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Abstract
Here, we discuss the management of different forms of rickets, including new therapeutic approaches based on recent guide-
lines. Management includes close monitoring of growth, the degree of leg bowing, bone pain, serum phosphate, calcium, 
alkaline phosphatase as a surrogate marker of osteoblast activity and thus degree of rickets, parathyroid hormone, 25-hydroxy-
vitamin D3, and calciuria. An adequate calcium intake and normal 25-hydroxyvitamin D3 levels should be assured in all 
patients. Children with calcipenic rickets require the supplementation or pharmacological treatment with native or active 
vitamin D depending on the underlying pathophysiology. Treatment of phosphopenic rickets depends on the underlying 
pathophysiology. Fibroblast-growth factor 23 (FGF23)-associated hypophosphatemic rickets was historically treated with 
frequent doses of oral phosphate salts in combination with active vitamin D, whereas tumor-induced osteomalacia (TIO) 
should primarily undergo tumor resection, if possible. Burosumab, a fully humanized FGF23-antibody, was recently approved 
for treatment of X-linked hypophosphatemia (XLH) and TIO and shown to be superior for treatment of XLH compared to 
conventional treatment. Forms of hypophosphatemic rickets independent of FGF23 due to genetic defects of renal tubular 
phosphate reabsorption are treated with oral phosphate only, since they are associated with excessive 1,25-dihydroxyvitamin 
D production. Finally, forms of hypophosphatemic rickets caused by Fanconi syndrome, such as nephropathic cystinosis 
and Dent disease require disease-specific treatment in addition to phosphate supplements and active vitamin D. Adjustment 
of medication should be done with consideration of treatment-associated side effects, including diarrhea, gastrointestinal 
discomfort, hypercalciuria, secondary hyperparathyroidism, and development of nephrocalcinosis or nephrolithiasis.

Keywords  Rickets · Management · Vitamin D · Phosphate · Nephrocalcinosis · Fanconi syndrome · Burosumab · Fibroblast 
growth factor 23 · X-linked hypophosphatemia · Vitamin D-dependent rickets · Nutritional rickets

General approach

The primary treatment goal is to correct or at least improve 
rickets/osteomalacia based on clinical and biochemical 
parameters (Table 1) [1–4]. Clinical assessment includes 
growth parameters (height, weight, calculation of annual 
height velocity, and head circumference in infants), degree 

of leg bowing, gait pattern, presence of bone pain and mus-
cle weakness, and dental abnormalities [5]. In addition, other 
disease-specific features, such as the presence of cranio-
synostosis and sensorineural hearing loss in children with 
X-linked hypophosphatemia (XLH) should be assessed (vide 
infra). Biochemical measures include serum phosphate, cal-
cium, and alkaline phosphatase (ALP) as a surrogate marker 
of osteoblast activity and thus degree of rickets, parathyroid 
hormone (PTH), and 25-hydroxyvitamin D3 (25(OH)D). The 
latter is important in order to confirm adequate supplementa-
tion with native vitamin D in nutritional rickets and exclude 
vitamin D deficiency in other forms of rickets, which may 
hamper healing of rickets. In children with rickets, routine 
radiological assessments are not recommended and should 
be limited to situations where patients show insufficient clin-
ical and/or biochemical response to medical treatment and if 
the results could lead to changes of management (e.g., drug 
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dosages, orthopedic surgery). Suitable radiological methods 
are given in part 1 of this review [5].

For physiological skeletal mineralization, infants aged 
0–6 months (6–12 months) require a calcium intake of 200 
mg/day (260 mg/day), and children and adolescents require 
500 mg/day, respectively, and a 25(OH)D level greater than 
50 nmol/L (20 ng/L) [10]. This must be assured in any child 
presenting with rickets. The cornerstone of treatment of 
calcipenic rickets is the supplementation or pharmacological 
treatment with native or active vitamin D depending on the 
underlying pathophysiology in combination with adequate 
calcium supplementation [10–13]. Treatment of phospho-
penic rickets depends on the underlying pathophysiology. 
Fibroblast-growth factor 23 (FGF23)-associated hypophos-
phatemic rickets was historically treated with frequent doses 

of oral phosphate salts in combination with active vitamin 
D—so-called conventional treatment [9, 14, 15]. In addi-
tion, burosumab, a fully humanized FGF23 antibody, was 
recently approved for treatment of X-linked hypophos-
phatemia (XLH) and tumor-induced osteomalcia (TIO) 
[16, 17]. Other forms of FGF23-driven rickets currently 
continue to be treated with conventional therapy. Forms of 
hypophosphatemic rickets independent of FGF23, due to 
genetic defects of renal tubular phosphate reabsorption such 
as hypophosphatemic rickets with hypercalciuria (HHRH), 
are treated with phosphate only, as these diseases are associ-
ated with increased renal 1,25(OH)2D synthesis [18].

Normalization of serum ALP, calcium, phosphate, and 
PTH levels indicates healing of rickets. However, in severe 
forms of phosphopenic rickets, such as XLH, normalization 

Table 1   Suggested monitoring in patients with rickets requiring long-term treatment

IMD, intermalleolar distance; ICD, intercondylar distance; NA, not applicable; ALP, alkaline phosphatase; Ca, calcium; Pi, phosphorus; PTH, 
parathyroid hormone; Crea, creatinine; eGFR, estimated glomerular filtration rate[6]; U, urine; TmP/GFR, maximum rate of tubular reabsorption 
of phosphate per glomerular filtration rate; TmP/GFR is calculated by entering the fasting urine and plasma concentrations, in the same concen-
tration units, into the following equation: TmP/GFR = Pp – (Up/ Ucr) × Pcr [7, 8]; an online calculator and reference values are available at: 
https://​gpn.​de/​servi​ce/​tmp-​gfr-​calcu​lator/; HHRH, hereditary hypophosphatemic rickets with hypercalciuria; vitamin D-dependent rickets type 
(VDDR); table adapted from Haffner et al. [9]
a In the presence of significant leg bowing
b Consequences of craniosynostosis and spinal stenosis
c In patients with XLH and other inherited forms of fibroblast growth factor 23-associated hypophosphatemic rickets
d Upper normal range (mol/mol): 2.2 (< 1 year), 1.4 (1–3 years), 1.1 (3–5 years), 0.8 (5–7 years), 0.7 (> 7 years); normalization of initially low 
urinary calcium excretion approves adequate calcium intake

Examination 0–5 years 5 years–start of puberty (9–12 years) Puberty

Frequency of visits Monthly–3 monthly 3–6 months 3 months
Height, weight, IMD, ICDa ✓ ✓ ✓
Head circumference and skull shape ✓ NA NA
 Presence of rickets, pain, stiffness, 

fatigue, muscle weakness, gait pattern
✓ ✓ ✓

Neurological examinationb ✓ ✓ ✓
Orthopedic examination Once a year in the presence of significant leg bowing
Dental examination Twice-yearly after tooth eruption Twice-yearly Twice-yearly
Hearing testc Not feasible From 8 years: hearing evaluation if symptoms of hear-

ing difficulties
Serum levels of ALP, Ca, Pi, PTH, Crea; eGFR ✓ ✓ ✓
25(OH) vitamin D levels After 3–4 weeks in nutritional rickets, yearly in other rickets forms
1,25(OH)2 vitamin D levels Every 3–6 months in patients on burosumab treatment, those with HHRH or hypophosphatemia 

and nephrocalcinosis, and VDDR patients on active vitamin D
UCa/Crea

d TmP/GFR Every 3–6 months in patients on active vitamin D or burosumab treatment. Initially, at every visit 
in patients on burosumab treatment

Blood pressure Twice yearly
Kidney ultrasonography Every 1–2 years on phosphate, active vitamin D or burosumab treatment
Left wrist and/or lower limbs radiographs - If leg bowing does not improve upon 

treatment
In adolescents with persistent lower limb deformities 

when they are transitioning to adult care
- If surgery is indicated

Dental orthopantomogram Not feasible Based on clinical needs
Funduscopy and brain MRI If aberrant shape of skull, headaches or 

neurological symptoms
If recurrent headaches, declining school/cognitive 

performances or neurological symptoms

2290 Pediatric Nephrology (2022) 37:2289–2302

https://gpn.de/service/tmp-gfr-calculator/


1 3

of serum phosphate is not a practical goal during conven-
tional treatment as serum phosphate levels quickly decrease 
again after each phosphate dose [9, 14, 15, 19, 20]. Such an 
approach would even be dangerous due to the increased risk 
of secondary hyperparathyroidism. Thus, in XLH patients 
on conventional treatment, improvement/normalization of 
serum ALP is the main biochemical surrogate indicating 
adequate treatment. By contrast, burosumab treatment is pri-
marily tailored according to fasting serum phosphate levels, 
which should be kept in the lower age-related normal range. 
In addition, monitoring of renal phosphorus threshold con-
centration (TmP/GFR) is recommended in these patients, in 
order to confirm improvement of renal phosphate wasting 
[9]. Monitoring of FGF23 serum levels is not recommended 
in patients on burosumab treatment, as current assays cannot 
discriminate between burosumab-bound and free FGF23, 
resulting in unreliable results [21]. Normalization of ini-
tially low urinary calcium excretion, which is especially the 
case in children with calcipenic rickets, approves adequate 
calcium intake. In addition, patients should be monitored 
for treatment-associated side effects, e.g., hypercalciuria, 
nephrocalcinosis, nephrolithiasis, secondary hyperparathy-
roidism or suppressed PTH levels in patients receiving phos-
phate and/or vitamin D treatment, and hyperphosphatemia or 
hypervitaminosis D (1,25(OH)2D) in patients on burosumab 
treatment. Age- and sex-dependent normal values for rou-
tine biochemical parameters and important pitfalls in their 
assessment are provided in part 1 of this review [5]. Finally, 
regular monitoring for hypertension, which may be associ-
ated with the primary disease or treatment is recommended 
[9, 22].

Calcipenic rickets

Nutritional rickets

Patients should be treated with ergocalciferol (vitamin D2) 
or cholecalciferol (vitamin D3) at a minimal dose of 2000 IU 
(50 μg) per day in conjunction with 500 mg oral calcium per 
day, either as a dietary intake or supplements, for a minimum 

of 3 months (Table 2) [10, 23]. The latter allows adequate 
remineralization of the skeleton and prevents symptomatic 
hypocalcemia. Depending on the severity of rickets, vitamin 
D and calcium supplementation may already result in nor-
malization of serum calcium and phosphate levels and a sig-
nificant decrease in PTH levels within 3 weeks, whereas nor-
malization of ALP levels may take several months [24]. The 
duration of therapy should be individually tailored, based on 
treatment response. Combined treatment is recommended, as 
the diet of children and adolescents with nutritional rickets 
is usually low in both vitamin D and calcium [25–28]. Oral 
vitamin D treatment is preferable, as it was shown to restore 
25(OH)D levels more rapidly than intramuscular treatment, 
at least in adults [29]. In case of non-adherence vitamin D 
stoss therapy, e.g., single intramuscular injection ranging 
from 50,000 IU from the age of 3 months onwards up to 
300,000 IU after the age of 12 years, may be used instead 
of oral vitamin D [10]. It must be stated that stoss therapy 
is associated with an increased risk of hypercalcemia [30]. 
Intravenous calcium gluconate should be given in patients 
with symptomatic hypocalcemia until normalization of 
serum calcium levels [31]. After stabilization of normocal-
cemia, the patient may be switched to oral calcium supple-
mentation. Patients presenting with dilative cardiomyopathy 
are usually treated with diuretics and angiotensin-converting 
enzyme inhibitors and require management by a pediatric 
cardiologist [31, 32]. Finally, adequate nutritional require-
ment for vitamin D through diet and/or supplementation, 
which is at least 600 IU/day after the age of 12 months, 
should be assured after healing of rickets [10].

Vitamin D‑dependent rickets (VDDR)

Vitamin D‑dependent rickets type 1A (VDDR1A)

In patients with vitamin D-dependent rickets type 1A, which 
is due to mutations in CYP27B1, the gene encoding 1-alpha 
hydroxylase, patients are treated lifelong with physiologic 
1,25-dihydroxyvitamin D (1,25(OH)2D) doses, given twice 
daily due to its short half-life [13, 33]. Alternatively, alpha-
calcidiol (1alpha (OH)D) may be commenced which is 

Table 2   Treatment doses of 
vitamin D3 or D2 for nutritional 
rickets

Response to treatment should be assessed after 3 months since patients may require further treatment. A 
daily calcium intake of at least 500 mg should be ensured. For conversion from IU to μg, divide by 40. 
Table adapted from Munns et al. [10]
N/A not available

Age Daily dose for 90 days 
IU

Single dose IU Maintenance 
daily dose IU

< 3 months 2000 N/A 400
3–12 months 2000 50,000 400
> 12 months to 12 years 3000–6000 150,000 600
> 12 years 6000 300,000 600
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converted in the liver to 1,25(OH)2D (calcitriol) and can 
be given once daily owing to its longer half-life. Due to 
the high calcium demands of the unmineralized skeleton, 
patients should be treated during the first 3 to 6 months with 
2–5 times higher dosages of active vitamin D than needed 
during maintenance treatment (Table 3) [13, 34]. In addition, 
oral calcium supplementation (50 mg per kg body weight 
per day of elemental calcium) is recommended during the 
early phase of treatment to prevent aggravation of hypocal-
cemia due to bone remineralization (“hungry bones”). Later, 
normal dietary calcium intake should be ensured to allow 
optimal skeletal mineralization. Dosages of active vitamin 
D should be tailored to keep serum PTH and calcium levels 
in the mid-normal range.

Vitamin D‑dependent rickets type 1B (VDDR1B)

Patients with vitamin D-dependent rickets type 1B, which 
is due to mutations in CYP2R1 resulting in impaired 
25-hydroxylation of vitamin D2 and vitamin D3 to 25(OH)
D should be treated with calcidiol (also called calcife-
diol or 25-hydroxy-vitamin-D), which bypasses the defect 
in 25-hydroxylation, plus supplemental calcium [1, 13, 
35]. The latter should be done as for VDDR1A patients. 
Alternatively, pharmacological dosages of vitamin D2 
or vitamin D3 or physiological doses of calcitriol can be 
given, again plus calcium supplementation. The advan-
tage of calcifediol appears to be that it restores diminished 
serum concentrations of 25(OH)D allowing physiological 
control of its conversion to calcitriol by PTH secretion. 
Drug doses should be tailored to maintain serum levels 

of circulating calcium and PTH in the mid-normal range. 
Physicians need to appreciate that the phenotype is milder 
in patients with one defective allele and that it usually 
improves with age [36].

Vitamin D‑dependent rickets type 2A (VDDR2A)

Vitamin D-dependent rickets type 2A (VDDR2A) is due to 
mutations in VDR resulting in impaired signaling of the vita-
min D receptor. Intestinal absorption of calcium is largely 
independent of vitamin D during early infancy [37]. There-
fore, high oral doses of calcium (5–6 g/m2 body surface 
area of elemental calcium) are usually sufficient to restore 
normocalcemia and normalize PTH levels during the first 
few months of life in infants with VDDR2A [13]. However, 
some patients require primary intravenous calcium infusions 
to adequately raise serum calcium. Calcium infusions need 
to be continued until the “hungry bone syndrome” is cured, 
i.e., the point at which oral calcium supplementation allows 
normocalcemia to be maintained. After the early infancy 
period, patients require additional treatment with vitamin D, 
preferentially with calcitriol or alphacalcidiol, alternatively 
with vitamin D3, vitamin D2, or 25(OH)D3 which act as sub-
strates for calcitriol generation [38]. However, the response 
is highly variable. As a rule of thumb, children with normal 
hair have milder forms than those with alopecia and may 
show complete remission when receiving vitamin D at doses 
given in Table 3 [13, 38]. By contrast, about half of patients 
presenting with alopecia will be resistant even to the highest 
vitamin D doses. The other half will achieve normocalcemia 
but require 10 times higher vitamin D doses compared to 
those with normal hair. Accordingly, maintenance therapy is 
also very variable. Patients only responding to large amounts 
of active vitamin D benefit from additional supplementation 
with oral calcium (1000 mg of elemental calcium per day). 
Those patients not responding to high doses of active vitamin 
D require high doses of calcium, which usually cannot be pro-
vided by oral supplementation due to the limited tolerance to 
oral calcium (about 6 g per day in children), and diminished 
vitamin D-dependent calcium absorption in these patients 
[13]. Therefore, these patients may require intravenous cal-
cium infusions (1000 mg of elemental calcium per day, given 
over 12 h) over many months until oral supplementation with 
calcium salts in conjunction with active vitamin D, allows for 
maintenance of both normocalcemia and adequate skeletal 
mineralization. During puberty, intestinal calcium absorption 
often improves in VDDR2A patients for so far unknown rea-
sons, establishing stable normocalcemia when using moder-
ate doses of oral calcium. During long-term follow-up, bone 
mineral density was shown to be normal and PTH levels could 
be kept close to the upper-normal range in the majority of 
VDDR2A patients [39, 40].

Table 3   Suggested vitamin D dose for maintenance treatment of 
patients with VDDR

Dose requirements are usually not dependent on body weight. There-
fore, absolute doses are given. In addition, calcium supplementation 
is advised in all patients as outlined in the text. The preferred form of 
vitamin D is given in bold for each type of VDRR.
NI not indicated
a Patients with milder phenotypes (usually with normal hair) often can 
respond to analogs requiring 1-hydroxylation. Maximal useful doses 
are unknown. Serum 1,25(OH)2D should be maintained in the range 
of 200–1000 pg/mL
b Maximal doses are limited by cost and adherence; some patients do 
not respond despite maximal doses. Table adapted from Levine [13].

VDDR1A VDDR1B VDDR2 VDDR3
(μg per day) (μg per day) (μg per day) (μg per day)

Vitamin D3 
or D2

NI 100–200 125–1,000?a 1000 to?

Calcidiol NI 20–50 20–200a 50 to?
Calcitriol 0.3–2 0.3–2 5–60b 1 to?
Alphacal-

cidiol
0.5–3 0.5–3 5–60b 2 to?

2292 Pediatric Nephrology (2022) 37:2289–2302
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Vitamin D‑dependent rickets type 2B (VDDR2B)

This disease is due to mutations in HNRNPC also resulting 
in impaired signaling of the vitamin D receptor. Therefore, 
treatment of VDDR2B patients should be similar to that of 
VDDR2A patients (vide supra) [1, 13, 41].

Vitamin D‑dependent rickets type 3 (VDDR3)

This ultra-rare condition is due to mutations in CYP3A4 
leading to enhanced inactivation of calcitriol and was shown 
to respond to high doses of vitamin D3 or D2 as given in 
(Table 3). This allows normocalcemia and normalization 
of serum phosphate, PTH, and ALP serum levels in these 
patients [13, 42].

Phosphopenic rickets

Dietary phosphate deficiency or impaired 
availability

Adequate dietary or additional oral phosphate supplementa-
tion will correct dietary phosphate deficiency, whereas in 
case of impaired dietary phosphate availability, such as in 
infants on amino acid-based elemental formulas (e.g., Neo-
cate®), a change of formula will cure rickets [43]. Manage-
ment of impaired phosphate absorption, e.g., due to gastro-
intestinal surgery or short bowel syndrome, are treated with 
oral or if necessary parenteral phosphate supplementation 
(Tables 4 and 5).

FGF23‑mediated renal phosphate wasting

X‑linked hypophosphatemia (XLH)

X-linked hypophosphatemia is due to mutations in PHEX 
resulting in increased expression of FGF23 in bone and 
consecutive renal phosphate wasting and reduced calcitriol 

levels, as well as other so far poorly understood alterations 
[46]. Patients with XLH can either be treated with oral sup-
plements of inorganic phosphate salts in combination with 
active vitamin D (“conventional treatment”) or with buro-
sumab [9, 14, 47]. Burosumab has several advantages over 
conventional treatment—(i) it removes the burden of medi-
cating many times a day, which markedly hampers adher-
ence during conventional treatment; (ii) it was shown to be 
more effective in healing rickets; and (iii) it has a very good 
profile—whereas conventional treatment is associated with 
side-effects such as gastrointestinal discomfort, hypercalciu-
ria, secondary hyperparathyroidism, diarrhea, and nephroc-
alcinosis [48–51]. However, burosumab is an expensive drug 
which hampers its availability. In addition, some patients 
with XLH may require rather low doses of phosphate salts 
and active vitamin D and may therefore not be mandatory 
candidates for burosumab treatment [16]. Until now, buro-
sumab is not licensed for treatment in patients aged below 
12 months (6 months in the USA), whereas older patients 
can already be treated initially with burosumab. Detailed 
clinical practice recommendations for the treatment of XLH 
were published recently and are briefly outlined below [9].

Conventional treatment  The starting dose of phosphate 
amounts to 20–60 mg/kg/day (0.7–2.0 mmol/kg per day) 
based on elemental phosphorus, given at least four times a 
day. Dosages should be adjusted according to clinical and 
biochemical responses [9]. High doses (> 80 mg/kg per day) 
are associated with gastrointestinal side effects (diarrhea, 
abdominal discomfort) and secondary hyperparathyroidism. 
Treatment with phosphate should always be done in combi-
nation with active vitamin D (either with calcitriol or alpha-
calcidiol) in XLH patients, as this prevents the development 
of secondary hyperparathyroidism as seen in patients treated 
with phosphate salts alone, which further promotes renal 
phosphate wasting and can result in autonomous (tertiary) 
hyperparathyroidism. Treatment with active vitamin D 
also improves remineralization of the skeleton by enhanc-
ing vitamin D-dependent intestinal calcium and phosphate 

Table 4   Daily doses for phosphate and active vitamin D (conventional treatment) in children with X-linked hypophosphatemia (XLH) and 
tumor-induced hypophosphatemia (TIO)

a Based on elemental phosphorus; infants and young children usually require more frequent phosphate administrations than older children and 
adolescents
b Phosphate should always be given in combination with either calcitriol or alphacalcidiol
c Starting dose; other forms of fibroblast-growth factor 23-associated hypophosphatemic rickets are usually treated with similar doses, but evi-
dence-based recommendations or consensus statements are lacking; further details are given in the text; table adapted from Haffner et al. [9] and 
Florenzano [44]

Drug XLH TIO

Phosphatea (mg/kg)/(mmol/kg) given in 4–6 doses 20–60/0.7–2.0 Maximum 80 mg/kg 15–60/0.5–2
Calcitriolb (ng/kg) given in 1–2 doses 20–30 Alternatively, 0.5 μgc (age > 12 months) 15–60
Alphacalcidiolb (ng/kg) given once daily 30–50 Alternatively, 1 μgc (age > 12 months) 15–60
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absorption. The starting doses of calcitriol and alphacal-
cidiol amount to 20–30 ng/kg body weight and 30–50 ng/kg 
body weight daily, respectively. Alternatively, calcitriol and 
alphacalcidiol may be empirically started at 0.5 μg and 1 μg 
per day in patients aged above 12 months. Dosages need to 
be adjusted in order to keep PTH levels in the normal range 
and to avoid hypercalciuria. Increased PTH levels can either 
be managed by increasing the dosage of active vitamin D or 
by decreasing phosphate dosage. In case of hypercalciuria 
the dosages of active vitamin D should be reduced. Con-
ventional treatment should be maintained until adult height 
is achieved. Patients showing inadequate response to con-
ventional treatment or significant side-effects are potential 
candidates for burosumab treatment (vide infra). Supple-
mentation with vitamin D2 or D3 is recommended in patients 
showing concomitant vitamin D deficiency as in the general 
population [9]. Finally, attention should also be paid to an 
age-appropriate daily calcium intake, i.e., at least 500 mg 
calcium in patients aged above 12 months as in other forms 
of rickets [10].

Burosumab treatment  Burosumab has been approved by the 
European Medicines Agency (EMA), the US Food and Drug 
Administration (FDA), and Japanese health authorities for 
treatment of pediatric XLH patients aged above 12 months 
(> 6 months in the USA), showing radiographic evidence of 
bone disease and with growing skeletons. A European XLH 
guideline recommends the initiation of burosumab treatment 
under the following conditions: “radiographic evidence of 
overt bone disease; disease that is refractory to conventional 
therapy; complications related to conventional therapy; or 
patient’s inability to adhere to conventional therapy, presum-
ing that adequate monitoring is feasible” [9]. However, XLH 
patients may also be primarily started on burosumab if they 
meet the approval criteria of the local authorities. Important 
note: treatment with phosphate salts and active vitamin D 
must be discontinued at least one week before initiation of 
burosumab therapy to confirm hypophosphatemia. Finally, 
sexually active adolescent females should only receive buro-
sumab if they are using adequate contraception.

The recommended starting dose of burosumab in children 
amounts to 0.8 mg/kg body weight. It should be given in 

Table 5   Burosumab treatment in children with X-linked hypophosphatemia (XLH) and tumor-induced hypophosphatemia (TIO)

a The starting dose as originally approved by EMA amounted to 0.4 mg/kg and was later on increased to 0.8 mg/kg which is in line with current 
FDA approval. Burosumab is so far approved for treatment of TIO in children by the FDA and in Japan only
b Recommendations for general patient monitoring are given in Table 1. Further details are given in the text. Table adapted from Haffner et al. [9] 
and the Crysvita US prescribing information 2021 [45]

Treatment administration

Starting dose titration • XLH: 0.8 mg/kga every 2 weeks subcutaneously
• TIO: 0.8 mg/kg every 2 weeks subcutaneously
• 0.4 mg/kg increments to raise fasting serum phosphate levels to within the lower end of the normal 

reference range for age, to a maximum dosage of 2.0 mg/kg body weight (maximal dose: XLH, 90 
mg; TIO, 180 mg))

• Burosumab should not be adjusted more frequently than every 4 weeks
• Burosumab dosage should be switched to the regimen recommended for adult XLH patients, i.e., 

1 mg/kg (maximum dose 90 mg) given every 4 weeks subcutaneously, after end of skeletal growth 
(height velocity < 1 cm/year or epiphyseal closure on X-ray)

Monitoring of fasting serum phosphateb • XLH: Every 2 weeks during the first month, every 4 weeks during the following 2 months and 
thereafter as appropriate:

– During titration period: ideally, 7–11 days after the last injection to detect hyperphosphatemia
– After achievement of a steady-state (which can be assumed after 3 months of a stable dose) prefer-

entially, directly before injections to detect underdosing
• TIO: Initially every 4 weeks, ideally 2 weeks post last injection

Other dose recommendations • Withhold dose if fasting serum phosphate level is above the upper range of normal
• Burosumab may be restarted at approximately half of the previous dose when serum phosphate 

concentration is below the normal range
Contraindications Do not administer:

• Alongside conventional treatment
• When fasting phosphate levels are within the age-related normal
reference range before treatment initiation
• In the presence of severe renal impairment
• In sexually active adolescent females without adequate contraception
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2-weekly intervals as subcutaneous injections. Burosumab 
should be titrated in 0.4 mg/kg increments to raise fasting 
serum phosphate levels into the lower end of the normal 
reference range for age with a maximal dose of 2.0 mg/kg 
body weight (maximum dose 90 mg). A steady state can 
be assumed after applying a constant dose for at least three 
months. Therefore, doses should only be increased after at 
least 4 weeks. We suggest monitoring serum fasting phos-
phate levels during the titration period between injections, 
ideally 7 to 11 days post injection, in order to detect hyper-
phosphatemia. Thereafter, serum phosphate levels should 
ideally be monitored directly before the next injection to 
exclude hypophosphatemia. In elevated serum phosphate 
levels, burosumab should be discontinued, but may be rein-
stated after normalization of serum phosphate levels using 
half of the previous dose [9]. Finally, the burosumab dosage 
should be switched to the regimen recommended for adult 
XLH patients, i.e., 1 mg/kg (maximum dose 90 mg) given 
every 4 weeks subcutaneously, after end of skeletal growth, 
i.e., at near final height (height velocity < 1 cm/year) and/
or in case of epiphyseal closure on x-ray of the left wrist.

Adjunctive therapies  About half of all XLH patients show 
persistent short stature despite adequate conventional or 
burosumab treatment [9, 49, 52]. Several clinical studies 
have shown that treatment with recombinant human growth 
hormone (rhGH) increases growth rates and standardized 
height in short children with XLH [38–40]. However, in 
a small randomized clinical trial, near-final height did not 
significantly differ between rhGH-treated XLH patients and 
controls [53]. Therefore, routine treatment with rhGH in 
short children with XLH is not recommended [9].

Surgical management  About half of all XLH patients pre-
sent with significant leg bowing despite conventional treat-
ment and require surgical corrections [9, 54]. So far, no 
long-term data on the need for surgical corrections in XLH 
patients treated with burosumab are available. Children with 
persistent leg deformities should undergo thorough assess-
ment by an experienced pediatric orthopedic surgeon on the 
need and optimal timing for surgical treatment, i.e., correc-
tive osteotomies versus epiphysiodesis [9, 54–56]. The lat-
ter technique requires remnant growth potential and should 
be performed at least 2–3 years before the end of skeletal 
growth. By contrast, it was recommended that osteotomies 
should be carried out later in childhood or at attainment of 
adult height, in order to reduce complications, e.g., need for 
renewed surgery. In general, an optimal metabolic control 
should be assured before performing a surgical procedure in 
order to avoid recurrence of leg deformities.

Dental care  Pediatric XLH patients are prone to develop-
ing spontaneous dental abscesses causing pain and swelling 

in deciduous as well as in permanent teeth, due to poorly 
mineralized dentin [9, 57]. In addition, adolescent and adult 
XLH patients may develop significant periodontitis which 
may cause tooth loss. Treatment with oral phosphate and 
active vitamin D was shown to improve dentin minerali-
zation, and to reduce the frequency of complications, i.e., 
dental abscesses and periodontitis [58, 59]. So far, the effects 
of burosumab on dental health in XLH patients is unknown. 
Children with XLH should undergo at least 6-monthly den-
tal visits, including investigation for pulp necrosis (changes 
in color, presence of fistula, swelling, abscess, cellulitis, 
or pain) and, if indicated, additional radiological assess-
ments. Patients may require sealing of pits and fissures with 
flowable resin. It is important to optimize treatment with 
oral phosphate and active vitamin D or burosumab first, in 
patients requiring orthodontic treatment [9].

Neurosurgical complications  Patients presenting with symp-
toms suggesting craniosynostosis, Chiari type 1 malforma-
tion and/or intracranial hypertension, e.g., dolichocephalus, 
persistent headache, occipital or neck pain, should undergo 
further investigation, including funduscopy and cranial 
imaging in consultation with a neurosurgeon [9, 60].

Autosomal‑dominant hypophosphatemic rickets (ADHR)

This condition is due to mutations in FGF23 resulting in 
impaired FG23 degradation and consequently FGF23-driven 
renal phosphate wasting. Patients with ADHR are usually 
treated with oral phosphate salts and active vitamin D, as 
with XLH patients [61]. However, the required dosages vary 
largely and need to be adapted according to clinical and bio-
chemical response (vide supra). Iron deficiency was shown 
to promote the severity of the phenotype in XLHR patients. 
Iron repletion was shown to normalize previously elevated 
FGF23 levels and to improve serum phosphate levels in 
XLH patients [62]. Therefore, assessment and correction 
of any iron deficiency in ADHR patients is recommended. 
In addition, other potential complications such as dental 
abscesses need to be addressed as well (vide supra).

Autosomal‑recessive hypophosphatemic rickets type 1 
and 2 (ARHR 1 and 2)

Treatment with phosphate supplementation and active vita-
min D was shown to improve rickets and normalize serum 
ALP levels in patients with ARHR1 which is due to muta-
tions in the dentin matrix protein 1 (DMP1) gene [63]. How-
ever, the number of published cases is low. Treatment of 
patients with ARHR2 is challenging due to its rarity and 
the fact that ENPP1 deficiency not only causes hypophos-
phatemic rickets but may also be associated with arterial, 
cardiac and/or articular calcification or may present as 
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generalized arterial calcification in infancy [64–67]. The 
latter phenotypes preclude treatment with active vitamin 
D. The development of calcification is due to the fact that 
proper ENPP1 function is required to generate pyrophos-
phate which is a major inhibitor of mineralization. There-
fore, ARHR2 patients should undergo careful screening 
and monitoring for arterial/cardiac calcification including 
assessment of carotid intima media thickness and cardiac 
ultrasound. The presence of calcifications precludes treat-
ment with active vitamin D. In a small series including 6 
ARHR2 patients, the reported dosages of phosphate salts 
(based on elemental phosphate) and calcitriol amounted 
to 40 mg/kg day and 15 ng/kg per day, respectively [65]. 
In addition, patients with biallelic ENPP1 mutations may 
develop normocalcemic primary hyperparathyroidism which 
may require partial parathyroidectomy [64].

Recent preclinical studies show that ENPP1 enzyme 
replacement therapy normalizes serum pyrophosphate levels 
and consequently prevents the development of complica-
tions due to ENPP1 mutations in rodent models of general-
ized arterial calcification of infancy [68, 69]. Clinical trials 
are currently underway to assess the efficacy and safety of 
ENPP1 enzyme replacement therapy in patients with ENPP1 
mutations including ARHR2. The initially described effect 
of bisphosphonate therapy in GACI patients to reduce the 
early mortality risk could not be confirmed in the recently 
published study with historical data from 247 patients [70].

Raine syndrome (ARHR3)

Patients with Raine syndrome (ARHR3) which is due to 
FAM20c mutations rarely survive infancy [71]. Although, 
non-lethal cases of Raine syndrome have been described, 
these patients rarely presented with persistent rickets but 
rather with osteosclerosis of the long bones [71, 72]. Pre-
clinical studies showed that a high-dose phosphate diet is 
able to improve bone mineralization in Fam20c-deficient 
mice [73]. Whether this is also effective in patients with 
non-lethal Raine syndrome showing persistent rickets needs 
to be proven.

Fibrous dysplasia (FD)

Treatment of patients with fibrous dysplasia (FD), which 
is due to activating mutations in the GNAS gene causing 
McCune–Albright syndrome primarily focuses on non-
rickets complications [74]. Although small retrospective 
case series suggested the beneficial effects of antiresorptive 
treatment with bisphosphonates in patients with FD, a rand-
omized clinical trial failed to show any significant improve-
ment in clinically relevant outcome measures, including 
bone pain and fractures [75–77]. Therefore, this approach 
cannot generally be recommended [74]. Treatment with 

phosphate salts and active vitamin D may be considered in 
patients presenting with hypophosphatemic rickets due to 
renal phosphate wasting [74]. Burosumab treatment resulted 
in normalization of serum phosphate and ALP levels and 
improvement of clinical symptoms (bone pain, muscle weak-
ness, walking ability) in a patient with FD showing persistent 
hypophosphatemia and skeletal complications despite oral 
supplementation with phosphate and treatment with active 
vitamin D [78]. Further studies must be awaited to prove the 
safety and efficacy of this measure in these patients.

Tumor‑induced osteomalacia (TIO)

Complete tumor resection is the treatment of choice in 
pediatric and adult TIO patients [44, 79–82]. Serum FGF23 
and phosphate levels were shown to normalize after tumor 
removal within 1 h and 5 days, respectively, but complete 
bone healing may take up to 12 months [83]. FGF23 moni-
toring can also be used to detect tumor recurrence, which 
may require a second excision. If there is no evidence of 
a local recurrence, patients should be evaluated by high-
resolution CT scans for metastasis. Until surgery, patients 
should be started on treatment with phosphate salts and 
active vitamin D, which was shown to improve skeletal min-
eralization and ameliorate clinical symptoms. This treatment 
is also indicated in cases where the FGF23 producing tumor 
cannot be located, complete tumor removal is not possible or 
in patients with severe comorbidities. The recommend dose 
of phosphate salts amount to 15–60 mg/kg per day based on 
elemental phosphate, given in 4 to 6 doses [44]. Calcitriol 
or alphacalcidiol should be given at dosages of 15–60 ng/kg 
per day. Dosages should be adjusted according to the clinical 
and biochemical response and development of side effects as 
outlined above. Important to note; PTH levels may already 
be elevated at initial presentation which further promotes 
renal phosphate wasting and thus requires high doses of 
active vitamin D which can usually be reduced later.

As an alternative to conventional treatment, patients can 
also be treated very effectively with burosumab which was 
recently approved for treatment of TIO in children and adults 
by the FDA and the Japanese health authorities based on 
clinical trials in adult patients [17, 84]. As burosumab treat-
ment, as with conventional treatment, does not stop tumor 
growth and thus the progression of diseases, it should be 
limited to cases where complete tumor removal is not pos-
sible or feasible. The recommended starting dose for treat-
ment of TIO in children aged 2–18 years is 0.4 mg/kg of 
body weight by subcutaneous injections every 2 weeks [45]. 
Serum phosphate levels should initially be monitored every 
4 weeks, ideally 2 weeks post last injection, to confirm that 
serum concentrations have risen to the age-related normal 
range and to detect hyperphosphatemia. Dosages may gradu-
ally be increased up to 2 mg/kg (maximum 180 mg) in cases 
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of persistent low phosphate levels as in children with XLH. 
Finally, a recent case report suggests that targeted blockade 
of the FGF receptor (FGFR) may be a future suitable treat-
ment option for TIO [85].

Hypophosphatemic disorders with normal 
or suppressed FGF23 activity

Hereditary hypophosphatemic rickets with hypercalciuria 
(HHRH)

This condition is due to mutations in SLC34A3 resulting 
in loss of function of NaPi2c in the proximal tubule and 
consequent renal phosphate wasting. Patients with HHRH 
are treated with renal phosphate salts only. Treatment with 
active vitamin D is not indicated in view of the already 
elevated 1,25(OH)2D levels [86, 87]. Primary target param-
eters on high phosphate supplementation are to normalize 
serum phosphate and 1,25 (OH)2D concentrations [16, 72]. 
Observational studies showed that treatment with phosphate 
supplements normalizes ALP and radiological surrogates of 
rickets in HHRH patients [86, 88]. However, it is unknown 
if long-term oral phosphate treatment is safe with respect to 
the development of nephrocalcinosis in HHRH patients, as 
high phosphate dosages were shown to be associated with 
increased risk of nephrocalcinosis in XLH patients for, so 
far, poorly understood reasons [9, 89, 90]. Therefore, care-
ful monitoring is advised including serum phosphate, cal-
cium, ALP, PTH, 1,25 (OH)2D, and urinary calcium excre-
tion at 3 to 6 monthly intervals and yearly kidney ultrasound 
investigations. However, the safety and efficacy of long-
term phosphate treatment needs to be proven. In addition, 
adjunctive measures like those in other hypercalciuria-
associated forms of nephrolithiasis/nephrocalcinosis should 
be considered [91]. This includes a high fluid intake and 
the avoidance of a high dietary sodium and protein intake. 
Finally, thiazide treatment may be initiated to ameliorate 
hypercalciuria [92].

Hypophosphatemia and nephrocalcinosis

This disease is also due to a defect in a sodium-dependent 
phosphate transporter located in the proximal tubules (in this 
case NaPi2a encoded by SLC34A1) resulting in hypophos-
phatemia, suppressed FGF23 levels and excessive 1,25(OH)2D 
levels. Therefore, treatment should be as described for HHRH 
patients. A retrospective observational study of phosphate sup-
plementation in 6 of 16 children with biallelic SLC34A1 muta-
tions showed rapid normalization of serum phosphate levels 
and parameters of calcium/vitamin D metabolism which was 
associated with improved weight gain [93].

X‑linked recessive hypophosphatemic rickets: Dent disease 1

Dent disease also called X-linked recessive hypophos-
phatemic rickets is due to mutations in CLCN5 resulting in 
loss of function of CLCN5 in the proximal tubule which is 
associated with renal phosphate wasting [94, 95]. Treatment 
of this condition primarily focuses on decreasing hypercal-
ciuria and preventing nephrolithiasis, nephrocalcinosis and 
progressive chronic kidney disease, as described elsewhere 
[96]. The severity of hypocalcemia varies greatly in Dent 
patients. Treatment with phosphate supplements should be 
restricted to those patients presenting with clinical, biochem-
ical and radiological signs of hypophosphatemic rickets and 
should aim to normalize serum ALP levels [94, 95].

Nephropathic cystinosis  A comprehensive international 
guideline on the management of bone disease in children 
with nephropathic cystinosis was published recently [97]. 
Nephropathic cystinosis is a lysosomal storage disease due 
to mutations in CTNS resulting in cystine accumulation in 
the proximal tubule and consecutive Fanconi syndrome and 
progressive chronic kidney disease which can be ameliorated 
by cysteamine therapy. Treatment of hypophosphatemic 
rickets primarily focuses on replacement of urinary losses 
due to Fanconi syndrome including water, bicarbonate, and 
phosphate which varies greatly. Patients require adequate 
caloric and protein intake, supplementation with native vita-
min D for vitamin D deficiency, calcium supplementation in 
cases of persistent hypocalcemia and treatment with active 
vitamin D to help cure rickets. Patients may require physi-
cal therapy and orthopedic surgery for persistent significant 
limb deformities. Finally, treatment with rhGH should be 
considered in case of persistent short stature [98].

Iatrogenic proximal tubulopathy

The primary goal in children with hypophosphatemic rickets 
due to iatrogenic proximal tubulopathy should be to stop the 
injurious agent [99–102]. In addition, phosphate supplemen-
tation in combination with cautious treatment with active 
vitamin D for prevention of secondary hyperparathyroidism 
should be considered to heal rickets.

Key summary points 

•	 An adequate calcium intake and normal 25-hydroxyvi-
tamin D3 serum levels should be assured in all children 
with rickets.

•	 Children with calcipenic rickets require the supplementa-
tion or pharmacological treatment with native or active 
vitamin D depending on the underlying pathophysiology.
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•	 Children with X-linked hypophosphatemia should be 
treated with burosumab, if available, or with frequent 
doses of oral phosphate salts in combination with active 
vitamin D as used for other forms of fibroblast-growth 
factor 23 (FGF23)-associated hypophosphatemic rickets.

•	 Patients with tumor-induced osteomalacia should primar-
ily undergo tumor resection, if possible.

•	 Forms of hypophosphatemic rickets independent of 
FGF23 due to selective genetic defects of renal tubular 
phosphate reabsorption, are treated with oral phosphate 
only, since they are associated with excessive 1,25-dihy-
droxyvitamin D production.

•	 Adjustment of medication should be done with consid-
eration of treatment-associated side effects, including 
diarrhea, gastrointestinal discomfort, hypercalciuria, 
secondary hyperparathyroidism, and development of 
nephrocalcinosis or nephrolithiasis.

Multiple choice questions 

1)	 Which of the following statements is true?

a.	 The cause of nutritional rickets is always a deficiency of 
vitamin D.

b.	 Nutritional rickets can be excluded if the 1,25(OH)2D is 
highly normal or even outside the upper normal range.

c.	 Therapy of nutritional rickets is exclusively done with 
high vitamin D supplementation.

d.	 During monitoring of nutritional rickets, the drop in 
PTH is the earliest and most important indicator of 
response to therapy.

e.	 In case of tetany due to nutritional rickets, rapid initia-
tion of vitamin D supplementation is sufficient.

2)	 Which of the following statements is true?

a.	 The marked hypophosphatemia which may be present 
in nutritional rickets requires oral supplementation with 
phosphate salts.

b.	 The diagnosis of vitamin D-dependent rickets type 1B 
should be considered if high-dose therapy with native 
vitamin D does not lead to a normalization of 25-OHD 
and a concomitant decrease in PTH levels.

c.	 Intramuscular injection of vitamin D is the treatment of 
choice in nutritional rickets.

d.	 Vitamin D-dependent rickets type 2a and 2b differ with 
respect to response to calcitriol therapy.

e.	 Administration of intravenous calcium is the therapy of 
choice in vitamin D-dependent rickets type 1B in the 
first months of life.

3)	 Which of the following statements is true?

a.	 Monitoring of children with hypophosphatemic rick-
ets treated with phosphate salts and active vitamin D 
includes the assessment of serum phosphate, calcium, 
alkaline phosphatase, creatinine, 1,25(OH)2 vitamin D, 
and calculation of maximum rate of tubular reabsorption 
of phosphate per glomerular filtration rate (TmP/GFR).

b.	 Children with hypophosphatemic rickets should undergo 
yearly X-ray examinations of the left wrist and/or lower 
limbs.

c.	 Patients with hypophosphatemic rickets due to defects in 
sodium-dependent tubular phosphate transporters should 
undergo yearly hearing tests.

d.	 Calculation of maximum rate of tubular reabsorption 
of phosphate per glomerular filtration rate (TmP/GFR) 
is recommended to assess renal phosphate wasting in 
children on burosumab treatment.

e.	 Assessment of PTH levels is not helpful in the manage-
ment of children with hypophosphatemic rickets treated 
with burosumab.

4)	 Which of the following statements is true?

a.	 Children with hypophosphatemic rickets are usually 
treated with phosphate salts and active vitamin D.

b.	 Burosumab is the treatment of choice in infants aged less 
than 6 months with X-linked hypophosphatemia.

c.	 Patients with hypophosphatemic rickets due to defects 
in sodium-dependent tubular phosphate transporters 
require no treatment with active vitamin D.

d.	 Conventional treatment with phosphate salts and active 
vitamin D is more effective than burosumab treatment 
in patients with X-linked hypophosphatemia.

e.	 Phosphate should be given in two divided doses in 
patients with X-linked hypophosphatemia.

5)	 Which of the following statements is true?

a.	 High doses of phosphate and/or active vitamin D are 
associated with the development of nephrocalcinosis in 
children with hypophosphatemic rickets.
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b.	 The starting dose of burosumab in children with 
X-linked hypophosphatemia amounts to 0.4 mg/kg given 
every two weeks subcutaneously.

c.	 The starting dose of burosumab in children with tumor-
induced osteomalacia amounts to 0.8 mg/kg given every 
two weeks subcutaneously.

d.	 Active vitamin D may be combined with burosumab for 
treatment of X-linked hypophosphatemia.

e.	 Burosumab should be tailored in 0.4 mg/kg increments 
every two weeks to raise fasting serum phosphate levels 
to within the lower end of the normal reference range. 

Answers

1) d
2) b
3) d
4) c
5) a
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