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Abstract  
Inherited kidney diseases (IKDs) are a large group of disorders affecting different nephron segments, many of which progress 
towards kidney failure due to the absence of curative therapies. With the current advances in genetic testing, the understanding 
of the molecular basis and pathophysiology of these disorders is increasing and reveals new potential therapeutic targets. RNA 
has revolutionized the world of molecular therapy and RNA-based therapeutics have started to emerge in the kidney field. 
To apply these therapies for inherited kidney disorders, several aspects require attention. First, the mRNA must be combined 
with a delivery vehicle that protects the oligonucleotides from degradation in the blood stream. Several types of delivery 
vehicles have been investigated, including lipid-based, peptide-based, and polymer-based ones. Currently, lipid nanoparti-
cles are the most frequently used formulation for systemic siRNA and mRNA delivery. Second, while the glomerulus and 
tubules can be reached by charge- and/or size-selectivity, delivery vehicles can also be equipped with antibodies, antibody 
fragments, targeting peptides, carbohydrates or small molecules to actively target receptors on the proximal tubule epithelial 
cells, podocytes, mesangial cells or the glomerular endothelium. Furthermore, local injection strategies can circumvent the 
sequestration of RNA formulations in the liver and physical triggers can also enhance kidney-specific uptake. In this review, 
we provide an overview of current and potential future RNA-based therapies and targeting strategies that are in development 
for kidney diseases, with particular interest in inherited kidney disorders.
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Introduction

Inherited kidney disorders represent a large spectrum of 
pathologies that can affect both the glomerular and/or tubu-
lar nephron segments, frequently leading to chronic kidney 
disease or kidney failure. So far, around 100 monogenetic 
kidney disorders have been described, with the number of 

identified genetic causes rapidly increasing due to advances 
in next generation sequencing and improved techniques for 
functional validation [1–3]. For most of these diseases, cura-
tive therapies are not available. Instead, therapeutic strate-
gies aim to preserve kidney function and postpone disease 
progression [4]. Genetic causes account for around 70% of 
the paediatric and 10% of the adult patients receiving kidney 
replacement therapy. In this regard, novel molecular thera-
pies aiming at replacement of defective genes or inhibiting 
genes that cause metabolic disturbances, offer new perspec-
tives in the field [5].

RNA has revolutionized the world of molecular therapy, 
with the first siRNA-based drugs Onpattro (Patisiran) for 
hereditary transthyretin amyloidosis, Givlaari (Givosiran) 
for acute hepatic porphyria and Oxlumo (Lumasiran) for 
primary hyperoxaluria type 1 in both adult and paediatric 
populations, obtaining approval from the Food and Drug 
Administration (FDA) in 2018, 2019 and 2020, respec-
tively [6, 7]. Furthermore, mRNA has recently proven its 
potential with the rapid development of mRNA-based vac-
cines against SARS-CoV2 [8–10]. Several ongoing clinical 
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trials have demonstrated the potential of mRNA-based 
replacement therapies for cystic fibrosis (NCT03375047—
phase 1/2 recruiting), heart failure (NCT03370887—phase 
2 recruiting) and propionic acidemia (NCT04159103—
phase 1/2 recruiting) [11–13]. However, upon systemic 
application, most current formulations target the liver [14]. 
As an alternative, local application of RNA-based thera-
peutics has shown much promise in the treatment of, for 
example, ocular pathologies, cancer, cystic fibrosis and as 
vaccines [8, 11, 12, 15–19]. RNA-based therapeutics for 
kidney diseases are lagging behind due to the challenge 
of targeted delivery of RNA to kidney cells. Nevertheless, 
several preclinical studies have utilized RNA to treat kid-
ney fibrosis, kidney carcinoma, hyperoxaluria and glomer-
ulonephritis, illustrating the potential of this approach to 
treat kidney diseases [20–25]. In this review, we describe 
the principles of RNA-based therapeutic approaches and 
discuss current and potential future therapeutic use of mes-
senger RNA (mRNA) and small interfering RNA (siRNA) 
to treat kidney diseases.

Types of RNA‑based therapies

The wide spectrum of inherited disorders can be subdi-
vided into two main categories, those characterized by the 
activation or ectopic activity of a gene or protein (gain-of-
function) and those caused by an impaired gene function 
(loss-of-function) and thereby lack of a functional protein. 
RNA-based therapies can be applied for both categories, 
with mRNA-based protein replacement to be used in the 
loss-of-function disorders and siRNA and antisense oligonu-
cleotides (ASOs) for diseases caused by a gain-of-function 
[26, 27].

Protein complementation using mRNA

Protein complementation by using in  vitro transcribed 
(IVT) mRNA has become an alternative for DNA-based 
gene replacement to treat diseases caused by the absence 
of functional proteins (Fig. 1a). The production of mRNA 
by in vitro transcription is conducted in a cell-free sys-
tem, which has low manufacturing costs and is easy to 

Fig. 1  a In  vitro transcribed mRNA is translated by ribosomes to 
yield proteins that can replace an absent or mutated protein [11]. b 
mRNA-based therapies introduce the in  vitro transcribed (IVT) 
mature mRNA of a specific gene. A functional mRNA molecule com-
prises a 5’ cap structure, 5’ and 3’ UTRs, the coding sequence and 
a poly-A tail. Several modifications can be used to increase stability 
(green), modulate translation efficiency (grey) and/or decrease immu-
nogenicity (orange). The use of (anti-reverse) capping analogues 

enhances protection against nuclease-mediated degradation and main-
tains the immune-modulatory capabilities of the 5’ cap structure. 
Careful consideration of the non-coding regions at the 5’ and 3’ end 
of the coding sequence and a 3’ poly-A tail of sufficient length (100–
250 adenines) can further enhance stability and translational activity. 
Sequence and chemical modifications in the coding region can be 
applied to prevent TLR- and RIG1-activation and thus reduce immu-
nogenicity [11, 28, 29]
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standardize. For this purpose, a DNA-template with the 
desired protein-coding sequence is preceded by a promotor 
for one of three specific RNA polymerase systems (T7, T3 
and SP6-polymerase). Subsequently, the primary transcript 
must be capped at the 5’ end and polyadenylated at the 3’ 
end, for which various strategies exist [11].

The main challenges in using IVT mRNA are its immu-
nogenic potential and rapid nuclease-mediated degradation. 
Both factors can be addressed through structural changes of 
the mRNA molecule (Fig. 1b) [30, 31].

First, instead of endogenous cap-structures, guanosine 
triphosphate (GTP) capping analogues that confer 
de-capping resistance can be employed to increase stability 
of the mRNA. However, problems can arise through 
competition of the cap analogues with normal GTP and 
the risk of reverse integration during synthesis. Therefore, 
so-called anti-reverse capping analogues (ARCAs) have 
been developed, which are cap-like molecules with an 
extra methylation on the ribose group that prevent reverse 
integration and increase translation efficiency [28, 32]. 
The 5’-cap also plays an important role in preventing 
the immune recognition of the mRNA by the cytosolic 
helicase retinoic acid-inducible gene-I (RIG-I) [29]. As 
a further structural element, careful consideration of the 
5’ and 3’ untranslated regions (UTRs) helps to further 
optimize translation efficiency and intracellular half-live. 
At the 3’ end, modifying the sequence length or using the 
UTRs from the alpha- and beta- globin chains improves 
mRNA stability, while the use of viral UTRs at the 5’ end 
can increase translation efficiency [11, 33]. Finally, the 
length of the poly-A tail has an impact on half-life and a 
longer poly-A tail increases the number of available poly-
A-binding protein (PABP) binding sites, an interaction that 
mediates gene expression and enhances mRNA stability 
[34, 35]. For IVT mRNA, poly-A tails can either be 
added post-transcriptionally, using the poly-A polymerase 
enzyme, or by encoding a series of thymidine residues in 
the DNA template [36, 37]. The ideal length of a poly-A 
tail has been found to be between 100 to 250 residues. 
Additionally, the addition of a poly-A tail with a sulfurized 
phosphorothioate backbone instead of the natural 
phosphodiester backbone, has been shown to increase 
mRNA stability in vitro by reducing the susceptibility to 
deadenylases [38]. However, for mRNA for therapeutic 
purposes, backbone modifications are rather the exception 
than the rule [11].

Next to modifications in the non-coding regions, the cod-
ing sequence in the open reading frame can also be modi-
fied to reduce the immunogenicity and enhance stability and 
translation efficiency (Fig. 1b). Replacing rare codons by 
more common variants, coding for the same amino acid, 
can increase translation efficiency and has been proven to 
be very efficient in inducing overexpression of the human 

erythropoietin (EPO) gene [39]. Notably, some proteins 
require a slow translation for a proper folding and therefore, 
codon optimization must be carefully evaluated in each case 
[32, 40]. Other approaches to reduce the immunogenicity 
of RNA are the elimination of structural motifs that acti-
vate receptors of the innate immune response, and the intro-
duction of chemical modifications that render the mRNA 
more similar to endogenous mRNA. Uridine-rich regions 
can trigger toll-like receptor 7-(TLR7-) mediated immune 
responses, while UU and UA dinucleotides can increase 
mRNA decay as recognition motifs for endoribonuclease L 
(RNAse L). Depletion of mRNA of these motifs has been 
shown to increase mRNA stability and expression of eGFP, 
luciferase, interferon-alpha and the hepatitis B surface anti-
gen [41–43]. As chemical modifications, naturally occurring 
chemically modified nucleotides, namely the incorporation 
of N6-methyladenosine, N5-methylcytidine, 2-thiouridine 
and pseudo-uridine, prevent the activation of the TLR-
mediated innate immune response. The use of codon opti-
mization, base depletion and/or chemical modifications has 
become standard practice in mRNA-based therapeutics and 
has proven to be efficient in the mRNA-based treatments 
that are currently tested for propionic acidemia and cystic 
fibrosis [43].

Gene knockdown using siRNA and ASOs

Genetic diseases that are caused by overexpression of 
a gene, or an accumulation of a toxic metabolite, can 
be treated by using antisense RNA (ASO) or siRNA. 
RNA therapies, outside of vaccination strategies, that 
have been approved by the United States Food and Drug 
Administration (FDA) or the European Medical Agency 
(EMA) so far, fall into this category. Both ASOs and 
siRNA-molecules are used for knocking down gene 
expression, with the main difference being the single-
stranded nature of ASOs in comparison to the double-
stranded siRNA. Once inside the cytosol, an siRNA 
molecule is processed by the dicer protein, loaded into 
the RISC complex and upon binding to its corresponding 
mRNA sequence, results in gene knockdown by either 
mRNA cleavage or translation repression (Fig.  2a). 
Antisense oligonucleotides can also in turn induce steric 
block, modulate splicing or induce RNAse-mediated 
degradation (GAPmers) and thus have a similar mode of 
action and effect (Fig. 2b) [44, 45].

Both siRNA and ASOs can be produced in vitro by either 
the RNase/Dicer-mediated digestion of double stranded 
RNA molecules, by in vitro transcription or by chemical 
synthesis [45]

For therapeutic siRNA to be effective, the double-
stranded RNA molecule needs to be stable, and have 
the appropriate GC-content and length. Any unwanted 

329Pediatric Nephrology (2023) 38:327–344



1 3

Fig. 2  a siRNA results in a knockdown of gene expression. The dou-
ble-stranded precursor of the siRNA molecule is brought into the cell 
and subsequently cleaved by the DICER protein. The resulting single-
stranded siRNA molecule binds to the Argonaut (AGO) protein and 
interacts with the RNA-induced silencing complex (RISC), directing 
the siRNA to the corresponding mRNA sequence and resulting in a 
knock-down of protein expression, either by cleavage, degradation 
or translation repression [44, 45]. b ASOs are short single-stranded 
RNA sequences, structurally stabilized through chemical modifica-
tions, that can lead to the knock-down of a corresponding mRNA 
molecule by steric block, splice modulation, or RNAse H-mediated 

cleavage of the mRNA [44]. c Small interfering RNA (siRNA) and 
antisense oligonucleotides (ASOs) can knock down gene expression. 
Modifications in the backbone (phosphorothioate linkage and incor-
poration of fluor-, amine-, halogen-, deoxy- or methyl-groups) can be 
used in both the siRNA precursor as well as in the single-stranded 
antisense oligonucleotides to increase stability. Locked nucleic acids 
also prevent the degradation of the single-stranded RNA molecules 
[46]. 2′-O-methoxyethyl (-MOE), 2′-O-methyl (-O-Me), 2’-Fluoro 
(-F), phosphorodiamidate morpholino oligomers (PMOs), locked 
nucleic acids (LNAs)
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secondary structures that could interfere with the hybridi-
sation to the target mRNA should be avoided [47, 48]. For 
antisense oligonucleotides, the single-stranded nature of the 
ASOs can result in rapid degradation. Therefore, chemical 
modifications of the backbone have been explored and have 
shown to increase stability [49].

Various stabilizing groups have been introduced into 
the ribose unit, with the most used modifications being 
2′-O-methyl (2′-O-Me) and 2′-O-methoxyethyl (2′-MOE) 
RNA molecules (Fig. 2c). Furthermore, the phosphate in 
the backbone can be replaced by a phosphorothioate group. 
This modification has proven its efficacy in several FDA-
approved ASO therapeutics like Fomivirsen (cytomegalo-
virus), Mipomersen (familial hypercholesterolemia), and 
Eteplirsen (Duchenne muscular dystrophy). Furthermore, 
backbone analogues such as phosphorodiamidate mor-
pholino oligomers (PMOs) can be employed to protect 
against nuclease-mediated degradation and also enhance 
cellular uptake, as is the case in Nusinersen [50–52]. Modi-
fied RNA molecules are primarily excreted via the kidneys 
and have shown significant accumulation in the proximal 
tubular cells, which may lead to concentration-dependant 
nephrotoxicity [53, 54]. Mechanistically, it has also been 
shown that RNA can compete with protein ligands for the 
megalin–cubilin receptor complex, leading to a reversible 
proteinuria [55]. 2’-Fluoro-modified nucleotides have been 
used in the approved aptamer drug Macugen for the treat-
ment of age-related macular degeneration even though, in 
this case, the working mechanism is through antibody-like 
target binding [56]. As a further backbone modification, the 
4’C and 2’O of the ribose unit can be linked, yielding so-
called locked nucleic acids (LNAs) [46]. Special types of 
LNAs have also been utilized in experimental ASO-based 
drugs like Miravirsen (hepatitis C) and Cobomarsen (T-cell 
lymphoma) [57].

Delivery vehicles for RNA

The main challenge for in vivo application of RNA-based 
therapies is the need for appropriate delivery vehicles (Table 1). 
While naked RNA can be used ex vivo via cell permeation 
methods, such as electroporation, or in  vivo with local 
injection, the large size and anionic nature of siRNA- and 
mRNA-molecules generally prevents efficient cellular delivery. 
Nevertheless, the kidney accumulation of naked oligonucleotides 
has been demonstrated and this observation has been linked to 
the megalin binding capacity of oligonucleotides [55].

However, RNA delivery is mainly performed after compl-
exation into nanoparticles through charge-driven interactions 
of a cationic delivery agent with the negatively charged oli-
gonucleotide [11]. In this way, protection from degradation 

and induction of cellular uptake by endocytosis and endo-
somal release are achieved.

Lipid‑based delivery systems

One of the most frequently used delivery methods for RNA 
are lipid nanoparticles (LNP) and liposomes, formed from 
cationic or ionizable lipids that encapsulate the RNA. Tra-
ditional liposomes comprise one or more lipid bilayers sur-
rounding an aqueous core, while lipid nanoparticles consist 
of disordered micellar aggregates with an outer lipid layer 
[59]. The stability can be engineered through incorporation 
of cholesterol and neutral lipids, while the use of a poly-
ethyleneglycol (PEG) layer can increase the circulation time 
by reducing opsonization and thus elimination by the reticu-
loendothelial system (RES) [60]. LNP-formulated mRNA 
has been explored in clinical studies for methylmalonic aci-
demia, ornithine transcarbamylase deficiency, cystic fibrosis, 
cancer immunotherapy, Fabry disease and infectious dis-
eases. Most of these formulations contain an ionizable lipid 
like (6Z,9Z,28Z,31Z)-heptatriacont-6,9,28,31-tetraene-19-yl 
4-(dimethylamino)butanoate (DLin-MC3-DMA) [11, 12, 19, 
59, 61–63]. While a certain degree of accumulation of this 
type of LNP in the kidneys has been shown, they mostly 
direct the cargo towards the liver [64, 65]. This organ tro-
pism is a consequence of the dissociation of the PEG-shield 
from the LNP, leading to opsonization of the nanoparticle 
with the plasma protein apolipoprotein E (ApoE), which has 
a high affinity for the LDL receptor on hepatocytes [66]. 
The siRNA-based therapeutic for a hereditary form of amy-
loidosis, Patisiran, uses this type of lipid vehicle to deliver 
an siRNA molecule to the liver [58]. Fabry disease is an 
X-linked lysosomal storage disorder caused by mutations 
in the alpha-galactosidase gene, leading to glycosphin-
golipid accumulation and damage to the kidney, among 
other organs. An intravenous injection of LNP-formulated 
IVT GLA mRNA in a Fabry mouse model showed increased 
alpha-galactosidase production in the liver, which was sub-
sequently secreted into the circulation and successfully 
reduced the glycosphingolipid levels in the heart, kidney 
and spleen [67].

Polypeptide‑based delivery systems

Because of their good biodegradability and development 
from endogenous substances, polypeptide-based nanopar-
ticles are also being explored. Protamine nanoparticles 
are based on an arginine-rich protein that ensures a high 
encapsulation efficiency. These vehicles have been studied 
in a clinical trial of an RNA-based vaccine against rabies 
(NCT02241135) [19]. Cationic and/or cationic amphiphi-
lic cell-penetrating peptides (CPPs) yield complexation 
and mediate membrane translocation. Some of these CPPs, 
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like the nuclear localisation sequence peptide, showed kid-
ney accumulation in mice [68]. However, to what degree 
the kidney preference also holds for nanoparticles formed 
from these peptides remains to be shown. While these 
polypeptide-based delivery vehicles have been studied 
extensively, their application has been restricted to can-
cer immunotherapy and infectious disease in animal mod-
els [11]. For example, in a mouse model for oral cancer, 
the combination of an epidermal growth factor receptor 
(EGFR)-targeting peptide and a membrane disrupting pep-
tide successfully delivered an siRNA to downregulate the 
expression of protein phosphatase 2A, a known oncogene 
[69]. In a similar manner, the downregulation of bromo-
domain 4 expression was proven to be efficient in treat-
ing prostate cancer after siRNA-delivery via a PEG-based 
nanoparticle with a tumor-targeting peptide [70]. Another 
peptide-based delivery strategy, is the use of artificial viral 
coat proteins, which have also been formulated as virus-
like particles that can encapsulate mRNA and be applied 
in mRNA-based vaccines for prostate cancer, but have not 
shown any application in kidney delivery [11].

Polymer‑based delivery vehicles

Next to lipids and peptides, positively charged polymeric 
materials can also shield RNAs from enzymatic degradation 
and yield cellular uptake. Polyethyleneimine (PEI) was the first 
polymer that showed the potential to deliver nucleic acids, with 
the imine groups conferring the positive nature, nucleic acid 
encapsulation and facilitation of cell entry and endosomal 
escape. However, the high density of the positive charges also 
results in a high degree of toxicity, leading to the development 
of new and safer PEI derivatives [11]. Furthermore, some 
modified PEGylated polyacrylate polyplexes, like PDAEMA 
(poly[2 (dimethylamino)ethyl methacrylate]) have been 
utilized to complex RNA [71]. A notable example for polymer-
based vehicles in kidney pathology is the intraperitoneal 
injection of a mitogen-activated protein kinase 1 (MAPK1) 
siRNA, encapsulated in a polyethylene glycol poly(l-lysine) 
(PEG-PLL) copolymer-based delivery vehicle, that could 
improve kidney function and ameliorate glomerular sclerosis 
in a mouse model of glomerulonephritis [24, 72].

The positively charged polymer chitosan also forms 
nanoparticles through complexation with oligonucleotides. 
Chitosan/hyaluronic acid-based nanoparticles are both bio-
degradable and biocompatible and have provided success-
ful delivery of mRNA and siRNA in vitro and in vivo [73]. 
Aquaporin 1 (AQP1) siRNA-loaded chitosan nanoparticles 
efficiently targeted the kidneys, more specifically the proxi-
mal tubules, after intravenous injection into a mouse model. 
Targeting of these nanoparticles was megalin-mediated, 
but also determined by molecular weight, with the siRNA 

nanoparticles that were prepared with 40 kDa chitosan A 
showing the highest degree of accumulation [74].

The application of RNA‑based therapies 
in kidney diseases

Although a few applications have been described in the sec-
tion above, it remains a challenge to direct RNA-based thera-
pies to the kidney. Kidney-targeted delivery is complicated 
by the complexity of organ architecture and a large number 
of different cell types in the kidney [5, 75]. In this section, 
we will discuss several relevant examples of RNA-based 
therapeutics targeting specific kidney cells (Table 2).

Glomerular endothelium

The endothelial cells surrounding the glomerular 
capillaries form pores and are an integral part of the 
glomerular filtration barrier. Strategies to specifically 
target the glomerular endothelium remain scarce, most 
likely due to the low number of cell-specific receptors that 
can be targeted. However, the endothelium plays a central 
role in inflammatory diseases and during inflammation 
several receptors are upregulated [89]. Anti-VCAM1 
antibody-modified liposomes, based on the SAINT-C18 
(1-methyl-4-(cis-9-dioleyl) methyl-pyridinium-chloride) 
lipid were loaded with anti-cadherin siRNA to knock 
down endothelial expression of vascular endothelial (VE)-
cadherin, which plays an important role in mediating 
vascular permeability. The same approach was then also 
applied with anti-NFκB p65 siRNA, targeting an important 
transcription factor in the inflammatory pathway, to locally 
attenuate a polysaccharide-induced inflammatory response 
[90]. Delivery of these siRNAs inhibited endothelial 
activation and expression of E-selectin, vascular cell 
adhesion molecule 1 (VCAM-1), intracellular adhesion 
molecule 1 (ICAM-1), interleukin 8 (IL-8) and IL-6 and 
thereby reduced inflammation [91]. Liposomes have also 
been directed towards the activated glomerular epithelium 
by means of anti-E-selectin and/or anti-P-selectin 
conjugation [92, 93].

Mesangial cells

The mesangial cells maintain the capillary organization 
and aid filtration. Particle size seems to be the most 
important targeting principle to direct vehicles to 
mesangial cells. Notably, particles that cannot be filtered, 
but are small enough to pass the endothelial fenestrations, 
can accumulate in these cells [89]. In a mouse model of 
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glomerulonephritis, repeated intraperitoneal administration 
of MAPK1-siRNA-loaded PEG-PLL copolymer 
nanoparticles led to the suppression of glomerular 
MAPK1 expression, reducing glomerular sclerosis [24]. 
Furthermore, LNP-mediated co-delivery of p38α MAPK 
and p65 siRNA has also been used in a mouse model of 
immunoglobulin A nephropathy to reduce glomerular 

inflammation, and siRNA was shown to accumulate in 
the glomerular endothelium and mesangial cells [88]. In 
addition, receptor-mediated targeting has been employed. 
Mesangial gene transfer was achieved in mouse models 
of glomerulonephritis following systemic administration 
of liposomes that were conjugated with an anti-Thy-1 
antibody, a mesangial surface antigen [77, 94].

Table 2  Examples of RNA-based therapies for kidney diseases in the clinical and preclinical setting. N-Acetylgalactosamine (GalNac), 
poly(ethylene glycol)-poly(l-lysine)-based nanoparticle (PEG-PLL); Lipid nanoparticle (LNP)

Recent advancements in RNA based therapeutics for kidney diseases

Kidney disease Active agent Delivery vehicle Administration route Targeted structure Status Ref

Oxaluria Glycolate oxidase 
siRNA

GalNAc Subcutaneous Liver Approved—Luma-
siran

[20]

Oxaluria Lactate dehydroge-
nase A siRNA

GalNAc Subcutaneous Liver Clinical trial—
Nedosiran—
NCT04555486 (not 
recruiting)

[25]

Delayed graft func-
tion

Acute kidney injury 
after cardiac 
surgery

P53 siRNA Naked Intravenous Proximal tubule Clinical trial—
Teprasiran—
NCT02610296 
(completed)—
NCT03510897 (not 
recruiting)

[76]

Fabry disease Α-Galactosidase 
mRNA

LNP Intravenous Liver Preclinical [67]

Ischemic and 
cisplatin-induced 
kidney injury

P53 siRNA Naked Intravenous Proximal tubule Preclinical [77]

Renal ischemia reper-
fusion injury

Fas siRNA Naked Renal vein Proximal tubule Preclinical [78]

Renal ischemia reper-
fusion injury

Fas siRNA Naked Renal artery Proximal tubule Preclinical [79]

Renal ischemia reper-
fusion injury

Caspase-3 siRNA Naked Renal artery Proximal tubule Preclinical [80]

Renal ischemia reper-
fusion injury

Caspase-3 and com-
plement-3 siRNA

Naked Intravenous Proximal tubule Preclinical [81]

Kidney fibrosis Smad4 siRNA Naked Intravenous Proximal tubule Preclinical [21]
Tubulo-interstitial 

fibrosis
HSP47 siRNA Gelatine micro-

spheres
Intra-urethral Proximal tubule Preclinical [82]

Cisplatin-induced 
kidney injury

Meprin-1β, Ctr1 and 
P53 siRNA

Carbon nanotubes Intravenous Proximal tubule Preclinical [83]

Acute kidney injury 
after unilateral ure-
thral obstruction

Cox2 siRNA Chitostan nanopar-
ticle

Intravenous Peritoneal mac-
rophages

Preclinical [84]

Acute kidney injury 
(folic acid-induced)

P53 siRNA DNA tetrahedron 
nanovehicle

Intravenous Proximal tubule Preclinical [85]

Acute kidney injury 
(polymicrobial-
induced)

TLR9 siRNA Naked Intravenous Proximal tubule Preclinical [86]

Polycystic kidney 
disease

Angiotensin ASO Naked Subcutaneous Proximal tubule Preclinical [87]

Glomerulonephritis MAPK1 siRNA PEG-PLL Intraperitoneal Glomerulus Preclinical [24]
Glomerulonephritis TGF-1β siRNA Naked Renal artery Glomerulus Preclinical [72]
Immunoglobulin A 

nephropathy
p38α MAPK and p65 

siRNA
LNP Intravenous Glomerulus Preclinical [88]
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Podocytes

Podocytes possess foot-like structures and form the epithe-
lial counterpart of the glomerular filtration barrier. For RNA 
delivery, only a few studies succeeded to target these cells. 
One example is the use of liposomes with an anti-VCAM1 
antibody to target both the endothelium and the podocytes 
to treat kidney inflammation in a mouse model (see above) 
[95, 96].

Proximal tubular cells

Extensive research has been performed to develop targeted 
drug delivery to the kidney tubules and RNA-based thera-
pies to treat tubular pathologies are the most abundant. The 
tubular epithelium is highly susceptible to injury and tar-
geting these cells can be used to treat an array of kidney 
diseases. However, nanoparticles that accommodate oligo-
nucleotides can only cross the glomerular filtration barrier 
in the presence of glomerular injury, which compromises 
the barrier [97, 98]. Therefore, naked siRNA has also been 
employed as a therapeutic strategy.

Intravenously injected naked siRNA against p53 pre-
vented kidney injury in rat models of ischemic- and cis-
platin-induced acute kidney injury (AKI) through the 
inhibition of apoptosis [99]. Notably, Teprasiran, a naked 
p53 siRNA, has already found its way to the clinical trial 
phase and has been studied for the treatment of delayed 
graft function (NCT02610296—completed) after trans-
plantation and acute kidney injury following cardiac sur-
gery (NCT03510897—ongoing) [76]. p53 siRNA has also 
been coupled to carbon nanotubes, along with Meprin-1β 
and Ctr1 siRNA to treat cisplatin-induced kidney injury in a 
mouse model, and incorporated in a DNA tetrahedron nano-
particle for application in a folic acid-induced AKI mouse 
model [83, 85]. Tubulointerstitial fibrosis is the final path-
way leading to stage 5 CKD and is characterized by inter-
stitial myofibroblast proliferation and interstitial accumula-
tion of extracellular matrix molecules. The inhibition of the 
TGFβ-Smad4 pathway, the main signalling pathway in fibro-
sis, by intravenous injection of naked Smad4-siRNA reduced 
myofibroblast proliferation and thereby the development of 
kidney fibrosis [21]. In polycystic kidney disease (PKD), 
kidney cyst enlargement is related to the activation of the 
renin-angiotensin system. A weekly subcutaneous injection 
of a naked ASO against angiotensinogen, the precursor of 
angiotensin, decreased angiotensinogen mRNA levels in 
both the kidney (40%) and the liver (60%) and slowed down 
cyst formation in a mouse model of PKD [87].

In order to bypass the glomerular filtration barrier, local 
injection strategies have also been explored. Heat Shock 
Protein 47 (HSP47) is a collagen-binding stress protein and 
an important chaperone in the procollagen secretion during 

fibrosis. Intra-urethral injection of a gelatine-encapsulated 
HSP47 siRNA prevented the progression of tubulointerstitial 
fibrosis in a mouse model [82]. Renal ischemia–reperfusion 
injury is also associated with a high degree of cell death, 
linked to Fas-mediated apoptosis. Protection against apop-
tosis has been obtained after the injection of Fas-siRNA 
into the renal vein in mice and through intra-arterial perfu-
sion of siRNA in donor kidneys, before transplantation into 
mice [78, 79]. A similar effect could be obtained in ex vivo 
porcine kidneys by administration of a caspase-3 siRNA via 
the renal artery and after treatment with siRNA directed 
against complement 3 and caspase 3 in a mouse model of 
ischemia–reperfusion injury [80, 81]. Also, in a mouse 
model of polymicrobial septic AKI, intravenous injection 
of TLR9-siRNA was shown to reduce cell death [86].

Extra‑renal targeting

Several diseases affect the kidney but have their origin in 
other organs that are more easily accessible. Most notably, 
liver targeting has been used to treat both primary oxaluria 
and Fabry disease. Primary hyperoxaluria type 1 is caused by 
mutations in the alanine-glyoxylate aminotransferase, lead-
ing to abnormally high oxalate production and subsequent 
crystal formation, primarily in the kidney. The siRNA medi-
ated knockdown of glycolate oxidase, an upstream enzyme 
in the synthesis of oxalate, reduced the urinary oxalate con-
centration by up to 50% (single dose) and 98% (multiple 
doses) in an oxaluria mouse and rat model respectively [7, 
20]. This siRNA therapeutic, Lumasiran, was further studied 
in a randomized, placebo-controlled clinical trial (patients 
older than six years—NCT03681184) and in an open-label 
study (patients younger than 6 years—NCT03905694). In 
the placebo-controlled study, the treatment group showed a 
65% reduction of urinary oxalate after 2 months of treatment 
and normal 24-h oxalate levels by 6 months and in paediatric 
patients, the open-label study showed an average of 71% 
decrease in urinary oxalate by 6 months. The FDA approved 
Lumasiran for the treatment of primary hyperoxaluria type 1 
in November 2020 [7, 100]. Another siRNA-based therapy 
for primary hyperoxaluria, Nedosiran, has also been tested in 
mouse models and employs the siRNA-mediated knockdown 
of the hepatic lactate dehydrogenase to inhibit oxalate pro-
duction directly, thereby inhibiting crystal formation. Nedo-
siran has recently found its way into the clinical trial phase 
(NCT04555486) [25].

Furthermore, as described above, the treatment of Fabry 
disease has shown the potential of mRNA as an alternative 
for enzyme replacement therapy in the treatment of kidney 
diseases. Targeted towards the liver, this lipid nanoparticle 
loaded with α-galactosidase mRNA successfully restored 
galactosidase activity and reduced the intra-lysosomal levels 
of sphingolipids in a mouse model for Fabry disease [67]. In 
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the treatment of inflammatory kidney diseases, the targeting 
of tissue infiltrating macrophages could be used to induce 
both local and systemic effects. As an example, a cyclooxy-
genase type 2 (COX-2) siRNA in a chitosan nanoparticle was 
specifically delivered to macrophages and prevented kidney 
injury after intra-peritoneal injection into a 3-day-old uni-
lateral ureteral obstruction mouse model [84].

Future potential in active targeting 
to the kidney

Potential ligands for active targeting of RNA‑loaded 
vehicles to the kidneys

Conjugation of nanoparticles with targeting ligands can 
direct vehicles to the desired cell type and minimize off-
target effects. Targeting ligands can be divided into 5 main 
categories: peptides, antibodies or antibody-like fragments, 
nucleic acid aptamers, carbohydrates and small molecules 
(Fig. 3) [101].

Although the clinical experience with kidney-targeted 
RNA-based therapies is still lacking, preclinical research 
has established a variety of kidney-targeting ligands, some 

of which could be applied to RNA-based therapies for kid-
ney diseases (Table 3). In the next section, we will discuss 
which targeting ligands can potentially be applied for RNA-
delivery to the kidney.

a) Peptide ligands

Peptide ligands are most often attached to the delivery 
vehicle via direct chemical conjugation, but can also be 
incorporated into lipid nanoparticles as lipopeptides [120]. 
Animal experiments have demonstrated kidney target-
ing for a variety of peptides that were either identified by 
phage display techniques or derived from natural ligands 
(Table 3) [104–106, 108, 109, 111–114]. For example, the 
cyclo(RGD) peptide targets the αvβ3 integrin receptor on 
the podocyte surface. Additionally, the proximal tubule cells 
express receptors such as megalin, cubilin and the transferrin 
receptor, for which targeting peptides have been described 
[102, 103]. Conjugation with lysozyme is a further exam-
ple for receptor-mediated delivery, which leads to megalin-
mediated uptake in the proximal tubule [121]. However, to 
our knowledge, this approach has not been applied for RNA 
delivery. While direct conjugation of peptides to drug mol-
ecules has been well established, not all peptides can be 

Fig. 3  Strategies that can be 
employed for targeted delivery 
of RNA to specific cell types. 
RNA can be directly conju-
gated to a targeting ligand or be 
encapsulated in lipid, polymer 
and peptide-based delivery 
vehicles, which can be conju-
gated with targeting ligands
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used for direct conjugation with RNA. Positively charged 
molecules, like the nuclear localization sequence peptide 
(KKKRKVKε(DOTA)), SynB1 and Tat, form complexes 
with the negatively charged RNA, which leads to formation 
of RNA-peptide nanoparticles instead of individual RNA 
conjugates. This aggregation can be avoided by initial encap-
sulation of the RNA in a particle followed by conjugation 
of peptide [107, 110, 122]. However, such a strategy could 
in turn compromise passage across the glomerular filtra-
tion barrier. Alternatively, the peptides can be conjugated 
to charge-neutral morpholino-oligonucleotides. Another 
complicating factor in using nanoparticles with these 
highly charged peptides is that they may lead to adsorp-
tion of plasma proteins which in turn would promote liver 
targeting [11].

b) Antibody and antibody‑like molecules

A second way for targeted drug delivery is the use of spe-
cific antibodies. Antibodies can be attached to the delivery 
vehicle by means of Fc-binding peptides in combination 
with a surface linker [123]. This technique can also be used 
in combination with a membrane-anchoring lipoprotein to 
non-covalently bind the antibodies to lipid-based nanopar-
ticles [124]. Antibodies have also been coupled directly to 
a β-lactam-linker functionalized siRNA, utilizing a unique 
reactive lysine residue in dual variable domain antibodies 
[125]. Although antibody-based drug delivery has been suc-
cessfully applied to target specific kidney cells, for example 
endothelial cells with anti-VCAM1, mesangial cells with 
anti-MHC II and anti-α8 integrin, or proximal tubular cells 
with anti-CD11b and anti-CD163 (Table 3), their use can 
be hampered by their large size, leading to immune com-
plex deposition on the glomerular basement membrane 
and subsequent risk of inflammation [90, 115–118, 126]. 
A potential answer to this problem might be the use of Fab 
fragments for conjugation or alternative small protein bind-
ers such as nanobodies or designed ankyrin repeat proteins 
(DARPins). These antibody-like molecules can then be 
attached to the nanoparticles in the same way as the full 
antibodies [127–129].

c) Aptamers

Aptamers are short single-stranded oligonucleotides folded 
upon themselves that can bind specific target molecules. 
Cell-internalizing DNA aptamers have been employed to 
specifically target inflamed kidney cells in vitro and were 
employed to inhibit the binding of advanced glycation end 
products (AGE) to their receptor (RAGE), reducing oxi-
dative stress and inflammation [130, 131]. Aptamers can 
also be conjugated to the nanovehicle or directly to RNA Ta
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molecules, an approach that is currently being utilized in the 
targeted delivery of chemotherapeutic compounds or siRNA 
to cancer cells. Furthermore, aptamer functionalized  mSiO2/
PSS/PDDA/BSA-Gd2O3 mMRI nanoprobes have been used 
to enhance magnetic resonance imaging (MRI) contrast by 
specifically targeting nucleolin-expressing renal cancer cell 
lines [101].

d) Carbohydrates

As well as endocytosis-mediating receptors (megalin, cubi-
lin, transferrin receptor, etc.), the proximal tubule cells also 
express a variety of transporters that have been explored for 
targeted drug delivery. Sugar conjugates have been employed 
for targeted delivery of low molecular weight peptides such 
as, for example, oxytocin and vasopressin [119]. It should be 
possible to use carbohydrates like glucose and mannose as 
targeting ligands for siRNA, similar to the GalNAc approach 
for liver targeting. For mRNA delivery, the large size of 
carbohydrate-conjugated nanoparticles remains a challenge. 
Liposomes incorporating cholesterol conjugated to glucose 
via PEG-linkers of different length have shown some degree 
of kidney accumulation, but these vehicles have not been 
tested for RNA delivery [132].

e) Small molecules

During studies targeting the folate receptor for cancer ther-
apy, it was noted that this approach also yielded targeting 
of proximal tubules. However, as for other tubular targeting 
strategies, the same size restrictions apply [133]. Biotin is 
another example of a small molecule that has been employed 
to target the proximal tubule [89].

The importance of injection strategy

Although systemic injection is the least burdening mode of 
delivery, the accumulation and subsequent degradation of the 
vehicles in the liver, as well as the size restrictions imposed by 
the glomerular filtration barrier can pose a problem for RNA-
loaded nanoparticles unless a compromised filtration barrier 
permits penetration. To circumvent these issues, alternative 
injection strategies have been studied, including renal artery, 
renal vein, retrograde intra-urethral and direct injection into 
the kidney parenchyma (Fig. 4). Some of the above-mentioned 
examples of kidney-targeted RNA-based therapies made use 
of alternative injection strategies to deliver naked RNA to 
the desired cells. Examples include renal artery injection of 

Fig. 4  Injection strategies 
for delivery of drug-carrying 
vehicles to the kidney with their 
(dis)advantages
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TGF-β/Smad-siRNA as treatment for glomerulonephritis and 
renal vein injection of a Fas-siRNA to improve the survival 
after ischemic reperfusion injury in a mouse model [21, 78]. 
Additionally, the intra-urethral injection of an HSP47-siRNA 
was used to treat kidney fibrosis [82].

Since these therapies utilized naked RNA molecules, it 
might be valuable to investigate the above-mentioned target-
ing ligands and nanoparticle formulations in combination 
with the different injection routes, as it would enable the 
exploration of strategies that otherwise would not reach the 
podocytes and tubular cells.

Physical methods to increase RNA delivery

Next to active targeting, drug vehicles can also be directed 
to specific cells or tissues by using physical methods. As 
described above, careful consideration of size and charge 
can already influence the targeting capacity. However, 
delivery vehicles can also be functionalized to respond to 
specific triggers such as ultrasound, electric and magnetic 
fields, and light [134]. Ultrasound-based drug delivery has 
been explored to improve targeting after systemic injection, 
by application of a focussed ultrasound beam to the target 
organ. This approach creates pressure regions and gas bub-
bles that result in acoustic cavitation of the vehicle and sub-
sequent cargo release [135, 136]. In the gene delivery field, 
some progress has been made in utilizing this approach to 
increase kidney-specific plasmid DNA delivery with lipid 
microbubbles after intravenous injection, with no notable 
kidney damage . However, no such approach has been used 
for RNA-based therapeutics [137]. Another method of tar-
geted delivery is electroporation, in which high voltage 
electric pulses transiently increase cell permeability. Elec-
troporation has been applied to develop an siRNA-transfer 
system to specifically target the kidney and has been shown 
to aid the targeted delivery of TGF-β1-siRNA in the treat-
ment of glomerulonephritis [72]. The application of mag-
netically guided oligonucleotide-loaded nanoparticles has 
mostly been restricted to cancer gene therapy. Infusion of 
ferromagnetic particles has, however, been associated with 
inflammatory reactions around the hilum of the kidneys 
[138]. Finally, light-triggered lipid-based nanoparticles 
can also be applied for targeted drug delivery and photo-
triggerable siRNA-aptamers, which have been applied to 
cancer therapy, have shown a significant degree of kidney 
accumulation [139, 140].

Conclusion

In this review, we summarized the current state of the art 
regarding the potential use of RNA-based therapeutics for 
kidney diseases and discussed the major challenges related 

to the size and specific targeting. In our view, the largest 
short-term gains may be realized through combination 
of antisense oligonucleotides, using stabilized backbone 
chemistries, with small molecule (including small protein) 
targeting ligands. However, this strategy will be limited to 
down-regulation of gene expression whereas only mRNA 
can rescue expression of a missing gene product. We expect 
that rapid progress which has been booked in other disease 
fields will nourish kidney research and allow the develop-
ment of successful RNA-based therapies in the future.
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