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Hidden genetics behind glomerular scars: an opportunity
to understand the heterogeneity of focal segmental
glomerulosclerosis?
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Abstract

Focal segmental glomerulosclerosis (FSGS) is a complex disease which describes different kinds of kidney defects, not
exclusively linked with podocyte defects. Since nephrin mutation was first described in association with early-onset nephrotic
syndrome (NS), many advancements have been made in understanding genetic patterns associated with FSGS. New genetic
causes of FSGS have been discovered, displaying unexpected genotypes, and recognizing possible site of damage. Many
recent large-scale sequencing analyses on patients affected by idiopathic chronic kidney disease (CKD), kidney failure
(KF) of unknown origin, or classified as FSGS, have revealed collagen alpha IV genes, as one of the most frequent sites
of pathogenic mutations. Also, recent interest in complex and systemic lysosomal storage diseases, such as Fabry disease,
has highlighted GLA mutations as possible causes of FSGS. Tubulointerstitial disease, recently classified by KDIGO based
on genetic subtypes, when associated with UMOD variants, may phenotypically gain FSGS features, as well as ciliopathy
genes or others, otherwise leading to completely different phenotypes, but found carrying pathogenic variants with associ-
ated FSGS phenotype. Thus, glomerulosclerosis may conceal different heterogeneous conditions. When a kidney biopsy is
performed, the principal objective is to provide an accurate diagnosis. The broad spectrum of phenotypic expression and
genetic complexity is demonstrating that a combined path of management needs to be applied. Genetic investigation should
not be reserved only to selected cases, but rather part of medical management, integrating with clinical and renal pathology
records. FSGS heterogeneity should be interpreted as an interesting opportunity to discover new pathways of CKD, requir-
ing prompt genotype—phenotype correlation. In this review, we aim to highlight how FSGS represents a peculiar kidney
condition, demanding multidisciplinary management, and in which genetic analysis may solve some otherwise unrevealed
idiopathic cases. Unfortunately there is not a uniform correlation between specific mutations and FSGS morphological
classes, as the same variants may be identified in familial cases or sporadic FSGS/NS or manifest a variable spectrum of the
same disease. These non-specific features make diagnosis challenging. The complexity of FSGS genotypes requires new
directions. Old morphological classification does not provide much information about the responsible cause of disease and
misdiagnoses may expose patients to immunosuppressive therapy side effects, mistaken genetic counseling, and misguided
kidney transplant programs.
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Introduction

Focal segmental glomerulosclerosis (FSGS) represents one
of the major causes of nephrotic syndromes (NS) and kidney
54 Adele Mitrotti failure (KF) in the USA, accounting for about 20% of NS
adele.mitrotti @uniba.it cases in children and 40% in adults [1].
Based on data from an international survey, FSGS is
A X X predominant in North America, accounting for 19.1%
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Precision and Regenerative Medicine and Ionian Area,

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00467-023-06046-1&domain=pdf
http://orcid.org/0000-0002-7037-7773

1686

Pediatric Nephrology (2024) 39:1685-1707

biopsy reports, resulting less common than IgA nephropa-
thy (22.1%), as expected [2]. The increased incidence in the
USA may be associated with the APOLI risk genotype in
sub-Saharan population, which is underrepresented in other
countries. In a Spanish study on 9378 patients affected by
NS, FSGS has been reported in 12% of cases, while mem-
branous nephropathy (MN) is the major cause of nephrotic
proteinuria in adults, with a prevalence of about 25% [3].

Consistently, in another study from China including 851
patients subjected to kidney biopsy, MN was the most fre-
quent cause of NS (28.8%), followed by other glomerulo-
nephritis, with FSGS affecting 5% of the patients included
in the cohort [4]. FSGS is a rare disease. However, in the
last 20 years, a worldwide increased prevalence of FSGS
has been estimated, probably related to lifestyle and dietary
habits for the secondary forms [5]. FSGS is characterized
by glomerular injury, usually involving a minority of glo-
meruli with a segmental solidification of the tuft, deposition
of extracellular matrix, and glomerular hyalinosis; moreo-
ver, light microscopy typically reveals abundant resorption
of lipid droplets in the proximal tubule cells, due to heavy
proteinuria. Juxtamedullary glomeruli are the more vulner-
able to develop FSGS, rather than the most superficial ones,
due to the higher blood flow rates and higher glomerular
capillary shear-stress pressure [6]. With disease progression,
the lesion may sequentially involve a higher number of glo-
meruli, with a more diffuse, and global, sclerosis. Overall,
the definition of glomerular sclerosis and its characterization
has changed considerably. In 1925, a German pathologist,
Theodor Fahr, first described the histopathological features
of focal segmental hyalinization in a case of “progressive
lipoid nephrosis with degeneration” [7], showing associa-
tion with minimal change disease (MCD), both defined as
podocytopathies [8§—11]. While the definition of MCD did
not change much, over the years, in the mid-1980s, other pat-
terns of glomerular damage have become part of the FSGS
spectrum [12]. Even though the term “FSGS” continues to
be used as an expression of a diagnosis, it is clear that it may
relate to many different conditions, primary and secondary
forms, and potentially hiding unexpected genotypes, as it has
recently emerged [13—15].

FSGS usually manifests with NS, and patients can be
classified as steroid-sensitive NS (SSNS) and as steroid-
resistant NS (SRNS) when there is a lack of response to
standard treatment with steroids and progressive kidney
damage. Thus, it is frequent to consider FSGS and SRNS as
synonymous [16, 17]. Monogenic forms of FSGS are more
common in children with FSGS/SRNS, with a reported
prevalence of about 25% [18-20].

Monogenic FSGS in adults is difficult to estimate because
genetic testing does not represent a routine test, but is lim-
ited to selected cases with positive family history, relapse
or resistance to immunosuppressive therapy, early onset
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of disease, or the association to extrarenal manifestations,
assuming the presence of syndromic conditions. However,
genetic defects leading to FSGS also happen in sporadic
cases [21].

FSGS is a glomerulonephritis with a not completely clear
pattern of injury and it has required special efforts for the
understanding of its molecular biology and for the identifi-
cation of primary and secondary causes. FSGS physiopa-
thology has been progressively investigated, with the aim to
increase scientific knowledge and to better define the criti-
cal role of the term “glomerulosclerosis” in a renal pathol-
ogy scenario. The heterogeneity of FSGS and the labori-
ous process to define the range of conditions into which the
term FSGS falls have increased the complexity of defining
the final and precise diagnosis, making management and
treatment options more demanding. Indeed, FSGS does not
represent just the description of a single disease, but rather
may appear during very different mechanisms of damage.
Thus, in case of kidney biopsy suggestive of a FSGS pat-
tern, a complex explorative framework should be applied
and it should definitely include genetic testing, to hopefully
identify the correct cause and to apply the proper personal-
ized treatment.

The histological definition of FSGS includes a very large
disease spectrum and a morphological description is used to
identify primary (idiopathic and immunological), secondary,
and genetic disorders [22].

Genetic studies played a central role in the identification
of genetic variants encoding proteins essential for podocyte
structure and function (slit diaphragm components, actin
cytoskeleton components, proteins essential for coenzyme
Q10 biosynthesis, nuclear proteins, and transcription factors)
that can be responsible for NS [23].

Genetic testing has progressively increased the power of
discovery for hereditary forms, with more than 60 genes con-
sidered monogenic causes of FSGS/NS (Table 1). So, cur-
rently, a correct integrated approach should consider clinical
data, medical history, family history, renal pathology when
available, and a genomic evaluation [29]. This new path of
analysis may be tough for clinicians, requiring a deep knowl-
edge of the disease and a larger availability of diagnostic and
therapeutic tools, making the genotype—phenotype correlation
progressively more challenging.

Earlier genetic studies of FSGS used positional cloning
mapping [25, 27] applied to large families with multiple
affected family members, and targeted single gene sequenc-
ing technology to detect causal mutations in already estab-
lished NS genes.

Those approaches have been useful to identify rare muta-
tions in single genes highly expressed in podocytes and
among the glomerular filtration barrier [47-49]. However,
it traditionally required time-consuming and non-cost-effec-
tive Sanger sequencing validations, representing a sensitive
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Table 1 (continued)

&

Non-syndromic/Syn-

dromic

Function Ref.

Phenotypes

MIM number Phe-
notype

Locus

MOI

OMIM code Protein

Gene

Springer

Non-syndromic

Warejko, K [19]

Other intracellular

Steroid resistant

N.D.

6q22.2

Solute carrier family AR

620349
35 member F1

SLC35F1

proteins

nephrotic syn-

drome

Non-syndromic

Lipska-Zigtkiewicz,

Nephronophthisis Other intracellular

613820-613819

AD/AR  2q24.3

IFT139 (a compo-

612014

TTC21B

proteins S [29]

12, Short-rib
thoracic dysplasia

4 with or without

polydactyly

nent of intraflagel-
lar transport- A)

Non-syndromic

Hermle, T [46]

Other intracellular

Steroid-resistant
proteins

N.D.

ND. 99333

GTPase-activating

611714

GAPVDI1

nephrotic syn-

protein and vps9

domains 1

drome

MOI Mode of Inheritance; AD Autosomal Dominant; AR Autosomal Recessive; Ref. Reference

technique but more problematic when applied to heterogene-
ous disorders caused by multiple genes [50, 51].

Thanks to the advent of recent applications of high-
throughput technologies, using massive parallel sequencing,
the strategies used to analyze the genomic background of
patients affected by complex diseases, such as FSGS/SRNS,
have completely changed [52, 53]. Next-generation sequenc-
ing (NGS) technologies include the analysis of (a) targeted
panels of genes of interest (eventually selected based on
hypothesis-driven approach), (b) the coding exonic regions
(whole exome sequencing (WES)), or (c) the entire cod-
ing and non-coding genomic background (whole genome
sequencing (WGS)). Those methods have dramatically
increased the power of capturing disease-causing mutations
[51], with a broader spectrum of diagnostic yield, not only
including pathogenic variants in well-known NS genes, but
also leading to discovery of unexpected genotypes.

Consequent to the introduction of these new tools, cli-
nicians may investigate through larger lenses the genomic
background in FSGS/SRNS patients, with promising results
and new scenarios, performing a more comprehensive diag-
nosis. Furthermore, massive sequencing analysis has also
raised the possibility of dealing with the discovery of unpre-
dictable pathogenic mutations, leading to consideration of
new genotype—phenotype correlations and the chance of
thinking outside the classical pathways of disease. Unfor-
tunately, not all centers have the availability of expensive
NGS applications, thus often, genetic testing remains only
applied to selected cases.

While the term “phenocopy” was introduced in medicine
about 75 years ago, recently it has been subjected to con-
ceptual expansion in human diseases [54]. A progressively
increasing number of genes known to be associated with
different disorders, acting as phenocopies, have emerged
from sequencing data from FSGS/SRNS cohorts (Table 2).

So, if it is true that FSGS heterogeneity is well estab-
lished, and if the main morphologic features are the focal
fibrosis and glomerular scars, what lies behind this? How
should we consider a pattern of glomerulosclerosis in this
new heterogeneous fashion? For many years, the main
interest in the genetics of FSGS/SRNS has been podocyte-
centric, maintaining the interest of clinicians and geneti-
cists among podocyte and glomerular filtration barrier
components.

Progressively, new classes of genes have been described
in cohorts of NS/FSGS patients, not directly associated with
podocyte function and structure, but associated with differ-
ent mechanisms of kidney damage, that may not primarily
cause NS, but mimic FSGS and SRNS.

In this paper, we want to emphasize how new genetic
insights have demonstrated that FSGS is a complex dis-
ease, characterized by “many masks,” and requiring a new
“open vision” in its etiological investigation and clinical
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management. A new critical and integrated approach is
needed in order to obtain the most accurate genotype—phe-
notype correlation.

Classification evolution: background
of the FSGS issue

FSGS comprises a group of clinical-pathologic conditions
clinically characterized by heavy proteinuria, hyperlipidemia,
edema, and hypoalbuminemia with histological features
of obliteration of glomerular capillaries by extracellular
matrix with segmental distribution. However, FSGS lesions
are heterogeneous. In general, primary FSGS refers to the
idiopathic form with severe proteinuria, without a specific
or labeled cause and for which circulating immunological
triggers have been considered, even if not yet clearly
identified. Secondary forms include those FSGS cases related
to specific and recognizable causes, such as viral infections,
drugs/toxin exposure, maladaptive nephron response, and
genetic mutations.

In 2004, a working group of international renal
pathologists convened at Columbia University to define
and formulate the features of histological patterns of FSGS
to create a histopathological classification of the disease.
Columbia classification was born with the aim to define
morphological criteria for the different pathological features
of FSGS, for primary as well as secondary forms. It became
a guide to use standardized pathological nomenclature. Five
mutually exclusive morphologic variants were described,

Table 3 Columbia classification

differentiating FSGS in (a) tip lesion, (b) cellular, (c)
perihilar, (d) collapsing, and (e) not otherwise specified
(NOS) variants (Table 3), referring to both primary and
secondary forms of FSGS [59-61].

This morphological description led to new considerations
of this disease, no longer limited to provide a pure
description of kidney biopsy, but rather placed in a broader
setting of new clinical-pathological scenario. Thus, the
first FSGS classification was an excellent starting point to
develop new future studies with the aim of understanding
the molecular mechanisms differentiating FSGS variants,
their different outcome and clinical progression, starting
from morphological heterogeneity and trying to reduce the
ambiguous use of the term “FSGS”.

While the Columbia classification aimed towards a
morphological description of proliferative and sclerosing
histopathological patterns with no specific correlation to
pathogenesis and no contribution to treatment options, to
implement the pure descriptive features with etiology and
pathogenesis correlations, in 2007, the term “taxonomy”
was first introduced to define an integrated and multiple-
level analysis in the spectrum of heterogeneous FSGS
disease [62]. The aim of the taxonomy of podocytopathies
was to provide a categorization of patterns of podocyte
injuries describing FSGS as a well-characterized
glomerular disease due to the grade of sustained
podocyte rearrangement, detachment, and apoptosis.
In this new classification, the podocyte, being the main
site of damage, takes the center stage, becoming the
major protagonist to differentiate the kind of damage.

Variant Description

FSGS (NOS - Not Otherwise Specified)

When identified at least 1 glomerulus with segmental increase in matrix obliterating

the capillary lumina, without podocyte hyperplasia, and often areas of adhesion to Bowman’s capsula.
Exclude perihilar, cellular, tip, and collapsing variants

Perihilar variant

When identified at least 1 glomerulus with perihilar hyalinosis, with or without sclerosis >50% of glomeruli with segmental

lesions, with perihilar distribution of sclerosis and/or hyalinosis.
Often sign of adhesion and glomerulomegaly.
Exclude cellular, tip, and collapsing variants

Cellular variant

When identified at least 1 glomerulus with endocapillary hypercellularity occluding lumina with segmental distribution,

with or without foam cells and karyorrhexis.
Lesion may be located anywhere among the gloms structure.

Exclude tip and collapsing variants.

Tip variant
or cellular (in <50% of tuft).

When identified at least 1 segmental lesion involving the tip domain (outer 25% of tuft next to origin of proximal tubule)

The tubular pole must be identified in the defining lesion. An adhesion or confluence of podocytes with parietal or tubular

cells at the tubular lumen or neck, should be identified.
Lesions can be sclerosing (in <25% of tuft).
Exclude collapsing and any perihilar sclerosis.

Collapsing variant

When identified at least 1 glomerulus with segmental or global collapse

and overlying podocyte hypertrophy and hyperplasia, often with podocyte droplets/vacuoles. Distribution may be segmental

or global.

Modified from D D'Agati, V., Fogo, A. B., Bruijn, J. A., & Jennette, J. C. (2004). Pathologic classification of focal segmental glomerulosclerosis:

a working proposal. American journal of kidney diseases, 43(2), 368-382

@ Springer
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The new approach to classification of podocytopathies
distinguished four different glomerular pathways of injury,
considering podocyte number modification and integrating
morphological features with etiology, including idiopathic,
genetic, and reactive forms. This new classification
included (a) minimal change nephropathy (MCN)
characterized by podocyte injury without modification of
podocyte number,(b) focal segmental glomerulosclerosis
(FSGS) with loss of podocytes, cell death, and insufficient
repair activity; (c) diffuse mesangial sclerosis (DMS)
characterized by mesangial expansion with mild
proliferation, podocyte hypertrophy and hyperplasia, and
lower degree of cell differentiation; and (d) collapsing
glomerulopathy (CG) characterized by collapse of the
glomerular tuft in at least one glomerulus with hyperplasia
and hypertrophy of de-differentiated podocytes, leading to
pseudo-crescent formation [62] (Table 4).

Even if the description of FSGS has gained more deep
knowledge and a better diagnostic approach, over the years,
its definition and classification are still subjected to evolu-
tion and updates.

The recent KDIGO guidelines, published in 2021, have
proposed a new, more recent classification for FSGS that
distinguishes four groups, based on light microscopy lesions,
in order to improve clinical and treatment management.
The aim of the new classification was to integrate a more
comprehensive pathophysiology meaning and treatment
options. The updated nomenclature includes (a) primary FSGS
with extensive foot process effacement and sudden NS, usually
linked to permeability factors still investigated and not yet well
established; (b) genetic forms for all the familial, sporadic,
and syndromic conditions due to pathogenic mutation in
autosomal dominant or recessive or X-linked genes, known
to be associated with FSGS and NS; (c) secondary forms,
referring to the viral and toxic-induced FSGS cases, and
including also the maladaptive conditions caused by normal
or reduced nephron mass, often associated with segmental foot
process effacement and milder proteinuria; and (d) FSGS of

Table 4 Taxonomy of Podocytopathies

undetermined causes (FSGS-UC) in which all the other cases
of unknown origin are included [63] (Table 5).

Thus, in the last 20 years, the description and the
classification of FSGS have deeply evolved, from the pure
morphological descriptions to an integrated classification
based on podocyte fate and disease progression, until the
most recent etiological classification with potential treatment
options.

Nephrologists, pathologists, and scientists have
focused on the role of the podocyte as the cell primarily
involved in the regulation of glomerular filtration
homeostasis. Therefore, a lot of advancements have been
made in understanding the biology of podocyte cells and
the role of genetic modifications altering the glomerular
cell balance.

So far, approximately 60 genes have been described
in association with podocytopathies and NS (Table 1),
representing the main clinical sign of primary FSGS and
also the second most common cause of chronic kidney
disease (CKD) in children and young adults less than
25 years old [64].

During the first years of the twenty-first century, a
common idea was that podocyte damage was involved in
different forms of human and experimental glomerular
disease, such as MCD, FSGS, CG, and membranous and
diabetic nephropathies, all of which diseases are related
to clinical manifestation of NS. Thanks to the growing
interest of the research community in understanding the
pathogenesis of the different forms of glomerulonephritis,
today glomerular diseases have been better characterized,
providing new knowledge in terms of the molecular,
immunological, and genetic mechanisms.

Epithelial visceral cells directly regulate the glomerular
filtration rate. Most of the diseases caused by abnormal
glomerular cell function are characterized by podocyte
injuries and/or dysfunction [9, 65-68]. Podocytopathies are
then defined as a group of diseases, including FSGS and
MCD, characterized by structural and functional podocyte

Variant Description

Minimal Change Nephropathy (MCN)

No changes are present on light microscopy. Normal histology. No change in podocyte number.

Focal Segmental Glomerulosclerosis (FSGS) Segmental solidification of the tuft with accumulation of extracellular matrix. Synechiae between
the tuft and Bowman’s capsule. podocytes are lost in the areas of sclerosis. Activation of apoptotic
pathway with podocytopenia due to cell death.

Diffuse Mesangial Sclerosis (DMS)

Mesangial expansion resulting from accumulated extracellular matrix, accompanied by mild

proliferation of hypertrophic podocytes, due to development arrest.

Collapsing Glomerulopathy (CG)

Wrinkling and folding of the glomerular basement membranes with collapse and proliferation of

de-diffentiated podocytes, leading to pseudo-crescents formation. Numerous protein reabsorption
droplets are present in the podocytes.

Modified from Barisoni, L., Schnaper, H. W., & Kopp, J. B. (2007). A proposed taxonomy for the podocytopathies: a reassessment of the pri-
mary nephrotic diseases. Clinical Journal of the American Society of Nephrology, 2(3), 529-542

@ Springer
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Table 5 KDIGO FSGS classification

Primary FSGS Characterized by idiopathic nephrotic syndrome with diffuse foot process effacement without any identified cause
explaining the disease.
Genetic FSGS All those FSGS in which a pathogenic mutation lead to the disease.
It may be Familial, Sporadic, Syndromic. About 60 genes have been identified in association to FSGS, so far.
Secondary FSGS Usually characterized by segmental foot process effacement, milder proteinuria without nephrotic syndrome,

caused by one of the following: Viral infections, Drugs/Toxin Exposition, Maladaptive condition due to normal

or reduced Nephron Mass.
FSGS of Undetermined cause (FSGS-UC)

When any of the other causes are identified. It is characterized by segmental foot process effacement and milder

proteinuria without nephrotic syndrome.

Modified from: Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice
Guideline for the Management of Glomerular Diseases. Kidney Int. 2021 Oct;100(4S):S1-S276. https://doi.org/10.1016/j.kint.2021.05.021.

PMID: 34556256

impairment causing NS as an expression of glomerular
filtration barrier damage. However, this classification also
has been subjected to a progressive evolution, since new
insights about FSGS have been achieved.

Since nephrin (NPHS1) was first described as causing
early-onset NS, new observations and updated under-
standing have occurred. Thanks to massive parallel DNA
sequencing technologies, FSGS is no longer an area of
localized sclerosis associated with podocyte defects.
While initially the major genes causing monogenic forms
of NS/FSGS described were those associated with defects
in podocytes, slit diaphragm, glomerular basement mem-
brane (GBM), or altering actin remodeling resulting in
podocyte dysfunction [37, 69, 70], in recent years, also,
genes encoding proteins working far from the glomerulus
have been added to the list of genes that can potentially
cause FSGS. In a study from 2018, including 300 patients
affected by SRNS and subjected to WES, the authors
found phenocopies in 5% of the cohort. This has been the
first report applying the concept of phenocopy to SRNS,
explaining the possibility that FSGS may be associated
with mutation in genes that do not purely affect podocytes,
even if leading to proteinuria [19].

FSGS glomerular scars

In a single kidney biopsy, the features of FSGS may be
wide. Kidney sampling may be tricky and sometimes it
is possible that sclerotic glomeruli may be unsampled,
resulting in specimens with normal glomeruli at light
microscopy evaluation, but extensive foot process efface-
ment at electron microscopy. This event should always
predict the possibility of a sclerotic pattern in the glo-
meruli not collected. Proteinuria is one of the most com-
mon clinical findings in FSGS. Renal pathology in FSGS
patients, as well as other proteinuric glomerular diseases,
has demonstrated the importance of podocyte structure

and glomerular barrier in the homeostasis of the urine
filtration mechanism. The glomerular filtration barrier is
composed of podocytes, GBM, and endothelial cells. A
crosstalk between podocytes and endothelial cells exists,
through the production of vascular endothelial grow factor
(VEGF) by podocytes [71].

Interestingly, studies on animal models using the
NEP25 chimeric mouse, in which only some podocytes
express the toxin receptor human CD25, suggest that
podocyte injury can extend from receptor-positive to
receptor-negative podocytes, due to a different hypothe-
sis: damaged podocytes may release toxic molecules such
as chemokines, TGF-p, endothelin-1 altering podocyte
survival, and also reduce the concentration of cell pro-
tective factors such as VEGF, due to altered environment
after podocyte death. Reduced podocyte survival may
also result from loss of podocyte—podocyte interactions
or apoptosis signals through altered gap junctions, com-
ing from damaged podocytes. Consequently, podocyte-to-
podocyte damage transmission has been hypothesized as
one of the mechanisms to explain the progressive exten-
sion of glomerulosclerosis, resulting from both direct and
indirect triggers [72].

Glomerular scars and extracellular matrix distribution
may result in the following three main events: (1) matrix
deposition involves the glomerulus directly, as a response
to inflammatory injuries caused by systemic inflammatory
diseases with necrotizing insults, like vasculitis or lupus
nephritis; (2) matrix deposition among the mesangium and
GBM, usually where extracellular matrix already exists,
with the aim of preserving the glomerular structures, as
may happen in diabetic nephropathy and amyloidosis; (3)
matrix deposition occurs in capillary loops in the setting of
the glomerulus, in conditions like primary FSGS or benign
nephroangiosclerosis [73].

The mechanism of glomerular scar formation is still
under evaluation, but it has been described as involving
cytokines such as TGF-p. TGF-p has been demonstrated

@ Springer
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to be overexpressed in glomerular disease with podocyte
dysfunction [74]. The proteinuria activates molecules
responsible for epithelial-to-mesenchymal trans-
differentiation in the tubulo-interstitial compartment
and the further generation of profibrotic cytokines
and inflammatory molecules, to step through damaged
podocytes [75, 76].

In addition, damaged tubular cells activate the renin
angiotensin system with increased levels of angiotensin II,
which acts on mesangial cells by activating them and con-
sequently causing the production of extracellular matrix,
through transcription factor “sterol-responsive element-
binding protein” (SREBP-1), and finally leading to TGF-p1
upregulation with profibrogenic stimuli [77].

Schiffer et al. evaluated the role of TGF-$ and SMAD
family proteins in the apoptosis of podocytes and the devel-
opment of glomerulosclerosis. Using TGF-f transgenic
mice and cultured murine podocytes treated with TGF-f, the
authors demonstrated that both TGF-p and SMAD?7 cause
apoptosis of the podocytes but with a different mechanism:
while TGF-p activates of mitogen-activated protein (MAP)
kinase p38 and classic effector caspase-3, SMAD7 inhib-
its the NF-xB pathway (nuclear factor kappa-light-chain-
enhancer of activated B cells), enhancing the apoptotic activ-
ity of TGF-p and therefore the development and progression
of glomerulosclerosis [78].

Immunohistochemistry and in situ hybridization analysis
in idiopathic FSGS kidney biopsies also demonstrated the
involvement of thrombospondin-1 (TSP-1), TGF-f type II
receptor (TGF-PIIR) in the increased production of extracellular
matrix, through SMAD signaling [79].

The role of TGF-p in the development of glomerular
diseases is also evidenced by the finding of elevated TGF-f
levels in urine from 42 patients with glomerulonephritis
compared to 11 healthy patients, as descripted by Murakami
et al. [80].

Although scars are a simple and common histological
lesion in various glomerular pathologies, the mechanisms
are not entirely clear. There is a complex molecular
pathway, both from a biochemical and etiopathogenetic
point of view, that can contribute to the development of
glomerular sclerosis. With increasing use of precision
medicine tools and next-generation sequencing, it has
been progressively discovered how glomerular scars
are not the expression of a unique exclusive event or
just podocyte-related. Thus, FSGS heterogeneity can
be considered an opportunity to interpret and to solve
new molecular pathways able to influence the clinical
manifestations of the disease. FSGS may occlude various
etiopathogenetic causes that we need to explore in case
of idiopathic, unknown origin, and potentially hereditary
cases.
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Genetics of FSGS

Table 1 lists the monogenic causes of FSGS/NS. Over 60
genes have been described as causative of FSGS/SRNS,
classified based on the affected glomerular pathway.

Hereditary FSGS should be suspected when it is reported
with positive family history, early-onset disease, in case of
extrarenal phenotypes, and rapid decline of kidney function or
lack of treatment response. When dominant genes are mutated,
there is segregation of the disease through generations, while
recessive forms usually show absent expression of the disease
between generations, with unaffected healthy parents, being
heterozygous carriers of the recessive allele or completely
healthy in the case of de novo mutations. Clinicians should
always investigate the presence of extra-renal manifestations,
due to the possibility of syndromic genetic forms of disease, in
which NS or a wide range of proteinuria could be associated,
such as for example deafness, ocular abnormalities, heart
defects, or other nonspecific systemic manifestations, as
may happen in complex systemic disorders such as Fabry
disease [81]. Incomplete penetrance and variable expression
complicate this scenario, with the possibility of having
asymptomatic patients while others show a wide spectrum
of manifestations, from a mild phenotype with low-grade
proteinuria to severe NS and its complications, to progressive
CKD and KF, even when having the same genetic mutation.
Very little information is available regarding the correlation
between genetic FSGS and clinical/histological features.
The different classes of FSGS categorize the type and grade
of podocyte injuries, going from depletion to apoptosis,
to de-differentiation of podocytes, but this morphological
classification does not provide any information about the
cause of kidney damage, the different pathways leading to
disease, recognizable clinical manifestations, or prognostic
orientation.

Specific correlations between genetic mutations in FSGS
and renal pathology features have not yet been described.
Thus, the discrimination between hereditary forms and
primary FSGS is pretty difficult. The variable penetrance and
expressivity in monogenic FSGS/SRNS explain the difficulty
to establish when a patient with FSGS/SRNS would need
genetic testing, with challenging individualization of a
precise molecular diagnosis, even in the most experienced
nephrology clinical setting.

The majority of NS-associated genes are autosomal
recessive. NPHSI (OMIM 602716) encodes nephrin, an
immunoglobulin protein, which represents the hallmark of
genetic NS/FSGS, being the first recessive gene discovered to
be causative for congenital nephrotic syndrome (CNS) in the
Finnish population in 1998. It is the most frequent cause of
early-onset NS accounting 40 to 60% of CNS [25, 82], however,
mutations in this gene may also occur in sporadic FSGS [83].
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Proximal tubular dilatation may be found in kidney biopsy
of patients with NPHSI mutations [84]. Since nephrin was
identified, many genes have been consequently discovered,
mapping podocyte and glomerular filtration barriers.

NPHS2 (OMIM 604766) encodes for podocin, a trans-
membrane protein located in intracellular podocyte junc-
tions, closely working with NPHS1 and CD2AP OMIM
604241 in the regulation of the slit diaphragm. Interestingly,
a variable association has been reported between type of
mutations and histological features in NPHS2-associated
FSGS. While truncating variants in NPHS2 have been
reported with a DMS phenotype, “less” deleterious mis-
sense mutations would be more frequently associated with
an FSGS phenotype, demonstrating that renal pathology may
depend upon the “developmental era” in which a specific
gene mutation occurs [85]. Also, the variant p.R229Q is
considered an NPHS2 polymorphism, with a high frequency
(about 3%) in non-Finnish Europeans, but becoming del-
eterious when in compound heterozygosity with a missense
NPHS?2 variant in trans, if occurring between exons 7 and
8 [86].

PLCE1 OMIM 608414 encodes for phospholipase C
epsilon 1, and it is one of the major causes of isolated DMS
during childhood [87]. However, when PLCE non-truncation
mutations occur, they may cause adult FSGS as a degenerative
defect more than as a result of a developmental defect [27,
88]. Also, PLCE] was recently identified as a regulator of
podocyte migration and differentiation through Rho GTPase
interaction [89].

LAMB2 (OMIM 150325) encodes a GBM component,
working beside COLA4 heterodimers. It is one of the
most common causes of isolated CNS, but also causes a
syndromic form of FSGS in the context of Pierson syndrome,
characterized by CNS, microcoria, and neurodevelopmental
disorders [90].

While NPHS1, NPHS2, PLCEI, and LAMB?2 are mostly
associated with early-onset severe NS during the fetal
period or first year of life, with rapid progression to KF,
other recessive genes like MYOIE (OMIM 601479) are
more likely associated with childhood-onset FSGS/SRNS
and a later development of KF. Furthermore, MYOIE has
been also associated with MCD biopsy findings [91]. As
expected, recessive genetic causes are more frequently found
in children, with a more severe and highly penetrant pheno-
type, while autosomal dominant genes are more frequently
mutated in adults, with WT1 as an exception, because it is
associated with a broader age of onset range of disease [92].

INF2 (OMIM 610982) is the most frequent autosomal
dominant gene, responsible for 9-17% of adult familial
FSGS, while TRPC6 (OMIM 603652) and ACTN4 (OMIM
604638) account for up to 12% and 3.5% of late-onset domi-
nant familial FSGS, respectively [93-97]. ACTN4 is a pos-
sible cause of sporadic cases, as well [98]. INF2 encodes

the inverted formin 2, involved in podocyte shape through
actin cytoskeleton regulation and it is expressed in podocyte
but also in heart, liver, and peripheral nerves, explaining the
association with the Charcot-Marie-Tooth (CMT) neuropa-
thy, in which FSGS is present in 75% of cases, as reported
in the study from Boyer et al. [99].

TRPC6 (OMIM 603652) encodes TRP cationic channel 6,
involved in calcium traffic and representing one of the major
components of the slit diaphragm [100]. It works closely
with the cytoskeleton resulting in regulation of podocyte
migration and motility [101].

ACTN4 (OMIM 604368) encodes a-actinin-4 which
provides foot processes adhesion to the GBM, leading
to foot process effacement in both sporadic and familial
FSGS [102, 103].

TRIMS8 (OMIM 606125) is an autosomal dominant
gene recently identified in a very large cohort of pedi-
atric individuals with SRNS/FSGS and in patients with
epilepsy, with most of the pathogenic truncating muta-
tions located in the last exon of the gene, very close to
the C-terminal region [104].

Syndromic FSGS may occur in case of mutations in
WTI1, PAX2, SMARCALI, LMXI1B, LAMB2, and COQ10-
related kidney nephropathies. PAX2 (OMIM 167409)
encodes a transcription factor important for brain, eye, and
embryonic kidney development. PAX2 has historically been
associated with Papillo-renal syndrome, characterized by
congenital abnormalities of the kidney and urinary tract
(CAKUT), mostly renal hypoplasia and vesicoureteral
reflux (VUR), and coloboma [105]. Since 2014, it has
been identified as a cause of adult-onset familial FSGS,
even without congenital abnormalities or extrarenal associ-
ated phenotypes [36]. Little is known about the molecular
pathway leading PAX2 to cause FSGS, but one hypoth-
esis could be the regulation of WT'I by PAX2 [106], or a
maladaptive response in case of PAX2-induced CAKUT
with reduced nephron mass. Thus, PAX2 probably repre-
sents one of the first examples of phenocopy in FSGS. WT1
(OMIM 607102) is an autosomal dominant gene associ-
ated with the development of isolated Wilms tumor, iso-
lated nephrotic proteinuria, or in the setting of syndromic
conditions like Denys—Drash syndrome (DDS) and Frasier
syndromes (FS), both including FSGS in association with
sexual abnormalities [107].

APOLI OMIM 603743 is a common gene following
recessive Mendelian trait, frequently mutated in a specific
subpopulation. APOLI is an interesting gene with a
high frequency of mutation in African Americans with
sub-Saharan ancestry, leading to a three- to fourfold
increased risk of developing FSGS and a twofold increased
risk of developing KF. While APOL! variants confer
protection from sleeping sickness, high-risk genotypes
(G1-G1, G1-G2, G2-G2) increase the risk of developing
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glomerulosclerosis, as demonstrated by transgenic mice
with podocyte-specific expression of APOLI G1/G2 alleles
which develop proteinuria, foot process effacement, and
FSGS. APOLI high-risk genotype is also associated with
viral infections such as HIV, COVID-19, and malaria
[108-111].

Hidden phenocopies behind FSGS
COL4A spectrum disorders

A large proportion of unknown CKD and KF may hide a
genetic disease—causing defect [112].

A progressively increasing number of studies have dis-
closed how FSGS/SRNS may start from genetic mutations in
genes far different from those classically defined as “podo-
cyte-related.” FSGS may be difficult to differentiate from
Alport syndrome (AS), based just upon pathology findings
and symptoms, and it has been demonstrated by analysis of
genetic insights that AS may often be mislabeled as FSGS
[113, 114].

AS is an inherited glomerular disorder caused by path-
ogenic mutations of collagen alpha 4 genes (COL4A3
(MIM: 203780; 104200; 620320), COL4A4 (MIM 203780;
141200), COL4AS5 (MIM 301050). It is the most common
glomerular inherited disorder. Hematuria, hearing loss, and
progressive KF are the most typical symptoms related to
AS. It has been estimated that in Europe, untreated patients
affected by X-linked AS may rapidly evolve to progressive
KF with a median age of 22 years [115], with males strongly
affected and showing a more severe phenotype than females,
in whom a less severe and variable phenotype is more com-
mon, due to X-chromosome inactivation (lyonizations) [116,
117].

Collagen IV represents the most abundant protein
found in the GBM, and it strongly brings together
podocytes and endothelial cells in the proper function
of the glomerular filtration barrier. About 80% of AS
patients may carry an X-linked mechanism of inheritance
involving the COL4A5 gene, with high penetrance of
hematuria in males, showing the most severe phenotype.
About 15% of patients with AS may show a recessive
mode of inheritance due to mutations in COL4A3 or
COL4A4, both located on chromosome 2. However,
a small portion of individuals, often underdiagnosed,
and accounting for about 5% of AS patients, may
show milder clinical manifestations with an autosomal
dominant pattern of disease where just one mutated copy
of COL4A3, COL4A4 is identified; these patients are
frequently defined as patients affected by thin basement
membrane disease (TBMD) [116, 118-120]. Also, digenic
inheritance has been reported [29, 121].
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More than five thousand pathogenic variants have been
recognized in COL4A3, COL4A4, and COL4AS, with 50% of
missense variants affecting glycine residues, 20% of which
variants are truncating nonsense mutations and frameshifts,
while 15% respectively are large indels and deletions or vari-
ants altering the splicing mechanism [122].

Interestingly, COL4A3, COL4A4, and COL4A5 pathogenic
variants have been found in patients with persistent proteinuria
or SRNS associated with FSGS, in both children and adult
populations [123, 124]. Indeed, when large cohorts of CKD
patients have been subjected to genotyping through WES or
WGS, a high incidence of collagen IV pathogenic variants was
found [125]. Interestingly, many recent reports and studies
reveal that collagen IV genes are becoming the most common
monogenic cause of FSGS in adults [126, 127].

So it is more common now to talk about COLA4-spectrum
disorders, more than AS-related disease. Barua et al. per-
formed WES in 193 patients with familial and sporadic forms
of FSGS, using a gene panel of 109 genes related to FSGS,
NS, CAKUT, and nephronophthisis. Pathogenic mutations
in 28% of patients with a positive family history and 11% for
sporadic cases were reported. Overall, the diagnostic yield
for definitely pathogenic variants reached 11% of the total
cohort, while 9% were likely pathogenic mutations. Inter-
estingly, more than half (55%) of the pathogenic variants
involved all the three collagen IV genes, COL4A3, COL4A4,
and COL4A5, usually implicated in AS [128]. In another
study from the Columbia University group, where one of
the largest cohorts was sequenced, including 3315 patients
affected by CKD, Groopmanan et al. identified monogenic
disorders in 10% of the cohort, of those, about 100 patients,
accounting for 30% of the diagnostic yield, showed mutations
in COL4A3, COL4A4, or COLAAS. This study demonstrated
that collagen IV variants were the second most frequent
genetic disorders in the CKD cohort, after the 31% of PKD1
and PKD?2 pathogenic variants. Only 35 out of 91 patients
(38%) with diagnostic variants of collagen IV had a clinical
diagnosis of AS or TBMD [129].

These findings demonstrate that collagen IV gene mutations
represent one of the leading genetic causes of masked FSGS,
often unrecognized, suggesting the importance of genetic
screening in clinical practice. Genotype—phenotype correlation
should be considered as a powerful tool to properly deliver
tailored diagnoses, relative personalized treatment, and
follow-up.

Lysosome storage dysfunction

Lysosomal storage disorders can cause podocyte damage,
mimicking histological features of FSGS. Alterations in genes
encoding for lysosome proteins are responsible for Fabry
disease, cystinosis, Nieman-Pick disease, and Tay-Sachs
disease all characterized by kidney involvement [130].
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Podocytes do not have the ability to proliferate; thus,
intracellular homeostasis is important for their integrity.
Lysosomes are essential organelles for the survival of podo-
cytes, for their digestive and recycling properties [15].

Among lysosomal storage diseases, Fabry disease (FD) is
an X-linked disorder, caused by mutation of the GLA (MIM
301500) gene, with defect of the enzymatic activity of the
a-galactosidase enzyme (a-GalA), leading to abnormal and
excessive deposition of neutral glycosphingolipids, including
globotriaosylceramide (Gb3) in endothelial, epithelial,
and smooth muscle cells. Progressive accumulation of
glycosphingolipids causes clinical abnormalities of kidney,
heart, skin, eye, brain, and peripheral nervous system. The
accumulation of glycosphingolipids in renal lysosomes
causes a progressive worsening of kidney function often
resulting in KF [131].

In the early stages of FD, patients may show difficulties in
concentrating urine, together with non-nephrotic proteinuria
and modest hypertension, finally leading to impaired kidney
function often resulting in KF in the third to fifth decades
of life [132]. FD is therefore a multisystem and progressive
disease.

FD may show histological features of FSGS. The mor-
phologic alterations are determined by Gb3 deposits in all
components of kidney parenchyma: glomerular, tubular,
interstitial, and vascular. The deposits are observed in vis-
ceral podocytes earlier than in the Bowman’s capsule epi-
thelium, in mesangial cells, in endothelial cells of glomeruli
and peritubular capillaries, in the smooth muscle cells of
arteries, in tubular cells, and most frequently in the distal
tract. Interstitial cells are rarely involved. In advanced cases
of disease, there are signs of segmental or global glomeru-
losclerosis, interstitial fibrosis, tubular atrophy, and arterio-
sclerosis [133]. The lysosomal deposits are lamellar electron
dense structures (intercalated with electron-lucid lamellas),
commonly termed “zebra bodies,” or “myelin figures” vis-
ible at the electron microscopy analysis of kidney biopsies.
However, although electron microscopy is very useful to
recognize Gb3 deposits associated with FD, they can be
observed also in other conditions, such as silica nephropa-
thy and pseudolipidosis, caused by the use of drugs such as
amiodarone, chloroquine, and hydroxychloroquine.

Trimarchi et al. described the significant impact of elec-
tron microscopy in the specific differential diagnosis of
FD in a patient initially classified as having FSGS by the
analysis of kidney tissue only by light microscopy. They
found lamellar electron dense lipids, as zebra bodies, under
examination with electron microscopy in this 37-year-old
patient initially treated with steroids as having FSGS for
a long time. The correct diagnosis of FD allowed them to
start the correct enzymatic replacement therapy [134]. The
development of glomerular sclerosis in FD would seem to be
mediated by an inflammatory state due to the deposition of

Gb3 in the tissues. The increase of cytokines such as TGF-6
would therefore be responsible [135].

Data deriving from studies on the immune system of
patients with FD are very interesting. Lymphocytes, mono-
cytes, and granulocytes of patients with FD express more
adhesion molecules than those in the healthy population
[136]. Furthermore, Gb3 activates Toll-like receptor 4
(TLR4) that stimulates immune cells through Notchl and
the NF-kB transcription factors, with release of proinflam-
matory and profibrotic cytokines [137]. TGF-8 is crucial
for fibrotic damage in response to chronic inflammation in
FD, determining the synthesis of extracellular matrix in kid-
ney cells via epithelial-to-mesenchymal transition. Indeed,
deposition of Gb3 in glomerular cells is followed by FSGS
until global glomerular sclerosis [138]. Studies of urinary
proteomics revealed the presence of fibroblast growth fac-
tor 23, uromodulin, and podocalyxin in patients with FD,
responsible for an inflammatory state and the activation of
the fibrosis pathway in these patients. Enzyme replacement
therapy can reduce the inflammatory state by reducing Gb3
deposits, only if administered in the early stages of FD. A
late onset of enzyme replacement therapy is less effective on
renal pathology, when fibrogenesis processes have already
begun.

Another syndrome characterized by lysosomal anomalies
is action myoclonus—renal failure syndrome (AMRF). It
is an autosomal recessive progressive myoclonus epilepsy
(PME) associated with kidney dysfunction, caused by
loss-of-function mutations in the SCARB2 (MIM 254900)
gene encoding lysosomal integral membrane protein type 2
(LIMP2). This very rare syndrome appears in the second or
third decade of life. LIMP?2 traffics p-glucocerebrosidase to
the lysosomal membrane. Mutations lead to glucosylceramide
accumulation and neurologic symptoms including
progressive action myoclonus, seizures, and ataxia [139].
Kidney involvement in AMREF consists of proteinuria that
can evolve to NS, and even development of KF [140].

Badhwar et al. in 2004 described 15 cases with AMRF,
all patients showing proteinuria, detected between age 9
and 30. The kidney biopsies performed in these patients
showed collapsing FSGS. SCARB2/LIMP2 mutation
also causes failure of endosomes containing reabsorbed
proteins to fuse with lysosomes in the proximal tubular
epithelial cells, with development of tubular proteinuria
[141].

There are other lysosomal dysfunction diseases
characterized by kidney impairment, mainly due to alteration
of the proximal tubular compartment, with Fanconi syndrome,
low molecular weight proteinuria, and even progressive KF.
Cystinosis, Dent disease, and Lowe syndrome are due to
genetic defects responsible for severe kidney damage. KF can
be explained by the development of tubulointerstitial fibrosis
[142].
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Renal lipid dysregulation is furthermore one of the factors
responsible for the development of diabetic nephropathy.

Tubulointerstitial disease

Since the KDIGO consensus conference in 2015, different
subclasses of autosomal dominant tubulointerstitial kidney
disease (ADTKD) have been classified based on the genetic
background [143].

Among these genes, UMOD (OMIM 191845) is a gene
encoding uromodulin (also known as Tamm-Horsfall pro-
tein) that is the most abundant protein in normal urine.
Uromodulin is essential in the regulation of ion transport,
immunomodulation, protection against urinary tract infec-
tions, and prevention of the formation of kidney stones and
oxidative stress [144, 145].

UMOD gene mutations are known to be related to
ADTKD, also known as ADTKD-UMOD, which may
slowly progress to CKD, leading to KF [146].

Gast et al. [147] analyzed patients with CKD stages 3-5,
in order to identify patients with inherited kidney disease.
They observed that ADTKD-UMOD was the most common
genetic form of kidney disease after autosomal dominant
polycystic kidney disease.

Moreover, Groopman et al. [129], conducting exome
sequencing and diagnostic analysis in patients affected by
CKD, identified 66 distinct monogenic disorders, and found
that 3% were explained by mutations in UMOD, in a very
large cohort of 3315 CKD patients [129]. Under a clinical
profile, about 80% of patients affected by ADTKD-UMOD
presented hyperuricemia that starts before the progressive loss
of kidney function and is the main symptom of the disease.
Additionally, gout and medullary renal cysts are sometimes
present. ADTKD-UMOD is a difficult condition to diagnose,
requiring a high clinical suspicion and confirmation by genetic
testing. The urinary sediment is bland with absent to mild
albuminuria or proteinuria and no hematuria. Patients with
UMOD mutation usually develop KF between the third and
sixth decade of life, whereas the onset of gout occurs between
the ages of 3 and 51 years [147].

Renal pathology is usually unspecific, and patients
affected by ADTKD-UMOD may be mislabeled as FSGS
[22]. Electron microscopy may describe fibrillary intracellu-
lar deposits of uromodulin, stored within endoplasmic reticu-
lum in tubular cells of Henle’s loop, explaining the frequently
defective urine-concentrating process [148].

Thus, in patients with histological diagnosis of FSGS in
whom an underlying secondary cause of FSGS is suspected,
itis necessary to obtain a correct medical and family history
for gout or kidney disease (FSGS of unclear etiology) and
testing serum urate levels and urine analysis. In case of a
strong clinical suspicion of ADTKD-UMOD, genetic tests
are recommended to detect any mutations in UMOD gene.
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CLCN5 (OMIM 300008) is an X-linked recessive gene
expressed in proximal tubules and collecting duct. It is respon-
sible for a rare syndromic condition called Dent disease type
1 (Dent-1), characterized by hypercalciuria, nephrocalcinosis,
kidney stone development, CKD, and progression to KF in
which tubular proteinuria occurs. Sometimes proteinuria may
reach nephrotic range values and it may be mistaken for a glo-
merular defect [149], and a glomerulosclerosis phenotype is
possible [150]. The hypothesis is that CLCN5 may cause FSGS
and NS through regulation of podocyte trafficking, in addition
to tubular dysfunction [151], so the effective molecular targets
of CLCNS5 have not yet been fully clarified. Also, mutations in
OCRL (OMIM 300535) may cause a severe tubular dysfunc-
tion called Lowe syndrome in the setting of Dent disease type
2 (Dent-2), characterized by ocular abnormalities, intellectual
impairment, CKD, and rapid progression to KF, in which
persistent proteinuria and FSGS have been described, as well
[152]. Thus, CLCNS5 and OCRL should be taken into consid-
eration as potential phenocopies of FSGS, in a genetic setting.

Ciliopathy

Ciliopathy identifies a group of genetic disorders characterized
by retinal degeneration, cerebral abnormalities, and kidney dys-
function and frequently presenting nephronophthisis (NPHP), a
recessive condition frequently leading to CKD in young adults
[43].

Many genes have been identified as disease-causing in
NPHP [153]. However, three genes have been implicated in
FSGS reports.

TTC21B (OMIM 612014) encodes for IFT139, an intra-
flagellar transport-A component located at the primary
cilium of young podocytes, while in adults in non-ciliated
podocytes IFT139 is subjected to redistribution along the
intracellular microtubule compartment. While 77C21B
had been initially recognized as a potential genetic cause
of NPHP (OMIM 613820), and short-rib thoracic dysplasia
4 with or without polydactyly it has also been reported as a
possible genetic cause of glomerular compartment defects,
in addition to tubulointerstitial alterations, manifesting
FSGS [154-156].

CC2D2A (OMIM 612013) encodes a ciliary protein
which works as a barrier to restrict protein flow between the
ciliary membrane and plasma. Recently, a compound het-
erozygous missense mutation in CC2D2A has been reported
in a girl affected by NPHP and FSGS [157].

NPHP4 (OMIM 606966) is a recessive gene causing
Senior-Loken syndrome 4 [158] and it has been identified
in a single consanguineous family with segregation of pro-
teinuria and kidney phenotype in multiple siblings, with
a single patient undergoing kidney biopsy and diagnosed
with FSGS [159]. The mechanism of disease causing FSGS
through NPHP genes remains unexplained, but it is possibly
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a secondary adaptive response to nephron loss or podocyte
cytoskeleton dysfunction in 77C2 1B mutations.

Conclusions

About 10% of the population affected by CKD has a mono-
genic disorder [160, 161].

CKD is a complex disease, with different molecular
mechanisms responsible for progressive kidney function
decline. Patients affected by progressive CKD may show
nonspecific histopathological features at kidney biopsy, such
as a wide spectrum of glomerulosclerosis, interstitial fibrosis,
and tubular atrophy that can be due to different pathogenic
mechanisms. Thus, in a simplistic view, glomerulosclerosis
may represent both a sign of progression of chronic
inflammation and kidney injury, as well as a renal pathology
hallmark in the diagnosis of FSGS, remaining an unspecific
sign, detectable in different renal diseases.

It has been estimated that about 25% of dialyzed patients
are classified as patients affected by KF of unknown origin.
Thanks to the integration of DNA sequencing and genotyping
approaches in kidney diseases, it has been demonstrated that a
large proportion of patients with KF may remain unclassified,
eventually hiding a genetic disease—causing defect [112].

Among these patients, FSGS, whose incidence is grow-
ing [3-5], represents a very heterogenous and complex dis-
ease. The recent updated KDIGO classification suggested
the importance of identifying the underlying cause of pri-
mary, secondary, and genetic FSGS, required for personal-
ized clinical management and treatment options.

So far, over 60 genes have been identified as monogenic
causes of FSGS. FSGS and SRNS are frequently used
synonymously due to the lack of immunosuppressive
response especially in adults. Podocyte genes are commonly
mutated in both familial and sporadic cases, but recent
insights obtained from massive sequencing analysis on large
cohorts of CKD patients have demonstrated that new patterns
of injury need to be investigated as phenocopies in FSGS.

FSGS/SRNS management needs a new updated framework,
which should consider an integrated approach between
phenotype characterization, pathophysiology, and genetic
testing to properly identify the correct causes of disease and to
specifically drive treatment options, avoiding side effects and
complications. Genetic versus non-genetic etiologies of SRNS
and FSGS may have different prognosis, especially during
childhood and in those resistant cases eventually planning a
living donor transplant. Genetic testing is needed for familiar
screening to determine donor eligibility status and to identify
unsuitable potential familiar donors carrying one of the known
genetic variants [22]. Thus, NGS should become a diagnostic
standard.

Collagen IV genes including COLA4A3, COL4A4, and
COLA4AS, usually associated with hereditary forms of
Alport syndrome, represent the emerging most frequent
cause of FSGS in patients with otherwise unknown CKD
or KF. Moreover, the growing interest in rare complex
diseases, such as Fabry disease, has revealed that FSGS
may hide mutations in the GLA gene leading to lysosomal
dysfunction, manifesting glomerulosclerosis features at
the kidney level. Even if glomerular and tubulointersti-
tial compartments seem to be separate sites of damage,
some of the genes regulating tubular homeostasis and cilia
structure may show a sort of dualism. UMOD, CLCNS,
OCRL, NPHP4, and TTC21B may cause tubulointerstitial
diseases such as ADTKD, NPHP, or Dent disease, but they
are now included in the genetic panels for genetic screen-
ing of patients affected by FSGS, as they can phenocopy it.
Many other new genes classically involved in syndromic/
non-syndromic disorders, have been identified in sequenc-
ing analysis of patients showing FSGS phenotype.

In conclusion, new insights into FSGS heterogeneity
represent an opportunity, because it moves the attention
from podocytes to other areas of interest, discovering new
potential triggers of damage, manifesting with proteinuria and
glomerular scars. The incomplete penetrance and pleiotropic
expression of FSGS/SRNS require a broader genetic analysis
in order to provide a tailored and targeted diagnosis and for
treatment selection.

Glomerular scars are not a specific and distinctive sign
of FSGS; however, they represent the hallmark in the
diagnosis of this proteinuric disease. In addition, FSGS
classification has been subjected to rearrangements,
and new monogenic causes of FSGS are discovered
on a monthly basis. When we look at a kidney biopsy
specimen through the lens of a light microscope, we
cannot understand what is hidden behind glomerular
scars, but we can just describe the captured features. An
integrated approach that includes patient “phenotyping,”
renal pathology, clinical reports, and sequencing analysis is
now mandatory to interpret the data and to offer the better
diagnosis and management to patients affected by kidney
diseases, in the era of precision medicine.
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