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Abstract Advances in therapeutics have dramatically im-
proved short-term graft survival, but the incidence of chronic
rejection has not changed in the past 20 years. New insights into
mechanism are sorely needed at this time and it is hoped that
the development of predictive biomarkers will pave the way for
the emergence of preventative therapeutics. In this review, we
discuss a paradigm suggesting that sequential changes within
graft endothelial cells (EC) lead to an intragraft microenviron-
ment that favors the development of chronic rejection. Key
initial events include EC injury, activation and uncontrolled
leukocyte-induced angiogenesis. We propose that all of
these early changes in the microvasculature lead to abnormal
blood flow patterns, local tissue hypoxia, and an associated
overexpression of HIF-1α-inducible genes, including vascular
endothelial growth factor. We also discuss how cell intrinsic
regulators of mTOR-mediated signaling within EC are of crit-
ical importance in microvascular stability and may thus have a

role in the inhibition of chronic rejection. Finally, we discuss
recent findings indicating that miRNAs may regulate EC sta-
bility, and we review their potential as novel non-invasive bio-
markers of allograft rejection. Overall, this review provides
insights into molecular events, genes, and signals that promote
chronic rejection and their potential as biomarkers that serve to
support the future development of interruption therapeutics.
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Introduction

Renal transplantation is widely recognized as the treatment of
choice for children with end-stage renal disease (ESRD) [1,
2]. The life expectancy benefit compared with chronic dialysis
is significant [3], and graft survival can be superior to that in
adult recipients [2]. However, the human immune response
changes with increasing age, and some studies suggest that
children are predisposed to an increased risk for both late
acute rejection in addition to chronic rejection [4]. Indeed,
recent analyses of the North American Pediatric Renal Trials
and Collaborative Studies (NAPRTCS) registry data for 11,
603 pediatric renal transplants performed between 1987 and
2010 indicate that chronic rejection is the leading cause of
graft failure, accounting for ~40 % of all index pediatric graft
failures [4]. Current therapeutics are most efficient at targeting
acute rejection, but have no effect on the progression of graft
failure due to chronic rejection. Several groups [5–7], includ-
ing our own group [8, 9], have strongly advocated the devel-
opment of mechanistic biomarkers to define the status of the
alloimmune response at different times post-transplantation or
to monitor indices of graft injury. This approach will support
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the prediction of chronic rejection such that new therapeutic
interventions can be tested in clinical trials. However, the de-
velopment and use of biomarkers demands an understanding
of chronic rejection pathogenesis, which is likely driven by
multiple factors, especially in a growing child.

In this review, we discuss a paradigm in which the evolu-
tion of sequential endothelial derived molecular events within
the graft characterizes the progression of chronic rejection.We
also review distinct cell intrinsic signals within endothelial
cells (ECs) that function to sustain vascular stability and thus
the intragraft microenvironment. The concepts described in
this review open up avenues for translational research, includ-
ing the development of biomarkers to predict disease initiation
and possible therapeutic targets for intervention in the future.

An endothelial cell-based paradigm to define chronic
rejection pathogenesis

The Banff classification [10–13] adopted terminology that
defines chronic rejection based on pathology, but also takes
into account active immune processes. In this manner, it is
possible to define injury based on alloantibody-mediated re-
jection (AMR) and/or T-cell-mediated rejection (TCR).
Chronic rejection can thus be classified as Bchronic active
antibody-mediated rejection^, and/or Bchronic active T-cell-
mediated rejection,^ and/or Binterstitial fibrosis and tubular
atrophy^ (IFTA), based on whether the exact mechanism is
understood [12, 13]. The purpose of this review is to discuss a
new paradigm that supports an understanding of pathogenesis
and involves the effect of immunity on the local intragraft
microenvironment. We focus our discussion on the identity
of events, and molecules that drive EC-dependent responses
to injury and the associated remodeling of the microvascula-
ture. Since we do not discriminate between cellular or
humoral immune responses, we will use the term Bchronic
rejection^ to describe this process throughout the review.

Our proposed paradigm is based on the well-established
observation that the graft microvascular EC represents a crit-
ical interface between the recipient immune response and the
donor allograft. The unique anatomical location of the graft
EC ensures that it is the primary target of alloimmune-
mediated injury [14, 15]. To this end, it is not surprising that
microvascular loss occurs as a consequence of all forms of
rejection [16, 17]. Furthermore, an increasing body of evi-
dence indicates that the response of the microvasculature to
injury is critical in both the initiation of, and the progression of
chronic rejection. Microvascular ECs respond to cell-
mediated and humoral alloimmune responses by undergoing
a characteristic process of activation. Several studies have
shown that select mRNA and protein expression profiles with-
in ECs [18–20], and/or select intracellular EC activation re-
sponses may serve as an indicator of immune targeting of the

graft [8, 21–23]. Also, cytokines produced by mononuclear
cell infiltrates induce the expression of MHC class I and II in
addition to adhesion molecules and chemokines on EC that in
turn result in the recruitment and activation of leukocytes
within the graft. Growth factors produced bymononuclear cell
infiltrates, including vascular endothelial growth factor
(VEGF) [9, 24–27], elicit a Bleukocyte-induced^ angiogenesis
response [28] that is a characteristic event in all cell-mediated
immune responses [29]. Thus, dynamic changes occur within
microvascular ECs in the initial course of an alloimmune in-
flammatory reaction.

We [22] and others [16, 30, 31] hypothesize that all these
microvascular responses initiate the process of chronic rejec-
tion by creating abnormal microvascular networks and chaotic
blood flow patterns within the local inflamed tissue [31–34]
(Fig. 1). The associated shunting of blood causes local tissue
hypoxia, which can result in tissue injury and microvascular
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Fig. 1 Illustration shows how changes within the microvasculature may
define the initiation and progression of chronic allograft rejection.
Following organ transplantation, alloimmune targeting of microvascular
endothelial cells (ECs) is the earliest event in the initiation of a proinflam-
matory intragraft microenvironment. Once targeted by cellular or humor-
al immunity, ECs become activated and express MHC class I and II
molecules, adhesion molecules, and chemokines that promote ongoing
recruitment and activation of leukocytes in the graft. These events also
result in EC proliferation and the process of leukocyte-induced angio-
genesis. Uncontrolled EC proliferation that occurs at early times in
association with mononuclear cell infiltration leads to the formation of
abnormal microvascular networks that in turn can result in chaotic
blood flow patterns and local tissue hypoxia. Microvascular loss
resulting from persistent injury to ECs amplifies tissue hypoxia, and
all these events drive hypoxia-inducible factor (HIF)-1α-dependent ac-
tivation of growth factors and chemokines. We propose that the over-
expression of VEGF-A by infiltrating leukocytes and by the graft itself
in response to hypoxia is central to this cycle of events within the
microenvironment
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loss. Thus, similar to that described within tumors [35, 36], we
have proposed that hypoxia-stimulated overexpression of
growth and survival factors are key events in the initiation
and progression of chronic rejection (Fig. 1) [22]. Indeed,
Nicolls’ group has demonstrated that local tissue hypoxia oc-
curs within allografts at early times in association with leuko-
cyte infiltration [33]. Further, they demonstrated that the in-
duced expression of hypoxia-inducible factor (HIF-1α) is a
physiological response to alloimmune inflammation, and that
HIF-1α-inducible responses result in the expression of multi-
ple growth factors [37], most notably VEGF. While these
factors function to sustain microvascular integrity, at the same
time they serve as leukocyte chemoattractants and as angio-
genesis factors. We have thus proposed that the overexpres-
sion of VEGF and related growth factors are of central impor-
tance to the biology of an intragraft microenvironment that
sustains chronic rejection.

Although beyond the scope of this review, several other
events contribute to microvascular disease in association with
chronic rejection. For instance, neutrophils participate in
many aspects of the transplant rejection process, including
ischemia–reperfusion injury, and acute and chronic rejection
[38–40]. Importantly, following activation neutrophils release
their DNA, histones, and neutrophil antimicrobial proteins,
resulting in the formation of neutrophil extracellular traps
(NETs) [41] that bind within microcapillaries and promote
thrombosis [42] and/or the development of local vasculitis
[43]. Elevated serum NET levels have been reported to be
associated with organ injury, due in part to changes within
the microcirculation [44, 45]. NETs have also been shown to
damage ECs and expose immunostimulatory molecules in
association with systemic lupus, and similar mechanisms
may be responsible for organ injury after transplantation
[46]. Furthermore, it has been noted that reduced levels of
NETs in the circulation following transplantation can be
associated with improved graft function [47]. Thus, we
speculate that the activation of neutrophils and NETosis
within intragraft microcapillaries has the potential to aug-
ment hypoxia-induced changes in the microvasculature and
disease that is associated with chronic rejection.

Another event that is worthy of note relates to the role of
endothelial-to-mesenchymal transition (EndMT) in chronic
rejection [48]. Data suggest that the presence of inflammatory
cytokines in association with endothelial proliferation pre-
cedes EndMT, where ECs and/or pericytes dedifferentiate into
collagen-secreting fibroblasts [49, 50] (and data not shown).
In this manner, the pathological intragraft microenvironment,
as illustrated in Fig. 1, that is associated with inflammation,
local tissue hypoxia, and the overexpression of intragraft
VEGF, may promote EndMT-dependent fibrosis and scarring.
As will be discussed below, these collective findings suggest
that the monitoring of molecular events associated with mi-
crovascular injury and repair, and/or intragraft expression of

hypoxia-inducible growth factors may serve as predictive bio-
markers of chronic rejection.

Cell intrinsic regulation of microvascular stability
within an allograft

Understanding the regulation of key signals within the EC that
are critical for microvascular stability may pave the way for
the development of new interruption therapeutic strategies to
target the initiation of the chronic rejection process. To this
end, the mammalian target of the rapamycin (mTOR) signal-
ing pathway has emerged as a critical mediator of EC stability
[51–55]. Furthermore, the regulation of signals mediated
through this pathway is likely of great importance in both
the initiation and the progression of chronic rejection
[56–58]. Cytokines produced by leukocytic infiltrates within
the graft, and the binding of donor-specific antibodies (DSA)
to the microvasculature, induce mTOR-dependent intracellu-
lar signals [59, 60] (illustrated in Fig. 2). Responses include
the characteristic expression of adhesion molecules and
chemokines [53–55], and an activated EC phenotype that pro-
motes mononuclear cell recruitment [21, 55, 58–61]. mTOR/
Akt-induced responses may also disrupt the allograft micro-
environment through their potent effects to elicit EC prolifer-
ation and angiogenesis [22, 51]. Thus, while a physiological
response to injury and inflammation, excessive mTOR activ-
ity within EC drives many molecular processes within the
microenvironment as key events in the biology of chronic
rejection.

mTOR is a highly conserved serine/threonine kinase that
constitutes the catalytic subunit of two structurally and func-
tionally distinct protein complexes, called mTOR complex
(mTORC)-1 and mTORC2 [62]. mTORC1 integrates signals
from growth factors, energy status, oxygen, and amino acids
to regulate a variety of metabolic processes involved in cell
growth and proliferation [62, 63]. mTORC1 is composed of
mTOR, raptor (rapamycin-sensitive protein of TOR) [64], and
mLST8 (mammalian lethal with SEC13 protein 8) [65]; it also
associates with PRAS40 (proline-rich Akt substrate) [66] and
DEPTOR (DEP domain-containing mTOR-interacting pro-
tein) [67], which function to negatively regulate the activity
of the complex. Once activated, mTORC1 promotes protein
synthesis by phosphorylating 4E-BP1 and S6K1, signals that
enhance mRNA translation, ribosome synthesis, cell prolifer-
ation, and cellular growth [68]. mTORC1 has been found to
be dysregulated in several diseases including cancer, diabetes,
and obesity [63], and it is likely of great importance in chronic
inflammatory disease states.

In contrast to mTORC1, little is known about upstream
activation of mTORC2 or how it functions to facilitate down-
stream cellular function. mTORC2 activity classically results
in the phosphorylation/activation of Akt (Ser473) and SGK1,
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well established to function in cell survival [69]; it also func-
tions in actin and cytoskeletal organization [70, 71]. The
mTORC2 complex is composed of mTOR, rictor
(rapamycin-insensitive companion of mTOR) [70], mSIN1
(mammalian stress-activated protein kinase interacting pro-
tein) [72], Protor (protein observed with rictor)-1 [73] and
mLST8 [71], and associates with the endogenous negative
regulator DEPTOR [67]. There is crosstalk between both
mTOR complexes in as much as mTORC1/S6K1-mediated
activity may result in the phosphorylation of rictor, to inhibit
mTORC2 complex formation [74]. In this manner, mTOR
activity is maintained at a strict Blevel^ and it may be oscilla-
tory in nature [63, 75] such that survival, cell growth, and
proliferation are maintained.

However, it is important to note that the mTOR pathway
interacts with many other signaling cascades and promotes
significant crosstalk among intracellular signals. Thus, the
cell-intrinsic regulation of mTOR is potentially important in

the deregulation of other signaling networks involved in EC
biological responses (Fig. 2). For instance, we have recently
reported that the adaptor protein DEPTOR, an intrinsic inhib-
itor of mTOR signaling [67], is also potent for regulating
MAPK- and STAT-induced signaling in ECs [58]. Interesting-
ly, the treatment of ECs with TNFα markedly reduces intra-
cellular levels of DEPTOR (within minutes to hours) presum-
ably by changing its structure such that it is targeted for
ubiquitination [76, 77]. Consistent with its cell-intrinsic regu-
latory effects, we also find that reduced levels of intracellular
DEPTOR (via siRNA knockdown) are associated with
marked EC activation, characterized by a massive release of
T cell chemoattractant chemokines and the induction of cell
surface adhesion molecules (e.g., VCAM-1, ICAM-1) analo-
gous to activation in response to cytokines. Reduced levels of
cell-intrinsic DEPTOR promotes leukocyte-EC adhesion and
enhanced angiogenesis in vitro, which is attenuated by the
combined inhibition of mTOR and ERK activity. Our findings
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Fig. 2 Illustration showing the
central role of mammalian target
of rapamycin (mTOR) signaling
in ECs in the pathogenesis of
chronic allograft rejection. Upon
binding to graft microvascular
endothelial cells (ECs),
leukocytes, inflammatory
cytokines, growth factors
[including vascular endothelial
growth factor (VEGF); Fig. 1]
and alloantibodies activate
PI3K/Akt/mTOR-mediated
signals. Assembly of the
mTORC2 complex results in the
phosphorylation and activation of
Akt kinase, which in turn
activates mTORC1 and its
substrates 4EBP1 and S6K1.
Collectively, these signals result
in EC activation, migration and
proliferation. In addition, Akt-
mediated signals enhance the
activity of ERK1/2, which also
promotes EC activation. The
endogenous protein DEPTOR
inhibits mTORC1, ERK1/2 and
STAT-1 signaling in ECs,
highlighting its major function as
a cell-intrinsic regulator of EC
activation responses. Several
miRNAs also control the activity
of the mTOR pathway, and EC
activation. Notably, endothelial-
specific miR-126 functions to
inactivate both PI3K/Akt- and
ERK1/2-mediated signals and
thus maintain EC quiescence
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support the possibility that sustained DEPTOR expression
stabilizes the microvasculature and thus may have a notable
effect on the inhibition of EC activation and pathological an-
giogenesis. To this end, in pilot experiments we have found
that overexpression of DEPTOR in ECs is efficient at
preventing TNFα-induced expression of adhesion molecules
in vitro; and, using a transgenic mouse, we have found that
forced overexpression of DEPTOR within cardiac transplants
prolongs graft survival in vivo in an established fully MHC-
mismatched mouse model (unpublished data). One could
therefore hypothesize that novel small molecule inhibitors of
DEPTOR degradation [78], or agents that increase DEPTOR
activity [79], will be anti-inflammatory and prevent the initi-
ation of chronic rejection. Interestingly, recent studies have
shown that DEPTOR is also functional in non-ECs, including
proximal tubular epithelial cells [80], further supporting the
concept that sustaining levels of its expression may be thera-
peutic to maintain intragraft homeostasis.

miRNA-mediated regulation of EC responses
and their potential role in chronic allograft rejection

It is increasingly apparent that miRNAs function to regulate
EC activation, and that they are well established to play a
critical role in the control of microvascular stability. Further-
more, an increasing number of studies indicate that miRNAs
are functional in the maintenance of microvascular stability
post-transplant [81, 82]. miRNAs have been shown to be se-
creted in biological fluids within microparticles, where their
expression is extremely stable [83, 84], and accumulating data
indicate their tremendous potential as non-invasive bio-
markers of chronic vascular diseases, including allograft re-
jection ([81, 85–87] and discussed below).

Micro-RNAs (miRNAs) are small (20–22 nucleotides) en-
dogenous non-coding RNAs that regulate gene expression
through their binding to target mRNAs and the inhibition of
target mRNA translation. miR-126 is the only EC-specific
miRNA described to date [88, 89], where it functions to sus-
tain vascular homeostasis in response to injury. In mouse
models [89, 90], the deletion of miR-126 is associated with
defects in EC proliferation, migration, and angiogenesis; in
zebrafish, knockdown of miR-126 results in a loss of vascular
integrity during embryonic development [88]. miR-126 aug-
ments VEGF-inducible responses within ECs by directly
repressing negative regulators of PI-3 K/Akt/mTOR signal-
ing. Consistent with these findings, miR-126 silencing inmice
using a single dose of antagomir-126 was found to impair
ischemia-induced angiogenic responses [91]. miR-126 has al-
so been reported to function in the regulation of EC activation
and in leukocyte-EC interactions in part by inhibiting the in-
ducible expression of VCAM-1 [92, 93]. In general, these
observations suggest that miR-126-regulated responses might

be of great biological importance in EC-dependent events as-
sociated with chronic rejection, and its potential as a biomark-
er is currently being studied.

In EC, miR-100 has been reported to regulate mTOR ac-
tivity and attenuate signaling responses, including cell prolif-
eration [94]. In accordance with these findings, inhibition of
miR-100 in vivo using specific antagomirs results in increased
angiogenesis [94]. miR-21 was also recently reported to me-
diate rapamycin-induced suppression of EC proliferation and
migration [95]. Treatment of ECs with rapamycin significant-
ly increased the expression of miR-21, and blockade of miR-
21 (using specific inhibitors) reduced the effects of rapamycin
on EC growth and mobility [95]. In addition, miR-21 has been
found to play a major role in vascular remodeling in an EC-
specific miR-21 knockout mouse model [96, 97].

Several additional miRNAs function as key regulators of
EC proinflammatory responses and as mediators of inflamma-
tion resolution. Pober’s group profiled the expression of
miRNAs in TNFα-activated EC and identified miR-31 and
miR-17-3p as key regulators of E-selectin and ICAM-1 ex-
pression respectively [98]. Specific antagonism of these
miRNAs increased neutrophil binding to cultured ECs, where-
as transfection of ECs with their miRNA mimics decreased
leukocyte-EC adhesion [98]. Several other miRNAs have also
been found to inhibit EC activation responses, including miR-
181b [99], miR-10a [100], miR221/222, miR-155 [101], miR-
146a and miR-146b [102], and there expression could there-
fore also constitute biomarkers of EC stability.

Collectively, these data indicate that miRNAs function in
the cell-intrinsic regulation of EC responses associated with
inflammation, and suggest that they might be of functional
importance in the evolution of chronic rejection. miRNAs
are secreted within microparticles as exosomes or shed
microvesicles [103, 104] and can be detected in the blood
and in biological fluids such as urine. Their expression is
extremely stable as they are protected from RNase-mediated
degradation within microparticles [83, 84]. Because of this
unusual stability, the analysis of miRNAs has emerged as a
promising non-invasive biomarker assay for a variety of hu-
man disease processes including transplant rejection [105].

Biomarker strategies

Diagnostic and prognostic assays to assess chronic re-
jection classically take the form of routine biopsy anal-
yses of the graft in combination with organ-specific as-
sessments of graft function. In addition, recent data sug-
gest that it might be possible to use several classes of
biomarkers to support the diagnosis of acute rejection
and acute graft injury [106, 107]. Nevertheless, little
emphasis has been placed on the use of molecular
events and biomarkers that are associated with, and/or
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predict the development of chronic injury and chronic
allograft rejection in ongoing clinical trials. To com-
pound this issue, it is well known that current biopsy-
staining techniques, imaging tools, and assessments of
organ function do not predict the future development of
chronic rejection. Ideally, newly developed biomarkers
will predict disease before it is established, and thus
clinical trials will be able to promote interruption ther-
apies according to the status of the intragraft microen-
vironment. Many studies have searched to identify such
factors using high throughput screens of mRNAs,
miRNAs, proteins, and cellular phenotypes in transplant
biopsies, blood, and urine samples. Several promising
markers have been identified, mostly through analyses
of immunity-related molecules and genes. However,
immune-specific biomarkers usually reflect ongoing
inflammation/rejection and are suggested to be unlikely
to predict the occurrence of chronic rejection months or
years in the future.

The model that we have proposed is highly suggestive that
intragraft expression and circulating levels of genes associated
with vascular stability, injury, and repair within the allograft
microenvironment will serve as predictive monitors of dis-
ease. Also, our model predicts that local hypoxia and the in-
duced expression of HIF-1a-regulated genes such as VEGF-A
and related growth factors will be characteristic of the initia-
tion of the chronic rejection intragraft microenvironment. This
model provides a strong rationale to screen for detectable EC
injury and repair responses as central biomarkers of the initi-
ation of chronic rejection. For instance, the overexpression of
VEGF-A is predicted to serve as a prototype HIF-inducible
gene and may serve as the earliest biomarker of a response to
any form of immune-mediated injury to the microvascular
ECs.

To test this possibility, we initially performed cross-
sectional analyses among circulating serum levels of angio-
genic factors in cardiac transplant patients with/without
established chronic rejection/disease [8]. Univariate analysis
identified six proteins—angiopoietin-2, artemin, urinary plas-
minogen activator, and vasohibin, in addition to VEGF-A and
VEGF-C—that were significantly associated with allograft
vasculopathy, the sine qua non of chronic rejection. Further
analysis identified three proteins—VEGF-A, VEGF-C, and
platelet factor 4 (PF-4)—as the optimal biomarker set for the
diagnosis of chronic rejection in this cohort. In a pilot study,
we also tested whether these same factors predict chronic re-
jection [108]. Plasma levels were measured in a cohort of
patients who were more than 2 years post-transplant, and all
patients were followed for 5 years. At a median follow-up
time of 4.7 years, we find that high circulating levels of
VEGF-A identify a subgroup of recipients who subsequently
develop adverse cardiac events over this time period. Thus, it

is possible that low/basal plasma levels of VEGF-A identify a
low-risk patient population, whereas high levels may identify
a cohort that will benefit from an interruption therapy, before
complications occur due to established disease. To further
validate these observations, we are currently collaborating
with the multicenter CTOT-05 consortium to evaluate whether
these angiogenesis-related factors predict the initiation of al-
lograft vasculopathy/chronic rejection within the first post-
transplant year [109].

It is also increasingly apparent that miRNAs consti-
tute a new class of promising biomarkers for the pre-
diction of allograft rejection. As discussed above,
miRNAs are secreted into body fluids and their expres-
sion is extremely stable. Several groups have analyzed
miRNA expression profiles in peripheral blood mononu-
clear cells [110, 111], serum [112], urine [113–115], and
allograft biopsies [82] from transplanted patients, and
have identified candidate miRNA biomarkers of rejec-
tion (reviewed in detail in Mas et al. [85]). Anglicheau
et al. profiled the expression pattern of miRNAs in kid-
ney graft biopsies and in peripheral blood and identified
7 miRNAs that were upregulated and 10 that were
downregulated in biopsies of patients undergoing acute
rejection [82]. Among those identified, miR-155 and
miR-223 are established to function in the regulation
of EC angiogenic and inf lammatory responses
[116–119], and to increase over the course of immune-
mediated EC injury in diabetic nephropathy, atheroscle-
rosis [120, 121], and in association with EndMT [122].
Scian et al. correlated tissue miRNA signatures with
profiles identified in paired urine samples [114]. They
found that miR-142-3p, miR-204, and miR-211 were
expressed in both tissue and urine in association with
chronic kidney allograft rejection, suggesting that it
might be possible to monitor miRNAs in urine as an
effective diagnostic of chronic rejection. Maluf et al.
also identified 22 urine miRNAs that were selective
for chronic rejection [115], and performed a longitudinal
analysis to define a subset that was expressed before
histological evidence of allograft injury. Collectively,
these findings suggest that changes in the expression
of specific miRNAs within the urine might be reflective
of an intragraft phenotype that is associated with chron-
ic rejection. However, large-scale multicenter studies
will be required to validate their potential to serve as
predictive biomarkers.

Summary

An increasing body of data indicates that vascular injury and
repair, and homeostatic angiogenic responses following organ
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transplantation occur in a dynamic manner. Clearly, events
associated with the efficient repair of the microvascular endo-
thelium after ischemia–reperfusion injury and alloimmune-
mediated damage will ensure long-term graft survival [17,
32]. However, sustained and uncontrolled microvascular inju-
ry and repair responses, including leukocyte-induced angio-
genic responses, ultimately result in local tissue hypoxia and
the induced expression of HIF-1α-regulated genes [31–34].
The paradigm described in this review identifies all these
events as key features of the initiation of chronic rejection.
In this manner, microvascular changes can induce growth fac-
tors and gene profiles that alter the intragraft microenviron-
ment, and ongoing studies have validated the use of this par-
adigm for the development of early disease biomarkers.

Key summary points

1. Microvascular endothelial cells (ECs) respond to
alloimmune targeting of the graft with sequential chang-
es, including EC activation and leukocyte-induced
angiogenesis.

2. These changes in the EC phenotype result in a proinflam-
matory intragraft microenvironment that favors the devel-
opment of chronic rejection.

3. Regulators of mTOR-mediated signaling within ECs are
of critical importance stability and the inhibition of chron-
ic rejection.

4. miRNAs also constitute a major class of regulators of EC
stability post-transplantation.

5. Monitoring intragraft ECmolecular events that participate
in the establishment of a proinflammatory microenviron-
ment may provide biomarkers for the early detection of
chronic rejection.
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Multiple choice questions (answers are provided
following the reference list)

1. The response of graft microvascular ECs to alloimmune
targeting following transplantation includes:

a) The induced expression of adhesion molecules and
chemokines

b) An uncontrolled angiogenesis response
c) A change in phenotype that promotes the recruitment

of leukocytes within the graft
d) All of the above

2. Vascular endothelial growth factor (VEGF):

a) Is delivered within the graft by infiltrating mononu-
clear cells

b) Is produced within the graft in response to local
hypoxia

c) Acts as an angiogenesis factor
d) Acts as a leukocyte chemoattractant
e) All of the above

3. In ECs, mTOR signaling:

a) Is downregulated upon alloimmune targeting of the
graft

b) Elicits cell proliferation, growth, and activation
responses

c) Is induced by cell intrinsic expression of DEPTOR
d) All of the above

4. Micro-RNAs:

a) Function to promote the expression of target mRNAs
b) Can regulate EC activation and microvascular

stability
c) Can be secreted in body fluids such as urine, where

they are unstable and are rapidly degraded by RNases
d) All of the above

5. Among the following, which have been proposed as non-
invasive biomarkers of chronic allograft rejection:

a) Plasma angiogenic factors
b) Plasma miRNAs
c) Urinary miRNAs
d) All of the above
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