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Abstract Thrombotic microangiopathy (TMA) refers to phe-
notypically similar disorders, including hemolytic uremic syn-
dromes (HUS) and thrombotic thrombocytopenic purpura
(TTP). This review explores the role of the influenza virus
as trigger of HUS or TTP. We conducted a literature survey
in PubMed and Google Scholar using HUS, TTP, TMA, and
influenza as keywords, and extracted and analyzed reported
epidemiological and clinical data. We identified 25 cases of
influenza-associated TMA. Five additional cases were linked
to influenza vaccination and analyzed separately. Influenza A
was found in 83%, 10 out of 25 during the 2009 A(H1N1)
pandemic. Two patients had bona fide TTP with ADAMTS13
activity <10%.Median age was 15 years (range 0.5–68 years),
two thirds were male. Oligoanuria was documented in 81%
and neurological involvement in 40% of patients. Serum C3
was reduced in 5 out of 14 patients (36%); Coombs test was
negative in 7 out of 7 and elevated fibrin/fibrinogen degrada-
tion products were documented in 6 out of 8 patients.
Pathogenic complement gene mutations were found in 7 out
of 8 patients tested (C3, MCP, orMCP combined with CFB or
clusterin). Twenty out of 24 patients recovered completely, but

3 died (12%). Ten of the surviving patients underwent plasma
exchange (PLEX) therapy, 5 plasma infusions. Influenza-
mediated HUS or TTP is rare. A sizable proportion of tested
patients demonstrated mutations associated with alternative
pathway of complement dysregulation that was uncovered
by this infection. Further research is warranted targeting the
roles of viral neuraminidase, enhanced virus-induced comple-
ment activation and/or ADAMTS13 antibodies, and rational
treatment approaches.
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Abbreviations
ADAMTS13 A disintegrin-like metalloproteinase with

thrombospondin type 1 motif 13
aHUS Atypical hemolytic uremic syndrome
AKI Acute kidney disease
APC Alternative pathway of complement
CFB Complement factor B
CFH Complement factor H
CFHR Complement factor H-related protein
CFI Complement factor I
CKD Chronic kidney disease
CNS Central nervous system
DCT Direct Coombs test (direct agglutination test)
DD Deceased (kidney) donor
DGKE Diacylglycerol kinase-epsilon
ESRD End-stage renal disease
FDP Fibrin/fibrinogen degradation products
FP Frozen plasma
HA Hemagglutinin
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Hb Hemoglobin
HD Hemodialysis
HUS Hemolytic uremic syndrome
iHUS Influenza-associated HUS
IPD Invasive pneumococcal disease
iTMA Influenza-associated thrombotic

microangiopathy
KT Kidney transplant(ation)
LDH Lactate dehydrogenase
MAC Membrane attack complex (C5b-9)
MAHA Microangiopathic hemolytic anemia
MCP Membrane cofactor protein (CD46)
NA Neuraminidase (influenza)
Nan (Pneumococcal) neuraminidase
PD Peritoneal dialysis
PI Plasma infusion
PLEX Plasma exchange
PLG Plasminogen
Plt Platelet(s)
pnHUS Pneumococcal/neuraminidase HUS
PRBC Packed red blood cells
sC5b-9 Soluble (vitronectin-bound, plasmatic) mem-

brane attack complex
STEC Shiga toxin-producing Escherichia coli
TFAg Thomsen–Friedenreich antigen
THBD Thrombomodulin (CD141)
TMA Thrombotic microangiopathy
TTP Thrombotic thrombocytopenic purpura
VWF Von Willebrand factor

Introduction

The term thrombotic microangiopathy (TMA) is used to de-
scribe a spectrum of phenotypically similar diseases charac-
terized by intravascular (microangiopathic) hemolytic anemia
(MAHA), thrombocytopenia, and in most instances, acute
kidney injury (AKI). Other organ systems can be affected.
Best-known examples are the hemolytic uremic syndromes
(HUS) and thrombotic thrombocytopenic purpura (TTP).
Although endothelial injury is a triggering event in many in-
stances of HUS, this may not apply to the TTP and some
forms of Batypical^ HUS (aHUS).

Infections by Shiga toxin-producing Escherichia coli
(STEC or Stx HUS) are the most common cause of TMA
(HUS) in children. Less frequently, HUS has been linked to
infections by other bacteria, such as Shigella dysenteriae type
1, Clostridium perfringens or Streptococcus pneumoniae, and
by HIV, coxsackie-, Epstein–Barr (EBV), varicella or influen-
za viruses [1–3].

Thrombotic thrombocytopenic purpura, first described as a
clinical entity by Moschcowitz in 1924, is now etiologically
defined by the lack of plasmatic ADAMTS13 activity [4].

ADAMTS13, a metalloprotease secreted by megakaryocytes
and endothelial cells, cleaves platelet-derived von Willebrand
factor (VWF) Bultra large^ multimers into smaller-molecular
weight fragments [4, 5]. Most TTP patients have circulating
anti-VWF protease antibodies, often of the IgG4 class [6].
Inherited TTP, caused by mutations in the ADAMTS13 gene,
is known as Upshaw–Shulman syndrome [5, 7].

Dysregulation of the alternative pathway of complement
(APC) or the coagulation system due to genetic mutations or
acquired antibodies, primarily to complement factor H (CFH),
increases the risk of HUS, commonly referred to as Batypical^
(aHUS) [2, 8]. Genes encoding components of the coagulation
and fibrinolytic cascades etiologically linked to aHUS are
THBD (thrombomodulin), DGKE (diacylglycerol kinase-ep-
silon), VWF (von Willebrand factor), factor XII, and PLG
(plasminogen) [8–12]. Other forms of Batypical^ HUS
(aHUS) are caused by abnormalities in the cblC pathway
(methylmalonic aciduria and homocystinuria, cblC comple-
mentation type [MMACHC]) [13]. Finally, TMA may devel-
op because of immunosuppressive and cytotoxic drugs, bone
marrow transplantation, autoimmune diseases, cancer, and
pregnancy. Although complement gene mutations have been
identified in some of the latter conditions, the etiology is spec-
ulative in others [1, 2, 8].

This review summarizes current evidence on the link be-
tween influenza virus infection and TMA (HUS or TTP) and
discusses the overlap between influenza TMA and other forms
of aHUS, in addition to the diagnostic workup and manage-
ment of these conditions.

Identification of cases of influenza TMA

Using PubMed and Google Scholar, the following key words
were used alone or in combination: hemolytic uremic syn-
drome, thrombotic thrombocytopenic purpura, thrombotic mi-
croangiopathy, influenza, influenza vaccine/vaccination.
Clinical, epidemiological, and demographic features, labora-
tory results, treatment modalities and outcome were extracted
and tabulated. English, French, and German language publi-
cations were reviewed.

Influenza epidemiology and mechanisms of infection

Influenza viruses can cause seasonal infections and epidemics
with significant morbidity and mortality. The influenza
A(H1N1) pandemic in 1918–1919 was responsible for the
death of an estimated 50 million people [14]. The 2009 influ-
enza pandemic by a newly arisen influenza A(H1N1) strain
caused the death of more than 280,000 persons worldwide
(>12,000 in the USA) within the first year of its circulation,
owing to respiratory or cardiovascular complications [15].
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Seasonal influenza leads to an estimated 12,000–56,000
deaths in the USA annually [16].

Influenza virus targets the respiratory tract and causes fe-
ver, often with acute laryngitis, tracheitis, and pneumonia, and
occasionally myocarditis, meningoencephalitis, or rhabdomy-
olysis, among other symptoms [17]. Infants and the elderly are
at greatest risk of influenza-related complications. Death may
occur directly by the virus or by complicating bacterial pneu-
monia, especially due to S. pneumoniae. Influenza virus be-
longs to the genus Orthomyxovirus of the Orthomyxoviridae
family. Influenza A and B viruses contain eight antisense
strand RNA segments and express at least 17 proteins, among
them three membrane (glyco)proteins in the lipid envelope:
hemagglutinin (HA), neuraminidase (NA), and proton chan-
nel matrix protein 2 (M2) [17]. HA and NA are genetically
unstable and determine fluctuations of the prevalent subtypes
of influenza virus. Viral HA mediates attachment to sialic
acid-containing host cell membrane receptors and entry of
the viral genome into the target cells. Human influenza strains
bind terminal α2,6 galactose residues, which contributes to
the known species tropism [17, 18]. Sialic acid-independent
attachment has been postulated [19]. Viral neuraminidase
cleaves α-ketosidic bonds of neuraminic acid [20]. It facili-
tates transfer of virus particles in the mucus layer of the respi-
ratory tract and release of progeny virion from infected cells
[17, 21]. NA inhibitors, such as oseltamivir (active metabolite
oseltamivir carboxylate), block the release of virions and their
spread to neighboring epithelial cells [21].

Influenza-associated thrombotic microangiopathy

Hemolytic uremic syndrome triggered by influenza virus
(iHUS) is rare. In almost all instances, it is associated with
influenza A virus, mainly A(H3N2) and A(H1N1). Only re-
cently have a few cases of HUS associated with influenza B
virus infection been published (Table 1) [22, 23]. Ten patients
with HUS were noted during the 2009 influenza A(H1N1)
pandemic [26–35], and one during a later wave [36], constitut-
ing 44% of all reported occurrences of influenza-associated
thrombotic microangiopathy (iTMA; Tables 1, 2). The distri-
bution of these cases corresponded to the course of the pan-
demic [44] and differed from the usual seasonal influenza pat-
tern (Fig. 1).

The first description of iHUS from 1971 is that of a 20-year-
old kidney transplant recipient (#1) [37]. The patient was diag-
nosed with MAHA and graft failure 1–2 weeks after the onset
of influenza, almost 2 years after renal transplantation. End
stage renal disease (ESRD) was secondary to acute proliferative
glomerulonephritis (GN) and malignant hypertension. She
started hemodialysis 10 days before transplant nephrectomy.
Additional acute laboratory features were cold agglutinins (with
negative direct Coombs test) and transiently reduced plasma C3

concentration. A graft biopsy 5 weeks after HUS onset revealed
thrombosis of small renal arteries and glomerular capillaries.
The transplant was removed 8 weeks after HUS onset, followed
by swift normalization of the hematological parameters. A sub-
sequent graft from a deceased donor (DD) was tolerated well
without recurrence of HUS.

A typical scenario of HUS due to influenza A(H1N1) in-
fection is a previously healthy, 7-year-old boy with febrile
pneumonitis and transient respiratory failure who developed
severe AKI, profound MAHA, and thrombocytopenia associ-
ated with hypertensive encephalopathy 5 days after the onset
of respiratory symptoms (#11). Coagulation profile, plasma
fibrinogen, Coombs test, and C3 concentration were normal,
as was MCP expression, plasma ADAMTS13 activity and
serum CFB, CFH and CFI concentrations. He recovered
completely after 2 weeks of peritoneal dialysis. No genetic
studies of APC or coagulation factors were reported by the
authors [28].

Relevant demographic, clinical and laboratory parameters
of all patients identified with influenza A- and B-associated
TMA are summarized in Table 2 (for details, see
Supplementary Table S1). Three of the influenza A HUS pa-
tients had a kidney transplant at the time of infection, includ-
ing #1. Patient #5 had been transplanted for chronic GN; al-
lograft biopsy on day 10 of HUS revealed mesangiolysis and
C3 deposition in the presence of normal serum C3 concentra-
tions. Patient #16 had lost two previous allografts due to HUS
caused by an activating C3 mutation [33].

Patients presented with hemolytic anemia that was associ-
ated with peripheral schistocytosis in all but one instance [33],
and thrombocytopenia (nadir 5–80 × 109 platelets/L).
Peripheral platelet counts recovered after a median of 9.5 days
(range 6–23 days; n = 8 patients; Table 2). Direct and indirect
Coombs tests were negative in all 7 patients examined, but
cold agglutinins were reported once (#1) [37]. Six of 8 patients
(75%) tested for evidence for fibrinolysis showed elevated d-
dimers and fibrin/fibrinogen degradation products (FDP),
with normal fibrinogen levels (Table 2) [29, 32, 36, 38, 39].

Acute kidney injury (AKI) developed in all 25 patients.
Hypertension was present in 10 out of 23 patients (43%).
Serum creatinine concentrationswere already increased at first
measurement in 19 out of 21 patients (90%; median 221 μM

Table 1 Distribution of influenza virus subtypes associated with
thrombotic microangiopathies in humans

Influenza typesa Influenza A Influenza B References

A(H3N2) 2 [24, 25]

A(H1N1) 11 [26–36]

A (not or partially specified) 7 [37–42]

B (Yamagata) 4 [22, 23]

a Viral typing was omitted in one reported case [43]
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[2.4 mg/dL]) and peaked at 327 μM (3.7 mg/dL). Oliguria or
anuria was documented in 13 out of 16 cases (81%). Ten
patients (40%) initiated renal replacement therapy, mostly in
the form of hemodialysis (median duration 13 days; Table 2).
Kidney biopsies were reported in 7 patients (# 1–6, 16). An
example of pertinent histopathological features of influenza
A-associated HUS is shown in Fig. 2.

Central nervous system (CNS) complications, including
drowsiness and mental confusion, focal neurological signs, sei-
zures, and hemiplegia, in addition to Magnetic resonance imag-
ing (MRI) changes and petechiae (in brain autopsy samples;
Table S1) were reported in 10 iHUS patients (40%). The sever-
ity and frequency of CNS complications associated with
A(H1N1) versus A(non-H1N1) influenza did not reach statisti-
cal significance (p = 0.20; Fisher’s exact; Table 2).

Separate analysis of the reported A(H1N1) HUS cases re-
vealed evidence for variable abnormalities of complement and
fibrinolysis, similar to the remainder of influenza A HUS
cases (Table 2). It remains unclear if A(H1N1) has a greater
propensity to induce HUS than other influenza subtypes [45].
Considering that there is a total disease burden of 200 million
people globally [46], the proportion of (reported) HUS cases
is about 0.05 per 1 million influenza A(H1N1) infections, this

corresponds to two cases (# 5 and 16) among 50 million pa-
tients reported in the USA [46, 47].

The reported clinical and laboratory features of the children
with influenza B-associated HUS [22, 23] resemble those de-
scribed for influenza A. Interestingly, HUS was linked in all
instances to genetic complement abnormalities (see below and
Table 2).

Influenza and TTP

Influenza A virus, including A(H1N1) has been invoked as a
cause of TTP in at least four published reports [34, 35, 39, 40].
ADAMTS13 activity was depleted in 2 patients; both demon-
strated increased anti-ADAMTS13 antibody concentrations [39,
40]. The TTP diagnosis of the remaining 2 patients was clinical,
based on the combination of MAHA and neurological manifes-
tations, while ADAMTS13 and complement studies were lack-
ing (Table 3) [34, 35]. Themechanism leading to the rise of anti-
ADAMTS13 and other autoantibodies by influenza and influen-
za vaccines [48, 49] warrants additional research.

Pathogenesis of iHUS

There is an established link between influenza virus infection
and HUS, but the underlying mechanism is speculative [45].
Influenza virus shares with S. pneumoniae the ability to pro-
duce neuraminidase. However, in vivo NA shedding by influ-
enza virus is minimal (it is expressed on the viral membrane)
compared with S. pneumonia [18, 50]. Its contribution to the
pathogenesis of HUS has still to be shown.

Autopsy studies during the 2009 A(H1N1) pandemic re-
vealed viral antigen in endothelial cells [51]. In vitro infection
of endothelial cells by influenza virus [52] can trigger apopto-
sis [53], a process known to stimulate platelet adhesion direct-
ly and via the exposure of extracellular matrix [54, 55]. In

a b

Fig. 2 Micrographs from a patient with influenza thrombotic
microangiopathy in the kidney allograft (patient #1). a Glomerulus with
thrombosis of a capillary loop (phosphotungstic acid hematoxylin stain).
b Cross-section of arteriole: the wall shows splitting and edema; the
lumen is occluded by a thrombus (hematoxylin–eosin stain). Thrombi

consisted of fibrin in addition to packed erythrocytes and thrombocytes.
Some thrombi merged with the arteriolar wall, which then showed fibri-
noid necrosis (reproduced from Petersen and Olsen [37], used with
permission)

Fig. 1 Seasonal distribution and influenza subtypes in patients with
influenza-associated thrombotic microangiopathy (TMA). The occur-
rence of A(H1N1)-linked hemolytic uremic syndrome (HUS) coincides
with the peak of the 2009 pandemic (weeks 40–51). In contrast, the
expected peak of seasonal influenza A is during the first 3 months of
the year [44]
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addition to injuring or activating vascular endothelial cells,
influenza virus may directly affect platelets. A(H3N2) virus
induces clumping of human and rabbit platelets in vitro, and
a rapid drop of platelet counts in vivo after injection of the
virus into rabbits [56]. More recent studies have confirmed
the potential of influenza virus to activate platelets and gener-
ate thrombin [57, 58]. In a prospective study comparing pa-
tients with acute respiratory distress syndrome (ARDS) due to
severe influenza A(H1N1) and bacterial pneumonia with
healthy controls, influenza showed the greatest degree of plate-
let activation measured as the formation of platelet-monocyte
aggregates and activation of αIIbβ3 integrin on platelets [57].

Influenza virus and complement

Complement regulates influenza virus-induced inflammation
in the lung, enhances viral clearance, and protects against
severe influenza infection [59]. Considered an important

upstream mediator of the innate immune system, complement
also bridges innate and adaptive immunity and is tightly
linked to the coagulation cascade [60, 61]. More than 50
known complement proteins are expressed by hepatocytes, but
also by tissue macrophages, blood monocytes, and renal and
gastrointestinal epithelial cells [62]. Complement can be activat-
ed via three recognized pathways: alternative, classical, and
mannan-binding lectin pathways, all resulting in the enzymatic
cleavage of C5, the formation of the membrane attack complex
(MAC) and of potent chemokines [61, 62]. It exerts both pro-
tective and potentially deleterious effects: it protects through
virus neutralization via direct aggregation, opsonization, lysis,
and promotion of phagocytosis involving complement recep-
tors, and indirectly enhances T- and B-cell responses [61].
Complement also contributes to influenza-associated respiratory
tissue injury, e.g., due to the generation of potent proinflamma-
tory peptides [63, 64]. Neutralization of influenza virus in serum
is mediated by the classical complement pathway via virus-
reactive IgM [65]. Complement, complement receptors, and

Table 3 Demographic and clinical details of influenza-associated HUS and TTP

Features HUS TTP

Undefined HUS Genetic complement
dysregulation c

ADAMTS13 < 10%

n = 15 n = 8 n = 2

Demographics Female gender 5/15 (33%) 2/8 (25%) 2/2 (100%)

Age at presentation (years) 14 (3–50) 15 (0.5–35) 57.5 (47–68)

Influenza type A (non-H1N1) 7 – 2

A(H1N1) 8 3 –

B – 4 –

Undefined type – 1 –

Renal status Kidney transplant 2/15 (13%) 1/8 (13%) 0/2

Clinical aspects CNS symptoms 8/15 (53%) 1/8 (13%) 1/2 (50%)

Macrohematuria 6/14 (43%) 2/7 (29%) 0/2

Biological parametersa Creatinine (μM) 327 (132–1,238), n = 11 309 (89–543), n = 8 462 (261; 650)

Platelets (nadir) 21 (5–85), n = 14 25 (8–80), n = 8 6 (6; 6), n = 2

Hemoglobin 77 (50–105), n = 14 92 (57–130), n = 7 108 (66; 150), n = 2

LDH (U/L) 4,142 (847 ≥ 6,000), n = 8 2,810 (300–13,188), n = 8 2,100 (200; 4,200), n = 2

Complement and
coagulation

C3 low 2/8 (25%) 3/7 (43%) NR

ADAMTS13 < 10% 0/2 0/2 2/2 (100%)

FDP 5/7 (71%) NR 1/1

Therapy RRT (dialysis) 8/15 (53%) 1/8 (13%) 1/2 (50%)

Plasma infusion 5/9 (44%)b 1/7 (14%) 0/2

PLEX 6/9 (67%)b 4/7 (57%) 2/2 (100%)

Anti-complement
(eculizumab)

0/15 2/8 (25%) 0/2

FDP fibrin degradation products, LDH lactate dehydrogenase, PLEX plasma exchange, RRT renal replacement therapy
a Peak or nadir (or highest/lowest reported measurement)
b One patient was first treated with plasma infusion, followed by PLEX
c Seven patients with at least one pathogenic mutation (see Table 4); one patient (#13) with presumed membrane cofactor protein mutation (only tested
for CFH, CFHR1, and anti-CFH antibodies)
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natural IgM antibodies appear to contribute to the maintenance
of long-termmemory of the influenza virus. However, influenza
virus particles can activate complement in the absence of anti-
body [64].

Viral activation of the APC in the respiratory tract leads to
ciliary dysfunction in vitro and increased levels of C3a and
C5a in bronchial lavage fluid and serum of patients with se-
vere influenza [66, 67]. Complement C5 activation during
influenza A virus infection contributes to neutrophil recruit-
ment and lung injury in mice [20]. Berdal et al. reported
a > 10-fold increase in plasmatic levels of soluble MAC
(sC5b-9) in patients with severe influenza by the pandemic
A(H1N1) strain, indicating systemic complement activation
[68].

Influenza-associated acute lung injury (ALI) in A(H5N1)-
infected mice has been linked to excessive complement acti-
vation with deposition of C3 and C5b-9, and increased expres-
sion of complement receptors C3aR and C5aR. Treatment
with a C3aR antagonist alleviated pulmonary inflammation
in this model [69]. In another study, prevention of C5a release
dampened inflammatory reactions caused by severe influenza
A virus infection [63]. Treatment with anti-C5 antibody or
C5a blockers inhibited influenza A virus-induced granulocyte
activation and ALI. However, C3 and lytic MAC formation
was protective in controlling murine influenza A virus infec-
tion [59]. The study confirmed earlier results showing delayed
influenza virus clearance from the upper respiratory tract, re-
duced T-cell priming, and viral spreading to the lungs in C3-
deficient mice [70].

Complement abnormalities associated with iHUS

In our literature survey, plasma C3 levels were reported in 14
patients with iHUS; they were reduced in 5 (36%) and C4 was
normal in 11 cases (Table 2). Eight patients, 4 with influenza
A and 4 with influenza B infection respectively, underwent
genetic screening. Seven were found to have AP component
defects, including 3 patients with previous HUS episodes and
a teenager with a renal allograft (Table 4). The latter patient
carried a C3 gain-of-function mutation and had lost two pre-
vious kidney transplants owing to HUS recurrences; he was
successfully treated with eculizumab for influenza-triggered
HUS [33]. In addition, a 15-year-old girl (#13) was reported
to have a suspected MCP mutation (based on the history of
frequently relapsing aHUS that resolved spontaneously). The
genetic workup was incomplete and showed normal C3 and
C4, factor H, and factor I levels, undetectable CFH antibody,
and lack of CHF mutation or CFHR1 deletion (Aysun Çaltik,
personal communication). Interestingly, all four children with
influenza B-associatedHUS, published in 2017, carried one or
more mutations of complement-related proteins [22, 23].
Although the number of genetically tested iTMA patients is

small, we noted a high representation of C3 (3 out of 7) and
MCP mutations (4 out of 7), combined with mutations of the
clusterin and CFB genes respectively (Table 4).

Ten of the 25 reported patients with influenza-related TMA
in our survey (40%) were involved in the 2009 A(H1N1)
pandemic (Table 1). Some authors raised the question of
whether the pandemic A(H1N1) strain poses an increased
HUS risk [45]. This hypothesis is interesting in light of the
case series by Berdal et al., who noted evidence for vigorous
complement activation (and a tenfold increase in MAC levels
in plasma) in patients with severe (complicated) influenza
infection (none had HUS) [68].

We postulate that infections by microbial agents with po-
tent complement-activating capacities, including certain influ-
enza virus strains, confer an enhanced risk of inducing HUS in
patients with APC regulator protein haplo-insufficiency. Data
from various laboratories suggest a complex interplay be-
tween environmental factors (such as highly-active comple-
ment-activating biological agents) and risk haplotypes (com-
bined mutations or risk polymorphisms) [1, 71], which may
contribute to the variable, incomplete penetrance of genetic
forms of aHUS.

TMA following influenza vaccination

Thrombotic microangiopathy has been linked to influenza
vaccines in a few adults since at least 1973 (median age
51 years, range 23–56 years). Analysis of five accessible re-
ports showed a median interval of 2 weeks (4 days to
3 months) between immunization and onset of HUS (n = 2)
and (presumed) TTP (associated with depleted ADAMTS13
activity and/or increased anti-ADAMTS13 antibodies; n = 3)
[43, 72–75]. Direct and indirect Coombs tests were negative
in 3 out of 3 patients, and 1 out of 2 patients demonstrated
increased FDP levels. One patient tested negative for anti-
CFH antibodies (#4), but no other complement studies were
performed or reported (see Table 6). Disease manifestations
and severity were highly variable: HUS cases (#1 and #5)
were relatively mild, and both patients recovered with sup-
portive treatment, with or without added prednisone [43,
72]. In contrast, TTP patients underwent prolonged PLEX,
rituximab (#3 and 4) [74, 75], or vincristine treatment and
splenectomy (#2) [73].

The pathomechanism linking TMAwith influenza vaccines
is poorly understood. The clinical phenotype and spectrum or
TMA (HUS, TTP) following natural influenza infections and
post-vaccination are comparable. However, none of the 5 pa-
tients required renal replacement therapy. As with iHUS and
idiopathic TTP (iTTP), complement studies and screens for
APC and related gene mutations are necessary for a rational
treatment strategy. Similar to natural infections, flu vaccines
may induce anti-ADAMTS13 antibodies [48] and activate
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complement directly and cause HUS in patients with certain
risk haplotypes [71].

Neuraminidase and the link between influenza and
Streptococcus pneumoniae infections

Streptococcus pneumoniae, a Gram-positive, α-hemolytic,
facultative anaerobic bacterium commonly colonizes the hu-
man nasopharynx. Commensal strains form biofilms without
causing disease [76]. Pathogenic strains are responsible for
invasive pneumococcal disease (IPD), including pneumonia,
otitis media, meningitis, and peritonitis arising from the respi-
ratory tract [77, 78].

Influenza virus is known to increase host susceptibility to
(severe) S. pneumonia infection [79]. There is bi-directional
interaction between these two pathogens [45, 79].
Neuraminidase (Nan) is an important virulence factor of path-
ogenic pneumococcal strains, supporting colonization and
sepsis in vivo [80]. Ubiquitous NanA hydrolyzes α2,3-,
α2,6-, and α2,8-sialyllactose to release N-acetyl-neuraminic
acid (Neu5Ac) [50]. Viral and pneumococcal NAs possess
distinct quaternary structures, but their active sites are similar
and susceptible to neuraminidase inhibitors (NAIs), such as
oseltamivir [81, 82].

The risk of pneumococcal pneumonia rises transiently by
an estimated 100-fold following influenza [79, 83].
Importantly, IPD has also been associated with HUS (pneu-
mococcal or pnHUS), mostly with pneumonia/pleural empy-
ema or (pneumococcal) meningitis [78, 84].

HUS caused by S. pneumoniae infection was first de-
scribed by Fischer et al. in 1971 [85]. It predominantly affects
children <2 years of age and constitutes up to 5% of all pedi-
atric cases of HUS [86]. S. pneumoniae-derived circulating
Nan cleaves membrane sialic acid residues, unmasking a core
disaccharide structure, Galβ1-3GalNAcα1, known as
Thomsen–Friedenreich (TF) antigen, on red blood cells, plate-
lets, and glomerular endothelial cells. One hypothesis states
that preformed IgM binds to TF antigen and induces a cascade
of events leading to HUS [77]. Alternatively, desialylation of
membrane proteins may interfere with CFH binding and reg-
ulatory function, resulting in transiently unregulated APC ac-
tivation as a cause of HUS. A recent study by Szilágyi et al.
demonstrated signs of complement activation in all five de-
scribed patients with pnHUS; three of them carried pathogenic
mutations and potential risk haplotypes [87].

pnHUS patients are commonly Coombs test-positive, a
feature that has been related to Nan-mediated desialylation
[3, 84, 85]. By comparison, the direct Coombs test was neg-
ative in 7 of the examined iHUS patients (Table 2). Cold
agglutinins were noted in a single case (#1; Table S1) [37],
but their significance is unclear. Influenza virus produces
quantitatively less NA than pneumococci. Viral NA is

membrane-associated [18, 81], but may suffice to transiently
disturb APC control. Of note, influenza virus-mediated
desialylation of cell membrane glycans has been linked to
vigorous C3b deposition and alternative pathway activation
[88].

Influenza NA catalyzes cleavage of terminal sialic acid
residues on epithelial membrane glycoproteins and glyco-
lipids, providing mucin as a carbon source for rapidly increas-
ing pneumococci leading to enhanced bacterial loads and se-
vere infection/pneumonia [79, 89]. Similar metabiotic mech-
anisms have been postulated for influenza virus, and
H. influenzae and S. aureus respectively, in addition to NA-
producing parainfluenza virus [90]. We identified one case of
influenza A iHUS that was complicated by S. pneumoniae
infection and associated with unmasking of the TF antigen
(case #8, Table S1) [41].

McCullers noted that treatment with NA inhibitors protects
against secondary bacterial pneumonia, possibly because of
medication-induced, reduced availability of viral NA [91]. It
is intriguing to hypothesize that NA contributes to the growth
of sialic acid-dependent pneumococci and alters complement
resistance and APC regulation, including the binding of CFH
on human tissue [24, 42]. Consequently, NA inhibitors may
interfere with virus-induced complement dysregulation.

Influenza TMA in kidney transplant recipients

Kidney biopsies, where obtained during acute and post-acute
iHUS reveal varied features [25, 33, 37, 38, 92, 93] that rep-
licate key findings described in other forms of HUS [3], in-
cluding endothelial cell swelling and luminal narrowing, focal
mesangiolysis, intravascular deposition of fibrin, and diffuse
granular staining for C3 [25, 33, 37, 92, 93], and in some
cases, for IgG or IgM [25, 37, 92]. No electron-dense deposits,
virus-like particles or tubuloreticular inclusions were de-
scribed [93]. The latter authors failed to demonstrate influenza
A H3-specific hemagglutinin RNA using nested RT-PCR in
the renal tissue [93].

Laboratory diagnosis in patients with suspected
iHUS

All patients with HUS associated with seasonal or epidemic
influenza should undergo rapid testing for ADAMTS13 activ-
ity, plasma C3, global hemolytic capacity (CH50 and AH50),
circulating MAC (sC5b-9) and anti-CFH antibodies, in addi-
tion to genetic studies targeting HUS-associated complement
and coagulation factors (Fig. 3). The detection in plasma of
fibrin/fibrinogen degradation products (FDP; d-dimers), but
not overt disseminated intravascular coagulation is common
and does not preclude the diagnosis of HUS (Table 2) [29, 32,
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36, 38, 39]. Blood samples for complement protein and func-
tional measurements must be taken before initiation of plasma
or anti-complement therapy [94]. TTP is suspected in patients
with MAHA with very low platelet counts and mild renal
injury [5]. Interestingly, the 2 patients in this survey with bona
fide TTP had a substantial rise in serum creatinine and one of
them was dialyzed (Table 3). The presence of complicating
pneumococcal pneumonia or sepsis should be ruled out in any
case of (suspected) iHUS using blood cultures, direct Coombs
test, coagulation studies, rapid antigen detection or nucleic
acid-based assays, and evidence for NA activity (Fig. 3) [78,
84].

Therapeutic management, outcome and prevention

Patients with influenza-associated TMA benefit from best
supportive care, similar to other forms of HUS [3, 84]. The
outcome of iHUS is generally favorable; in our analysis, 3 out
of 22 patients died (14%; #3, 4, and 9; all before 2008). Death
was attributed to cardio-respiratory failure and/or CNS com-
plications. All but one survivor recovered renal function after
a median of 3 weeks (range 11–62 days; Table 2). In one of the

kidney transplant recipients, active TMA only ceased after
graft nephrectomy. Interestingly, the patient was successfully
retransplanted without preventive measures (#1) [37]. There
were no fatal outcomes or development of CKD during the
A(H1N1) pandemic and the recent era (Table S1).

In comparison, STEC HUS is associated with mortality
rates in children of <4% during the acute illness, irrespective
of the infecting STEC serotype [78, 95], and about 20% de-
velop generally minor, long-term renal dysfunction [78, 96].
Mortality rates of pnHUS vary between 2 and 12% (up to 37%
in those with pneumococcal meningitis) [78, 86, 97, 98], and
are comparable with those found in the current iHUS survey.
Analyses of S. pneumoniae- and influenza-associated HUS
series are confounded by small numbers and an unknown
proportion of patients with complement regulator defects
[22, 87].

The efficacy, tolerability, and safety of NA inhibitors for
the prevention and management of influenza infections have
been demonstrated in large clinical trials that also included
infants [99]. Flu vaccination reduces the incidence of pneu-
mococcal HUS [78]. Oseltamivir also improved the outcome
of secondary pneumonia, and subsequent treatment with an
antibiotic led to 100% survival in a murine influenza infection

Suspected influenza HUS

PCR / viral culture
Rapid an�gen detec�on assay

Previous HUS or 
family history of HUS ?

Confirma�on of 
influenza infec�on a

Confirma�on of TMA
Accessory tests
CRP, immuno-
globulins
Coombs test
Coagula�on 
tests, FDP b

Basic tests
Complete blood cell 
count and smear
Re�culocytes, LDH
Haptoglobin

“Complement” HUS (“aHUS”)
triggered by influenza infec�on

Func�onal/protein complement 
diagnos�c
Plasma C3, CFB, CFH
sC5b-9, CH50, AH50
CFH an�bodies

Complete gene�c muta�on screen
(“aHUS” panel)
”Risk haplotype” determina�on c

Determine/rule out:
Influenza HUS ?

TTP ?
IPD / pnHUS ?

Influenza TTP

TMA confirmed

TF an�gen 
Coombs

Bacterial cultures (incl. blood cultures)
Pneumococcal an�gen or RNA amplifica�on

ADAMTS13
Ac�vity <10%

pnHUS

Influenza HUS

Fig. 3 Diagnostic algorithm for influenza HUS and related thrombotic
microangiopathies. a Influenza (or parainfluenza) virus; b the detection in
plasma of fibrin/fibrinogen degradation products (such as d-dimers), but
full-blown disseminated intravascular coagulation is not common and
does not preclude the diagnosis of HUS; c combined complement regu-
lator or coagulation protein mutations (e.g., membrane cofactor protein
[MCP] and complement factor H (CFH) or single nucleotide

polymorphisms (SNPs) in promoter regions [71]. aHUS atypical HUS,
CFB complement factor B, CRP C-reactive protein, FDP fibrin/
fibrinogen degradation products, IPD invasive pneumococcal disease,
LDH lactate dehydrogenase, pnHUS pneumococcal/neuraminidase
HUS, PCR polymer chain reaction, TF antigen Thomsen–Friedenreich
antigen (Galβ1-3GalNAcα1), TMA thrombotic microangiopathy, TTP
thrombotic thrombocytopenic purpura
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model [91]. However, there is no experimental model of iHUS
or iHUS/TTP prevention, and current evidence is lacking as to
whether NA inhibitors prevent or ameliorate influenza TMA.
In our analysis, 71% of treated and reported patients received
the NA inhibitor only after the diagnosis of HUS had been
made (Table 2).

Individual and population immunity against endemic or
epidemic influenza strains is expected to reduce the occur-
rence of iTMA. However, the immunization history is rarely
mentioned in the available case reports. Furthermore, the no-
torious variability of the predicted antigen changes hampers
the efficacy of influenza A vaccines [17]. Although vaccina-
tion has been linked to HUS or TTP in a few instances
(Table 5), data are scarce and should not be construed as an
argument against active immunization. In contrast to natural
infections, vaccination allows monitoring for signs of post-
vaccination TMA and prompt intervention in persons with a
history of (atypical) HUS.

Is there a role for plasma infusion, PLEX
or anti-complement agents in iHUS?

Our survey covers a period of 46 years representing different
eras, seasonal and epidemic influenza strains (Table 1), and
therapeutic approaches (Tables 2, S1). Overall, 16 out of 24

patients with available data received any plasma therapy
(67%): 5 were treated with plasma infusions and 12 were
treated with PLEX (1 patient received both modalities;
Table 2). Two patients were given eculizumab: patient #16,
carrier of a C3 gain-of-function mutation, who had lost two
previous renal allografts owing to recurrent HUS [33], re-
ceived eculizumab when HUS recurred in the third allograft
during the A(H1N1) influenza pandemic. Patient #25 was a 6-
month-old infant with influenza B-associated HUS who re-
ceived eculizumab when he relapsed while recovering from
his first episode of aHUS. He was later shown to have a het-
erozygous MCP mutation (Table 4) [23].

Treatment of iHUS hinges on the direct effects of the influ-
enza infection, complicating bacterial pneumonia, Bbest^ sup-
portive care, including dialysis and blood products, if needed,
and plasma or anti-complement therapy (e.g., eculizumab),
particularly in the presence of complement regulator deficien-
cies (Table 6). Recommendations for Batypical^ HUS, includ-
ing anti-complement agents or PLEX, should be implemented
in patients with iHUS who present functional or genetic evi-
dence for complement dysregulation or have a previous his-
tory of (atypical) HUS, a positive family history of (a)HUS, or
HUS recurrence after kidney transplantation (Table 6). In the
case of profound ADAMTS13 depletion and suspected TTP,
most authors recommend PLEX and immunosuppressive
therapy [2, 84, 94].

Table 6 Treatment of influenza-associated TMA

Treatment Details Comments/references

Best supportive care Respiratory support

Intravascular volume status

Blood pressure control

Blood products (PRBC, platelet transfusion)

Diuretics Only after sufficient intravascular volume

Renal replacement therapy HD, PD, CRRT Based on tolerability, circulatory, and cardiac stability
Expertise and equipment availability

Antimicrobial therapy NA inhibitors (e.g., oseltamivir) Potential to prevent HUS if given early during infection (or at
exposure?) [97]. Preventive efficacy remains to be
proven

Antibiotics (3rd generation cephalosporins
and others)

Antibiotics reduce rates of complicating bacterial
pneumonia and possibly pnHUS [79, 89]

Plasma and anti-complement
therapy

Plasma exchange (PLEX)
(Plasma infusion, PI)

Option for patients with complement dysregulation
and/or evidence of autoimmune TMA/TTP
(anti-CFH or anti-ADAMTS13)

PI restricted to unavailability of PLEX
Note: spontaneous recovery of iHUS may occur

(see Tables 2 and S1)

Anti-complement antibody Treatment of choice for children with iHUS and
suspected or proven complement dysregulation
(pathogenic mutation, relapsing/recurrent HUS)
[23, 33]

CRRT continuous renal replacement therapy, HD hemodialysis, NA neuraminidase, PD peritoneal dialysis, pnHUS pneumococcal/neuraminidase-
associated HUS, PRBC packed red blood cells, TMA thrombotic microangiopathy, TTP thrombotic thrombocytopenia
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Conclusions and future areas of research

Influenza-associated HUS or TMA is rare. It has been linked
to influenza A and influenza B infections and, in several in-
stances, pathogenic complement gene mutations. The out-
come is generally favorable, but depends on underlying com-
plement gene deficiencies and/or the presence of CFH or
ADAMTS13 autoantibodies. Identification of the etiology
and differentiation between HUS due to complement dysreg-
ulation, where the Influenza virus may act as a potent trigger,
and influenza-associated HUS without identifiable comple-
ment abnormalities, are critical for acute and long-term
management.

The term Batypical^ HUS has been originally coined to
describe a heterogeneous group of infrequent forms of HUS
not associated with STEC colitis. The current, interchangeable
use of the epithet Batypical^ that may or may not include HUS
owing to pneumococcal infection and various metabolic and
other conditions, including Bsecondary^ forms of HUS [1, 7]
and HUS strictly caused by complement dysregulation
(Bprimary complement-mediated HUS^ or BHUS with dys-
regulation of the APC^ [2]), leads to confusion about the
etiology of and appropriate therapy for different forms of
HUS. We argue in favor of etiologically defined designations
that correspond to different pathomechanisms and lead to ra-
tional, mechanism-targeting therapies [2, 3, 94].

As detailed in this review, the pathogenesis of influenza
virus-induced TMA is varied. It is intriguing to hypothesize
that influenza-derived NA plays a causative role. Membrane
glycan desialylation by functionally active, virus membrane-
bound NA may cause transient loss of resistance to APC ac-
tivation on epithelial and/or vascular endothelial cells.
Alternatively, virus-specific, alternative mechanisms of
(microvascular) endothelial injury resulting in an HUS pheno-
type need be explored. Both warrant further studies.

The diagnostic workup in most of the reviewed cases is
incomplete from today’s perspective. Some influenza strains
appear to be potent alternative pathway activators in vivo [68]
and therefore trigger HUS in non-immune individuals,
uncovering specific regulator haplo-insufficiency or changes
in noncoding complement gene sequences [71]. Although the
number of genetically studied iHUS cases is small, it is no-
ticeable that all identified patients carried mutations in the
MCP or C3 gene, occasionally combined with other muta-
tions. Further delineation of Brisk haplotypes^ and specific
microbial agents or their products could have therapeutic
and preventive implications and will advance our understand-
ing of this intriguing disease group.

At present, general treatment recommendations for iHUS
and iTTP are lacking. In view of the high proportion of pa-
tients with APC dysregulation, PLEX or anti-complement
agents constitute a reasonable therapeutic approach, while
striving for a rapid and comprehensive etiological diagnosis.
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