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Abstract
Background In the past decade, there have been substantial advances in our understanding of the pathobiology of pediatric 
acute kidney injury (AKI). In particular, animal models and studies focused on the relationship between kidney development, 
nephron number, and kidney health have identified a number of heterogeneous pathophysiologies underlying AKI. Despite 
this progress, gaps remain in our understanding of the pathobiology of pediatric AKI.
Methods During the 26th Acute Disease Quality Initiative (ADQI) Consensus conference, a multidisciplinary group of 
experts discussed the evidence and used a modified Delphi process to achieve consensus on recommendations for oppor-
tunities to advance translational research in pediatric AKI. The current state of research understanding as well as gaps and 
opportunities for advancement in research was discussed, and recommendations were summarized.
Results Consensus was reached that to improve translational pediatric AKI advancements, diverse teams spanning pre-
clinical to epidemiological scientists must work in concert together and that results must be shared with the community we 
serve with patient involvement. Public and private research support and meaningful partnerships with adult research efforts 
are required. Particular focus is warranted to investigate the pediatric nuances of AKI, including the effect of development 
as a biological variable on AKI incidence, severity, and outcomes.
Conclusions Although AKI is common and associated with significant morbidity, the biologic basis of the disease spectrum 
throughout varying nephron developmental stages remains poorly understood. An incomplete understanding of factors 
contributing to kidney health, the diverse pathobiologies underlying AKI in children, and the historically siloed approach to 
research limit advances in the field. The recommendations outlined herein identify gaps and outline a strategic approach to 
advance the field of pediatric AKI via multidisciplinary translational research.

Keywords Acute kidney injury · Animal models · Translational research · Outcomes · Pediatrics · Neonates · 
Development as a biological variable

Introduction

Over the past decade, significant advances spanning the 
research continuum have expanded our understanding of 
pediatric acute kidney injury (AKI). Basic science work 
explains kidney development and the diverse mechanisms of 
AKI, translational research extends these findings into clini-
cal medicine, epidemiologic studies characterize the burden 
and clinical impact of the disease, and community interven-
tions link these innovations to patients and their families.

Despite these advances, due to a number of challenges, 
there remain significant gaps in our understanding of the 
pathobiology of pediatric AKI. The diversity of “pediatric” 
patients ranges from premature neonates to adult-sized ado-
lescents. A siloed approach to research and discovery in the 
field leads to a disconnect between bench, translational, and 
clinical research. Structural challenges exist in pediatric AKI 
research, including limited dedicated research funding and 
a lack of inclusion of pediatric or birth information in adult 
kidney studies.

The full ramifications of pediatric AKI remain unknown. 
The acknowledgment that AKI predisposes patients to devel-
oping chronic kidney disease (CKD) means that pediatric 
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AKI survivors will become adults with CKD [1]. Beyond 
the kidney-specific outcomes of pediatric AKI across the life 
course, even less is known about the systemic sequelae that 
pediatric AKI may have on normal growth, development, 
and other organ dysfunction.

To address the need to improve research and clinical care 
in pediatric AKI, the 26th Acute Disease Quality Initiative 
(ADQI) conference was convened. We address three main 
questions from the conference in this article:

1. What are the biopsychosocial factors that lead to optimal 
kidney development and to a healthy kidney lifespan?

2. What are the biopsychosocial factors that lead to devia-
tions from an optimal kidney life course?

3. What are the necessary components to create an inte-
grated framework for translational research to mitigate 
pediatric AKI and optimize lifelong kidney outcomes?

Methods

The 26th ADQI Consensus conference, the first ADQI 
devoted to pediatric AKI, was held over 3 days in Napa, CA, 
in November 2021, and included an interdisciplinary group 
of clinicians and researchers from North and South America, 
Africa, Asia, and Europe. Relevant disciplines were well 
represented, including pediatric nephrology, pediatric and 
adult critical care, pharmacy, epidemiology, health services 
research, advocates, pediatric nephrology nurses, nutrition-
ists, and patients. As previously described, this consensus 
meeting followed the established ADQI process, with the 
broad objective to provide expert-consensus statements via 
interpretation of current knowledge for use by clinicians 
according to professional judgment and to identify evidence 
gaps to establish research priorities [2].

Workgroup 5 sought to develop consensus statements to 
improve future translational research in pediatric AKI and 
an understanding of the factors that lead to optimal kidney 
health and deviations from this optimal state. Given the large 
area of focus of workgroup 5 (pathobiology, pharmacology, 
and nutrition) and the task of answering 5 key questions, 
the 2 questions involving pharmacology and nutrition are 
addressed in a separate manuscript. The consensus-building 
process, informed by objective review of articles by work-
group members, used a modified Delphi method based on 
evidence when possible, with the ultimate goal of addressing 
the 3 key questions and articulating a research agenda to 
address existing knowledge gaps [3]. Consensus statements 
required two-thirds majority vote of all ADQI participants. 
Herein, we provide a summary of the current knowledge 
of factors impacting optimal kidney development and a 
healthy kidney lifespan, and more detailed recommendations 

regarding research approaches to be used as a framework for 
the advancement of pediatric AKI care.

Results

A critical recommendation of the consensus panel was a 
need to improve pediatric AKI research across the con-
tinuum from bench to bedside, as follows:

Successful pediatric translational AKI research pro-
grams include diverse teams using reverse transla-
tional approaches in partnership with clinical and 
epidemiological findings that prioritize development 
as a biologic variable. Sufficient support including 
pediatric specific government and industry funding 
along with meaningful partnerships among health 
professionals is necessary to understand and lever-
age the unique aspects of pediatric AKI to address 
kidney health and disease across the life course.

In order to fully address the current state of evidence 
leading this consensus recommendation and opportunities 
for future translational research advancement, we sought 
to answer the 3 questions related to pathobiology devel-
oped during the pADQI conference.

Question 1. What are the biopsychosocial 
factors that lead to optimal kidney development 
and to a healthy kidney lifespan?

Pediatric kidney disease research, and specifically pedi-
atric AKI, is uniquely challenged due to the wide spec-
trum of progressive developmental states included within 
pediatric medicine. For example, a premature neonate 
and a post-pubertal teenager are both considered pediat-
ric patients despite differences in development, nephron 
number, risk for, and impact of episodes of AKI on future 
health. In order to better understand the spectrum of 
pediatric AKI and to advance our understanding of the 
diverse pathobiology of this condition, we need to better 
understand development as a biologic variable (DABV) 
and the factors which contribute to maximum nephron 
number, kidney development, and kidney health through-
out the lifespan. Nephrogenesis is complete at approxi-
mately 34 weeks gestation and kidney function contin-
ues to develop and mature throughout the first 2 years of 
life. Glomerular and tubular function undergo constant 
change and maturation throughout this period. Herein, 
we use DABV to assess the potential effect this flux in 
kidney development has on AKI incidence, severity, and 
outcomes (Table 1).
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Current understanding of development as a biological 
variable

Kidney development and nephron number is a result of a 
complex interplay between distinct embryologically derived 
cell populations [4]. Many factors that appear to impact 
DABV, including the genetic and molecular regulation of 
kidney development and the mechanisms of kidney develop-
ment, have been extrapolated from animal work [5, 6]. Addi-
tionally, the role of epigenetic programming in premature 
birth remains unclear. Recent animal studies have shown 
that perinatal epigenetic programming through alterations in 
the kidney corticosteroid signaling pathways may contribute 
to DABV following premature birth [7]. In addition, there 
is now compelling pre-clinical evidence for the induction 
of an embryonic phenotype in injured tubule cells of the 
adult kidney, with robust re-expression of genes normally 
present only in the developing kidney [8]. This switch to the 
embryonic state is likely critical for regeneration of tubule 
cells lost during AKI. The identified developmental genes 
and gene products that accelerate repair in the adult kidney 
represent novel future therapeutic targets.

Factors impacting nephron number

Factors impacting nephron number and development impact 
kidney health along the entire life course, and are therefore 
an issue of major consequence for pediatric AKI and long-
term outcomes. There is wide variability in human nephron 
number as early as the neonatal period due to DABV [9]. 
In humans, the completion of nephrogenesis coincides with 
the completion of gestation; nephron number is therefore 
impacted by gestational age at birth [9]. The cessation of 
human nephrogenesis is relatively consistent across studies 
and has been reported to occur between 32 and 36 weeks’ 
gestation. However, kidney function continues to develop 
and mature throughout the first 2 years of life. Nephrogen-
esis was recently documented at 37 weeks’ gestation, and 
several adult studies have found a correlation between birth 
weight, glomerular number, and risk of CKD later in life [10, 
11]. It is not currently possible to determine when nephro-
genesis is complete in humans because the data regarding 
the window of nephrogenesis is derived exclusively from 
post-mortem studies [11]. The duration of human nephro-
genesis is likely variable and may be a factor in an indi-
vidual’s nephron endowment.

From an evolutionary perspective, fetal response to intra-
uterine stress is to reduce somatic growth and the growth of 
any organ not vital to early survival [12]. For the kidney, 
a “surplus” of nephrons is not likely to provide an early 
survival benefit. However, the trade-off for a lower initial 
nephron number is the increased risk for CKD as a person 
ages [13]. Beyond the many genes that confer a low nephron 

number and result in congenital anomalies of the kidney 
and urinary tract, low birth weight has been recognized as 
a risk factor for the development of CKD [14]. However, 
the specific mechanisms that influence nephrogenesis and 
final nephron number, both in utero and ex utero, and the 
processes regulating nephron loss are not well understood.

Any factor that mitigates optimal baseline kidney health 
likely predisposes patients to developing AKI and may also 
impair recovery. Hence, these factors, when perturbed early 
in life, may have a significant impact on kidney health across 
the lifespan.

Question 2. What are the biopsychosocial factors 
that lead to deviations from an optimal kidney life 
course path?

Biopyschosocial factors impacting nephron development

Many other factors influence nephron number in utero and 
ex utero [9]. Maternal protein restriction and deficiency of 
iron or vitamin A can reduce nephron endowment [15–17]. 
In animal models, periods of maternal fasting are associated 
with a reduction in nephron number in offspring [18], and 
this appears to be mediated in part by an associated con-
genital nephron deficit occurring from intrauterine growth 
restriction [19]. Reduced glomerular filtration rate and 
albuminuria accompany nephron reduction with numerous 
studies demonstrating an increased prevalence of microalbu-
minuria and proteinuria among adults born low birth weight 
[20–22]. It is challenging to separate birth weight and gesta-
tional age from low birth weight (LBW), which is often used 
as a surrogate marker of prematurity [23]. In epidemiologic 
studies, food insecurity, a social determinant of health asso-
ciated with malnutrition, was associated with higher rates of 
CKD and faster progression to kidney failure [24, 25]. More 
studies are needed to assess the role of maternal malnutrition 
and food insecurity in nephron number and recovery from 
AKI in children.

Over time, nephron number appears to naturally decrease 
in humans. In the last decade, investigators have capitalized 
on the unique setting of living donor kidney transplantation 
to study nephron number, finding an estimated average glo-
merular number in healthy donors of nearly 900,000, and have 
shown a lower glomerular number in kidney donors of older 
ages [26]. These data are limited by the mostly cross-sec-
tional nature of epidemiologic studies. The potential impact 
of nephron development during infancy and early childhood 
on age-related kidney function decline remains unknown.

Biopsychosocial contributions to nephron number

In the 1980s, Brenner proposed that low nephron endow-
ment would lead to impaired sodium excretion, glomerular 
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hypertrophy, and glomerular hypertension, leading to the 
subsequent development of glomerulosclerosis and further 
decline of nephron number [27]. This hypothesis has not 
been tested in vivo. In preclinical model of LBW, those born 
LBW had a greater proportional increase in kidney size and 
glomerular hypertrophy compared to normal birth weight 
controls [28]. In settings of reduced nephron number, this 
compensation may be exaggerated and could lead to acceler-
ated loss of kidney function [29, 30]. There is still a great 
deal to understand regarding the thresholds of nephron num-
ber to cause hypertrophy and the capacity and limit of glo-
merular hypertrophy.

Greater severity or more rapid progression of kidney dis-
ease has been shown among adults born with LBW and/or 
prematurity [27]. The incidence of adult kidney failure is 
40% greater among those with birth weights under 2.5 kg 
compared to those with normal birth weight [31]. Children 
born LBW had lower glomerular density with glomerular 
enlargement on kidney biopsy compared to those born at 
normal birth weight [32]. Focal segmental glomeruloscle-
rosis (FSGS) is the predominant histologic finding in kidney 
biopsies of adolescents and adults born preterm [33]. In chil-
dren with FSGS on biopsy, those with LBW had hyperplastic 
glomeruli with fewer podocytes and more sclerotic lesions 
[16, 34]. Taken together, these findings suggest the concept 
of a “podocytopathy” from preterm birth [11, 12, 33, 35] or 
growth restriction, which may contribute to the variety of 
outcomes seen in patients with nephrotic syndrome, FSGS, 
or IgA. Biopsychosocial variables impact the risk of preterm 
birth, and these same variables may continue to impact kid-
ney development after birth.

AKI in development of kidney dysfunction

The risk of CKD or kidney failure after AKI has been well 
detailed in adult studies [36]. In 2019, an updated meta-anal-
ysis and systematic review identified 82 studies including 
over 2 million adult patients who had AKI [37]. Following 
an episode of AKI, adults had a hazard ratio (HR) of 2.67 
for new or progressive CKD (CI 1.99–3.58), 4.81 for kidney 
failure, and 1.8 for death.

Researchers have proposed that AKI and CKD are inter-
connected syndromes, and not separate disease processes 
[38]. The mechanisms for progression to CKD are incom-
pletely understood, but likely are secondary to maladaptive 
repair, ongoing inflammation, and disordered regeneration 
[39]. The evidence of progression to CKD from AKI is less 
established in pediatric patients. In a systematic review of 
346 patients with a mean follow-up of 6.5 years, the cumu-
lative incidence of abnormal GFR < 90 mL/min/1.73  m2 
was 6% [40]. Similarly, 10% of pediatric patients had CKD 
(defined as albuminuria and/or GFR < 60) 1 to 3 years fol-
lowing AKI, while 47% were at risk for CKD (defined as 

GFR < 90, hypertension or GFR > 150) [41, 42]. In 100 
pediatric patients with nephrotoxin-associated AKI, 70% 
had evidence of residual kidney damage 6 months after 
AKI [43]. These studies suggest that the impact an episode 
of early childhood AKI has on long-term kidney health is 
likely different than the impact of AKI on adults with fully 
developed kidney function. These impacts likely change 
significantly with respect to kidney DABV. Larger pediatric 
studies that include consistent AKI and CKD definitions are 
needed in order to define the absolute risk of CKD develop-
ment after childhood AKI.

A thorough review of translational AKI models has 
recently been published [44]. These models provide a robust 
platform to investigate the various pathophysiologies of AKI 
(i.e., sepsis, ischemia–reperfusion, nephrotoxic). However, 
most pre-clinical models do not account for the additional 
complexity of pediatric AKI imparted by DABV. Further-
more, the effect of an episode of AKI during various stages 
of kidney development remains unclear. We propose that the 
severity, duration, and timing of an AKI episode with respect 
to DABV impact the long-term kidney and global health 
outcomes across the child’s lifespan. DABV can be investi-
gated by using models that incorporate kidney development. 
For example, Chevalier et al. developed a partial-reversible 
unilateral ureteral obstruction model in rat pups that enables 
the investigation of clinically relevant partial obstruction in 
neonates [45]. Liberio et al. recently published new mod-
els of pediatric ischemia–reperfusion and nephrotoxic AKI 
in rat pups and demonstrated the kidney-lung crosstalk in 
pulmonary vascularization [46]. Stem cells and organoids 
can be investigated using reverse-translational approaches 
spanning the pathway of nephron and organoid development 
[47]. Such models can be used to probe the unique aspects 
of pediatric AKI compared to AKI in adults.

Sex as a biologic variable

Sex is an important biologic variable in the development of 
AKI, and progression to CKD [48–52]. The NIH has made 
a call to action for the inclusion of both sexes in pre-clinical 
and clinical research [53]. Established sex differences in 
AKI (e.g., female sex is protective in ischemia–reperfusion 
AKI and deleterious in some forms of nephrotoxin-mediated 
AKI) have stymied the inclusion of both males and females 
in pre-clinical animal studies. Determining the mechanism 
of protective sex biases would allow researchers to identify 
novel therapeutic targets that benefit both sexes.

In pediatrics, sex as a biological variable (SABV) is fur-
ther confounded by DABV. Hormone levels change signifi-
cantly from pre-pubertal to peri-pubertal to post-pubertal 
stages, and few clinical studies capture pubertal stage or 
measure sex hormones. Complexity is further added for the 
care of intersex and transgendered youths undergoing sex 
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affirming hormonal therapy. Pre-clinical animal models exist 
which unconfound the effects of sex hormones (estrogen and 
testosterone) from sex chromosomes (XX, XY) [44]. Using 
models which take into account SABV incorporating DABV 
could be applied to inform translational studies in a diverse 
population of patients along the gender spectrum.

Investigating systemic and long‑term outcomes after AKI

Most pre-clinical AKI research has been confined to rela-
tively short-term outcomes. Additionally, there is a grow-
ing appreciation that AKI results in systemic sequelae [54]. 
Studies have shown that premature infants with AKI have 
worse short- and long-term pulmonary outcomes and neu-
rologic outcomes [55, 56]. Recent preclinical studies dem-
onstrate long-term cardiovascular and growth effects after 
ischemia–reperfusion AKI [37, 57, 58]. Septic AKI is asso-
ciated with worse functional outcomes; this same observa-
tion has been demonstrated in survivors of continuous kid-
ney replacement therapy [59–61]. The potential effects of 
AKI with respect to DABV on these long-term outcomes are 
unknown and may have significant implications for global 
health outcomes of children who suffer an episode of AKI. 
Preclinical models specific to pediatrics are needed to bridge 
these knowledge gaps.

Question 3: What are the necessary components 
to create an integrated framework for translational 
research to mitigate pediatric AKI and optimize 
lifelong outcomes?

An integrated approach to translational research

AKI is a syndrome with heterogeneous causes and multiple 
clinical phenotypes, which require a detailed understand-
ing of DABV. Traditionally, translational AKI research 
has used numerous pre-clinical models to investigate the 
mechanisms of AKI pathophysiology and outcomes with a 
goal to bring potential therapies to the bedside [44]. Until 
recently, modeling of AKI was primarily based on animal 
and cell culture models. Numerous animal models of AKI 
have been established, each with translational strengths, 
advantages, and challenges. However, these models of AKI 
differ significantly from human AKI in molecular and cel-
lular responses, biomarkers, and clinical manifestations and 
transferring animal and pre-clinical data from animal models 
to humans is inherently challenging [62, 63]. In addition 
to the limitations of translating animal models to human 
research, translating these animal models for pediatric AKI 
faces additional challenges: (1) the vast majority of preclini-
cal AKI models evaluate short-term outcomes, and (2) these 
models are performed in young adult animals. As a result, 
the standard preclinical AKI model is unable to recapitulate 

the unique aspects of growth and development in pediatric 
medicine and also fails to capture the important aspect of 
the long-term systemic and kidney sequalae of AKI along 
the life course.

The past two decades have seen a paradigm shift, moving 
towards personalized human-based models to study human 
disease. Novel in vitro systems for AKI diagnosis include 
human-induced pluripotent kidney stem cells [64–66], 
human stem cell-derived kidney organoids [67, 68], and 
human kidney tumor-derived stem cells [69]. Preclinical 
models of AKI have resulted in significant advances in the 
pathophysiology of AKI and identified several non-dialytic 
therapeutic targets which include the following [70, 71]: 
anti-inflammatory [72, 73], anti-necrosis/apoptosis [74, 
75], antioxidants [76], anti-sepsis [77], growth factors [78, 
79], and vasodilators [80, 81]. Additionally, prevention 
of AKI has been demonstrated with methylxanthines [82, 
83]; in particular, caffeine administration may reduce the 
risk of AKI in premature neonates [84]. More novel thera-
peutics such as mesenchymal stem cells (MSCs) have also 
been shown to improve outcomes in AKI [85, 86]. Numer-
ous injectable hydrogel systems have been studied for local 
delivery of therapeutics to the kidney [87–93]. These inject-
able systems allow for sustained local delivery over a set 
period of time [94]. Several potential therapeutics are cur-
rently undergoing clinical trials [95].

Despite these advances, there have been challenges 
translating therapies into clinical use, and many promising 
preclinical therapies have failed to demonstrate efficacy in 
human trials [96]. The NIDDK published guidelines to over-
come these barriers, and recommends utilizing a reverse-
translational approach whenever possible [97]. In this man-
ner, the preclinical models are designed to match the clinical 
intervention with respect to disease pathophysiology, tim-
ing of intervention, and outcome measures. The group also 
recommended incorporation of serum and urine biomarkers 
in addition to functional assessments of kidney function to 
better translate the spectrum of kidney injury between pre-
clinical and clinical studies [97].

To improve the translational impact of these research 
efforts, we advocate for an approach that integrates pre-
clinical, clinical, and epidemiological research efforts so that 
they can inform one another in study design and outcome 
measures and that pediatric-specific pre-clinical models are 
employed whenever available (Table 2).

Diversity increases innovation

Diverse teams improve innovation in research and clini-
cal delivery of pediatric AKI care. Beyond the diversity of 
expertise required to inform and perform translational AKI 
research, teams are further strengthened by the diversity of 
their background, including but not limited to, sex, gender, 
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age, race, ethnicity, and ability [98]. Empirical data dem-
onstrate that diverse research teams produce more innova-
tive research; yet, publications from authors who identify 
as under-represented in medicine are less likely to be highly 
cited [98, 99].

Research investigations are strengthened by the inclusion 
of team members with a broad array of expertise, such as 
the inclusion of clinical researchers on pre-clinical work and 
health service researchers, patients and patient advocates, 
and implementation scientists to understand how to opti-
mally deploy clinical and research findings [44]. A truly 
integrated research approach includes not only investigations 
throughout the basic science to epidemiologic spectrum, but 
also incorporates digital health tools and community part-
nerships to better meet patients and families in their com-
munities and make them partners in health [100]. Health 
service and epidemiological studies may benefit from inclu-
sion of specific outcome measures guided by pre-clinical 
work. Conversely, epidemiological findings can drive pre-
clinical mechanistic investigations via reverse-translational 
approaches [63]. In addition, partnerships between patients, 
patient advocates, clinicians, researchers, industry, and pol-
icy makers can help identify core outcomes. Such outcomes 

developed on shared priorities have the potential to make 
research more meaningful for the patients, and the clinicians 
taking care of them [101].

Beyond the research setting, research teams must suc-
cessfully disseminate their findings and engage key stake-
holders in order to improve care and serve the community. 
This includes sharing new knowledge in context-appropriate 
ways with members of the healthcare team, patients, fami-
lies, and the community [3]. This need is discussed in fur-
ther depth by Workgroup 6. Collaborations among research 
teams, educators and community representatives may enable 
innovative approaches to reach the communities they benefit 
(Fig. 1). Engagement of government and funding agencies in 
such efforts can increase awareness, and potentially improve 
resources available to healthcare teams [102].

To bolster diversity and innovation in pediatric AKI 
research, individual, institutional, and system-wide sup-
port is needed to recruit, train, support, retain, and amplify 
a robust pipeline of translational researchers from diverse 
backgrounds [103]. Diversity in the makeup of research and 
clinical teams should be deliberately supported, encouraged, 
and rewarded by research enterprises and institutions, with 
specific attention paid to efforts of equity and inclusion. The 

Table 2  Consensus recommendations of potential components to create an integrated framework for translational research

Creating and promoting an integrated 
approach to translational research

1. Information sharing is an integral element of basic scientists to advance their findings and communi-
cate with clinical research investigations

2. In an ideal state, every pre-clinical study would include a clinical research colleague (and vice versa). 
For this to be practical, it should be supported financially and encouraged by collaborative networks. 
This would help de-silo our field further and foster collaboration

3. The translatability of preclinical models is strengthened when they match the clinical intervention 
with respect to disease pathophysiology, timing of intervention, and outcome measures

4. Preclinical studies are strengthened when they incorporate the use of serum and urine biomarkers in 
addition to functional assessments of kidney function

5. Research teams must identify core outcomes based on mutual goals and priorities that are meaning-
ful for both patients and healthcare teams

6. Research teams must successfully disseminate their findings and engage key stakeholders in order 
to improve care and serve the community. This includes sharing new knowledge intentionally and in 
co-equal partnership with providers, patients, families, and the community. Tailored dissemination 
can enhance awareness and provision of healthcare by providers, empower patients and families, spur 
government to improve policy and funding, and engage communities with a focus on equity

7. Collaborations among research teams, educators, and community representatives may enable innova-
tive approaches to reach the community they serve

Increasing innovation through diversity 1. Institutional and system-wide support is needed to recruit, train, support, retain, and amplify a robust 
pipeline of translational researchers from diverse backgrounds

2. Development and promotion of diverse teams improves innovation and facilitates success throughout 
all stages of research

3. Programs that specifically incentivize the building of diverse teams, both at local levels and those 
which are tied to funding (e.g., NIH), will advance the field of pediatric translational research

Adequate funding and investment 1. Specific pediatric funding in kidney focused research studies through NIDDK and other NIH institu-
tions will advance the field of pediatric AKI research and kidney health along the life course

2. Inclusion of kidney-specific outcomes in pediatric studies will de-silo the field of nephrology from 
overall pediatric health

3. Inclusion of children in clinical investigations should be prioritized in disease processes shared 
between pediatric and adult patients

4. Collaboration among researchers in various specialties optimizes the translatability of research 
investigations
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Society for Pediatric Research recently published a Call to 
Action with specific and meaningful ways academic organ-
izations, schools, departments, and faculty members can 
improve the diversity of the pediatric scientific workforce 
[104].

Adequate funding and investment

In order to advance our understanding of pediatric AKI and 
identify therapeutic targets to optimize outcomes throughout 
the life course, robust, sustained, and predictable funding 
support is required. As a whole, kidney disease research is 
underfunded, with an NIH investment of < 1% of the cost 
of kidney care [105]. This inequity in funding is likely even 
more stark in pediatric kidney disease research. However, 
it is not clear how much support pediatric kidney disease 
research currently receives, because this has not been 
tracked by the NIH.

The NIDDK has recently announced its 5-year strate-
gic plan to augment kidney disease research, which does 
not specifically prioritize or target pediatric kidney disease 
research. Beyond the USA, more global investment is war-
ranted. Currently, the global action plan for the prevention 
and control of noncommunicable diseases does not include 
kidney disease; we join others in advocating for its inclusion 
[106]. In addition to research funding from governments 
and institutions, public–private partnerships and industry 
involvement should be encouraged. Appropriately designed 

regulations and incentives can foster investment into pedi-
atric research by biopharmaceutical companies.

Pediatric kidney research should be prioritized given its 
impact on patients throughout their life course. Additionally, 
as developmental pathways are reactivated during and after 
AKI, a better understanding of these pathways is essential 
for better understanding of recovery from AKI versus pro-
gression to CKD. In light of the burden of AKI and CKD 
in the adult population, investments in understanding these 
developmental pathways may be an efficient use of limited 
research funding. Kidney-related outcomes should be a 
focus of not only NIDDK studies but should be included in 
other pediatric studies and clinical trials, including targeted 
support from Eunice Kennedy Shriver National Institute of 
Child Health and Human Development (NICHD) [107]. 
During the early neonatal period and childhood is the only 
time where nephron number can be impacted, either opti-
mizing this for the life course or setting up a child for a 
lifetime risk of decreased nephron number and increased 
risk of CKD. Additionally, as pediatric patients with AKI 
are at-risk to become adults with CKD, and as seriously ill 
children are future adult patients, aligning and combining 
research efforts in adult and pediatric nephrology would ben-
efit both fields and improve outcomes for patients along the 
life course with kidney disease. Inclusion of children in clin-
ical investigations and collaboration among researchers in 
various specialties optimizes the translatability of research 
investigations. For example, coordinated projects such as the 
Kidney Precision Medicine Project represent opportunities 
to include pediatric samples, and in doing so, broaden and 
bolster the research findings.

Conclusion

Despite recent advances in our understanding of the patho-
biology of pediatric AKI, there remain large gaps in our 
understanding of the diverse spectrum of pediatric AKI. 
Further research advancements in the field require that 
pediatric translational AKI research programs focus on the 
unique aspects of development as a biological variable, 
and the impact of kidney health and disease across the life 
course. These efforts merit and require substantial support. 
In order to accomplish these goals, research must include 
diverse and multidisciplinary teams, be supported by robust 
and predictable funding from government and industry and 
employ meaningful partnerships with multiple other medi-
cal disciplines.

Data availability This is not applicable to this manuscript as no new 
data was created.

Fig. 1  Visual representation of an integrated framework for transla-
tional research, including the multiple silos of research including pre-
clinical research, reverse translation approaches, and clinical research. 
Along with community engagement and digital health, these elements 
all interact in a multi-directional collaborative approach to impact 
pediatric AKI care
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