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Abstract
The complement cascade is an important part of the innate immune system. In addition to helping the body to eliminate patho-
gens, however, complement activation also contributes to the pathogenesis of a wide range of kidney diseases. Recent work 
has revealed that uncontrolled complement activation is the key driver of several rare kidney diseases in children, including 
atypical hemolytic uremic syndrome and C3 glomerulopathy. In addition, a growing body of literature has implicated com-
plement in the pathogenesis of more common kidney diseases, including acute kidney injury (AKI). Complement-targeted 
therapeutics are in use for a variety of diseases, and an increasing number of therapeutic agents are under development. With 
the implication of complement in the pathogenesis of AKI, complement-targeted therapeutics could be trialed to prevent or 
treat this condition. In this review, we discuss the evidence that the complement system is activated in pediatric patients with 
AKI, and we review the role of complement proteins as biomarkers and therapeutic targets in patients with AKI.
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Introduction

Acute kidney injury (AKI) is associated with substantial 
morbidity and mortality in both acutely ill and critically 
ill children. The most common causes of AKI in pediat-
ric patients are kidney ischemia/reperfusion injury (IRI), 
nephrotoxic medication exposure, and sepsis, although often 
AKI is multifactorial [1]. Recent epidemiologic studies show 
that AKI affects up to 20–25% of critically ill children, and 
affected patients frequently require kidney replacement 
therapy (KRT), prolonged invasive mechanical ventilation, 
and increased length of stay [2, 3]. In spite of these support-
ive measures, AKI is still associated with increased mor-
tality [4]. Furthermore, even in patients who recover, AKI 
is associated with increased long-term risk of proteinuria, 

hypertension, chronic kidney disease (CKD), and decreased 
health-related quality of life scores [5–7].

Despite the high prevalence and burden of disease from 
AKI, there are few options for early diagnosis and disease 
progression monitoring. Importantly, clinical trials have 
been unsuccessful in developing effective strategies to pre-
vent, treat, or mitigate AKI in children. Two main obstacles 
have hindered progress in this area. First, the diagnosis of 
AKI using the Kidney Disease: Improving Global Outcomes 
(KDIGO) criteria is based on changes to serum creatinine 
(sCr) levels and urine output [8]. sCr is an imprecise, late 
biomarker that varies widely in both chronically ill chil-
dren and in children with critical illness. It can be difficult 
to interpret in patients with low muscle mass and must be 
adjusted for fluid volume status [9]. Additionally, it can take 
up to 48 h for sCr to increase after the glomerular filtration 
rate (GFR) has fallen by 50%. Urine output can also be dif-
ficult to analyze, especially in children who are incontinent 
and those without indwelling urinary catheters in place.

Second, AKI is typically multifactorial in etiology and the 
relative contribution of each mechanism varies from patient 
to patient, likely influencing the duration and severity of 
disease in each critically ill child. Thus, in addition to devel-
oping effective therapies for AKI, it is equally important that 
we develop biomarkers for stratifying patients to a particular 
treatment and monitoring the response.
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Overview of the complement system

The complement cascade is a vital component of the innate 
immune system, but uncontrolled complement activation 
also plays a critical role in the pathogenesis of numer-
ous kidneys disorders. The complement system comprises 
soluble proteins, cell surface receptors, and regulatory pro-
teins. Although most of the complement proteins in the 
plasma are produced in the liver, they can also be synthe-
sized in other tissues. Elegant animal experiments have 
shown that complement proteins synthesized within the 
kidney contribute to kidney IRI [10].

The complement system is activated through three dif-
ferent pathways (classical pathway, lectin pathway, and 
alternative pathway) which all converge upon C3, cleav-
ing it to form C3a and C3b as seen in Fig. 1A. Comple-
ment activation through the classical and lectin pathways 
involves pattern recognition molecules, such as immu-
noglobulin and mannose-rich cellular surfaces. C3b can 
bind with factor B. Factor B is then cleaved by factor D 
to form C3bBb, the alternative pathway convertase (acti-
vating enzyme complex). C3bBb then cleaves additional 
C3, creating an amplification loop. Consequently, C3b 
generated by the classical or lectin pathways can feed into 
the alternative pathway amplification loop, leading to fur-
ther activation. In fact, even when the system is initially 
triggered through the classical pathway by immune-com-
plexes, amplification through the alternative pathway may 
account for the majority of downstream activation frag-
ments that are generated [11]. The C3bBb convertase is 
stabilized by the addition of properdin, positively regulat-
ing alternative pathway activation. Conversely, the C3bBb 
convertase is negatively regulated by regulatory proteins 
that either inactivate the C3b molecule or accelerate the 
decay of the convertase (see below).

The alternative pathway is also activated in plasma 
through the spontaneous hydrolysis of C3 to form C3(H20), 
a process called “tick-over” [12]. Like C3b, C3(H20) can 
combine with factor B to form a convertase [C3(H20)Bb]. 
C3b generated by the C3(H20)Bb convertase can react with 
amine and hydroxyl groups on nearby surfaces, potentially 
forming the alternative pathway convertase described 
above (C3bBb). Ordinarily, however C3b generated by 
tick-over is inactivated by soluble regulators (factors H 
and I) [12]. Because of this efficient regulation, C3b gen-
erated through tick-over is probably too short-lived to 
initiate alternative pathway activation on host tissues. In 
the setting of impaired complement regulation, however, 
tick-over may initiate alternative pathway activation on 
nearby surfaces.

Initiation of the system through any of the activation 
pathways leads to common downstream effector functions. 

C3 fragments covalently bind to nearby surfaces (“opsoni-
zation”) and serve as ligands for several different recep-
tors. Activation also causes formation of a multimeric 
pore on target surfaces (C5b-9, or the “membrane attack 
complex”). C5b-9 can lyse target cells and also causes 
various sub-lytic effects, including cell stimulation [13]. 
Activation also generates soluble fragments of C3 and 
C5: C3a and C5a, the “anaphylatoxins” (Fig. 1A). The 
anaphylatoxins cause chemoattraction of myeloid cells, 
release of additional proinflammatory mediators via leuko-
cyte activation, and vascular leak from increased vascular 
permeability [14]. These downstream effects are important 
for the clearance of pathogens, but they can also cause 
bystander injury to host tissues.

There is significant variation in normal complement levels 
in individuals and normative values differ by age and gender. 
In a study of healthy adults, increasing age was associated 
with increased classical and alternative pathway activity [15]. 
Additionally, increasing age was associated with higher levels 
of C5, C8, and C9 (terminal pathway proteins), whereas it 
was inversely associated with factor D levels [15]. In healthy 
infants, complement levels are typically 50–75% of norma-
tive adult values. Some factors (C2, C4, C5, C6, factor B) 
reach normal adult values by 6 months of age, while others 
(C1q, C3) remain significantly lower than adult norms [16]. 
The effect of these variations in complement protein levels 
on complement-mediated inflammation remain unclear, but 
it is possible that lower levels of complement proteins attenu-
ate complement-mediated inflammation in pediatric patients.

Given the potentially harmful effects of the complement 
activation fragments, the system is normally controlled by 
various regulatory proteins expressed on cell surfaces and 
in plasma [17]. Decay accelerating factor (DAF, or CD55) 
dissociates the convertases, acting as a negative regulator 
(Fig. 1B) [18]. A second mechanism of regulation is pro-
vided by factor I, a soluble protease that inactivates C3b by 
cleaving it to form iC3b. iC3b can no longer associate with 
factor B, so it is unable to form more convertase. Factor I 
requires cofactor proteins in order to inactivate C3b. Mem-
brane cofactor protein (MCP, or CD46) and complement 
receptor 1 (CR1) are cell surface proteins that can serve as 
cofactors. Factor H has both decay accelerating function and 
cofactor function for the alternative pathway convertase. It 
is a soluble protein that can also bind to host surfaces [19].

The importance of the regulatory proteins is illustrated by 
the strong association of defective complement regulation 
with inflammatory diseases [13]. The kidney appears to be 
particularly susceptible to injury in the setting of impaired 
complement regulation, even when the underlying defects 
affect complement regulation throughout the body. Factor H, 
for example, is an alternative pathway regulator present in 
plasma and other body fluids. Genetic and acquired defects 
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in factor H function are strong risk factors for development 
of atypical hemolytic uremic syndrome (aHUS) and C3 glo-
merulopathy (C3G), and disease in these patients is often 
limited to the kidneys [20]. Mutations in CD46, a co-factor 

to factor I, have also been identified in patients with aHUS 
and C3G [21]. It is unknown why the kidney is so frequently 
the target of complement-mediated inflammation, but the 
complement activating proteins may become concentrated 

Fig. 1   Overview of the complement cascade. A Activation pathways. 
The classical pathway, mannose-binding lectin pathway, and alterna-
tive pathway converge on C3, cleaving C3 into activation fragments 
C3a and C3b. C3b joins with factor B, which is then cleaved by the 
rate-limiting enzyme factor D. This generates the Ba fragment, which 
can be measured as a marker of this process. It also creates the C3 
convertase (C3bBb). C3bBb is involved in the amplification loop of 
the alternative pathway, increasing the generation of downstream 
activation fragments. C3b also joins with C3bBb to create the C5 
convertase (C3bBbC3b), which converts C5 into C5a and C5b. C3a 
and C5a function as anaphylatoxins which cause chemoattraction of 
myeloid cells, leukocyte activation leading to release of proinflam-
matory mediations, and increased vascular permeability causing vas-
cular leak. C5b joins with C6, C7, C8, and C9 to form C5b-9, also 
termed the membrane attack complex (MAC) which lyses target cells. 

B Complement regulatory proteins. Regulatory proteins are integral 
in controlling the complement cascade and preventing pathologic 
activation within tissues. Factor H is a regulator of the alternative 
pathway that inactivates C3b, competes with factor B for C3b bind-
ing (and prevents formation of C3 convertase), and accelerates C3 
convertase decay. Factor H is a soluble protein that controls alterna-
tive pathway activation in the fluid phase, but it can also bind to cells 
and extracellular matrix to control activation at those locations. CD46 
is another cofactor (for factor I) that mediates inactivation of C3b. 
CRIg (complement receptor of immunoglobulin family) acts on C3b 
and inhibits alternative pathway activation. CD59 binds C8 and C9, 
thereby preventing the formation of the membrane attack complex 
C5b-9. Decay accelerating factor (DAF or CD55) increases the break-
down of the C3 and C5 convertases within the pathway
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in the capillaries due to glomerular filtration, and the acidic 
environment and ammonia synthesis within the kidney may 
also promote alternative pathway activation [22].

AKI pathogenesis

Despite a large number of different etiologies of AKI, many 
disparate mechanisms converge on a common pathological 
lesion of tubular injury. Tubular epithelial cells are suscep-
tible to injury after a wide range of insults, including sepsis, 
toxins, and IRI (e.g., after cardiovascular surgery or kidney 
transplantation). IRI and toxins directly injure tubular epi-
thelial cells [23–26]. Patients with sepsis or systemic inflam-
matory response syndrome (SIRS) are often hypotensive and 
treated with nephrotoxic medications, and sepsis also causes 
several microvascular derangements that reduce kidney per-
fusion, including capillary leak, microthrombi formation, 
and endothelial injury [27–34]. Although patients are often 
diagnosed as having “acute tubular necrosis” (ATN), this is 

a histologic diagnosis and biopsies are usually not performed 
in these clinical settings. Nevertheless, tubular epithelial 
cells and granular casts (which contain degrading epithelial 
cells) can often be detected in the urine, providing evidence 
of tubular injury.

Interestingly, even though the primary insult to the kidney 
is often non-immune (i.e., nephrotoxic exposures or IRI), 
AKI is associated with significant tissue inflammation. 
When tissue damage occurs, expression of “damage associ-
ated molecular patterns (DAMPS)” increases on cell sur-
faces, which increases vascular permeability and ischemic 
hypoperfusion [35]. DAMPS are recognized by toll-like 
receptors (TLRs), of which TLR4 has increased expres-
sion after IRI on tubular epithelial cells and on leukocytes 
infiltrating the kidney [36]. Together, DAMPs and TLRs 
act after endothelial and tubular injury to release inflamma-
tory cytokines and chemokines, which recruit leukocytes 
and contribute to further kidney injury [26, 37, 38]. There 
is also bi-directional crosstalk between TLRs, complement, 
and cytokines: TLRs induce expression of complement 

Fig. 1   (continued)
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components, and complement receptors may regulate TLR-
dependent responses [39].

TLR4 activation also leads to enhanced complement fac-
tor B synthesis after sepsis [40]. Mice treated with an anti-
factor B inhibitor were protected from apoptotic and necrotic 
tubular injury [41]. TLRs also prime cells to undergo pyrop-
tosis, which is programmed cell death leading to cellular 
lysis and release of proinflammatory intracellular contents 
[42].

These kidney-specific proinflammatory events are trans-
mitted systemically and lead to cytokine anomalies, pertur-
bations in other immune cells, and dysfunction in the lungs, 
heart, and other vital organs [43, 44].

Complement activation in AKI — lessons 
from pre‑clinical models

Complement has been implicated in AKI pathogenesis in 
numerous animal models, including bilateral IRI, nephro-
toxin-induced injury, and sepsis-induced injury. It is note-
worthy that the complement system plays a pathogenic role 
in animal models that employ diverse types of injury and a 
wide range of species. In contrast to models of glomerular 
disease, complement activation in models of AKI primarily 
occurs within the tubulointerstitium and peri-tubular capil-
laries. These studies shed light onto the pathways by which 
complement is activated in the injured kidney, the mecha-
nisms by which the system contributes to injury, and the 
role of complement regulatory proteins in limiting/permit-
ting complement activation in AKI.

Activation pathways in AKI

The mechanisms by which complement is activated have 
been carefully investigated in models of kidney IRI. One 
seminal study compared IRI in mice with genetic deficiency 
of several different complement proteins [45]. Mice lacking 
C3 (C3−/− mice) cannot activate complement through any of 
the activation pathways and were protected from injury [45]. 
In contrast, mice genetically deficient in C4 (C4−/− mice) 
cannot activate complement through the classical and lectin 
pathways, and these mice had no protection from IRI. In 
another study using a similar IRI model, mice with genetic 
deletion of factor B (fB−/− mice, unable to activate comple-
ment through the alternative pathway) were protected from 
IRI [46]. Together, these studies point to an important role 
for the alternative pathway, and similar patterns of injury 
have been observed in other models of AKI. In sheep, for 
example, non-steroidal anti-inflammatory drug (NSAID)-
induced AKI is associated with alternative pathway com-
plement activation in the kidney [24]. Alternative pathway 

activation was also seen in the tubulointerstitium of mice 
with ciclosporin-induced AKI [47].

The complement system is also activated in several ani-
mal models of sepsis. Sepsis from cecal ligation and punc-
ture led to TLR activation and increased levels of factor B 
and factor C3 gene expression in the liver, heart, and kid-
neys. Activation fragments of these complement proteins 
were increased in the serum, liver, heart, and kidneys [40, 
48], suggesting alternative pathway activation. Neutraliza-
tion of complement activation using an antibody that pre-
vents cleavage of C5, antagonists of C5a receptors 1 and 
2, or a C5a receptor 1 knockout model all demonstrated 
improvement in mortality and end-organ failure [49–53].

Factor B−/− mice had improved survival post-sepsis, 
further indicating a role for the alternative pathway [40]. 
This study also showed that alternative pathway deficiency 
retained the ability of the immune system to clear infection. 
Importantly, the immune response generated lower levels of 
proinflammatory cytokines that have been implicated in the 
pathogenesis of sepsis.

More recently, studies in mice have revealed unique 
mechanisms of complement activation in the tubulointer-
stitium, and that complement regulation is disrupted after 
injury of tubular epithelial cells (Fig. 2). The lectin path-
way activating protein collectin-11 (CL-11) is released from 
post-ischemic stressed renal tubule cells and then binds to 
L-fucose that is expressed on the epithelial cell surface [54] 
(Fig. 2B). CL-11 can engage mannose associated serine pro-
tease (MASP)-2, a lectin pathway enzyme that cleaves C3. 
The process is then presumably amplified through the alter-
native pathway, explaining the role of factor B in this pro-
cess. Interestingly, a model of rhabdomyolysis-induced AKI 
was also recently shown to activate complement through 
the same mechanisms [55]. This suggests that CL-11-in-
duced complement activation in the tubulointerstitium may 
be a common response of the tubules to various stressors. 
Furthermore, expression of complement regulatory pro-
teins on the epithelial cell surface is reduced after ischemia 
(Fig. 2C) [56]. Thus, while injury of the tubular epithelial 
cells increases the local concentration of activating proteins, 
it simultaneously reduces the concentration of regulatory 
proteins.

In the study mentioned above, mice lacking the terminal 
complement protein C6 (C6−/− mice) showed protection 
from IRI comparable to that seen in C3−/− mice [45]. The 
C6−/− mice can generate C3a, C3b, and C5a, but cannot 
form C5b-9. Thus, protection in this strain implicates 
C5b-9 in kidney IRI. Other studies have also investigated 
the role of C5a, however, demonstrating that mice defi-
cient in C5a receptor (C5aR) expression or wild-type mice 
treated with a C5aR antagonist are protected in models 
of IRI [57, 58]. It is important to understand the rela-
tive contributions of these various complement-mediated 
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mechanisms to kidney disease, as drugs that block spe-
cific complement pathways and activation fragments are in 
clinical development [59, 60]. Nevertheless, these studies 
demonstrate that complement activation in the tubuloint-
erstitium can directly injure target epithelial cells and also 
trigger a broader inflammatory response that exacerbates 
injury. In addition to these acute effects, activation of 
the complement system may also contribute to the long-
term sequelae of AKI. Several studies have shown, for 
example, that complement deficiency protected mice from 

development of kidney fibrosis after induction of ischemic 
or toxic acute tubular injury [61–63].

The role of complement regulatory proteins in AKI

As mentioned above, defective alternative pathway regula-
tion is a strong risk factor for aHUS and C3G. This begs 
the question as to whether these same defects (e.g., muta-
tions in factor H) predispose patients to kidney injury in 
the setting of IRI or toxin exposure, particularly given the 

Fig. 2   Site of complement activation within the renal tubulointer-
stitium. A Normal complement activation and regulatory control. 
Complement activation through any inciting pathway activates the 
conversion of the fluid-phase C3 into C3a and C3b. C3b deposits on 
the renal tubular epithelial cell in a process normally controlled by 
factor H and cell surface complement regulatory proteins (CRPs). B 
Complement activation in the setting of tubular epithelial cell injury. 
Stressed or injured tubular epithelial cells increase expression of 

L-fucose on the cell surface. Collectin-11 (CL-11) functions as a pat-
tern recognition molecule within the mannose-binding lectin path-
way. CL-11 binds to L-fucose. CL-11/L-fucose/MASP complexes 
then promote complement activation via cleavage of C3. C Expres-
sion of cell-surface regulatory proteins (CRPs) is disrupted after 
tubular epithelial cell injury. In this situation, C3b and the C3 con-
vertase are no longer efficiently inactivated, and activation proceeds
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prominent role played by the alternative pathway in these 
settings. Mice with partial deficiency of complement regula-
tory proteins, including mice with heterozygous deficiency 
of factor H, develop worse IRI than control mice [56, 64]. 
Similar findings have not been reported in humans, although 
it is possible that the glomerular process dominates the clini-
cal assessment of patients with aHUS and C3G.

Mice with genetic deletion of the cell surface comple-
ment regulators CD55 (also known as decay accelerating 
factor or DAF) and CD59 (Daf-1−/−CD59a−/− mice) also 
develop more severe IRI than control mice [65, 66]. Inter-
estingly, complement is activated on the peritubular capil-
laries after IRI in this strain, whereas activation after IRI 
typically occurs on the tubular epithelial cells. Furthermore, 
healthy endothelial cells ordinarily control complement acti-
vation on the cell surface very effectively [67]. Thus, these 
regulatory proteins probably limit the severity of vascular 
injury in IRI when they are expressed normally. Comple-
ment receptor of the immunoglobulin superfamily (CRig) 
is a cell surface receptor expressed by macrophages. CRig 
binds to C3b, blocking the formation of C3bBb (C3 con-
vertase) and preventing activation of the alternative path-
way [17, 68] (Fig. 1B). A specific role of CD55, CD59, and 
CRig in human AKI has not, as far as we are aware, been 
demonstrated.

Nevertheless, the above studies highlight the role of com-
plement regulatory proteins in limiting kidney injury, and 
also some of the features that distinguish AKI from other 
complement-mediated kidney diseases, such as glomerular 
disease and antibody-mediated transplant rejection. Com-
plement activation in the kidney is pathologic in all of these 
settings, but the mechanisms of activation, the histologic 
patterns of activation, and the downstream mediators of 
injury appear to be distinct [69].

Evidence of complement activation 
in patients with AKI

Studies of adult patients

Evidence of complement activation has been detected in 
urine and biopsy samples from adult patients with AKI, 
demonstrating that complement is also activated in human 
disease. C3d is deposited along the tubular basement mem-
brane of biopsies with morphologic evidence of tubular 
injury, and the pattern is similar to that seen in animal mod-
els [70]. C4d was not seen in the tubulointerstitium, argu-
ing against involvement of the classical or lectin pathways. 
As mentioned above, however, some mechanisms of lectin 
pathway activation can bypass C4. Complement fragments 
were also measured in urine samples from a case–control 
study that evaluated AKI in adults after cardiac surgery. In 

patients with AKI, urine factor Ba increased as AKI sever-
ity increased, and the change in Ba levels preceded the rise 
of serum creatinine [71]. This shows an ability to use urine 
factor Ba as a mechanistic biomarker predicting AKI devel-
opment in this patient population. These findings are also 
consistent with preclinical models showing the causative 
role of factor B in AKI pathogenesis.

Complement as primary driver as disease 
presenting as AKI

It is worth noting that a child presenting with AKI often has 
an unclear diagnosis, and complement-mediated diseases 
(e.g., aHUS and C3G) may present with similar findings. 
The cardinal signs of aHUS, for example, may overlap with 
other causes of AKI in critically ill children, such as sepsis 
with disseminated intravascular coagulation (DIC) (causing 
thrombocytopenia and AKI), or pre-renal AKI caused by 
diarrhea and hypovolemia. Furthermore, C3G may mimic 
a post-infectious glomerulonephritis, and as the clinical 
manifestations are often preceded by infection, sepsis may 
still be on the differential. The diagnosis of transplant-
associated thrombotic microangiopathy (TA-TMA) can 
be even more challenging. These patients have often been 
treated with nephrotoxic drugs or radiocontrast, and they are 
immunocompromised and at high risk of infection. Thus, 
many patients with TA-TMA likely have concomitant tubu-
lar injury. Even though aHUS, C3G, and TA-TMA are rare 
disorders, they represent a treatable subset of patients with 
AKI. These disorders, if untreated, are associated with high 
morbidity and mortality rates, and therefore, clinicians must 
have a high index of suspicion for the diagnoses. They also 
serve as models for treatment with complement-targeted 
therapeutics. Overall, C3G/aHUS may have overlapping 
presentations and pathophysiology and have been discussed 
in previous excellent reviews [72, 73]. Further descriptions 
of these diseases are beyond the scope of this review.

Evidence of complement activation in pediatric 
patients with AKI

In addition to complement as the primary disease driver, 
complement may be activated secondarily after tubular injury 
from ischemia, nephrotoxins, or via a systemic inflammatory 
response. A pilot study evaluated plasma and urine comple-
ment factors in critically ill children who required invasive 
mechanical ventilation [74]. Children with stage 3 AKI (based 
on KDIGO criteria) were matched to patients without AKI 
based on illness severity scores (PELOD-2) [75]. As this was a 
post hoc analysis, there was variable timing in specimen acqui-
sition with some patients in whom AKI was diagnosed prior 
to urine and plasma collection. However, all specimens were 
obtained prior to KRT initiation. Urine factor Ba and plasma 
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factor C4a levels increased in proportion to AKI severity, with 
the highest levels occurring in patients who ultimately required 
KRT. Plasma C4a levels were independently associated with 
major adverse kidney outcomes at 30 days (MAKE30). Severe 
KDIGO stage 2–3 AKI at day 3 of Pediatric Intensive Care 
(PICU) admission was associated with urine Ba, plasma Bb, 
plasma C4a, and plasma C3a levels. This adds to the evidence 
that complement is involved in AKI pathogenesis. The relative 
contributions of each factor (and thus the differing pathways) 
remain unclear, however, as well as the different implications 
of changes in plasma compared to urine complement meas-
urements. It is also unknown whether the role of complement 
activation in pediatric AKI differs from the role in adult AKI, 
and this question warrants more research.

An important question is whether the elevation in plasma 
complement activation fragments in a patient’s AKI is caused 
by complement activation as part of the disease process or 
whether it is simply that clearance of the fragments is reduced 
in the setting of a lower glomerular filtration rate (GFR). The 
increase in the levels of multiple different fragments in both 
plasma and urine argues that the changes are due to increased 
activation of the system, not simply reduced clearance through 
the kidney. A related question is how to determine whether 
fragments detected in plasma and urine were generated within 
the kidney. For patients with AKI in the setting of systemic ill-
ness, such as sepsis, there is likely both intrarenal and extrare-
nal complement activation. In the study cited above, however, 
patients with and without AKI were matched via PELOD-2 
scores (and thus illness severity) [75], so differences in sys-
temic inflammation were probably not the only reason for 
elevated plasma complement levels.

Although increases in plasma complement fragments are 
probably not due to lower clearance by the kidney, a reduced 
GFR does contribute to increased alternative pathway activa-
tion. Normally factor D is filtered through the glomerulus 
and nearly fully reabsorbed within the tubules, then rap-
idly catabolized [76, 77]. In vitro experiments show that 
supplementation of factor D to normal sera resulted in an 
increase in alternative pathway activity, with similar func-
tion compared to sera of patients with stage 5 CKD [78, 
79]. In patients with stage 5 CKD, factor D in plasma is 
increased nearly tenfold due to impaired glomerular filtra-
tion, and elevated levels of Ba in plasma suggest that there 
is also an increase in AP turnover [80, 81]. Factor D levels 
have not been studied in AKI but may also increase in this 
setting due to decreased GFR.

Complement proteins as biomarkers

The pitfalls of serum creatinine and urine output as the sole 
biomarkers used to predict, diagnose, and monitor treatment 
effectiveness of AKI are well known, and thus the search for 

ongoing biomarkers continues. Ideally, an earlier marker of 
kidney injury would lead to improved timeliness of diagno-
sis/risk identification and optimized initiation of potential 
therapeutic interventions. Table 1 shows complement factors 
that have shown potential as future biomarkers in a variety of 
kidney diseases. Of these, urine Ba, plasma C3a, and plasma 
C4a have shown promise in pilot studies of AKI [71, 75], 
and other potentially relevant AKI biomarkers include c5b-9 
and Bb levels.

Various other biomarkers are also being evaluated for use 
in pediatric AKI diagnosis, including neutrophil gelatinase-
associated lipocalin (NGAL), IL-18, KIM-1, IGFBP-7, 
TIMP-2, and a “renal angina index” (RAI) [101–108]. Com-
plement activation may be an indication of tissue damage 
and/or inflammation, but the predictive value of complement 
fragments relative to these other biomarkers requires further 
study. Even if complement biomarkers are not superior to 
these other analytes for the early detection of AKI, the com-
plement measurements could still be particularly useful for 
identifying patients most likely to benefit from therapeutic 
complement inhibitors. They could also be used as phar-
macodynamic/response biomarkers to show the biological 
response in patients who receive such treatments.

Complement inhibitors for prevention 
or treatment of AKI

Complement inhibitory drugs are currently being used to 
treat several kidney diseases, and ongoing clinical trials are 
testing many additional drugs in pediatric patients (Table 2) 
[109, 110]. Eculizumab and ravulizumab, for example, are 
monoclonal antibodies to C5 that are approved for treatment 
of aHUS. Avacopan is a C5aR antagonist that was recently 
approved for treatment of ANCA vasculitis and recently 
completed a phase 2 trial in patients with C3G. Although 
there are not currently any clinical trials of complement inhi-
bition for prevention or treatment of AKI per se, insights 
can be gained from studies in other diseases. Importantly, 
eculizumab and ravulizumab have been used in pediatric 
patients with aHUS, and they are safe and effective when 
given in conjunction with meningococcal vaccination and/
or prophylactic antibiotics [111–116]. A factor B inhibitor 
has been tested in Phase II trials evaluating adult patients 
with aHUS, C3G, and paroxysmal nocturnal hemoglobi-
nuria (PNH) [117]. Similarly, a C3 inhibitor and factor D 
inhibitors have been explored in patients with PNH and C3G 
[118, 119]. Given the evidence that the alternative pathway 
is involved in AKI pathogenesis, these drugs may hold par-
ticular promise as a treatment for AKI, and the current stud-
ies will provide important data regarding the safety of alter-
native pathway inhibition in patients with kidney disease.
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Table 1   Complement factors with potential use as AKI biomarkers

Ctc = compared to control, FSGS = focal segmental glomerulosclerosis, TA-TMA = transplant-associated thrombotic microangiopathy, 
DM = diabetes mellitus

Biomarker Population/disease state Significant findings

Urine Ba Adults post-cardiac surgery [71] ↑ Urine Ba = ↑AKI severity
Critically ill children [74] ↑ Urine Ba = ↑AKI severity
FSGS [82] ↑ Urine Ba at diagnosis ctc

Urine Bb ANCA-associated vasculitis [83] ↑ Urine Bb in active disease vs. disease remission
FSGS [84] ↑ Urine Bb ctc

Plasma Ba Adults with TA-TMA [85] ↑ Plasma Ba → 2 weeks later = TA-TMA diagnosis
Plasma Ba FSGS [82] ↑ Plasma Ba at diagnosis ctc
Plasma Bb Adults with primary membranous nephropathy [84] ↑ Plasma Bb compared to control
Plasma Bb FSGS [82] ↑ Plasma Bb = more severe disease
Urine C3 Critically ill adults with sepsis [86] Urine C3a/C3 ratio is an inverse acute phase reactant
Urine C3a FSGS [84, 87] ↑ Urine C3a ctc

Urine C3a correlated with renal dysfunction, proteinuria, and interstitial 
fibrosis

Urine C3a ANCA-associated vasculitis [83] ↑ Urine C3a in active disease vs. disease remission
Urine C3b FSGS [88] ↑ Urine C3b ctc
Urine C3d Lupus nephritis (LN) [89] ↑ Urine C3d elevated in active LN compared to inactive or chronic LN

Tubulo-interstitial nephritis [90] ↑ Urine C3d ctc
Plasma C3a Critically ill children [74] ↑ Plasma C3a = ↑AKI severity

Adults with primary membranous nephropathy [84] ↑ Plasma C3a compared to control
FSGS [84, 87] Plasma C3a correlated with renal dysfunction, proteinuria, and intersti-

tial fibrosis
Plasma C4a Critically ill children [74] ↑ Plasma C4a = MAKE30 outcomes
Urine C4a FSGS [82] ↑ Urine C4a at diagnosis ctc
Urine C5a Kidney transplant [91] ↑ Donor urine C5a associated with recipient’s delayed graft function

FSGS [84, 87] Urine C5a correlated with renal dysfunction, proteinuria, and interstitial 
fibrosis

ANCA-associated vasculitis [83] ↑ Urine C5a in active disease vs. disease remission
Urine factor H IgA nephropathy [92] ↑ Urine factor H ctc

Cisplatin nephropathy [93] ↑ Urine factor H after cisplatin, correlated with lower eGFR
Nephritis [94] ↑ Urine factor H ctc

Urine properdin IgA nephropathy [92] ↑ Urine properdin ctc
Kidney transplant recipients [95] ↑ Urine properdin → ↑ risk of graft failure

Urine CD59 Type 2 DM [96] ↑ → Lower risk of stage 5 CKD and death
Membranous glomerulonephritis [97] ↑ Urine CD59 ctc

Plasma sC5b-9 Deceased donor kidney transplant recipients [98] ↑ Perioperative plasma sC5b-9 = worse graft function 1 year later
FSGS [84] ↑ Plasma sC5b-9 ctc

Urine sC5b-9 Membranous nephropathy [84, 99, 100] ↑ Urine sC5b-9 ctc
Urine sC5b-9 levels correlated with worse outcome with potential for 

dynamic marker of ongoing injury
Urine sC5b-9 levels may identify patients with a membranous lesion

FSGS [84] ↑ Urine sC5b-9 ctc
IgA nephropathy [92] ↑ Urine sC5b-9 ctc
Cisplatin nephropathy [93] ↑ Urine sC5b-9 after cisplatin, correlated with lower eGFR
Kidney transplant recipients [95] ↑ Urine sC5b-9 → ↑ risk of graft failure
ANCA-associated vasculitis [83] ↑ Urine sC5b-9 in active disease vs. disease remission
FSGS [82, 87, 88] ↑ Urine sC5b-9 at diagnosis ctc

Urine C5a correlated with renal dysfunction, proteinuria, and interstitial 
fibrosis

Membranous glomerulonephritis [97] ↑ Urine sC5b-9 ctc
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The use of complement inhibitory drugs in patients with 
sepsis and in kidney transplant recipients may also provide 
insight into the ability of these drugs to prevent or treat 
AKI. For example, delayed graft function (DGF) in trans-
plant recipients is primarily caused by IRI. Eculizumab has 
been trialed in 57 pediatric kidney transplantation recipients 
[120]. Patients were randomized to a single dose of eculi-
zumab prior to transplantation, and treatment with eculi-
zumab was associated with better early graft function. There 
was also lower arteriolar hyalinosis at subsequent biopsies 
in the eculizumab-treated group. Of concern, however, four 
patients in the eculizumab group developed flu-like illnesses 
within 60 days of transplantation and lost their allografts. 
This interesting study supports the use of complement inhib-
itors for preventing AKI, but also underscores the infectious 
risk of complement inhibition. In contrast to these results, a 
study of eculizumab in adult transplant recipients was well 
tolerated but did not reduce the incidence of DGF [121].

Even though the complement system helps the body to 
fight infections, there is evidence that complement activa-
tion contributes to the pathogenesis of sepsis [122]. Com-
plement inhibitors are being tested in patients with sepsis 
and trauma and could potentially reveal whether comple-
ment inhibition prevents AKI in these high-risk settings 
[123]. Along the same lines, clinical trials are currently 
underway studying anti-complement therapy in COVID-
19-induced sepsis, and preliminary results show that they 
are safe, tolerable, and there was a trend towards less AKI 
in treated patients [124, 125].

Conclusion

AKI in children is associated with a high burden of mor-
bidity and mortality. Unfortunately, there are currently no 
effective therapies for preventing or treating this disease. 
Complement activation appears to play a significant role in 
AKI pathogenesis in pre-clinical animal models, and there 
is evidence that the system is activated in pediatric and 
adult patients with AKI. Multiple complement inhibitory 
drugs are in clinical development, and many of these agents 
have already been used in patients with kidney disease. 
These drugs hold promise for preventing AKI in high-risk 
patients, or for treating patients with established disease. 
Equally important, complement-related biomarkers predict 
the development of AKI, and may be useful for guiding and/
or monitoring treatment with complement inhibitory drugs.
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