Skip to main content

Advertisement

Log in

Neurological involvement in monogenic podocytopathies

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Genetic studies of hereditary nephrotic syndrome (NS) have identified more than 50 genes that, if mutated, are responsible for monogenic forms of steroid-resistant NS (SRNS), either isolated or syndromic. Most of these genes encode proteins expressed in the podocyte with various functions such as transcription factors, mitochondrial proteins, or enzymes, but mainly structural proteins of the slit diaphragm (SD) as well as cytoskeletal binding and regulator proteins. Syndromic NS is sometimes associated with neurological features. Over recent decades, various studies have established links between the physiology of podocytes and neurons, both morphologically (slit diaphragm and synapse) and functionally (signaling platforms). Variants in genes expressed in different compartments of the podocyte and neurons are responsible for phenotypes associating kidney lesions with proteinuria (mainly Focal and Segmental Glomerulosclerosis (FSGS) or Diffuse Mesangial Sclerosis (DMS)) and central and/or peripheral neurological disorders. The Galloway-Mowat syndrome (GAMOS, OMIM#251300) associates neurological defects, microcephaly, and proteinuria and is caused by variants in genes encoding proteins of various functions (microtubule cytoskeleton regulation (WDR73), regulation of protein synthesis via transfer RNAs (KEOPS and WDR4 complexes)). Pierson syndrome (OMIM#609049) associating congenital nephrotic syndrome and central neurological and ophthalmological anomalies is secondary to variants in LAMB2, involved in glomerular and ocular basement membranes. Finally, Charcot-Marie-Tooth-FSGS (OMIM#614455) combines peripheral sensory-motor neuropathy and proteinuria and arises from INF2 variants, resulting in cytoskeletal polymerization defects. This review focuses on genetic syndromes associating nephrotic range proteinuria and neurological involvement and provides the latest advances in the description of these neuro-renal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schell C, Huber TB (2017) The evolving complexity of the podocyte cytoskeleton. J Am Soc Nephrol 28:3166–3174. https://doi.org/10.1681/ASN.2017020143

  2. Kennedy MB (1993) The postsynaptic density. Curr Opin Neurobiol 3:732–737. https://doi.org/10.1016/0959-4388(93)90145-o

  3. Mundel P, Kriz W (1995) Structure and function of podocytes: an update. Anat Embryol (Berl) 192:385–397. https://doi.org/10.1007/BF00240371

  4. Rastaldi MP, Armelloni S, Berra S, Li M, Pesaresi M, Poczewski H, Langer B, Kerjaschki D, Henger A, Blattner SM, Kretzler M, Wanke R, D’Amico G (2003) Glomerular podocytes possess the synaptic vesicle molecule Rab3A and its specific effector rabphilin-3a. Am J Pathol 163:889–899. https://doi.org/10.1016/S0002-9440(10)63449-9

  5. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P (2007) Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 17:428–437. https://doi.org/10.1016/j.tcb.2007.06.006

  6. Soda K, Balkin DM, Ferguson SM, Paradise S, Milosevic I, Giovedi S, Volpicelli-Daley L, Tian X, Wu Y, Ma H, Son SH, Zheng R, Moeckel G, Cremona O, Holzman LB, De Camilli P, Ishibe S (2012) Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J Clin Invest 122:4401–4411. https://doi.org/10.1172/JCI65289

  7. Dillon C, Goda Y (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 28:25–55. https://doi.org/10.1146/annurev.neuro.28.061604.135757

  8. Putaala H, Soininen R, Kilpeläinen P, Wartiovaara J, Tryggvason K (2001) The murine nephrin gene is specifically expressed in kidney, brain and pancreas: inactivation of the gene leads to massive proteinuria and neonatal death. Hum Mol Genet 10:1–8. https://doi.org/10.1093/hmg/10.1.1

  9. Neumann-Haefelin E, Kramer-Zucker A, Slanchev K, Hartleben B, Noutsou F, Martin K, Wanner N, Ritter A, Gödel M, Pagel P, Fu X, Müller A, Baumeister R, Walz G, Huber TB (2010) A model organism approach: defining the role of Neph proteins as regulators of neuron and kidney morphogenesis. Hum Mol Genet 19:2347–2359. https://doi.org/10.1093/hmg/ddq108

  10. Grahammer F, Wigge C, Schell C, Kretz O, Patrakka J, Schneider S, Klose M, Kind J, Arnold SJ, Habermann A, Bräuniger R, Rinschen MM, Völker L, Bregenzer A, Rubbenstroth D, Boerries M, Kerjaschki D, Miner JH, Walz G, Benzing T, Fornoni A, Frangakis AS, Huber TB (2016) A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes. JCI Insight 1:e86177. https://doi.org/10.1172/jci.insight.86177

  11. Ahola H, Heikkilä E, Aström E, Inagaki M, Izawa I, Pavenstädt H, Kerjaschki D, Holthöfer H (2003) A novel protein, densin, expressed by glomerular podocytes. J Am Soc Nephrol 14:1731–1737. https://doi.org/10.1097/01.asn.0000075553.33781.9f

  12. Beltran PJ, Bixby JL, Masters BA (2003) Expression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3 and NGF-dependent neurons. J Comp Neurol 456:384–395. https://doi.org/10.1002/cne.10532

  13. Mundel P, Heid HW, Mundel TM, Krüger M, Reiser J, Kriz W (1997) Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell Biol 139:193–204. https://doi.org/10.1083/jcb.139.1.193

  14. Deller T, Merten T, Roth SU, Mundel P, Frotscher M (2000) Actin-associated protein synaptopodin in the rat hippocampal formation: localization in the spine neck and close association with the spine apparatus of principal neurons. J Comp Neurol 418:164–181. https://doi.org/10.1002/(sici)1096-9861(20000306)418:2<164::aid-cne4>3.0.co;2-0

  15. Weide T, Huber TB (2009) Signaling at the slit: podocytes chat by synaptic transmission. J Am Soc Nephrol 20:1862–1864. https://doi.org/10.1681/ASN.2009070691

  16. Syntichaki P, Tavernarakis N (2004) Genetic models of mechanotransduction: the nematode Caenorhabditis elegans. Physiol Rev 84:1097–1153. https://doi.org/10.1152/physrev.00043.2003

  17. Li M, Armelloni S, Ikehata M, Corbelli A, Pesaresi M, Calvaresi N, Giardino L, Mattinzoli D, Nisticò F, Andreoni S, Puliti A, Ravazzolo R, Forloni G, Messa P, Rastaldi MP (2011) Nephrin expression in adult rodent central nervous system and its interaction with glutamate receptors. J Pathol 225:118–128. https://doi.org/10.1002/path.2923

  18. Verma R, Wharram B, Kovari I, Kunkel R, Nihalani D, Wary KK, Wiggins RC, Killen P, Holzman LB (2003) Fyn binds to and phosphorylates the kidney slit diaphragm component Nephrin. J Biol Chem 278:20716–20723. https://doi.org/10.1074/jbc.M301689200

  19. Grant SG, O’Dell TJ, Karl KA, Stein PL, Soriano P, Kandel ER (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258:1903–1910. https://doi.org/10.1126/science.1361685

  20. Apperson ML, Moon IS, Kennedy MB (1996) Characterization of densin-180, a new brain-specific synaptic protein of the O-sialoglycoprotein family. J Neurosci 16:6839–6852

  21. Asanuma K, Yanagida-Asanuma E, Faul C, Tomino Y, Kim K, Mundel P (2006) Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat Cell Biol 8:485–491. https://doi.org/10.1038/ncb1400

  22. Buvall L, Wallentin H, Sieber J, Andreeva S, Choi HY, Mundel P, Greka A (2017) Synaptopodin is a coincidence detector of tyrosine versus serine/threonine phosphorylation for the modulation of Rho protein crosstalk in podocytes. J Am Soc Nephrol 28:837–851. https://doi.org/10.1681/ASN.2016040414

  23. Giardino L, Armelloni S, Corbelli A, Mattinzoli D, Zennaro C, Guerrot D, Tourrel F, Ikehata M, Li M, Berra S, Carraro M, Messa P, Rastaldi MP (2009) Podocyte glutamatergic signaling contributes to the function of the glomerular filtration barrier. J Am Soc Nephrol 20:1929–1940. https://doi.org/10.1681/ASN.2008121286

  24. Armelloni S, Calvaresi N, Ikehata M, Corbelli A, Mattinzoli D, Giardino LA, Li M, Messa P, Rastaldi MP (2012) Proteinuria and glomerular damage in Rab3A knockout mice chronically fed a high-glucose diet. Nephron Exp Nephrol 120:e69–e80. https://doi.org/10.1159/000336166

  25. Plaisier E, Mougenot B, Verpont MC, Jouanneau C, Archelos JJ, Martini R, Kerjaschki D, Ronco P (2005) Glomerular permeability is altered by loss of P0, a myelin protein expressed in glomerular epithelial cells. J Am Soc Nephrol 16:3350–3356. https://doi.org/10.1681/ASN.2005050509

  26. Boerkoel CF, Takashima H, Stankiewicz P, Garcia CA, Leber SM, Rhee-Morris L, Lupski JR (2001) Periaxin variants cause recessive Dejerine-Sottas neuropathy. Am J Hum Genet 68:325–333. https://doi.org/10.1086/318208

  27. Züchner S, Noureddine M, Kennerson M, Verhoeven K, Claeys K, De Jonghe P, Merory J, Oliveira SA, Speer MC, Stenger JE, Walizada G, Zhu D, Pericak-Vance MA, Nicholson G, Timmerman V, Vance JM (2005) variants in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nat Genet 37:289–294. https://doi.org/10.1038/ng1514

  28. Galloway WH, Mowat AP (1968) Congenital microcephaly with hiatus hernia and nephrotic syndrome in two sibs. J Med Genet 5:319–321

  29. Shapiro LR, Duncan PA, Farnsworth PB, Lefkowitz M (1976) Congenital microcephaly, hiatus hernia and nephrotic syndrome: an autosomal recessive syndrome. Birth Defects Orig Artic Ser 12:275–278

  30. Roos RA, Maaswinkel-Mooy PD, vd Loo EM, Kanhai HH (1987) Congenital microcephaly, infantile spasms, psychomotor retardation, and nephrotic syndrome in two sibs. Eur J Pediatr 146:532–536. https://doi.org/10.1007/BF00441612

  31. Cooperstone BG, Friedman A, Kaplan BS (1993) Galloway-Mowat syndrome of abnormal gyral patterns and glomerulopathy. Am J Med Genet 47:250–254. https://doi.org/10.1002/ajmg.1320470221

  32. Garty BZ, Eisenstein B, Sandbank J, Kaffe S, Dagan R, Gadoth N (1994) Microcephaly and congenital nephrotic syndrome owing to diffuse mesangial sclerosis: an autosomal recessive syndrome. J Med Genet 31:121–125. https://doi.org/10.1136/jmg.31.2.121

  33. Hou JW, Wang TR (1995) Galloway-Mowat syndrome in Taiwan. Am J Med Genet 58:245–248. https://doi.org/10.1002/ajmg.1320580310

  34. Kingo AR, Battin M, Solimano A, Phang M, McGillivray B (1997) Further case of Galloway-Mowat syndrome of abnormal gyral patterns and glomerulopathy. Am J Med Genet 69:431

  35. Colin E, Huynh Cong E, Mollet G, Guichet A, Gribouval O, Arrondel C, Boyer O, Daniel L, Gubler M-C, Ekinci Z, Tsimaratos M, Chabrol B, Boddaert N, Verloes A, Chevrollier A, Gueguen N, Desquiret-Dumas V, Ferré M, Procaccio V, Richard L, Funalot B, Moncla A, Bonneau D, Antignac C (2014) Loss-of-function variants in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. Am J Hum Genet 95:637–648. https://doi.org/10.1016/j.ajhg.2014.10.011

  36. Ben-Omran T, Fahiminiya S, Sorfazlian N, Almuriekhi M, Nawaz Z, Nadaf J, Khadija KA, Zaineddin S, Kamel H, Majewski J, Tropepe V (2015) Nonsense variant in the WDR73 gene is associated with Galloway-Mowat syndrome. J Med Genet 52:381–390. https://doi.org/10.1136/jmedgenet-2014-102707

  37. Jinks RN, Puffenberger EG, Baple E, Harding B, Crino P, Fogo AB, Wenger O, Xin B, Koehler AE, McGlincy MH, Provencher MM, Smith JD, Tran L, Al Turki S, Chioza BA, Cross H, Harlalka GV, Hurles ME, Maroofian R, Heaps AD, Morton MC, Stempak L, Hildebrandt F, Sadowski CE, Zaritsky J, Campellone K, Morton DH, Wang H, Crosby A, Strauss KA (2015) Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating variants of WDR73. Brain J Neurol 138:2173–2190. https://doi.org/10.1093/brain/awv153

  38. Vodopiutz J, Seidl R, Prayer D, Khan MI, Mayr JA, Streubel B, Steiß J-O, Hahn A, Csaicsich D, Castro C, Assoum M, Müller T, Wieczorek D, Mancini GMS, Sadowski CE, Lévy N, Mégarbané A, Godbole K, Schanze D, Hildebrandt F, Delague V, Janecke AR, Zenker M (2015) WDR73 variants cause infantile neurodegeneration and variable glomerular kidney disease. Hum Mutat 36:1021–1028. https://doi.org/10.1002/humu.22828

  39. Braun DA, Rao J, Mollet G, Schapiro D, Daugeron M-C, Tan W, Gribouval O, Boyer O, Revy P, Jobst-Schwan T, Schmidt JM, Lawson JA, Schanze D, Ashraf S, Ullmann JFP, Hoogstraten CA, Boddaert N, Collinet B, Martin G, Liger D, Lovric S, Furlano M, Guerrera IC, Sanchez-Ferras O, Hu JF, Boschat A-C, Sanquer S, Menten B, Vergult S, De Rocker N, Airik M, Hermle T, Shril S, Widmeier E, Gee HY, Choi W-I, Sadowski CE, Pabst WL, Warejko JK, Daga A, Basta T, Matejas V, Scharmann K, Kienast SD, Behnam B, Beeson B, Begtrup A, Bruce M, Ch’ng G-S, Lin S-P, Chang J-H, Chen C-H, Cho MT, Gaffney PM, Gipson PE, Hsu C-H, Kari JA, Ke Y-Y, Kiraly-Borri C, Lai W-M, Lemyre E, Littlejohn RO, Masri A, Moghtaderi M, Nakamura K, Ozaltin F, Praet M, Prasad C, Prytula A, Roeder ER, Rump P, Schnur RE, Shiihara T, Sinha MD, Soliman NA, Soulami K, Sweetser DA, Tsai W-H, Tsai J-D, Topaloglu R, Vester U, Viskochil DH, Vatanavicharn N, Waxler JL, Wierenga KJ, Wolf MTF, Wong S-N, Leidel SA, Truglio G, Dedon PC, Poduri A, Mane S, Lifton RP, Bouchard M, Kannu P, Chitayat D, Magen D, Callewaert B, van Tilbeurgh H, Zenker M, Antignac C, Hildebrandt F (2017) variants in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat Genet 49:1529–1538. https://doi.org/10.1038/ng.3933

  40. Braun DA, Shril S, Sinha A, Schneider R, Tan W, Ashraf S, Hermle T, Jobst-Schwan T, Widmeier E, Majmundar AJ, Daga A, Warejko JK, Nakayama M, Schapiro D, Chen J, Airik M, Rao J, Schmidt JM, Hoogstraten CA, Hugo H, Meena J, Lek M, Laricchia KM, Bagga A, Hildebrandt F (2018) variants in WDR4 as a new cause of Galloway-Mowat syndrome. Am J Med Genet A 176:2460–2465. https://doi.org/10.1002/ajmg.a.40489

  41. Fujita A, Tsukaguchi H, Koshimizu E, Nakazato H, Itoh K, Kuraoka S, Komohara Y, Shiina M, Nakamura S, Kitajima M, Tsurusaki Y, Miyatake S, Ogata K, Iijima K, Matsumoto N, Miyake N (2018) Homozygous splicing variant in NUP133 causes Galloway-Mowat syndrome. Ann Neurol 84:814–828. https://doi.org/10.1002/ana.25370

  42. Arrondel C, Missoury S, Snoek R, Patat J, Menara G, Collinet B, Liger D, Durand D, Gribouval O, Boyer O, Buscara L, Martin G, Machuca E, Nevo F, Lescop E, Braun DA, Boschat A-C, Sanquer S, Guerrera IC, Revy P, Parisot M, Masson C, Boddaert N, Charbit M, Decramer S, Novo R, Macher M-A, Ranchin B, Bacchetta J, Laurent A, Collardeau-Frachon S, van Eerde AM, Hildebrandt F, Magen D, Antignac C, van Tilbeurgh H, Mollet G (2019) Defects in t6A tRNA modification due to GON7 and YRDC variants lead to Galloway-Mowat syndrome. Nat Commun 10:3967. https://doi.org/10.1038/s41467-019-11951-x

  43. Rosti RO, Sotak BN, Bielas SL, Bhat G, Silhavy JL, Aslanger AD, Altunoglu U, Bilge I, Tasdemir M, Yzaguirrem AD, Musaev D, Infante S, Thuong W, Marin-Valencia I, Nelson SF, Kayserili H, Gleeson JG (2017) Homozygous variant in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome. J Med Genet 54:399–403. https://doi.org/10.1136/jmedgenet-2016-104237

  44. Rosti RO, Dikoglu E, Zaki MS, Abdel-Salam G, Makhseed N, Sese JC, Musaev D, Rosti B, Harbert MJ, Jones MC, Vaux KK, Gleeson JG (2016) Extending the variant spectrum for Galloway-Mowat syndrome to include homozygous missense variants in the WDR73 gene. Am J Med Genet A 170A:992–998. https://doi.org/10.1002/ajmg.a.37533

  45. Jiang C, Gai N, Zou Y, Zheng Y, Ma R, Wei X, Liang D, Wu L (2017) WDR73 missense variant causes infantile onset intellectual disability and cerebellar hypoplasia in a consanguineous family. Clin Chim Acta 464:24–29. https://doi.org/10.1016/j.cca.2016.10.029

  46. Al-Rakan MA, Abothnain MD, Alrifai MT, Alfadhel M (2018) Extending the ophthalmological phenotype of Galloway-Mowat syndrome with distinct retinal dysfunction: a report and review of ocular findings. BMC Ophthalmol 18:147. https://doi.org/10.1186/s12886-018-0820-4

  47. El Younsi M, Kraoua L, Meddeb R, Ferjani M, Trabelsi M, Ouertani I, Maazoul F, Abid N, Gargah T, M’rad R (2019) WDR73-related galloway mowat syndrome with collapsing glomerulopathy. Eur J Med Genet 62:103550. https://doi.org/10.1016/j.ejmg.2018.10.002

  48. Machnicka MA, Olchowik A, Grosjean H, Bujnicki JM (2014) Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol 11:1619–1629. https://doi.org/10.4161/15476286.2014.992273

  49. Bednářová A, Hanna M, Durham I, VanCleave T, England A, Chaudhuri A, Krishnan N (2017) Lost in translation: defects in transfer RNA modifications and neurological disorders. Front Mol Neurosci 10:135. https://doi.org/10.3389/fnmol.2017.00135

  50. Ramos J, Fu D (2019) The emerging impact of tRNA modifications in the brain and nervous system. Biochim Biophys Acta Gene Regul Mech 1862:412–428. https://doi.org/10.1016/j.bbagrm.2018.11.007

  51. Ojovan SM, Rabieh N, Shmoel N, Erez H, Maydan E, Cohen A, Spira ME (2015) A feasibility study of multi-site,intracellular recordings from mammalian neurons by extracellular gold mushroom-shaped microelectrodes. Sci Rep 5:14100. https://doi.org/10.1038/srep14100

  52. Blaine J, Dylewski J (2020) Regulation of the actin cytoskeleton in podocytes. Cells 9:1700. https://doi.org/10.3390/cells9071700

  53. Wong WW CIL:37179, Rattus, kidney cell, podocyte. CIL Dataset https://doi.org/10.7295/W9CIL37179

  54. Kleim JA, Vij K, Ballard DH, Greenough WT (1997) Learning-dependent synaptic modifications in the cerebellar cortex of the adult rat persist for at least four weeks. J Neurosci 17:717–721. https://doi.org/10.1523/JNEUROSCI.17-02-00717.1997

  55. El Yacoubi B, Hatin I, Deutsch C, Kahveci T, Rousset J-P, Iwata-Reuyl D, Murzin AG, de Crécy-Lagard V (2011) A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. EMBO J 30:882–893. https://doi.org/10.1038/emboj.2010.363

  56. Perrochia L, Guetta D, Hecker A, Forterre P, Basta T (2013) Functional assignment of KEOPS/EKC complex subunits in the biosynthesis of the universal t6A tRNA modification. Nucleic Acids Res 41:9484–9499. https://doi.org/10.1093/nar/gkt720

  57. Wan LCK, Maisonneuve P, Szilard RK, Lambert J-P, Ng TF, Manczyk N, Huang H, Laister R, Caudy AA, Gingras A-C, Durocher D, Sicheri F (2017) Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7. Nucleic Acids Res 45:805–817. https://doi.org/10.1093/nar/gkw1181

  58. Downey M, Houlsworth R, Maringele L, Rollie A, Brehme M, Galicia S, Guillard S, Partington M, Zubko MK, Krogan NJ, Emili A, Greenblatt JF, Harrington L, Lydall D, Durocher D (2006) A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator. Cell 124:1155–1168. https://doi.org/10.1016/j.cell.2005.12.044

  59. Kisseleva-Romanova E, Lopreiato R, Baudin-Baillieu A, Rousselle J-C, Ilan L, Hofmann K, Namane A, Mann C, Libri D (2006) Yeast homolog of a cancer-testis antigen defines a new transcription complex. EMBO J 25:3576–3585. https://doi.org/10.1038/sj.emboj.7601235

  60. Srinivasan M, Mehta P, Yu Y, Prugar E, Koonin EV, Karzai AW, Sternglanz R (2011) The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A. EMBO J 30:873–881. https://doi.org/10.1038/emboj.2010.343

  61. Alexandrov A, Martzen MR, Phizicky EM (2002) Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 8:1253–1266. https://doi.org/10.1017/s1355838202024019

  62. Hezwani M, Fahrenkrog B (2017) The functional versatility of the nuclear pore complex proteins. Semin Cell Dev Biol 68:2–9. https://doi.org/10.1016/j.semcdb.2017.05.004

  63. Zenker M, Aigner T, Wendler O, Tralau T, Müntefering H, Fenski R, Pitz S, Schumacher V, Royer-Pokora B, Wühl E, Cochat P, Bouvier R, Kraus C, Mark K, Madlon H, Dötsch J, Rascher W, Maruniak-Chudek I, Lennert T, Neumann LM, Reis A (2004) Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 13:2625–2632. https://doi.org/10.1093/hmg/ddh284

  64. Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP (1995) The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat Genet 10:400–406. https://doi.org/10.1038/ng0895-400

  65. Libby RT, Lavallee CR, Balkema GW, Brunken WJ, Hunter DD (1999) Disruption of laminin beta2 chain production causes alterations in morphology and function in the CNS. J Neurosci 19:9399–9411

  66. Noakes PG, Gautam M, Mudd J, Sanes JR, Merlie JP (1995) Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin beta 2. Nature 374:258–262. https://doi.org/10.1038/374258a0

  67. Matejas V, Hinkes B, Alkandari F, Al-Gazali L, Annexstad E, Aytac MB, Barrow M, Bláhová K, Bockenhauer D, Cheong HI, Maruniak-Chudek I, Cochat P, Dötsch J, Gajjar P, Hennekam RC, Janssen F, Kagan M, Kariminejad A, Kemper MJ, Koenig J, Kogan J, Kroes HY, Kuwertz-Bröking E, Lewanda AF, Medeira A, Muscheites J, Niaudet P, Pierson M, Saggar A, Seaver L, Suri M, Tsygin A, Wühl E, Zurowska A, Uebe S, Hildebrandt F, Antignac C, Zenker M (2010) variants in the human laminin β2 (LAMB2) gene and the associated phenotypic spectruma. Hum Mutat 31:992–1002. https://doi.org/10.1002/humu.21304

  68. Minamikawa S, Miwa S, Inagaki T, Nishiyama K, Kaito H, Ninchoji T, Yamamura T, Nagano C, Sakakibara N, Ishimori S, Hara S, Yoshikawa N, Hirano D, Harada R, Hamada R, Matsunoshita N, Nagata M, Shima Y, Nakanishi K, Nagase H, Takeda H, Morisada N, Iijima K, Nozu K (2020) Molecular mechanisms determining severity in patients with Pierson syndrome. J Hum Genet 65:355–362. https://doi.org/10.1038/s10038-019-0715-0

  69. Matejas V, Al-Gazali L, Amirlak I, Zenker M (2006) A syndrome comprising childhood-onset glomerular kidney disease and ocular abnormalities with progressive loss of vision is caused by mutated LAMB2. Nephrol Dial Transplant 21:3283–3286. https://doi.org/10.1093/ndt/gfl463

  70. Suh JH, Jarad G, VanDeVoorde RG, Miner JH (2011) Forced expression of laminin beta1 in podocytes prevents nephrotic syndrome in mice lacking laminin beta2, a model for Pierson syndrome. Proc Natl Acad Sci U S A 108:15348–15353. https://doi.org/10.1073/pnas.1108269108

  71. Gee HY, Saisawat P, Ashraf S, Hurd TW, Vega-Warner V, Fang H, Beck BB, Gribouval O, Zhou W, Diaz KA, Natarajan S, Wiggins RC, Lovric S, Chernin G, Schoeb DS, Ovunc B, Frishberg Y, Soliman NA, Fathy HM, Goebel H, Hoefele J, Weber LT, Innis JW, Faul C, Han Z, Washburn J, Antignac C, Levy S, Otto EA, Hildebrandt F (2013) ARHGDIA variants cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest 123:3243–3253. https://doi.org/10.1172/JCI69134

  72. Gupta IR, Baldwin C, Auguste D, Ha KCH, El Andalousi J, Fahiminiya S, Bitzan M, Bernard C, Akbari MR, Narod SA, Rosenblatt DS, Majewski J, Takano T (2013) ARHGDIA: a novel gene implicated in nephrotic syndrome. J Med Genet 50:330–338. https://doi.org/10.1136/jmedgenet-2012-101442

  73. Rossor AM, Polke JM, Houlden H, Reilly MM (2013) Clinical implications of genetic advances in Charcot–Marie–Tooth disease. Nat Rev Neurol 9:562–571. https://doi.org/10.1038/nrneurol.2013.179

  74. Barreto LCLS, Oliveira FS, Nunes PS, de França Costa IMP, Garcez CA, Goes GM, Neves ELA, de Souza Siqueira Quintans J, de Souza Araújo AA (2016) Epidemiologic study of Charcot-Marie-Tooth disease: a systematic review. Neuroepidemiology 46:157–165. https://doi.org/10.1159/000443706

  75. Pareyson D, Marchesi C (2009) Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol 8:654–667. https://doi.org/10.1016/S1474-4422(09)70110-3

  76. Szigeti K, Lupski JR (2009) Charcot-Marie-Tooth disease. Eur J Hum Genet 17:703–710. https://doi.org/10.1038/ejhg.2009.31

  77. Davis CJ, Bradley WG, Madrid R (1978) The peroneal muscular atrophy syndrome: clinical, genetic, electrophysiological and nerve biopsy studies. I. Clinical, genetic and electrophysiological findings and classification. J Genet Hum 26:311–349

  78. Nicholson G, Myers S (2006) Intermediate forms of Charcot-Marie-Tooth neuropathy: a review. NeuroMolecular Med 8:123–130. https://doi.org/10.1385/nmm:8:1-2:123

  79. Nagappa M, Sharma S, Taly AB. Charcot Marie Tooth. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 [cited 2020 Oct 5]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK562163/

  80. Stojkovic T (2016) Hereditary neuropathies: an update. Rev Neurol (Paris) 172:775–778. https://doi.org/10.1016/j.neurol.2016.06.007

  81. Lemieux G, Neemeh JA (1967) Charcot-Marie-Tooth disease and nephritis. Can Med Assoc J 97:1193–1198

  82. Hanson PA, Farber RE, Armstrong RA (1970) Distal muscle wasting, nephritis, and deafness. Neurology 20:426–434. https://doi.org/10.1212/wnl.20.5.426

  83. Hara M, Ichida F, Higuchi A, Tanizawa T, Okada T (1984) Nephropathy associated with Charcot-Marie-Tooth disease. Int J Pediatr Nephrol 5:99–102

  84. Gherardi R, Belghiti-Deprez D, Hirbec G, Bouche P, Weil B, Lagrue G (1985) Focal glomerulosclerosis associated with Charcot-Marie-Tooth disease. Nephron 40:357–361. https://doi.org/10.1159/000183493

  85. Martini A, Ravelli A, Burgio GR (1985) Focal segmental glomerulosclerosis and Charcot-Marie-Tooth disease. Int J Pediatr Nephrol 6:151

  86. Deniau F, Guillot M, Plus A, Leveque C, Gubler MC, Broyer M, Aicardi J, Lechevalier B (1986) Charcot-Marie-Tooth disease and glomerular nephropathy. Arch Fr Pediatr 43:791–793

  87. Lloveras JJ, Salles JP, Durand D, Suc JM, Rascol A (1986) Focal glomerulosclerosis and Charcot-Marie-Tooth disease: not a chance association? Nephron 43:231. https://doi.org/10.1159/000183835

  88. Fillod I, Cochat P, Colon S, Wright C, David L (1990) Nephropathy and Charcot-Marie-Tooth disease. A case report. Pediatrie 45:319–322

  89. Paul MD, Fernandez D, Pryse-Phillips W, Gault MH (1990) Charcot-Marie-Tooth disease and nephropathy in a mother and daughter with a review of the literature. Nephron 54:80–85. https://doi.org/10.1159/000185814

  90. De Rechter S, De Waele L, Levtchenko E, Mekahli D (2015) Charcot–Marie–Tooth: are you testing for proteinuria? Eur J Paediatr Neurol 19:1–5. https://doi.org/10.1016/j.ejpn.2014.08.004

  91. Brown EJ, Schlöndorff JS, Becker DJ, Tsukaguchi H, Tonna SJ, Uscinski AL, Higgs HN, Henderson JM, Pollak MR (2010) variants in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet 42:72–76. https://doi.org/10.1038/ng.505

  92. Barua M, Brown EJ, Charoonratana VT, Genovese G, Sun H, Pollak MR (2013) variants in the INF2 gene account for a significant proportion of familial but not sporadic focal and segmental glomerulosclerosis. Kidney Int 83:316–322. https://doi.org/10.1038/ki.2012.349

  93. Boyer O, Benoit G, Gribouval O, Nevo F, Tête M-J, Dantal J, Gilbert-Dussardier B, Touchard G, Karras A, Presne C, Grunfeld J-P, Legendre C, Joly D, Rieu P, Mohsin N, Hannedouche T, Moal V, Gubler M-C, Broutin I, Mollet G, Antignac C (2011) variants in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol 22:239–245. https://doi.org/10.1681/ASN.2010050518

  94. Boyer O, Nevo F, Plaisier E, Funalot B, Gribouval O, Benoit G, Cong EH, Arrondel C, Tête M-J, Montjean R, Richard L, Karras A, Pouteil-Noble C, Balafrej L, Bonnardeaux A, Canaud G, Charasse C, Dantal J, Deschenes G, Deteix P, Dubourg O, Petiot P, Pouthier D, Leguern E, Guiochon-Mantel A, Broutin I, Gubler M-C, Saunier S, Ronco P, Vallat J-M, Alonso MA, Antignac C, Mollet G (2011) INF2 variants in Charcot–Marie–Tooth disease with glomerulopathy. N Engl J Med 365:2377–2388. https://doi.org/10.1056/NEJMoa1109122

  95. D’Agati V (2003) Pathologic classification of focal segmental glomerulosclerosis. Semin Nephrol 23:117–134. https://doi.org/10.1053/snep.2003.50012

  96. Labat-de-Hoz L, Alonso MA (2020) The formin INF2 in disease: progress from 10 years of research. Cell Mol Life Sci. https://doi.org/10.1007/s00018-020-03550-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia Boyer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Financial Disclosures

None.

Additional information

Answers:

1. a, c, e. In this peripheral neuropathy, deep tendon reflexes are usually reduced; 2. a, b, e; 3. b, c, e.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyer, O., Mollet, G. & Dorval, G. Neurological involvement in monogenic podocytopathies. Pediatr Nephrol 36, 3571–3583 (2021). https://doi.org/10.1007/s00467-020-04903-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04903-x

Keywords

Navigation