective short- and long-
term follow-up. As part of the 26th Acute Disease Quality Initiative Conference, the first to focus on a pediatric population, 
we summarize here the current state of knowledge in paKST programs and technology, identify key knowledge gaps in the 
field, and propose a framework for current best practices and future research in paKST.
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Introduction

Pediatric acute kidney support therapy (paKST) has become 
an important part of the care of acutely and critically ill neo-
nates, infants, and children. The goal of a paKST program is 
to reliably provide safe, effective, and timely extracorporeal 

supportive care that optimizes both hospital-based and 
lifelong outcomes for pediatric patients with acute kidney 
injury (AKI), inadequate clearance of toxins, and/or fluid 
and electrolyte derangements in the context of organ fail-
ures and critical illness. While there is a significant body 
of literature describing populations of pediatric patients 
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who receive kidney support therapy (KST) and their out-
comes [1–5], much less is known about optimal structures 
to configure paKST teams and programs, pediatric-specific 
aspects of delivering high-quality paKST, strategies for 
transitioning away from continuous modes to intermittent 
or chronic modes or to dialysis-independent rehabilitative 
states, or the best approach to providing intermediate- and 
long-term follow-up which will enable early detection of 
subacute and chronic sequelae after paKST that may affect 
health and well-being over the child’s lifespan. As a result, 
paKST varies greatly across pediatric hospitals both in the 
composition and functioning of paKST programs and in the 
technical aspects and processes of paKST delivery. In addi-
tion, utilizing paKST platforms for non-kidney-related dis-
eases is an active area of investigation with the potential to 
improve outcomes in severe and complex disease processes 
refractory to standard interventions.

The Acute Disease Quality Initiative (ADQI, formerly 
known as Acute Dialysis Quality Initiative) methodology and 
the overall consensus recommendations of the 26th ADQI 
have been published previously [6, 7]. A detailed description 
of the ADQI methodology is also available at www. adqi. net. 
The 26th ADQI Conference convened international experts 
on pediatric AKI, including nephrologists, intensivists, phar-
macists, dieticians, a patient representative, and an expert 
in pediatric social determinants of health. Each member of 
the subgroup on paKST engaged with pre-conference work 
developing a list of preliminary questions and objectives and 
performing a systematic literature review around these key 
questions. Key questions and recommendations were rigor-
ously refined during the in-person 26th ADQI meeting using 

input from the entire group of conference participants as well 
as subgroup breakout sessions and were put into final form in 
post-conference subgroup meetings.

Here, we summarize the current state of knowledge 
regarding paKST program structure, function, and technol-
ogy, identify key knowledge gaps in this field, and propose 
a framework for current best practices and future inquiry in 
paKST. Our group identified more than 50 unresolved ques-
tions in paKST. We distilled those questions to ask: How can 
paKST be used to improve care and outcomes in children? 
We categorized our questions into four key areas (Fig. 1): 
(1) the essential components of a paKST program; (2) the 
provision of timely, safe, and effective paKST; (3) the factors 
guiding paKST de-escalation and liberation; (4) the role of 
paKST for non-kidney indications. We expand on the first 
three of these concepts below. The fourth was included in the 
26th ADQI consensus report [7], but its more detailed treat-
ment is beyond the scope of this report and will be addressed 
at an appropriate length separately.

Building pediatric acute kidney support 
therapy programs

Pediatric acute kidney support therapy program 
requirements

Well-functioning programs are fundamental to the reliable and 
consistent delivery of high-quality, complex procedures such 
as paKST. Specific components of a paKST program may vary 
by location and health care setting, and each program will need 

Fig. 1  How paKST can be used to improve care and outcomes in children

http://www.adqi.net
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Table 1  Suggested quality improvement domains for clinical program 
performance assessment

Mortality
  at 30 days
  at 90 days

Dialysis-free kidney recovery
  at ICU discharge
  at hospital discharge
  at 90 days

ECMO duration
Length of mechanical ventilation
Functional status

  at hospital discharge
  at 90 days

Infection rates
  bacteremia
  peritonitis
  other

Vascular thrombosis rates
paKST filter life (continuous KST)
Fluid balance at paKST liberation/circuit discontinuation
  (as % of admission weight)

RBC transfusions during paKST (ml/kg)
Platelet transfusions during paKST (ml/kg)
Outpatient follow up within 90 days
  with Pediatric Nephrology
  with creatinine measurement
  with blood presssure measurement
  with urinalysis

to determine the model that best suits its particular setting, 
patient population, and available KSTs. The model depends 
on institutional resources available (i.e., dialysis, nephrology, 
and intensive care unit (ICU)/critical care teams) and may be 
nephrology led, ICU led, or a hybrid of those.

The paKST program should be led by physician and nurse 
directors who can engage stakeholders and develop a multi-
disciplinary team to.

• Create a culture of safety and transparency
• Secure resources of protected time, personnel, and equip-

ment
• Obtain and maintain paKST equipment and supplies
• Track patient- and process-specific quality improve-

ment (QI) data that will enable teams to understand and 
improve their processes and outcomes.

A list of suggested metrics is presented in Table 1, rec-
ognizing that this is neither an exhaustive list of poten-
tially useful domains nor likely to be immutable over time. 

Individual programs may find some of them useful and oth-
ers less so, and programs may find different metrics useful 
at different times. The principle that assessment practices 
should be matched to local needs is vital to a thoughtful and 
effective QI approach.

The program’s medical and nursing directors should be 
well versed in bedside paKST care and have protected time 
dedicated to program development, education, and quality 
improvement. The paKST multidisciplinary leaders engage 
physicians, nurses, advance practice providers (including 
physician assistants and nurse practitioners), and the wider 
nephrology and critical care teams involved in the provision 
of paKST. Additional team members include pharmacists, 
nutritionists, social workers, surgeons and interventional 
radiologists, quality improvement/data specialists, and hos-
pital administration personnel. The paKST team should meet 
regularly to provide updates; address potential safety events; 
budget for personnel and capital resources; develop educa-
tion strategies; review and revise guidelines, policies, and 
procedures; and review center-specific quality data which 
will drive future projects and improvements.

Programs must choose where paKST care will be pro-
vided within the hospital, which may include dedicated hos-
pital units or areas, the neonatal, pediatric, and cardiac inten-
sive care units (ICU), and operating rooms. They must also 
choose what types of paKST they will provide—acute peri-
toneal dialysis (PD), acute intermittent hemodialysis (IHD), 
and/or acute continuous kidney support therapy modes—
and whether they will provide paKST in tandem with other 
extracorporeal supportive therapies, including extracorpor-
eal membrane oxygenation (ECMO), apheresis therapies, or 
extracorporeal liver support therapies. Updated and specific 
policies and procedures need to be in place for these services 
and must be easily accessible to all stakeholders.

In situations in which a hospital or team cannot provide 
safe and effective paKST, which may often occur with the 
smallest children and neonates, the program must develop 
communication channels, criteria, and processes to transfer 
care to centers (or units within their own center) that can 
provide such care [8].

An evidence-based approach to KST program-building is 
lacking. Key areas for investigation include development of 
resource- and needs-assessment tools, creation of commu-
nication aids within and among treatment teams, and estab-
lishment of educational approaches for on-boarding of new 
team members, maintenance of competency, and dissemi-
nation of new information or practice changes. Programs 
will need sufficient fluidity and responsiveness to adapt to 
changing circumstances and pressures, and as such will need 
an on-going QI framework to assess program performance 
and opportunities.
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Quality improvement initiatives in acute KST 
in neonates and children

Acute KSTs are highly technical and complex purifica-
tion procedures that can be performed using the peritoneal 
membrane or through access to the blood. Services, equip-
ment, and quality of care differ across centers. Unnecessary 
practice variations stemming from differences in opera-
tional models, knowledge gaps, and/or failure to adopt 
and implement best practices (i.e., how KST is prescribed, 
monitored, and delivered) lead to suboptimal outcomes [9, 
10]. High-quality acute KST demands assurance systems 
to assess whether practices and interventions are occurring 
as intended to ensure optimal care delivery and outcomes. 
To date, lack of agreed-upon benchmarks to evaluate the 
processes of paKST delivery has hindered the establishment 
of a comprehensive quality control system [11, 12]. While 
the preponderance of KST research examines the applica-
tion of therapy (i.e., patient selection, timing, modality, 
dose, and anticoagulation), there are limited data exploring 
the organizational structures or processes by which care is 
being delivered, leading to a lack of consensus for accept-
able performance standards [11, 13]. Appropriate selection 
and integration of QI efforts into clinical practice will facili-
tate improvements in reliability and standardization of care. 
Efforts at reducing practice variability and developing new 
standards in pediatrics are emerging but have not yet been 
broadly accepted or adopted [11, 13–17].

As there are currently no available consensus benchmarks 
for optimal paKST, development and implementation of a 
quality framework should take high priority in research and 
QI efforts. As highlighted by the pediatric commentary to 
the 22nd ADQI [14], areas of particular interest include, but 
are not limited to.

• paKST program structures and formal training programs
• Treatment delivery benchmarks for circuit priming prac-

tices, delivered dose, fluid management, circuit life, and 
anticoagulation

• paKST-specific adverse events and outcomes, such as 
hemodynamic instability at circuit initiation, bleeding, 
transfusion requirements, catheter malfunction, and 
catheter-associated blood stream infections

QI guidelines for the neonatal and infant population may 
be of special importance in light of the specific challenges 
of paKST equipment and prescription in very small, physi-
ologically immature critically ill patients. Assessments of 
hemodynamics at circuit initiation and long-term growth and 
development, especially in cases where paKST requirement 
is prolonged, are particularly important.

Validation of these QI standards can then be used to 
establish minimum acceptable performance criteria against 

which a paKST program can measure itself, driving further 
programmatic improvement [14].

Optimizing pediatric acute kidney support therapy 
delivery

Timing of initiation in paKST

The basic questions: Is earlier KST in AKI better for patient 
outcomes? How early is early enough?—remain largely 
unanswered for the pediatric population. The field of criti-
cal care nephrology has been shaped by the recognition that 
the development of kidney injury and, in particular, the need 
for KST is associated with profound morbidity and mortal-
ity risk in critically ill patients. The potential impacts of the 
metabolic and fluid balance derangements resulting from 
AKI are rational targets for therapeutic intervention, leading 
to questions regarding the potential benefits of early KST 
for preventing, reducing, or correcting said metabolic and 
fluid abnormalities.

Evidence for timing of initiation in pediatrics is fairly 
sparse based on retrospective and/or observational data, but 
consistently demonstrates poorer outcomes in children with 
more severe kidney injury and/or fluid accumulation at the 
time of KST initiation in the ICU, on ECMO, or after car-
diac surgery [18–20]. Inferences from recently conducted 
meta-analyses and multicenter randomized controlled trials 
in adults [21–28] are limited due to developmental physi-
ologic differences and case mix. Focusing on AKI staging 
to define early/late KST [21, 24, 26, 27] introduces bias 
due to limitations of creatinine-based assessments of kidney 
function.

These uncertainties call for a personalized approach in 
deciding the optimal timing of initiation of KST for AKI 
to determine whether individuals with specific disease pro-
cesses (such as cardiac surgery, sepsis, and acute respira-
tory distress syndrome) or clinical conditions (e.g., based on 
illness severity scores or organ dysfunction scores) would 
benefit from early KST.

Clinical thresholds of fluid balance/fluid overload, kidney 
injury biomarkers such as neutrophil gelatinase-associated 
lipocalin (NGAL) and TIMP-2*IGFBP-7, or a combina-
tion of clinical, functional, and/or biochemical markers 
(e.g., the renal angina index (RAI), the fluid overload kid-
ney injury score (FOKIS), and the furosemide stress test 
(FST) [29–32]) may provide better tools for decisions on 
timing of initiation of KST and is currently an active area of 
research. Notably, in spite of decades of accumulated data 
demonstrating the correlation between fluid overload and 
poor outcomes, acknowledged in practice guidelines such as 
those for pediatric sepsis and ECMO management [33, 34], 
studies for which the primary indication for KST initiation 
is a threshold of fluid overload do not exist.
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The challenges associated with developing a cohort of 
pediatric patients that is large enough to address any one of 
these questions in a randomized controlled trial are formi-
dable, and novel approaches are needed. Moreover, clini-
cally impactful outcomes besides mortality (e.g., duration 
of mechanical ventilation, ICU and hospital length of stay, 
early mobility, and global functional outcomes) are essential 
in future trials in order to drive widespread interest in and 
adoption of identified best practices.

Pediatric acute KST modality

Continuous KST modes are widely used in acute settings, 
but little is known about particular practice patterns within 
the field. A recent modified Delphi study queried paKST 
prescribers and found that continuous venovenous hemo-
diafiltration (CVVHDF) was the most commonly employed 
modality [35], but data on the associations of different 
modalities with patient outcomes are lacking. Whether con-
tinuous venovenous hemodialysis (CVVHD) or continuous 
venovenous hemofiltration (CVVH) are more beneficial than 
CVVHDF in certain disease states or patient populations 
or settings is unknown. Likewise, it is unknown whether 
there is a specific ratio of convective versus dialytic clear-
ance that is most beneficial in acutely and critically ill pedi-
atric patients or in specific clinical scenarios. Modes that 
combine some of the features of continuous KST and HD, 
such as prolonged intermittent kidney replacement therapy 
(PIKRT), may offer advantages in resource utilization and 
cost, coordination of testing and procedures, gradual libera-
tion from KST, and/or patient rehabilitation efforts that have 
not yet been elucidated [36]. Similarly, well-established, less 
expensive modes such as PD may be preferable in some situ-
ations outside of post-cardiac surgery and resource-limited 

care, such as newly diagnosed kidney failure or other con-
ditions in which a longer course of dialysis dependence is 
anticipated. The clinical and contextual factors that dictate 
choice of one modality over another are largely unknown 
and warrant further investigation.

Hemofilter selection in pediatric acute KST

In the treatment of AKI and fluid overload, the choice of 
hemofilter for continuous paKST has been guided by a few 
general principles: (1) the surface area of the filter should 
match as closely as possible to the patient’s body surface 
area; (2) the extracorporeal priming volume and blood flow 
rates for the filter set should be as minimal as possible; (3) 
the chosen filter should provide good clearance charac-
teristics for small- and middle-sized particles; and (4) the 
membrane should be as biocompatible as possible, limiting 
the likelihood of bradykinin-release syndrome upon circuit 
initiation. The challenges in obtaining a filter that met all of 
these criteria, especially for our smallest and sickest patients, 
have led to a number of adaptations in clinical use, as well 
as on-going efforts to design and implement right-sized KST 
machines and filters specifically for that population. The cur-
rent state of those efforts is represented in Table 2.

Outcomes in specific disease states, however, may be 
modifiable if the filter choices available offer the ability 
to match disease pathogenesis to clearance characteristics. 
This idea has been particularly tantalizing in patients with 
severe sepsis/septic shock and those with liver failure. Initial 
findings that the AN-69 filter may have the advantage of 
improved cytokine clearance in sepsis have been offset by 
the increased risk of bradykinin-release syndrome when this 
filter is used [37]. As a result, a number of filters have been 
designed and are currently being tested to achieve cytokine 

Table 2  Technical aspects of novel KST machines for neonates and children

ECV extracorporeal volume, Filter (m2) surface area of the filter, UF ultrafiltration, HCT hematocrit, SVO2 mixed venous oxygen saturation, CVVH 
continuous venovenous hemofiltration, CVVHD continuous venovenous hemodialysis, CVVHDF continuous venovenous hemodiafiltration
* Experimental/not commercially available, **unpublished data suggest the margin of error to be < 3% at 350 ml/h

ECV (ml) Filter  (m2) Qb (ml/min) UF (ml/h) Hemodynamic 
Monitoring

Accuracy Modality Duration

Prismaflex CVVH
  HF-20 (PAES) 60 0.2 10–100 (+ 2) 0–500 (+ 10) NO  ± 10% if UF 

setting
CVVHD 72 h 

(recom-
mende)  M-60/ST60 

(AN-59)
93 0.6 50–200 (+ 10) CVVHDF

Aquadex™ 33 0.12 10–40 (+ 5) 0–500 (+ 10) HCT and SV02 10%** CVVH
NIDUS  < 17 0.045 5 (single lumen) 0–60 (+ 1) NO  < 0.25% CVVHD 72 h

26 0.075 2–50 (+ 1) 0–150 NO  ± 30 g/day CVVHD 72 h
32 0.15 0–250 CVVH 24 h
41 0.25 0–600 VCCHD
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and/or endotoxin removal without inducing negative hemo-
dynamic consequences; these include the oXiris mem-
brane, the polymethylmethacrylate (PMMA) membrane, the 
CytoSorb cartridge, and the selective cytopheretic device. 
Similarly, charcoal and albumin-coated filters have been 
developed for liver failure patients in the hope of provid-
ing improved clearance of protein-bound solutes and toxins 
while awaiting clinical recovery or liver transplant. Tandem 
therapies combining paKST with apheresis potentially offer 
another pathway to improve outcomes with extracorporeal 
support in these patients. These issues will be the subject of 
an upcoming submission from our group, where they can be 
addressed in appropriate depth.

Pediatric acute KST dosing

Effluent volume remains the best method to assess dosing 
in paKST. The recommended dose of 2–3 L/1.73  m2/h of 
effluent was derived from expert opinion with little empiric 
basis when there was active debate in adult dosing between 
25 and 45 ml/kg/h. Two large, randomized clinical trials 
demonstrated that higher doses are not superior to standard 
dosing [38], forming the basis for the current Kidney Dis-
ease Improving Global Outcomes (KDIGO) AKI guidelines 
establishing 20–25 ml/kg/h as the target delivered effluent 
dose in adults [39]. Similar studies are lacking in children. 
Analogous doses may lead to a higher intensity of treat-
ment that compromises antimicrobial exposure and nutri-
tional/mineral/vitamin adequacy. For example, in a 10-kg 
infant/child, an effluent rate of 2 L/1.73  m2/h corresponds to 
nearly 60 ml/kg/h, which is considered high-volume therapy 
in adults. High-volume therapy does not confer any clinical 
benefits in adults and may be associated with undesirable 
side effects such as more frequent or high-dose electrolyte 
replacement (e.g., phosphorus, calcium, potassium) and 
undetected but clinically important loss of micronutrients 
and lower antibiotic levels [40–42]. Effects of high-volume 
KST on other high-priority therapeutic agents, including 
steroids, immunosuppressive drugs, anticonvulsants, ino-
tropes, sedatives, analgesics, and antivirals, are needed to 
inform both drug-dosing recommendations in KST and the 
risks associated with current paKST practices. The impor-
tance of addressing nutritional losses and their replacement 
in critically ill pediatric patients requiring KST cannot be 
overstated.

In addition, an understanding of KST dosing in tandem 
therapies such as ECMO and apheresis, and strategies to 
address medication doses during “down times”—both 
planned and inadvertent—impact the balance between pre-
scribed and delivered dose. How this impacts safe and effec-
tive delivery of paKST is an area for ongoing investigation 
[43–46].

Circuit priming and initiation in paKST

paKST can be associated with significant clinical complica-
tions such as hypotension, hypothermia, bleeding, unplanned 
circuit loss, and thrombocytopenia [47]. Information on 
interventions that can be performed immediately before KST 
initiation to prevent undesirable events and avoid further 
compromise in an already fragile infant or child is sparse.

Many complications at KST initiation arise from the need 
for large extra-corporeal volumes (ECV) in relation to the 
patient’s total blood volume (TBV). Right-sized circuits with 
smaller filters and smaller ECV (Table 2) reduce the need 
for blood primes and limit hypotensive events around the 
time of initiation in small children [48–51]. Blood priming 
is generally recommended when the ECV is > 10–15% of 
the TBV in an effort to avoid acute hemodilution that may 
cause hemodynamic instability at circuit starts. No study has 
definitively established the appropriate threshold for blood 
prime in paKST. Blood primes increase the complexity of 
initiation and come with added risks, such as allosensiti-
zation and risks inherent to the use of stored blood which 
can cause hyperkalemia, hypocalcemia, and acidosis. The 
team must prepare for these issues proactively to prevent 
or minimize worsening hemodynamic instability. Various 
blood priming protocols exist to yield a more “physiologic” 
prime solution; safety, efficacy, and clinical consequences of 
these approaches need to be explored to determine which, if 
any, of them can be widely recommended and implemented 
[48, 49, 52–55]. In the meantime, the specific procedure for 
small children who may benefit from a blood prime initiation 
should be standardized for the individual program and not 
dictated by the rounding providers/team.

Vascular access for paKST

Well-functioning vascular access is a prerequisite for effec-
tive delivery of paKST, and temporary central venous cath-
eters (CVCs) specifically designed for dialysis are the most 
utilized type of vascular access in children. Patient size 
and hemodynamic stability, underlying disease processes, 
expected type and duration of paKST, and center preferences 
and resources may all play a role in the choice and functional 
characteristics of vascular access. If paKST is likely to be 
needed for weeks, placement of a tunneled catheter may be 
preferable. In neonates requiring paKST, a tunneled double-
lumen catheter that was cut to the desired length decreased 
complication rates compared to historic temporary catheters 
[56]. Two single-lumen catheters have been successfully 
used in small patients [57, 58].

Despite careful selection and placement, malfunction-
ing of vascular access—kinking/bending, leakage, throm-
bosis, infection, or high turbulence in inadequately sized 
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catheters—contributes significantly to circuit failure neces-
sitating a circuit/filter change [59]. Although pediatric rec-
ommendations for catheter size are available [60], optimal 
catheter sizing based on patient weight or height has not 
been established in pediatrics.

Catheter-related thrombosis/stenosis merits particular 
attention. Loss of vascular access—including permanent 
changes that preclude future use of that vein for permanent 
vascular or dialysis access—embolic events such as pulmo-
nary embolism, and catheter-related bloodstream infections 
all have serious impact on the disease course and outcomes. 
Patients with liver failure, sepsis, and other pro-thrombotic 
conditions, as well as patients with longer duration of paKST 
treatment and particular catheter sizes and locations are at 
increased risk of thrombosis [61]. Evidence in non-dialysis 
ultrasound-guided CVC in adults suggests that a catheter-
to-internal vessel size ratio > 45% increases thrombosis/
stenosis risk [62]. Current KDIGO guidelines recommend 
ultrasound-guided catheter placement but do not specify an 
optimal catheter-to-vessel ratio [39]. Clinicians must care-
fully balance the benefits of good catheter flow against the 
risk of inducing thrombosis with an outsize catheter when 
choosing the size of vascular access for KST. Surface-mod-
ified catheters designed to lessen the risk of thrombosis [63] 
have not been widely adopted in clinical use. A recent pedi-
atric study demonstrated a thrombosis rate of 7.4% with the 
preponderance in the smallest patients: 5 of the 6 patients 
with thrombosis were neonates [64]. We recommend future 
studies to establish guidelines for catheter sizing and length 
across the spectrum of pediatric patient sizes as well as for 
catheter-related thrombosis surveillance to allow for future 
development of more appropriate catheters for use in this 
high-risk population.

Circuit anticoagulation in paKST

Effective circuit anticoagulation remains one of the key 
determinants of successful administration of KST. The four 
most common continuous kidney replacement therapy anti-
coagulation strategies are systemic unfractionated heparin, 
low molecular weight heparin, prostacyclin, and regional 
citrate anticoagulation (RCA); nafamostat—a synthetic ser-
ine protease inhibitor—is emerging as a first-choice circuit 
anticoagulant in some centers, most notably in Asia [65]. 
Regional strategies that have minimal systemic effects have 
gained traction due to lower rates of bleeding events [66]. 
RCA has been incorporated into some KST machines in a 
semi-automated fashion with citrate infusion rates modu-
lated with device software. When systemic anticoagula-
tion is necessary, unfractionated heparin is most frequently 
used, but the lack of correlation between heparin dose and 
standard clinical monitoring tests such as activated partial 
thromboplastin time and activated clotting time poses a 

significant challenge for care teams. Alternative measures 
such as anti-Xa levels and thromboelastography have not 
demonstrated an advantage over traditional measures of 
heparin effect [67]. Elucidation of the best available antico-
agulation and monitoring strategy or strategies, development 
of novel ones, fully automated integration of anticoagulation 
delivery into paKST machines, and creation of antithrom-
bogenic membranes/circuit elements are all important areas 
for future study. Agents such as bivalirudin, argatroban, and 
nafamostat need to be systematically tested in children.

Fluid removal strategies in paKST

Treatment and/or prevention of clinically important fluid 
overload along with the ability to accommodate nutritional, 
medication, and blood product administration needs are fre-
quent indications for paKST. Fluid balance needs may differ 
from patient to patient and from day to day or hour to hour 
in individual patients, necessitating a flexible and responsive 
approach to mechanical fluid removal. The assessment of 
appropriate rates of fluid removal in paKST patients is chal-
lenging, as the clinician must balance the risks and benefits 
of rapid fluid removal versus those of intravascular volume 
depletion. Incorporation of insensible fluid loss and the com-
partmentalization of excess volume between intravascular 
and extravascular spaces are important considerations in 
prescribing fluid removal rates.

Even in the presence of apparently stable hemodynam-
ics, new regional cardiac stunning is common, often occurs 
within the first 4 h of therapy, and may be related to high 
ultrafiltration rates among adult critically ill KST patients 
[68]. The role of integrated ultrafiltration monitoring sys-
tems in acute KST is not clear and deserves further explora-
tion; hematocrit sensors are considered standard in inter-
mittent hemodialysis treatment [69, 70] but have not been 
studied in continuous KST. In critically ill patients, invasive 
hemodynamic monitoring and laboratory testing, such as 
venous oxygen saturation, may provide real-time guidance 
on fluid removal strategies in paKST and should be incor-
porated into future trials. Rigorous studies of the acceptable 
and safe range of ultrafiltration rates in paKST are needed 
to guide decision making; however, development of other 
decision support tools may be needed to account for the 
dynamic needs over the acute illness course for individual 
paKST patients.

Clear communication among paKST prescribers, critical 
care teams, and paKST operators is vital to treatment suc-
cess. Shared approaches and language relating to evaluation 
of fluid balance, overarching clinical concerns and goals, 
daily and hourly fluid balance targets, and contingency 
planning should be developed by each paKST program. 
Clear communication with patients, families, and caregiv-
ers should also be emphasized within this framework. Daily 
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(and sometimes more often) evaluations of the appropriate 
fluid removal rate are appropriate.

The role of peritoneal dialysis in paKST

As the use of KST for AKI has increased among hospital-
ized children over the last two decades, the use of perito-
neal dialysis (PD) has declined steadily within resource-
abundant regions [71]. PD continues to have an important 
role in remote and/or resource-limited settings as well as in 
neonates after cardiac surgery. A 2013 meta-analysis did not 
demonstrate differences in outcomes between AKI patients 
treated with PD compared to blood-based KST modes [72]. 
PD offers many appealing aspects for paKST programs:

• Suitability in patients of nearly all ages, sizes, and dis-
ease states, including those with severe bleeding diath-
eses (in order to avoid the need for anticoagulation) or in 
whom obtaining vascular access is otherwise not feasible 
or safe

• Low cost—PD can be provided at three to five times less 
cost compared to blood-based acute KST [73]

• Ready transition from acute, inpatient therapy to chronic 
or rehabilitative therapy, including outpatient therapy

The International Society of Peritoneal Dialysis has 
developed detailed guidelines for the use of PD in both adult 
and pediatric AKI [74]. Existing barriers and challenges to 
PD use in various healthcare settings, optimal ways to dose 
acute PD for both clearance and fluid management—which 
may have significant differences from chronic PD dosing 
strategies—impact of PD on non-kidney disease, especially 
respiratory failure, and the roles of PD modalities such as 
tidal PD and continuous-flow PD are all rich areas for explo-
ration in paKST care.

Post‑KST care for pediatric patients

Pediatric acute KST de‑escalation and liberation

The question of when to stop or de-escalate KST may be 
second only to the question of when to start it in perplex-
ity and importance. Available data demonstrate that, while 
kidney recovery may be incomplete, most children requir-
ing dialysis for AKI will recover sufficiently to be dialysis 
independent [75, 76]. However, there is limited evidence 
to guide KST discontinuation. Current practices vary sig-
nificantly and utilize assessment of hemodynamic stabil-
ity, fluid balance status, urine output trends over time, 
and clinician estimates of the patient’s ability to maintain 
euvolemia and metabolic balance to make decisions about 
timing of discontinuation or transition to intermittent KST. 

A recent meta-analysis in adults identified 16 variables 
for predicting successful KST discontinuation; these vari-
ables can be categorized into physiologic parameters, such 
as hemodynamics and urine output, biochemical markers 
to evaluate glomerular filtration rate/kidney function, 
and novel kidney markers [77]. No comparable studies 
are available in children and given that there is no evi-
dence to suggest that important differences between adults 
and children exist in this area, we recommend that future 
adult studies consider inclusion of pediatric patients where 
possible.

The consequences of too early or too late separation 
from KST among children with AKI are not yet defined. 
Clinically relevant outcomes such as end-of-therapy fluid 
balance, bloodstream infection rates, duration of mechani-
cal ventilation, early mobility participation, sedative 
exposure, and ICU and hospital lengths of stay should be 
tracked and incorporated in paKST outcomes studies. As 
we increasingly appreciate the importance of early mobil-
ity and rehabilitation in critically ill patients [78], we will 
need to delineate ways in which KST needs and goals can 
harmonize with those initiatives. This may include earlier 
transition to intermittent modes of KST (3–4 h of HD or 
chronic PD) or designated prolonged (6–18 h) KST-free 
periods to facilitate rehabilitative therapies in appropriate 
patient populations. Markers that signal a high likelihood 
of success for discontinuation of KST—such as specific 
urine output thresholds (with or without diuretic challenge) 
or biochemical indicators—should be sought and imple-
mented. Finally, for those patients who cannot readily liber-
ate from KST, appropriate fluid and metabolic management 
strategies while kidney function remains impaired as well 
as strategies for transition to intermittent or chronic KST 
care—including both medical and administrative aspects 
of care—should be detailed.

Long‑term monitoring and follow‑up for paKST patients

Children who survive an episode of AKI requiring dialysis 
are at risk for adverse long-term outcomes such as chronic 
kidney disease, hypertension, and neurodevelopmental 
impairments, but only a minority receive pediatric neph-
rologist follow-up [75, 79–81]. It is unclear whether a sub-
set of paKST patients at higher risk of these outcomes can 
be identified. Once known, the cadence with which these 
patients should receive follow-up evaluation and what tests 
those evaluations should contain should be delineated. Large 
longitudinal cohorts will be needed to answer these ques-
tions, allowing for development of clinical risk stratification 
tools to guide referrals and anticipatory guidance at the time 
of discharge from the index paKST event.
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Pediatric KST in resource‑limited settings

The delivery of paKST in resource-limited and low-income 
settings has been mentioned in this report but deserves par-
ticular emphasis here. Innovative structures and processes 
will be required to deliver high-quality paKST when per-
sonnel, equipment, and physical space are limited and the 
processes of repair and resupply are slow and/or uncer-
tain. Research efforts should focus on developing needs-
assessment tools that can be flexibly applied to various cir-
cumstances, educational programs that promote effective 
troubleshooting and technical expertise along with quality 
assurance skills, identifying and using off-site and/or tech-
nology-based information resources, and paKST delivery 
that can be used in a broad swath of clinical scenarios while 
allowing both equipment and personnel to be deployed effi-
ciently. As mentioned above, PD offers a number of advan-
tages—wide applicability, safety, low cost, and transition 
from acute to chronic care—that may be particularly ger-
mane in resource-limited settings. In some settings, however, 
paKST teams may find that application of HD or PIKRT, 
which allow one piece of equipment to be used for more than 
one patient in the course of a day, better serves their needs. 
These teams will need data with which to guide the devel-
opment of their particular programs and paKST delivery; 
they will also need funding for research to provide that data 
locally and/or regionally.

Conclusion

Optimizing patient outcomes through provision of high-
quality paKST requires programs and processes that are 
built on a robust evidence base, are right-sized for pediat-
ric patients and their unique treatment specifications, are 
responsive to changing needs within individual patients 
as well as treatment environments, and are mindful of the 
broader context of acute illness and long-term care. Impor-
tant work has been done in many of these areas to date, but 
fundamental questions remain. We have outlined key areas 
of paKST program building, clinical care, and follow-up 
that are ripe for exploration in both resource-abundant and 
resource-limited settings. Finding answers to these outstand-
ing questions will drive the field forward and move us closer 
to better patient outcomes.
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