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Abstract
Acute kidney injury (AKI) is an extremely common medical affliction affecting both adult and pediatric patients resulting from
hypoxic, nephrotoxic, and septic insults affecting approximately 20% of all hospital patients and up to 50% of patients in the
intensive care unit. There are currently no therapeutics for patients who suffer AKI. Much recent work has focused on designing
and implementing therapeutics for AKI. This review focuses on a family of enzymes known as sirtuins that play critical roles in
regulating many cellular and biological functions. There are 7 mammalian sirtuins (SIRT1–7) that play roles in regulating the
acylation of a wide variety of pathways. Furthermore, all but one of the mammalian sirtuins have been shown to play critical roles
in mediating AKI based on preclinical studies. These diverse enzymes show exciting potential for therapeutic manipulation. This
reviewwill focus on the specific roles of each of the investigated sirtuins and the potential for manipulation of the various sirtuins
and their effector pathways in mediating kidney injury.
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AKI clinical findings

Acute kidney injury (AKI) is a significant health care concern
associated with high morbidity and mortality [1, 2].
Approximately 20% of hospitalized patients have AKI, and 20–
60% of adult critically ill patients have AKI [3]. Recent observa-
tional studies in pediatric populations including the Assessment of
Worldwide Acute Kidney Injury, Renal Angina, and
Epidemiology (AWARE)—critically ill children and
Assessment of Worldwide Acute Kidney injury Epidemiology
in Neonates (AWAKEN) studies have shown similar alarming
trends related to morbidity and mortality in this population [4].
AKI is characterized by an abrupt decline of kidney function,
resulting in an inability tomaintain electrolyte, acid-base, and fluid
homeostasis [5]. AKI is a complex and multifactorial disease typ-
ically occurring as a mixed etiology of ischemia, nephrotoxicity,

and sepsis. Furthermore, a recent landmark study found that
COVID-19 patients presented with increased prevalence of AKI
and with a distinct pathophysiology, signifying a new risk factor
for AKI [6]. Many groups are working to identify the underlying
mechanisms involved in AKI, including apoptosis, dysregulation
of metabolism, autophagy, inflammation, and the cell cycle
[7–11]. However, despite considerable improvements to our un-
derstanding of the pathophysiology ofAKI, the exactmechanisms
are still poorly understood, and no specific therapy exists.

AKI pathophysiology

Multiple models of ischemic and toxic injury to the kidneys
show a special susceptibility to injury of the renal tubular
epithelial cells (RTECs). The proximal tubular epithelial cells
are especially sensitive to injury because they require more
active transport mechanisms than other kidney cell types.
During AKI, there are 3 major types of changes that are ob-
served and they are related to nuclear/DNA, cytoplasmic, or
immune response. These are discussed below.

Nuclear/DNA changes

Significant work in the AKI field has focused on the role of
nuclear/DNA alterations including DNA damage which
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directly effects DNA repair, cell cycle arrest, senescence, and/
or cell death in RTECs [12]. Much work has also been done
related to the role of increased mitosis/proliferative mecha-
nisms and how the proximal tubule has an amazing ability to
repair through dedifferentiation and expression of develop-
mental markers followed by redifferentiation [13]. Finally,
recent work has characterized how epigenetic changes includ-
ing deacetylation/acetylation and demethylation/methylation
affect the RTECs [14].

Cytoplasmic changes

Cytoplasmic alterations of RTECs during AKI is a growing
field with recent studies focusing on many different aspects of
cellular homeostasis, such as changes in expression levels of
mitochondrial enzymes, protein acylation/deacylation, perox-
isomal function, energy utilization (particularly fatty acid ox-
idation in the mitochondrial rich RTECs), upregulation of pro-
apoptotic pathways, elevated pro-oxidative pathways, reactive
oxygen species (ROS) accumulation, and cytoskeletal compo-
nent changes, among others [15].

Immune response

Although intracellular signaling and mechanisms of RTECs
play a critical role in driving the injury and repair response, the
role of extra-tubular and in particular recruitment of pro-in-
flammatory, pro-fibrotic, and immune factors following
RTEC damage can be paramount to tissue recovery/repair
[10]. The ability of the RTECs to mount an extracellular re-
sponse and recruit in the factors to clean up and repair the
damaged cells can make a significant impact upon whether
the injury progresses towards a fibrotic response and subse-
quent future injury that can culminate in chronic kidney dis-
ease or whether the injury resolves.

Role of sirtuins in RTECs during AKI

Sirtuins are a multidimensional group of genes that may pro-
vide insight into protective mechanisms during AKI. Sirtuins
are a family of NAD+-dependent class III histone deacylases.
The first identified sirtuin, Sir2, was found in budding yeast
Saccharomyces cerevisiae and described as a regulator of
transcriptional silencing of mating-type loci [16]. The discov-
ery of Sir2’s dependence on NAD+ revealed a role for sirtuins
as both energy sensors and as transcriptional effectors regu-
lating the acetylation state of histones [17]. Subsequently,
many homologs of Sir2 have been discovered across all do-
mains of life, establishing a highly conserved class of enzymes
[18–20].

In mammals, there are seven sirtuins, SIRT1–7, which
function to regulate metabolism and other diverse physiologic
processes through direct enzymatic action on target proteins.
Sirtuins act in different cellular compartments and exhibit
broad enzymatic activity as deacetylases, mono-ADP
ribosyltransferases, demalonylases, deglutarylases, and
desuccinylases [21–23]. Apart from the classic role as histone
deacetylases, a diverse set of protein targets have also been
identified in the cytoplasm and mitochondria [24]. Although
sirtuins have notably been studied for their role in caloric
restriction and the prevention of aging-related diseases such
as cardiovascular disease and diabetes, their diverse substrates
and role as sensors of cellular energy balance make them a
critical player to restoring cellular homeostasis following in-
jury [25]. The kidney is one organ majorly susceptible to age-
related diseases, and sirtuins have been implicated in the path-
ophysiology of chronic and acute kidney diseases [26, 27].

In this review, we will focus on the functions of mammalian
sirtuins and address their role in kidney physiology and AKI.

Sirtuin mechanism of action
in the nucleus/DNA of damaged RTECs

There are 3 nuclear sirtuins (SIRT1, 6, and 7) that have been
shown to play key roles in AKI. SIRT1 and SIRT6 are found in
the nucleus, while SIRT7 is uniquely localized to the nucleolus
(Table 1). SIRT1 is the most studied sirtuin. Originally described
as a histone deacetylase, it was soon discovered that SIRT1
deacetylates many other proteins [22, 28, 29]. Following DNA
damage, SIRT1 deacetylates and represses p53 to reduce cell
apoptosis and senescence [31, 32]. Similarly, SIRT1 regulates
the acetylation of the forkhead box type O (FOXO) transcription
factors to attenuate FOXO-induced apoptosis and cell cycle ar-
rest [33]. SIRT1 also regulates both members of the PGC-1α/
ERR-α complex, essential metabolic transcription factors which
control mitochondrial biogenesis and gluconeogenesis (Table 1)
[34–36]. Mitochondrial dysfunction plays a critical role in the
pathogenesis of AKI, particularly in relation to maladaptive in-
duction of apoptosis. When an injury or stress exceeds the mito-
chondria’s ability to sense and respond to changes in nutrient
availability, apoptosis is commonly initiated [37]. Apoptosis
can activate intrinsically when the mitochondria fragments in
response to decreased energy supply or when cytochrome C is
released following outer mitochondrial membrane perme-
abilization [38]. Apoptosis of the tubular epithelial cells is further
mediated by a network of factors including tumor suppressor
protein p53, BCL2 family proteins, and caspases [39]. Given
SIRT1’s strong role in regulating apoptosis, it is not surprising
there is a wealth of literature describing the renoprotective effects
of SIRT1. In its renoprotective capacity, SIRT1 was shown to
protect against oxidative stress-induced apoptosis via
deacetylation of FOXO3 in proximal tubular epithelial cells
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[40]. Further to this, in proximal tubular-specific SIRT1 trans-
genic mice, cisplatin-induced injury was attenuated by maintain-
ing peroxisome number with concomitant upregulation of cata-
lase and reduction of renal oxidative stress [41]. In another study,
it was shown that SIRT1 activates PGC-1α, resulting in
renoprotection by activating mitochondrial biogenesis and im-
proved respiration via oxidative phosphorylation [42]. Finally,
SIRT1 also showed a protective effect by regulating apoptosis
through deacetylating p53 and inhibiting p53-dependent tran-
scription during cellular stress [43]. Thus, the mechanism of
Sirt1 protection is mediated by suppression of apoptosis likely
downstream of metabolic signaling pathways (Fig. 1). SIRT6
and SIRT7 primarily have been shown to affect the inflammatory
response following AKI and are discussed below.

Sirtuin mechanism of action in cytoplasmic
components/mitochondria of damaged RTECs

There are 3 known mitochondrial sirtuins (SIRT3, 4, and 5)
(Table 1). While SIRT3 is responsible for global protein
deacetylation in mitochondria, SIRT4 exists as a mitochondri-
al ADP-ribosyltransferase and SIRT5 exhibits enzymatic ac-
tivities as a deacetylase, desuccinylase, and demalonylase
(Table 1). The roles of SIRT3 and SIRT5 have been elucidat-
ed in kidney injury and are discussed below, while the role of
SIRT4 is currently unknown in this context.

SIRT2 is localized primarily to the cytoplasm, and there is
growing evidence for additional roles in the nucleus (Table 1).
Like SIRT1, SIRT2 also regulates PGC-1α and FOXO

transcription factors [44, 45]. SIRT2 also deacetylates α-
tubulin to affect mitotic progression [46, 47]. During the G2/
M transition, nuclear SIRT2 deacetylates histone H4K20 to
regulate cell cycle progression and genome stability [48].
Moreover, SIRT2’s activity mediates caspase-3 levels to af-
fect apoptosis and oxidative stress (Table 1) [49].

As the major mitochondrial deacetylase, SIRT3 is responsible
for the regulation of several metabolic enzymes and components
of oxidative phosphorylation. SIRT3 deacetylates and activates
mitochondrial acetyl-CoA synthetase (AceCS2), an enzyme in-
volved in acetate utilization [50]. Similarly, SIRT3 has been
shown to deacetylate long-chain acyl-CoA dehydrogenase
(LCAD) to regulate fatty acid oxidation [51]. SIRT3 has also
been demonstrated to deacetylate mitochondrial ribosome sub-
unit MRPL10 to inhibit mitochondrial protein synthesis [52]. In
addition, SIRT3 regulates various components of the electron
chain, such as complex II and ATP synthase, to enhance ATP
levels [53, 54]. These studies reflect only part of SIRT3’s wide
range of functions in mitochondrial ATP production, fatty acid
oxidation, mitochondrial homeostasis, and ROS management
(Table 1). SIRT3 plays a significant role in the kidney, especially
in the proximal and distal tubular compartments which contain
abundant mitochondria. Several studies have described a
renoprotective role for SIRT3 due to its role in maintaining mi-
tochondrial dynamics and energy homeostasis. Indeed, Sirt3
knockout (KO) mice administered cisplatin have more severe
AKI and compromised mitochondrial dynamics [55]. SIRT3
overexpression in mice has the effect of promoting autophagy
through regulation of the AMPK/mTOR pathway and protecting
against amodel of sepsis-AKI [56]. SIRT3 also regulates FAO in

Table 1 Sirtuin expression, enzymatic activity, targets, and function

Sirtuin Localization Enzymatic activity Targets Function Citation

Nuclear sirtuins

SIRT1 Nucleus Deacetylation p53
FOXO3
PGC-1α

Maintenance of peroxisomes
Mitochondrial biogenesis
Mitochondrial homeostasis
Regulation of apoptosis

[10, 21–34]

SIRT6 Nucleus, cytoplasm Deacetylation, ADP-ribosylation ERK1/2
TNF-α

Maintenance of glomerular function
Podocyte function
Apoptosis
Autophagy

[35–42]

SIRT7 Nucleolus Deacetylation NF-κB Inflammation [43–49]

Mitochondrial sirtuins

SIRT3 Mitochondria Deacetylation LKB1
AMPK/mTOR

Mitochondrial dynamics
Autophagy
Oxidative stress

[50–58]

SIRT5 Mitochondria Demalonylation, deglutarylation,
desuccinylation

Β-oxidation Fatty acid oxidation
Energy metabolism

[59–63]

Cytoplasmic Sirtuins

SIRT2 Nucleolus Deacetylation, demyristolyation MAPK-1 Inflammation
Apoptosis

[64–71]
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mice by deacetylating liver kinase B1 and activatingAMPKwith
the effect of reducing ROS and lipid peroxidation (Fig. 1) [57].

Mitochondrial SIRT5 was initially identified as a
deacetylase targeting carbamoyl phosphate synthetase
(CPS1) to regulate the urea cycle in liver [58]. However, it
has since been discovered that SIRT5 functions as a
demalonylase, deglutarylase, and desuccinylase rather than
as a deacetylase [59]. SIRT5 has been shown to bind
cardiolipin in the inner mitochondrial membrane and
desuccinylate electron transport enzymes complex I, complex
II, and ATP synthase [60]. SIRT5 desuccinylation targets
identified via large-scale profiling studies suggest SIRT5 has
a significant role in energy metabolism (Table 1) [61].
Recently, Sirt5 KO mice were shown to have significantly
improved kidney function and less tubular damage following
both ischemic and cisplatin challenge [62]. SIRT5 deficiency
appears to be protective by reducing mitochondrial-derived
ROS and driving peroxisomal FAO. Modifications to this
mitochondrial-peroxisomal axis are significant to the patho-
genesis of AKI. It is generally accepted that an underlying
basis of kidney injury is impaired energetics in the highly
metabolically active nephron segments (Fig. 1).

Sirtuin mechanism of action in recruiting
inflammatory/ fibrotic factors to damaged
RTECs

Several sirtuins (including Sirt2, Sirt3, Sirt6, and SIRT7) have
been shown to play roles in the recruitment of inflammatory/
fibrotic factors to the kidney after injury.

Previously, a lack of SIRT2 in mice reduces lipopolysac-
charide (LPS)-induced increases in neutrophil gelatinase-
associated lipocalin (NGAL) [63]. SIRT2 deficiency also re-
duced infiltration of renal neutrophils and macrophages and
reduced expression of inflammatory chemokines CXCL2 and
CCL2 [63]. The same group recently showed that SIRT2 af-
fects mitogen-activated protein kinase-1 (MAPK-1), and Sirt2
KO mice and Sirt2 transgenic mice show amelioration and
aggravation, respectively, of kidney injury, apoptosis, and in-
flammation induced by cisplatin (Fig. 1) [64].

SIRT3 overexpression promotes autophagy, upregulates p-
AMPK and downregulates p-mTOR in cecal ligation and
puncture mice, attenuating sepsis-induced AKI, tubular cell
apoptosis, and inflammatory cytokine accumulation in the
kidneys [65]. The blockage of autophagy induction largely
abolished the protective effect of SIRT3 in sepsis-induced
AKI. These findings indicate that SIRT3 protects against
sepsis-induced AKI by inducing autophagy through regula-
tion of the AMPK/mTOR pathway.

SIRT6 plays a significant role in genomic DNA stability
and repair. Sirt6 knockout mice present with severe progeria
and typically only live for 3 months [66]. SIRT6 deacetylates
histone H3 at various lysine sites to maintain genome integrity
and telomere function [67]. In response to DNA damage, it
has been shown that SIRT6 promotes DNA repair under ox-
idative stress by activating poly[adenosine diphosphate
(ADP)-ribose] polymerase 1 (PARP1; Table 1) [68]. In the
context of the kidney, SIRT6 appears to be important for
podocyte function and maintenance of glomerular function,
as Sirt6 deletion in mice induces podocyte injury and de-
creased slit diaphragm protein expression [69]. Sirt6

Fig. 1 Sirtuin roles in limiting kidney injury. Sirtuins are expressed in
different subcellular compartments and regulate different cellular and
biological functions to impact kidney injury. SIRT3 and SIRT5 are
mitochondrial sirtuins. SIRT3 maintains mitochondrial dynamics and
energy homeostasis and promotes autophagy. SIRT5 is involved in
fatty acid oxidation and energy metabolism. SIRT1, SIRT6, and SIRT7
are nuclear sirtuins. SIRT1 has a strong role in maintaining mitochondria

as well as in regulating apoptosis. SIRT6 is important for the maintenance
of podocyte and glomerular function. SIRT 7 is involved in inflammation
through regulation of NF-κB. SIRT2 shuttles between the nucleus and
cytoplasm. Nuclear SIRT2 regulates MKP-1 to promote inflammation.
Sirtuins in green font are renoprotective, whereas those in red font were
renoprotective when deleted. Only Sirt4 has not been studied in the con-
text of kidney injury
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overexpression in HK-2 kidney epithelial cells inhibits apo-
ptosis induced by LPS and promotes autophagy while SIRT6
silencing promotes the secretion of cytokines tumor necrosis
factor α (TNF-α) and interleukin-6 (IL-6) [70]. SIRT6 also
deacetylates histone 3 to effectively inhibit extracellular
signal-regulated kinase 1/2 (ERK1/2) expression and reduce
inflammation and apoptosis caused by cisplatin (Fig. 1) [71].

SIRT7 uniquely activates RNA polymerase I (RNA Pol I)
by deacetylating upstream binding factor (UBF) [72]. Others
have shown that SIRT7 regulates RNA Pol I transcription by
deacetylating PAD53, a component of RNA Pol I (Table 1)
[73]. Interestingly, the lack of SIRT7 in mice shows protection
against cisplatin-induced AKI. By regulating the nuclear ex-
pression of transcription factor nuclear factor kappa B
(NF-κB), SIRT7 deficiency ameliorates cisplatin-induced
AKI [74]. NF-κB is a potent stimulator of the immune system
and the inflammatory response following AKI. Further to this,
studies have shown that the inhibition of NF-κB can attenuate
the inflammatory response and reduce the amount of injury
following AKI [75]. Both the innate and adaptive immune
systems are involved in the pathogenesis of AKI and virtually
every immune cell has been implicated in AKI [76–79]. The
protective phenomenon seen in SIRT7 deficient mice is per-
haps due to SIRT7 deficiency reducing the expression of
TNF-α, which normally enhances ROS production through
the NADPH oxidase complex (Fig. 1) [74].

Potential therapies and clinical implications

The study of sirtuins has revealed a number of protein
targets involved in the pathogenesis of AKI, and some
sirtuins have been shown to exert strong renoprotective
effects. As such, sirtuin-activating compounds (STACS)
represent a clinically relevant approach to treat kidney
diseases. Considerable efforts have been put towards find-
ing small molecules to modulate the activity of sirtuins for
pharmaceutical purposes. Resveratrol was among the first
STACs identified in 2003 for its ability to significantly
increase SIRT1. However, while in vitro studies indicate
resveratrol activates SIRT1 [80], its mechanism was
quickly disputed as this effect might instead be a down-
stream result from its immediate biological targets [81,
82]. Nevertheless, several clinical trials of resveratrol
and SRT2104, another SIRT1 activator, have shown
promising results in diabetes and cardiovascular disease
[83]. NAD+ boosters as sirtuin activators represent anoth-
er emerging therapeutic area of interest as NAD+ deple-
tion is a major contributor to the pathogenesis of kidney
diseases. NAD+ repletion through the pharmacological
manipulation of nicotinamide phosphoribosyltransferase
(the rate-limiting enzyme in the NAD+ salvage pathway)
has been shown to have therapeutic potential as a means

to improve kidney function and decrease tubular injury
[55].

Given that deletion of SIRT5 and SIRT7 is renoprotective,
another therapeutic avenue exists for selective sirtuin inhibi-
tors. In the case of SIRT5, which uniquely targets succinyl
modifications, inhibitors targeting the succinyl substrate are
currently under development [84, 85]. The development of
either STACs or sirtuin inhibitors holds some risk as sirtuins
are involved in myriad pathways, and whether modulating
sirtuins will have a beneficial or deleterious effect in humans
is unclear. The compromise to this double-edged sword is the
development of therapeutics targeting the pathways shown to
be regulated by sirtuins rather than the sirtuins themselves.

Conclusion

The study of sirtuins in the kidney has led to impressive ad-
vances in our understanding of sirtuin targets involved in
renoprotection and in the development of a number of differ-
ent pharmacological interventions that are effective in amelio-
rating injury in animal models of AKI. However, the promise
of these developments is generally tempered by the results of
clinical trials in patients with AKI. Therapies effective in an-
imal models of AKI have translated to little or no effectiveness
in humans, and such therapies are yet to be explored in pedi-
atric populations. However, this failing might stem from defi-
ciencies in preclinical models of AKI and an ability to design
the clinical trial itself [86]. Although many auspicious sirtuin
targets have been identified, the failure to effectively translate
animal data to an effective human intervention highlights the
importance of studying AKI in multiple model systems. In
addition to the multiple in vivo models of AKI available,
including the ischemia-reperfusion model, cisplatin-induced
AKI, and sepsis-associated AKI, multiple in vitro models are
used to study AKI [87, 88]. The mechanistic differences be-
tween these various models add to the complexity of AKI
pathogenesis, and elucidating the role that sirtuins play in each
model will further the understanding and therapeutic applica-
tion of the sirtuins.
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