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Abstract Wide ranges of age and weight in pediatric patients
makes renal replacement therapy (RRT) in acute kidney injury
(AKI) challenging, particularly in the pediatric intensive care
unit (PICU), wherein children are often hemodynamically un-
stable. Standard hemodialysis (HD) is difficult in this group of
children and continuous veno-venous hemofiltration/dialysis
(CVVH/D) has been the accepted modality in the developed
world. Unfortunately, due to cost constraints, CVVH/D is of-
ten not available and peritoneal dialysis (PD) remains the
common mode of RRT in resource-poor facilities. Acute PD
has its drawbacks, and intermittent HD (IHD) done slowly
over a prolonged period has been explored as an alternative.
Various modes of slow sustained IHD have been described in
the literature with the recently introduced term prolonged in-
termittent RRT (PIRRT) serving as an umbrella terminology
for all of these modes. PIRRT has been widely accepted in
adults with studies showing it to be as effective as CVVH/D
but with an added advantage of being more cost-effective.
Pediatric data, though scanty, has been promising. In this

current review, we elaborate on the practical aspects of under-
taking PIRRT in children as well as summarize its current
status.
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Introduction

Acute kidney injury (AKI) continues to contribute significant-
ly towards morbidity and mortality in critically ill children and
there has been an ongoing intense search to identify any early
interventions [1]. Recent trials have generated some evidence
in favor of avoidance of fluid overload as well as early initia-
tion of renal replacement therapy (RRT) in reducing mortality
[2–4]. AKI in pediatric intensive care units (PICU) is often
secondary to sepsis/shock and these children are usually hy-
potensive and on various types of vasopressor support despite
being fluid overloaded [3, 5]. Standard extra-corporeal RRT
such as conventional intermittent hemodialysis (IHD) in this
subgroup of AKI can be problematic since it is likely to ag-
gravate hypotension and precipitate catastrophic events [5–7].
Peritoneal dialysis (PD), although feasible even among hemo-
dynamically unstable patients [8], does have its drawbacks
[9–11]. There is the theoretical risk of intra-peritoneal disten-
tion and worsening of ventilation parameters among ventilat-
ed children, although clinical evidence has been contrasting
[11–14]. Moreover, unlike HD, one cannot control the rate of
ultra-filtration in PD, which can be erratic [8–10]. Hence,
continuous veno-venous hemofiltration/dialysis (CVVH/D)
has been preferred, especially in developed countries, for a
slow but continuous mode of extra-corporeal RRT
[2, 15–17]. Unfortunately, CVVH/D requires expensive
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sophisticated machines and consumables, trained staff, and is
usually very labor intensive. Hybrid therapies providing RRT
over an extended period but on an intermittent basis
(prolonged intermittent RRT i.e., PIRRT) using standard HD
machines has been envisaged to include the best of both these
worlds, i.e., slow sustained modality of CVVH/D ensuring
hemodynamic stability and better biochemical clearance along
with cost-effectiveness of conventional IHD (Table 1).
Although evidence has accumulated in its favor, this has pri-
marily been among adults, with pediatric literature still scanty
[18–27]. In this review, we aim to summarize the current sta-
tus of PIRRT with a focus on children.

Definition of prolonged intermittent renal
replacement therapy (PIRRT)

Broadly speaking, any extracorporeal mode of RRT given
intermittently over a prolonged session (i.e., ≥6 h) can be
defined as PIRRT [28]. Hence the original description of he-
modialysis by Kolff (duration = 690 min, blood flow of
116 ml/min) could be described as the initial PIRRT [29,

30]. Subsequent development in the field of HD saw the ac-
ceptance of standard IHD as 3–4 h duration with a high blood
flow (Qb) and dialysate flow (Qd). The concept of hybrid
therapy combining the efficiency of HD and the hemodynam-
ic stability of CVVHwas re-explored by Kudoh in 1988 (slow
continuous HD), and after its use by Schlaeper et al. among a
cohort of critically ill adults, it has become quite in vogue
[31–33]. Thereafter, various modifications in dialysis pre-
scription have been undertaken, primarily influenced by avail-
able machines and the dialysis unit requirements, such as the
type of case loads encountered, resource needs, and available
expertise. Table 2 explains the multiple terminologies in use
describing the hybrid varieties of extra-corporeal RRT. The
use of PIRRT as an umbrella terminology describing both
diffusive and or convective methods of extended extra-
corporeal blood purification is becoming the accepted norm.
In this review, the term PIRRT and sustained low-efficiency
HD (SLED) will be used interchangeably. Although the dura-
tion has been fixed as ≥6 h, rate of Qb and Qd can be variable.
Overall Qb is usually ≤5 ml/kg/min and Qd ≤ twice the Qb.
Lack of a rigid definition is often construed as a major disad-
vantage but can be in fact advantageous in its flexibility both

Table 1 Comparison of various modalities

IHD CRRT PIRRT Peritoneal dialysis

Machine Standard IHD machine Standard CRRT machine Can be done by standard
IHD machine

Can be even done manually without any
aid of machine, i.e., cyclers

Mode of clearance Primarily diffusion Diffusion, convection, or
both

Diffusion, convection (not
allowed in USA), or
both

Both diffusion and convection

Qb (ml/min) 5–10 ml/kg/min 3–5 ml/kg/min 3–5 ml/kg/min NA

Qd 500–800 25–30 ml/kg/h 100–300 ml/min

Standard duration 3–4 h Continuous 6–12 h Usually is a continuous process until
renal recovery. If using a stiff catheter,
it should not be kept for >72 h

Frequency of
procedure

3 days/week Continuous 3–7 days/week As above

Timing of
procedure

Usually daytime Continuous Daytime or night As above

Anticoagulation Heparin/saline Heparin/citrate/saline rarely Heparin/saline Can be added in the PD fluid without
any risk of systematic
anti-coagulation

Vascular access AVF/AVG/CVC CVC CVC NA. Needs a catheter to access the
peritoneal cavity. This can be stiff or
soft catheters like Tenkoff

Intensity of nursing Low High Low to moderate Low

Patient location ICU, ward, step-down
unit

ICU ICU or step down unit Can be done even in the ward if the
child is stable

Cost + +++ ++ + (With use of stiff catheter the
cost is minimal)

AVF arteriovenous fistula, AVG arteriovenous graft,CVC central venous catheter, CVVH continuous veno-venous hemofiltration/dialysis, ICU intensive
care unit, IHD intermittent hemodialysis, PIRRT prolonged intermittent renal replacement therapy, PD peritoneal dialysis, Qb blood flow, Qd dialysate
flow, USA United States of America
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in terms of duration and intensity, which can be adjusted as per
patient requirement and the HD unit’s capability.

Indications for PIRRT

Indications for initiating RRT in a pediatric intensive care unit
(PICU) are varied and include [43, 44]:

& Non-obstructive oliguria with fluid overload 10% above
baseline.

& Refractory metabolic acidosis or hyperkalemia
& Uremic organ involvement (pericarditis, encephalopathy,

neuropathy, myopathy)
& Severe refractory dysnatremia (Na+ > 160 or <115 meq/l)
& Overdose with a dialyzable drug
& Neonatal hyperammonemia and other inborn errors of

metabolism
& Coagulopathy requiring large amounts of blood products

in patients at risk of pulmonary edema or acute respiratory
distress syndrome (ARDS)

& Refractory edema not responding to high-dose diuretics.

The uniqueness of children admitted to the ICU does influ-
ence the choice of mode of RRT. Critically ill children usually
end up having a high obligatory fluid requirement due to
hyper-catabolic state. Other reasons are the need for blood
products to combat co-existing coagulopathy and multiple
antibiotics and inotrope infusions. In the presence of
oliguria/anuria, administering a high volume of intravenous
fluid is likely to precipitate pulmonary edema. This mandates

removal of fluid by RRT (ultrafiltration (UF)), but is challeng-
ing as these children are often hypotensive and on multiple
vasopressor support. The hemodynamic advantage of CVVH/
D over IHD has been attributed to a slower UF rate, as the
same UF goal is achieved over 24 h instead of the standard 3–
4 h. PIRRT also has a similar advantage but at a lower cost
[18–27]. Additionally, unlike CVVH/D, PIRRT allows suffi-
cient time for any ancillary procedures/treatments such as im-
aging or surgical interventions. The choice of PIRRT or
CVVH/D is also influenced by availability of CVVH/D ma-
chines and trained staff, as well as cost implications. As evi-
denced by various reports primarily consisting of adult stud-
ies, PIRRT can be used as the initial modality as well as in
transition from CVVH/D to IHD once the patient is stable
enough to discontinue CVVH/D, but still not sufficiently he-
modynamically stable to sustain IHD [13–17]. Although
PIRRT is still not the primary mode of RRT, surveys have
pointed to it being increasingly acknowledged as a feasible
mode of dialysis in the adult ICU [45–48].

Dialysis setup required for PIRRT

The setup for PIRRT is classically similar to IHD with some
modification to the HD machine.

Machines for PIRRT

The prerequisite for performing PIRRT is the ability to
extend the dialysis session length beyond the conventional
4–5 h of IHD and the ability to vary the Qb and Qd. Hence,
any machine with the ability to lower the Qb/Qd and in-
crease the duration of HD can be used for PIRRT.
Traditionally, the same machines used for IHD have been
tweaked to cater for PIRRT to make it cost-effective. In
fact, in a busy HD unit it may be economical to use the
same machine for maintenance IHD during daytime and
for PIRRT overnight. Unfortunately, few HD machines
are able to provide the low range of Qb/Qd, which are
often required for critically ill hemodynamically unstable
small children. Fresenius Medical Care Company has been
the pioneer in marketing HD machines with additional
specification for PIRRT. These machines can be classified
as single pass (uses dialysate generated online from reverse
osmosis purified water and bicarbonate proportioning sys-
tem) or batch machine (dialysate generated from
prepackaged salts and sterile water that is stored in the
machine). The single-pass machines such as the 2008,
4008, and now 5008 series, or the batch dialysate machine
such as the Genius machine, have been used worldwide
[20, 38–42].

The advantages of batch dialysate machines include:
user friendliness, ultrapure dialysate, and no need for on-

Table 2 Terminologies used to describe various modes of prolonged
intermittent hemodialysis

Various terminologies that have been interchangeably used in medical
literature but nowadays falls under the umbrella term of prolonged
intermittent renal replacement therapy (PIRRT):

a) S- HDF: Sustained hemodiafiltration- Abe and colleagues, Japan,
2010 [22]

b) SLED: sustained low-efficiency dialysis- Berbece and colleagues,
Canada, 2006 [34], Clark and colleagues, USA, 2008 [35], Fiaccodori and
colleagues, Italy, 2013 [36], Marshall and colleagues, USA, 2001 [23]

c) SLED-BD: sustained low-efficiency dialysis with single-pass batch
dialysate- Schwenger and colleagues, Germany, 2012 [37]

d) ED- extended dialysis- Kielstein and colleagues, Germany, 2004 [38]

e) EDD- extended daily dialysis- Kumar and colleagues, USA, 2000 [39]

f) E-HFD- extended high-flux hemodialysis;- Lonnemann and
colleagues, Germany, 2000 [40]

g) PIRRT- prolonged intermittent renal replacement therapy; Albino
and colleagues, Brazil, 2015 [41]

h) PDIRRT- prolonged daily intermittent renal replacement therapy -
Naka and colleagues, Australia, 2004 [24]

i) SLED-F: sustained low-efficiency dialysis with convection [42]

Pediatr Nephrol (2018) 33:1283–1296 1285



the-spot water purification, as access to ultrapure water
(required for high flux dialyzers and hemodiafiltration) is
available in a limited number of ICUs. The Genius (batch
dialysate) machine utilizes a dual-headed roller pump for
both blood and dialysate flow; hence the ratio of Qb/Qd is
1 with this machine. The dialysate is contained in a 75- or
90-l jacketed tank to maintain thermal stability; fresh dial-
ysate, which has a lower specific gravity, is drawn from the
top of the tank while spent dialysate with a higher specific
gravity is discharged into the bottom of the tank. An ultra-
violet tube is located in the center of the tank to prevent
bacterial contamination and growth. The machine requires
dedicated tubing sets, which do not have a bubble chamber.
This avoids an air–blood interface and decreases clotting
risk. Using a flow of 70 ml/min and a 75-l dialysate tank, a
session of 18 h can be carried out with a single batch of
dialysate. A separate ultrafiltration pump removes a por-
tion of the dialysate from the closed loop into a separate
receptacle.

Single-pass machines from various manufacturers have
been more frequently utilized for PIRRT, and a comparison
of some of the commonly available machines is shown in
Table 3. The ArrT plus 5008 series, the AK200 Ultra ma-
chines, and the ARTIS machine possess additional unique

features of cold sterilization or ultrafiltration of the dialysate,
which results in a 4-log reduction of bacteria and a 2-log
reduction in endotoxin, producing a sterile, pyrogen-free fluid
suitable for intravenous infusion. This enables them to add
convection clearance (though not allowed in the United
States of America) to the predominant diffusion clearance of
standard HD machines. This has been described as sustained
low-efficiency daily diafiltration (SLEDD-f). They do require
ultrapure water and sterile dry powder concentrates for the
dialysate preparation. High flux dialyzers or hemo-filters from
the AV 600 series, having UF coefficients >20 ml/mmHg/h,
are required for this treatment. At least a part of the replace-
ment fluid should be delivered pre-filter and the blood flow
has to be proportionally higher than usual in order to avoid a
filtration fraction >20%. Giving part of the replacement fluid
pre filter reduces the viscosity of the fluid caused by the high
ultrafiltration rates and therefore decreases the chances of filter
clotting. The volume of fluid required is higher with pre-
dilution but not necessarily so when only a part of it is given
pre filter. Moreover, as the fluid is prepared online, cost is not
a major issue (around USD 0.14 per liter in an Indian center).
Blood flow needs to be higher in post- as compared to pre-
dilution replacement in order not to exceed the chosen filtra-
tion fraction.

Table 3 Machines for prolonged intermittent renal replacement therapy (PIRRT)

Parameter Machine

Fresenius 4008
NG

Fresenius ArrT
plus

Fresenius 5008S Althin (Tina) AK Series
(Gambro)

Diamax

Blood flow (ml/min) 5–500 5–500 5–500 50–500 20–500 15–600

Dialysate flow (ml/min) 300, 500, and 800 200, 300, 500,
and 800

100–1000 in
increments of
100

300–1000 in
increments of
100

300–700 in
increments of
100

300–700 in
increments of
100

Heparin pump Syringe Syringe Syringe Syringe Syringe Syringe

Ultrafiltration 1 ml/h to a
maximum of
9990 ml

1 ml/h to a
maximum of
9990 ml

1 ml/h to a
maximum of
9990 ml

10 ml/h to a
maximum of
3600 ml/h

0–4000 ml/h 100–5000 ml/h

Maximum treatment time 10 h 10 h 24 h 12 h 24 h 6 h

Compatibility with
multiple dialyzer and
tubing sets

Yes Yes Dedicated tubing
sets

Yes Yes Yes

Sodium and ultrafiltration
profiling

Custom Custom Custom Flexible Custom Flexible

Dialysate sodium/
conductivity range

128–148 meq/l 128–148 meq/l 128–148 meq/l 131–160 meq/l 130–150 10–17 mS/cm

Dialysate temperature
range

35–39 °C 35–39 °C 35–39 °C 35–39 °C 30–39 °C 30–40 °C

Dry powder concentrate
use*

Yes (Bibag) Yes (Bibag) Yes (Bibag) No Yes (Bicart) No

Online replacement fluid
preparation

No Yes Yes No Yes No

Heated citrate disinfection Yes (85 °C) Yes (85 °C) Yes (85 °C) Yes (90 °C) Yes (85 °C) Yes (65 °C)

System self-test Yes Yes Yes Yes Yes Yes
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Prerequisites for performing SLEDD-f:

1. Sterile dry powder concentrates (Bicart and Bibag): This
has replaced the liquid bicarbonate concentrate, which
traditionally predisposes to bacterial growth. The acid
concentrate is also a powder or a liquid with a low pH,
depending on the configuration of the machine.

2. Ultrapure water: This is generated by either a system in
the ICU or a portable reverse osmosis (RO) system. The
European Union (EU) standard of ultrapure water (bacte-
rial count of 0.1 cfu/ml and an endotoxin level of 0.03 EU
/ml) needs to be consistently maintained. Several systems
have been utilized to provide this, including double-pass
(RO) and an electro-deionizer or an ultrafiltration system
online. The important feature of any system is elimination
of a storage tank and a frequent disinfection cycle at least
daily, preferably with heat.

3. Cold sterilization or controlled ultrafiltration: This tech-
nology pioneered by Gambro and now available with
Fresenius and other users makes use of 2 or 3 ultrafilters
in the dialysate flow path operating in cross flow mode.
The ultrafilters have a pore size of 0.05 μm, surface area
of >2 m2 and are located after the dialysate mixing cham-
ber. The dialysate is thus filtered prior to being delivered
to the dialyzer with a 2-log reduction in its bacterial and
endotoxin load. A portion of the dialysate is then passed
through a second ultrafilter repeating the process, and this
fluid which is sterile and has a 10,000 times lower con-
centration of endotoxin than normal dialysate is delivered
directly into the blood circuit at a predetermined rate. The
integrity of the ultrafilters is cyclically tested using a pres-
sure holding test.

The process of cold sterilization by ultrafiltration was val-
idated by Lebedo [49] for the Gambro system. It was shown
that whereas 90% of the incoming water had bacterial growth
and 35% had endotoxin detectable after three ultrafiltrations,
no bacteria could be detected even in 30 l of infusate fluid.
Similarly, Vasalaki validated the Fresenius system on 216
samples and showed levels in online substitution fluid com-
parable with that in commercially available bags meeting
pharmacopeia standards [50]. Thus, the online system allows
an almost unlimited supply of a sterile bicarbonate-based sub-
stitution fluid for replacement. The online plus system delivers
the replacement fluid into the venous or arterial bubble cham-
ber according to the rate set for the substitution pump, while
the machine’s software ensures that the ultrafiltration pump
removes an amount equal to the sum of replacement fluid
and desired ultrafiltration from the blood compartment. The
5008 system has two substitution pumps with the ability to
deliver replacement fluid either pre- or post-filter or both. One
dry powder bicarbonate cartridge generally allows around 160
to 200 l of dialysate generation. With a dialysate flow of

100 ml/min and a replacement of 30 ml/kg/h for a 20-kg child,
a treatment could actually be run for 24 h, making it evenmore
efficient than CRRT.

Extra-corporeal circuit

Similar to IHD, the extra-corporeal volume (volume of blood
tubing + dialyzer) should be less than 10% of the child’s total
blood volume for PIRRT. If this is not possible, even with the
use of size-specific blood tubing, one may need to prime the
tubing + dialyzer with either colloid or crystalloid. The dia-
lyzer used can be the same as in IHD (appropriate for the body
surface area of the child). High flux dialyzers or hemofilters
(AV series-Fresenius) will be needed if hemofiltration, i.e.,
convection component of clearance is to be added. The FX
Paed dialyzer from Fresenius made of helixone deserves a
special mention as it is suitable for very small children with
a surface area of 0.2 m2, and requires a priming volume of just
18 ml. This dialyzer has a clearance of 65 to 75 ml/min and a
UF coefficient of 7 ml/h/mmHg at blood flow rate of 30–
100 ml/min. The large UF coefficient in such a small dialyzer
allows ease of use for PIRRT even with additional convective
clearance.

Prescription for PIRRT (Table 4)

PIRRT is more commonly done in the PICU, and vascular
access is usually by cuffed or non-cuffed HD catheter of size
appropriate for the child’s weight (detail available at http://
pcrrt.com/ProtocolsAccess.html). Even in the unlikely
presence of arterio-venous fistula (AVF), catheters are pre-
ferred, as the chance of needle dislodgment and subsequent
bleeding is minimized. This is important given the prolonged
duration of the sessions in contrast to standard HD.

Children in the PICU are quite different compared to those
on chronic/maintenance HD. They are usually vasoconstricted
by catecholamine treatment, may have hypoalbuminemia, low
intravascular volumes, fluid overload, and are less likely to
tolerate standard ultrafiltration without a precipitous drop in
blood pressure. The target ultrafiltration will be determined by
the balance between the degree of fluid overload, the obliga-
tory fluid intake (comprising nutrition, blood products, antibi-
otics, and inotrope infusions) and the hemodynamic stability
of the child. Achieving target ultrafiltration without disturbing
hemodynamic stability is a special advantage of PIRRT com-
pared to conventional HD, with only a minority of patients
(<20%) requiring discontinuation of the HD due to refractory
hypotension [27, 28, 34, 41, 51, 52]. A randomized controlled
trial (RCT) compared cardiovascular stability between PIRRT
and CVVH in adults. No significant differences in inotrope
dose or numbers were seen between the two groups [38].

Pediatr Nephrol (2018) 33:1283–1296 1287

http://pcrrt.com/ProtocolsAccess.html
http://pcrrt.com/ProtocolsAccess.html


Limited pediatric data and author’s experience also suggest
SLED to be well tolerated with adequate fluid removal [27].

The rates of Qb and Qd in PIRRT are decided based on the
hemodynamic stability and are usually similar to those used in
CVVH (Table 5). The Qd (dialysate flow rate) is kept low
(usually ≤2 × Qb), which allows the same amount of dialysate

to be used as in a standard HD session with higher flow rates
despite longer sessions. The low Qd also helps in hemody-
namic stability. The blood flow should be set based on the
dialysate flow to allow a better saturation in diffusive mode.
Usually, a Qd/Qb of 1.6 to 2 is considered to provide satisfac-
tory dialysate saturation. Duration needs to be individualized
as per the clinical status of the child and can vary between 6 to
18 h. As stated before, if SLEDD-f is being used, the blood
flow may have to be adjusted according to the replacement
fluid rate so that the filtration fraction does not exceed 20%.

Standard dialysate fluid consists of sodium, potassium, cal-
cium, and bicarbonate, the concentration of which can be var-
ied as per the clinical requirement. Similar to conventional
HD, higher sodium or calcium can enable better hemodynam-
ic stability. Compared to conventional IHD, PIRRToffers bet-
ter small solute clearance. Large molecule clearance can be
improved with the use of a high flux dialyzer and
hemofiltration/hemodiafiltration, i.e., SLEDD-f [47]. An im-
portant finding reported with PIRRT has been low phosphate
levels, which sometimes have to be replaced either intrave-
nously or added to the dialysate [20]. Even though albumin is
not lost, amino acid loses can be significant, requiring supple-
mentation if PIRRT has to be continued for a longer period
[38].

Anticoagulation in PIRRT

Unlike CVVH/D, PIRRT without anticoagulation is feasible,
albeit with some risk of circuit clotting. Use of anticoagulation
in PIRRTevokesmixed opinion as to whether to anticoagulate
or not, and if anticoagulation is considered, whether to go for
an unfractionated heparin or regional citrate anticoagulation
protocol. A number of studies have examined the advantages
and disadvantages of each of these protocols, althoughmost of
these trials were done in the adult population. The incidences
of extracorporeal circuit clotting in these studies have varied
between 26 and 46% with no anticoagulation and 10–26%
with heparinization/citrate, respectively [23, 34–37, 39, 41,
42, 53–56].

No anticoagulation Unlike CVVH/D, avoidance of
anticoagulation is feasible in SLEDwith frequent saline flush-
ing. In a study by Berbece et al. involving critical care patients
on SLED for a mean duration of 8 h with blood and dialysate
flow rates of 200 and 350 ml/min, respectively,
anticoagulation with heparin was used in 35% of treatments
and saline flushes in 65%. This study was done in comparison
with continuous renal replacement therapy (CRRT) with cit-
rate and heparin anticoagulation. The incidence of filter
clotting in SLED therapy was 18% with heparin use and
29% without anticoagulation. There were no major adverse
events reported [34]. In another study by Marshall et al., in-
volving critically ill patients on SLED for a mean duration of

Table 4 Example of a prolonged intermittent renal replacement therapy
(PIRRT) prescription

A 9-year-old girl (wt 28 kg, height 130 cm, body surface area 1.1 m2) was
admitted in PICU with fulminant sepsis. Her urine output progressively
declined and she has been passing urine at 0.1 ml/kg/h over the last 6 h.
She did require multiple saline boluses and is currently on three inotropes.
Her current total intake (including drugs) is 56 ml/h. Despite this, her
mean arterial pressure is 62 mmHg and systolic blood pressure is
98 mmHg. Her latest biochemical parameters: sodium 130 mmol/l, po-
tassium 5.6 mmol/l, bicarbonate 14 mmol/l, urea 170 mg.dl, and creati-
nine 2.3 mg/dl. Her positive cumulative fluid balance since admission is
4200ml. Coagulation profile: international normalized ratio 2.2, activated
partial thromboplastin time 50 s. Please write a PIRRT prescription.

• Vascular access: 10F double lumen in right femoral vein under
ultrasound guidance (right internal jugular was tried once but failed. In
view of coagulation dysfunction, further attempt were avoided).

• Dialyzer: F4 dialyzer. (In view of the hypotension and it being the
first dialysis, a dialyzer with surface area of 75% of body surface area
was used). Use high flux, e.g., FX5 for adding convection clearance.

• Blood flow rate (BFR): 90 ml/min (3 ml/kg/min, minimum BFR
should be 30–50 ml/min to avoid clotting)

• Anti-coagulation: In view of deranged clotting, anti-coagulation was
not used and repeated saline flushing was done, or pre-filter replace-
ment can be added.

• Ultrafiltration rate (UFR): 280 ml/h, expected net UFR = 230 ml/h
[total intake = 1.3 l, urine output = 67.2 ml, insensible loss = 440 ml,
expected balance = +793 ml. In addition, she is already 4.2 l
overloaded. Max UFR/ h = 10 ml/kg/h = 280 ml. If SLED done over
8 h, then UF = 2240. Net expected UF will be 2240–400 (saline
flushes 50 ml × 8) = 1840 ml]

• Duration: 8 h

• Dialysate: sodium = 140 (difference of sodium between blood and
serum should not exceed 10), potassium = 2 (we might have to add
extra K if post SLED K is low), calcium = high [both of these steps
will help in increasing hemodynamic stability].

• Dialysate flow rate: 200 ml/min

• Replacement fluid: If convection is added, replacement fluid
(pre-filter mostly) can be added at least 25 ml/min. This is the mini-
mum replacement fluid allowed by 5008-S, and can also help in hep-
arin free sessions.

Table 5 Blood flow in
prolonged intermittent
renal replacement
therapy (PIRRT) in
children

Weight in kg Blood flow

5–20 kg 30–75 ml/min

20–40 kg 75–125 ml/min

> 40 kg > 150 ml/min
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10.4 h with blood and dialysate flow rates of 201 ± 7.5 and
100 ml/min respectively, 41 of 145 treatments were without
anticoagulation. The incidence of extracorporeal circuit
clotting in this study was 26%, without a statistically signifi-
cant difference between rates of clotting in heparin and
heparin-free treatments [23]. Recently, Kitchlu et al. explored
clinical outcomes in SLED therapy without anticoagulation
compared to CRRT with citrate and heparin anticoagulation.
The mean duration of SLED therapy was 7.11 h with blood
and dialysate flow rates of 200 and 350 ml/min, respectively.
The majority of SLED treatments (86.2%) were done without
anticoagulation, but no significant differences in complica-
tions were noted [55]. All of these studies have demonstrated
the feasibility of conducting PIRRT without anticoagulation,
which is considered to be a major advantage of PIRRT over
CVVH/D. It is generally suggested that that blood flow rate
may have to be increased by 20 to 25% for an anticoagulation-
free session provided it is hemodynamically tolerated [52, 56].
Removal of extra volumes of saline used for flushes should be
considered and included in the ultrafiltration rate calculation.
This can be problematic in a hemodynamically unstable child,
but because of the slow and prolonged nature of PIRRT, this is
often possible, albeit with some increased risk of circuit
clotting. Madison and Depner at the University of California
Davis studied 336 SLEDD sessions using saline flushes, 87
using citrate dialysate, and 72 with regional citrate
anticoagulation [57]. The incidence of clotting with premature
termination was 26% among saline flushes, 14% among cit-
rate dialysate group (p = 0.005), and 2% among those receiv-
ing regional citrate anticoagulation 2% (p = 0.026).

Unfractionated heparin As discussed above, use of
unfractionated heparin in PIRRT does reduce the incidence
of extracorporeal circuit clotting, but unfortunately this comes
with the disadvantage of the higher risk of bleeding and
thrombocytopenia requiring careful monitoring of activated
partial thromboplastin time (APTT) and platelet count.
PIRRT in contrast to CVVH/D requires a lower cumulative
dose of anticoagulation although the amount of difference has
varied between different studies [23, 37].

Regional citrate anticoagulation Regional citrate
anticoagulation (RCA) has evolved as an alternative form of
anticoagulation, which is safe and yet effective [35, 36, 53,
54]. Fiaccadori et al. demonstrated the use of a simplified
citrate-based protocol in SLED, which is less expensive and
does not require monitoring of citrate accumulation [36]. The
only disadvantage is that many hemodialysis units do not have
sufficient experience in using citrate-based anticoagulation
protocols.

Prostacyclin There have been reports from Italy of using
prostacyclin as an anticoagulant in SLED. However, it is

expensive and further research is required to validate its use
in routine practice [58]. Overall, it is generally advocated that
the choice of anticoagulation (if used) should be made based
on the local unit’s experience.

One has to keep in mind that most of the studies have been
in adults, and children with their proportionately higher body
surface area make direct correlation difficult. The only pedi-
atric study by Lee et al. used a blood flow rate of 5 ml/kg/min
for children who weighed 20–40 kg and 200 ml/min if
weight > 40 kg, and a dialysate flow rate of 260 ml/min.
Duration of therapy was 8–10 h/day and anticoagulation with
unfractionated heparin was done in 76.6% of treatments with a
bolus of 10–20 IU/kg and maintenance dose of 5–10 IU/kg/h.
Adjusted doses of heparin were used if any of the following
risk factors were present, i.e., APTT >75 s, international nor-
malized ratio > 2, activated clotting time (ACT) >275, platelet
count <50,000/μl and increased risk of bleeding. There were
no bleeding complications observed in this study [27]. In our
own experience, we have been able to conduct most of the
SLED sessions in children with altered clotting off
anticoagulation without any significant increase in adverse
effects.

Dialysis dose

Determining the dosing of PIRRT in terms of duration, fre-
quency, and dialysate or replacement fluid rate is difficult.
Urea kinetic modeling (UKM) has been used to predict ade-
quacy of dialysis in chronic RRT, but is unreliable in a non-
steady evolving state such as AKI. Additionally, there is an as-
yet-unanswered question regarding the relative merits of re-
moval of small vs. large molecules. The rationale of encour-
aging middle-molecule clearance lies in its postulated benefit
in removal of inflammatory mediators, which may have a role
in the pathophysiology of systemic inflammatory response
syndrome in critically ill patients [27, 59]. However, there is
no concrete data that middle-molecule clearance shows a sur-
vival advantage in these patients [60–62].

Although there is no pediatric data on solute removal in
PIRRT, it is helpful to understand the adult-based studies in
this regard for prescribing PIRRT in critically ill children. An
excellent study on kinetic modeling compared effective dose
delivery by three acute dialysis therapies: CVVH, daily HD,
and SLED [63]. A modified equivalent renal clearance (EKR)
approach was used to account for the initial unsteady state
during the dialysis. Effective small-solute clearance in
CVVH was found to be 8% and 60% higher than in SLED
and daily HD, respectively. Differences in favor of CVVH
were more pronounced clearance for middle and large solute
categories, likely due to a combination of convection and con-
tinuous operation. If one were to extrapolate from UKM data
based on IHD and CRRT studies, PIRRT should provide at a
minimum a weekly StdKt/Vurea of 2 when compared to IHD,
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or a weekly StdKt/Vurea of 6 when compared to CVVH [28]. It
has been shown that undertaking PIRRTwith Qd 350 ml/min,
Qb 200 ml/min, hemofiltration 1 l/h and duration of 8 h/day
for 6 days may be comparable to CRRT at 20 to 25 ml/kg/h
[34]. From the study by Kielstein et al., it can be extrapolated
that clearance obtained from 12 h of PIRRT is comparable to
23 h of CRRT [38]. They found a comparable urea reduction
ratio between PIRRTand CVVH although the PIRRT patients
were dialyzed for 11.7 ± 0.1 h compared with 23.3 ± 0.2 h for
CRRT patients.

Monitoring during PIRRT

As PIRRT is most often used in ICUs on critically ill children,
close monitoring of vital parameters is obviously an integral
part. In ICUs, intra-arterial BP monitoring will be useful but
for hemodynamically stable child non-invasive BP monitor-
ing (such as with Dynamap) should suffice. PIRRT is very
effective in solute removal because of its long duration and,
unlike IHD, sometimes potassium, phosphate, and magne-
sium levels can dip, which can result in neuromuscular prob-
lems including difficulty in weaning off the ventilator. Hence,
most of the PIRRT protocol includes the regular monitoring of
phosphorous and magnesium in addition to the standard mon-
itoring of urea, creatinine, and electrolytes, i.e., sodium, po-
tassium, chloride, and calcium [21, 40, 41]. To factor in the
risk of anticoagulation use, monitoring of APTT has been
recommended in some studies, and the goal has ranged from
10 s above baseline to 1.5 times the normal value [21, 42, 64].

Outcomes

Even though there is a lack of robust evidence in favor of any
specific dialysis modality for AKI [65–67], CVVH/D has
been long held as the preferred choice for acutely ill patients
and even KDIGO guidelines support its use [2, 66]. As men-
tioned above, evidence has been accumulating in favor of
PIRRT as a viable alternative to CVVH/D.

Clearance/efficacy Using single-pool UKM, SLED has been
shown to offer very effective small solute clearance (Kt/V
1.3–1.5) and lower small solute disequilibrium compared to
IHD, and provides equally effective azotemia control com-
pared to CVVH [63]. Further improvement in middle- and
large-molecule clearance can be achieved by adding convec-
tion clearance, i.e., by the use of hemodiafiltration (e.g.,
Fresenius Genius, and 5008 and 5008 S machines), although
this is still not approved in the United States. A recent meta-
analysis showed that compared to CRRT, IHD showed a trend
towards higher incidence of dialysis dependence, albeit this
result was primarily seen in observational cohorts rather than
in RCTs [67]. The increased incidence of non-recovery of

renal function may be attributed to the higher rates of inciden-
tal hypotension in IHD. PIRRT, being a hybrid technique,
should theoretically provide better hemodynamic stability
than IHD while achieving comparable clearance. Clinically,
this was demonstrated byWu et al., where better hemodynam-
ic stability resulted in a negative indirect effect on mortality
rate [7]. In one of the largest RCTs involving PIRRT,
Schwenger et al. randomized 232 surgical ICU patients to
either CVVH (35 ml/kg/h) or SLED using single-pass batch
dialysate (12 h of dialysis with a blood flow rate of 100 to
120 ml/min) [37]. In addition to the absence of any difference
in hemodynamic stability during treatments, the SLED group
required fewer days of mechanical ventilation, fewer blood
transfusions and was associated with decreased cost and nurs-
ing time. The recent systematic review by Zhang et al. also
showed similar results in favor of PIRRT [21].

Mortality Similar mortality outcome has been described by
most of the RCTs comparing PIRRTwith CVVH. In the large
RCT by Schwenger et al., the 90-day mortality was compara-
ble in both arms: 49.6% in SLED compared to 55.6% among
those who underwent CVVH [37]. Likewise, meta-analysis
has also failed to show any mortality benefit of CVVH over
PIRRT [16]. Interestingly, summation of observational studies
identified in the systematic review has shown a reduction in
mortality trends favoring PIRRT, which has been postulated to
be related to the decreased need for anti-coagulation in PIRRT
[16]. Importantly, irrespective of the type of study, i.e., RCTor
observational, PIRRT was found to be similar in efficacy to
CVVH for fluid removal, solute clearance (urea, creatinine,
phosphate), need for escalating vasopressor and mortality, or
renal outcomes.

Complications Serious complications on PIRRT have been
reported to be low. A study by Caires et al. reported serious
complications in only 0.7% (n = 3) sessions (arrhythmias and
one death related to the procedure) in a total of 421 sessions
[20]. Although this study excluded patients on epinephrine
>0.2 mcg/kg/min or refractory hypotension, positive data
have been reported even among more critically ill subjects.
Ponce et al. observed serious complications (ventricular
tachycardia or increase of nor-epinephrine dosage >1 mcg/
kg/min) in only 1.4% of the sessions among a group of pa-
tients receiving nor-epinephrine (0.3 to 1 mcg/kg/min) [68].
The hemodynamic stability of PIRRT has been shown to have
a stable effect on the mean arterial pressure [7] and this has
been demonstrated to have a positive effect in a cohort of
uremic patients with brain hemorrhage [13].

Cost-effectiveness A significant advantage of PIRRT over
CVVH/D has been its cost-effectiveness which is likely to
make it very useful in any resource-constrained facilities.
Schwenger et al. clearly demonstrated that SLED requires
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Table 6 Drug dosing in prolonged intermittent renal replacement therapy (PIRRT) in children. NB: The dosing suggested are based on adult studies as
there are no pK studies for medication in pediatric PIRRT

Drug/dose used Dialysis machine SLED characteristics Pharmacokinetics in
SLED

Recommendations

Vancomycin
Single dose of 15 mg/kg

IV (73)

Single dose of 1 g
(adult) IV 12 h prior
to dialysis (64)

Fresenius 2008H
(Fresenius Medical
Care)

Dialysate flow rate 100
ml/min and blood
flow rate 200 ml/min.
Dialysis duration
24 h

Mean half-life 43.1 h
and mean clearance
24.3 ml/min. Mean
volume of distribu-
tion 0.84 l/kg. Mean
volume of distribu-
tion 0.84 ± 0.17 l/kg

Initial dose of 15 mg/kg
and measurement of
serum drug levels at
24 h

Batch dialysis system
(GENIUS, Fresenius
Medical Care, Bad
Homburg) with
polysulphone
high-flux dialyzer
with surface area
1.3 m2

Both dialysate and
blood flow rate
160 ml/min. Dialysis
duration 480 ± 6 min

Mean half-life 11.2 h.
Mean clearance
2.1 l/h and 3.8 l/h
based on analysis
method. Mean vol-
ume of distribution
0.57 l/kg

Initial dose of
20–25 mg/kg and
monitoring of drug
levels for further
dosing.

Gentamicin
Single dose of

0.6 mg/kg IV post
dialysis (70)

Fresenius Medical Care,
high-flux polysulfone
F50 filter with surface
are 0.5 m2

Blood flow rate
200 ml/min and
dialysate flow rate
300 ml/min. Duration
of dialysis 480 min

Mean half-life 3.7 ±
0.8 h. Mean clear-
ance 75.9 ± 38.4 ml/-
min/1.73 m2. Mean
volume of distribu-
tion 0.28 l/kg

2–2.5 mg/kg after
hemodialysis to
maintain optimal
peak and trough
levels at 7.5 mcg/ml
and 0.8 mcg/ml, re-
spectively

Meropenem
Single dose of 1 g

(adult) IV 6 h prior to
dialysis (64)

Batch dialysis system
(GENIUS, Fresenius
Medical Care, Bad
Homburg) with
polysulphone
high-flux dialyzer
with surface area
1.3 m2

Both dialysate and
blood flow rate
160 ml/min. Dialysis
duration 480 ± 6 min

Mean half-life 3.7 h.
Mean clearances 2.3
and 5.1 l/h based on
analysis method.
Mean volume of dis-
tribution 0.72 l/kg

0.5–1 g every 8 h

Ertapenem
Single dose of 1 g IV

(72) (adult)

Batch dialysis system
(GENIUS, Fresenius
Medical Care, Bad
Homburg) with
polysulphone
high-flux dialyzer
with surface area
1.3 m2

Mean blood and
dialysate flow
160 ml/min. Dialysis
duration 480 min

Half-life 6.7 h. Mean
clearance 49.5 ±
10.9 ml/min. Volume
of distribution 15.9 ±
3.2 l

1 g/day

Linezolid
Single dose of 600 mg

(adult) IV before di-
alysis (67)

Fresenius Medical Care
(low-flux polysulfone
filters with 1.6 m2

surface area)

Blood flow 200 ml/min
and dialysate flow
100 ml/min. Dialysis
duration 8–9 h

Half-life 5.88 h and
clearance
33.3 ml/min. Volume
of distribution 30.19 l

Drug should be
administered towards
the end of dialysis
session

Moxifloxacin
Single dose of 400 mg

(adult) IV 8 h prior to
dialysis (74)

GENIUS batch system
(Fresenius Medical
Care, Bad Homburg)
with polysulfone
high-flux dialyzer
with surface area
1.3 m2

Mean blood and
dialysate flow 161 ±
4 ml/min. Dialysis
duration 481 ± 9 min

Mean half-life 6 h and
mean clearances 2 l/h
and 3.1 l/h based on
analysis method.
Mean volume of dis-
tribution 3.8 l/kg

Standard 400 mg/day
irrespective of liver
impairment

Levofloxacin
Single dose of

250/500 mg (adult)
IV 12 h prior to dial-
ysis (74)

GENIUS batch system
(Fresenius Medical
Care, Bad Homburg)
with polysulfone
high-flux dialyzer
with surface area
1.3 m2

Mean blood and
dialysate flow 161 ±
4 ml/min. Dialysis
duration 481 ± 9 min

Mean half-life 10.3 h
and mean clearances
2.93 l/h and 3.12 l/h
based on analysis
method. Mean vol-
ume of distribution
1.71 l/kg

Dosage adjustment is
necessary and drug
should be given after
dialysis

Ampicillin/ sulbactam GENIUS batch system
(Fresenius Medical

Mean blood and
dialysate flow 162 ±

Mean volume of
distribution for
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less nursing time and is significantly cheaper compared to
CVVH [37]. The RRT cost per day for SLED using high
flux membrane was €63.2 compared to €209.3 for CVVH.
In contrast to CVVH, PIRRT usually does not require a
special circuit or fluid and neither does it require round-
the-clock nursing support nor any add-on training for the
nurses. In addition, initial set-up cost is also less, as
PIRRT does not require ultrapure water and can often be
done on the same HD machine being used for convention-
al HD. Obviously, addition of convection clearance in-
creases the cost as one needs to ensure ultrapure water,
as well as requiring more specialized machines.

Comparison with PD

In resource-constrained units, PD definitely offers a cost-
effective viable option for children with AKI in the PICU.
Although in the developed world the use of acute PD has
waned following the report of premature termination of
the RCT by Phu et al. [9] due to higher mortality among
PD (47%) cohort in contrast to hemofiltration (15%), it
remains an important (and often the only) option in the
developing world [11, 13]. Recent studies primarily from
Brazil have demonstrated that critically ill AKI patients
can be successfully treated with PD using cycler therapy,
flexible catheters and high volumes (HV) of fluid, and
both adequate small solute clearances and ultrafiltration
can be achieved [69–71]. In contrast to the various studies
comparing PIRRT with IHD and CVVH, there are very

few studies (even among adults) that have compared
PIRRT with PD. Ponce et al. reported on a double-center
RCT comparing extended HD (EHD), i.e., PIRRT, with
high-volume PD (HVPD) for the treatment for AKI in
the ICU. Four hundred and seven patients were random-
ized but only 143 patients were analyzed. Although no
survival benefit or difference in hospital stay was demon-
strated, EHD did show faster metabolic control, higher
dialysis dose, and better ultrafiltration in comparison to
HVPD [10].

Pediatric study

At the time of writing, of this review, only a single study
had been published detailing pediatric experience on
PIRRT [27]. Lee et al. reviewed their experience on
SLED-f among 14 critically ill children totaling 60 ses-
sions. The study concluded that in their cohort of sick
children, SLED-f provided good hemodynamic tolerance
and correction of fluid overload, pH, and electrolyte im-
balance. In addition, they also showed a significant drop
in inflammatory markers such as adiponectin, interleukin
17 A (IL-17A), and IL 16, post SLED-f session. Despite a
relatively high PRISM score (16.8 ± 23.3), they reported
an overall 28-day survival of 71.4%. In the absence of
any comparator group in their study, they compared the
outcomes with the prospective pediatric continuous renal
replacement therapy (ppCRRT) registry cohort. Although
the different nature of the ppCRRT cohort as well as

Table 6 (continued)

Drug/dose used Dialysis machine SLED characteristics Pharmacokinetics in
SLED

Recommendations

Single dose of 2 g/1 g
(adult) IV 3 h prior to
dialysis (66)

Multiple doses of
2 g/1 g (adult) twice
daily for 4 days (66)

Care, Bad Homburg)
with polysulfone
high-flux dialyzer
with surface area
1.3 m2

6 ml/min. Dialysis
duration 442 ±
77 min

ampicillin/sulbactam
were 13.1 ± 11.1 l
and 22 ± 21.8 l,
respectively, mean
half-life 2.8 ± 0.8 h
and 3.5 ± 1.5 h,
respectively, mean
clearances 80.1 ±
7.7 ml/min and 83.3
± 12.1 ml/min, re-
spectively

No significant drug
toxicity with
twice-daily dosing

Twice-daily dosing
2 g/1 g with one dose
given after dialysis

Trimethoprim/
sulfamethoxazole

15 mg/kg/day and
95 mg/kg/day IV (75)

GENIUS batch system
(Fresenius Medical
Care, Bad Homburg)
with polysulfone
high-flux dialyzer
with surface area
1.3 m2

Mean blood and
dialysate flow 170 ±
41 ml/min. Dialysis
duration 442 ±
101 min

Clearances 94 ±
20.2 ml/min and 51 ±
18.8 ml/min,
respectively

Further studies are
needed to establish
dosing
recommendations
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different time frame makes direct comparison difficult,
they did show a superior survival rate in comparison to
the ppCRRT group (100% survival for PRISM III
score < 10 in comparison to 55% in the ppCRRT registry
and 55.6% for PRISM III score > 10 vis-à-vis 47%) [3].
This survival benefit to some extent is in accordance with
the meta-analysis of Zhang et al. [21] who postulated that
lower need for heparin, lower incidence of circuit clot,
and decreased rate of bio-film formation in PIRRT com-
pared to CVVH might contribute towards the lower mor-
tality, although it was not statistically significant. Lastly,
SLED-f was found to be significantly cheaper, i.e., US$77
per day, as opposed to CVVH with an average expendi-
ture of US $305.

Though the study was unique in being the first to an-
alyze SLED-f in children, the small study population, se-
lective cohort (excluded children less than 20 kg) and
retrospective nature of the study did leave a lot of unan-
swered questions regarding its viability in young critically
ill children who are more prone to hemodynamic instabil-
ity, as well as in a non-selected prospective cohort.
Additionally, it has to be emphasized that the cohort of
Lee et al. underwent filtration along with dialysis.
Although SLED can be undertaken without much addition
to a standard HD unit, filtration requires ultrapure water,
which may increase the initial set-up cost, making it dif-
ficult for resource-constrained facilities where the utility
of SLED is likely to be most important vis-à-vis CRRT.
Another major pitfall is assessing the adequacy of dialysis
dose prescribed, as even the adult literature does not have
robust data and pediatric data is non-existent. None of the
major adult studies, like the Brazil RCT or the Hannover
Dialysis Outcome study showed any significant survival
advantage of intensified HD and hence the optimum dose
of dialysis remains debatable [51, 72].

Drug-dosing adjustments during SLED

Despite the increasing reports of feasibility and usefulness
of PIRRT, drug dosing remains a major concern. A lack of
studies and an absence of a standard definition for PIRRT
has made it challenging for pharmacists and nephrologists
when it comes to antibiotic dosing in the setting of SLED
in critically ill septic patients. A recent electronic survey
done to check pharmacists’ antibiotic dosing recommen-
dations in SLED showed wide variations from 4- to 12-
fold in dosing regimens across health facilities, and sug-
gested monitoring of drug concentrations in blood and use
of pharmacokinetic modeling techniques for appropriate
dosing in SLED [73]. As pharmacokinetic studies for
SLED in the pediatric population are lacking, we have
to extrapolate from adult studies regarding any drug dos-
age adjustments. Unfortunately, even adult studies are few

in number (Table 6), making robust recommendations dif-
ficult [74–86].

Conclusions

PIRRT provides a modality of RRT with excellent hemody-
namic stability, acceptable biochemical clearance, and ease of
use without the need for specialized equipment. It can be
performed with a conventional dialysis machine used in a
chronic maintenance dialysis program, and costs a small frac-
tion of CVVH expenditure. Perhapsmost importantly the flex-
ible nature of this modality allows sufficient time for any
ancillary procedures/treatments such as imaging or surgical
intervention. Although we do not have very robust evidence
supporting the superiority of PIRRT over CVVH, current ev-
idence does support the outcomes of PIRRT being at least
equivalent to CVVH. Similarly, while the use of cyclers and
flexible catheters are likely to have made PD a more compet-
itive option for children with AKI, effective fluid removal
with PD remains an important concern, particularly in children
with fluid overload. The availability of PIRRT in such a sce-
nario is likely to be useful. Finally, it should be accepted that
these therapeutic strategies may not necessarily be considered
as competitors, but rather as alternatives, each of which might
be applicable within the same unit and even the same patient,
depending on the practical options at hand at a given time and
on the metabolic or fluid balance needs of the patient. The
definite advantage that PIRRT does have over CRRT is its
cost-effectiveness, which is important in resource-
constrained facilities, and its lesser requirement for
anticoagulation. As initiating PIRRT in children poses chal-
lenges quite different to adults, one has to appreciate the cur-
rent limitations, particularly adequacy, and dose modifica-
tions. In view of only a single pediatric study, further research
is warranted to check for feasibility, tolerability, adequacy
measurement, and drug-dose modifications in critically ill
children on PIRRT.
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