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Abstract Dialysis is a life-sustaining treatment for patients
with end-stage kidney disease. In a different context, for many
patients this treatment is the focal point around which their life
revolves, not only due to the time spent travelling to and from
treatment sessions and the time dedicated to the dialysis
treatment itself, but also due to the accompanying dietary
and fluid restrictions and medication burden. Wearable and
portable dialysis devices could potentially improve patient
quality of life by allowing patients to continue with their daily
activities of life while undergoing dialysis, as well as by
loosening—or removing entirely—dietary and fluid restric-
tions and reducing pill burden. Advances in nanotechnology
manufacturing coupled with advances in electronics and
miniaturisation have allowed a new generation of wearable
and portable dialysis devices to be developed which are
now undergoing large animal and patient clinical trials.
We are therefore potentially at a new dawn in the treat-
ment of dialysis patients with the first generation of wear-
able and portable dialysis devices, which may well revo-
lutionise the treatment and quality of life for patients with
end-stage kidney disease.
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Introduction

Haemodialysis (HD) was first used by Wilhem Kolff to treat
patients with acute kidney injury during the Second World

War [1]. However it was only in the 1960s following advances
in vascular access, dialysers [2] and dialysis machine design
[3] that HD started to become available as a treatment for
patients with advanced chronic kidney disease (CKD). The
many limitations on patient life style at that time, particularly
the strict dietary and fluid restrictions required, were readily
appreciated by the early pioneers of HD therapies, who started
a search to develop portable and wearable HD devices [4–6].
However the technology available at that time restricted de-
velopment and, consequently, enthusiasm for developing a
wearable device waned.

Why develop a wearable or implantable dialysis device ?

Home HD offers many advantages over centre-based dialysis,
and the newer dialysis machine designs reduce the time spent
in preparing and cleaning the dialysis machine. However
unless patients dialyse overnight, they still potentially lose
productive time while attached to the dialysis machine. Thus,
a wearable or implantable device could potentially provide
patients with the freedom to work and perform their activities
of daily living while dialysing, and allow greater dietary
choices [7, 8].

It could be argued that a portable and wearable dialysis
device—in the form of peritoneal dialysis (PD)—has already
been developed. However, patients either have to perform
three to four exchanges per day with continuous ambulatory
PD or connect themselves to an automated overnight cycler
which although transportable requires a mains electrical sup-
ply and fresh dialysate. A PD system that recycles dialysate
would potentially be more eco-friendly, and fewer connec-
tions and disconnections could potentially reduce the risk of
peritonitis, the commonest cause of PD technique failure
[9, 10].
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HD is an efficient treatment for removing small water-
soluble solutes, but trials have consistently shown that simply
increasing urea clearance does not lead to improved patient
survival for patients with both acute and chronic kidney
failure [11–13]. While adding convective losses to the diffu-
sive clearance of conventional HD can increase the clearance
of phosphate and other middle molecular-weight solutes [14,
15], as these are predominantly intracellular, their extracorpo-
real clearance is more dependent on time than modality
(Fig. 1) [16].

More recently, high volume post-dilutional on-line
haemodiafiltration treatments have been compared to standard
HD[17–20]. The results appear to indicate benefit in terms of
patient outcomes [17]: taken individually these trials have a
number of potential confounders [18–20], but taken together,
higher volume haemodiafiltration does appear to offer im-
proved patient survival [17]. Other trials on HD, involving
either frequent HD sessions daily but each of shorter dura-
tion or longer nocturnal HD sessions, have not shown the
expected improvements from a greater amount of dialysis
treatment [21, 22]. Indeed, a increase number of HD ses-
sions led to a quicker loss of residual renal function, so
perhaps negating the benefits of additional dialysis [21,
22]. However, the combination of more frequent dialysis
sessions and haemodiafiltration [5× week predilution con-
vective flow of 18–27 l/m2 body surface area (BSA)] in
children demonstrated not only excellent biochemical results
but also highly significant catch-up growth that was much
better than that observed following transplantation [23].
Although this treatment option is an advance, the question
arises as to whether dialysis centres have the logistics to
provide more frequent haemodialfiltration treatments and
equally whether children and their parents are prepared to
commit so much time to the treatment. A wearable dialysis
device could potentially be a solution to this paradox by
combining longer treatment times while allowing patients
greater freedom [24].

The new generation of wearable dialysis devices

PD devices

The current generation of wearable dialysis devices had to
overcome to two important basic design problems: firstly, to
operate using powerful small light-weight battery-powered
pumps and, secondly, to avoid reliance on fresh dialysate by
developing sorbent technology to re-use spent dialysate [25].
The developers of the Vicenza wearable artificial kidney
(ViWAK) proposed using a standard fresh glucose-based di-
alysate that was to be instilled each morning, allowed to dwell
for 2 h and then continuously recycled through a dual lumen
PD catheter. The dialysate effluent would be pumped first
through a filter to remove proteins and then through a series
of sorbent filters, followed by a degassing chamber before
returning to the patient [26]. In the evening the patient would
drain out the dialysate and instil a fresh bag of 7.5 %
icodextrin to aid solute clearance and volume control. Such
a system as described would require the patient to perform two
standard PD exchanges per day. Due to this limitation and the
costs of replacing the sorbents each day, the ViWAK has not
proceeded from laboratory to clinical trials.

David Lee and Marty Roberts worked for many years on
developing a wearable continuous peritoneal dialysis device
[27]. Their current version, the automated wearable artificial
kidney (AWAK) is based on regenerating spent PD effluent
[28]. As the AWAK uses a standard single lumen PD catheter,
then peritoneal dialysate either flows into or out from the
patient (Fig. 2a, b), and as such there has to be a chamber to
store peritoneal dialysate. The AWAK device comprises two
modules, one designed to be changed on a daily basis and the
other to be changed monthly [29].

Sorbents can be subclassified into those which either ad-
sorb or absorb molecules. Adsorption is when molecules
adhere to the surface of the adsorbent, whereas absorption is
when molecules permeate the sorbent and are subsequently

Fig. 1 Patients with chronic
kidney disease fail to adequately
excrete the products of cellular
metabolism. The volume of the
intracellular compartment
exceeds that of the plasma
volume, and the clearance of most
middle-sized and charged solutes
by the dialyser is time dependent,
so favouring more effective
clearance with a continuous
dialysis system
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taken up by it. In addition, whereas some sorbents take up
molecules until they become saturated, others act primarily by
exchanging onemolecule for another [30]. For example, many

sorbents use activated microporous carbons which both ad-
sorb and absorb many compounds, including heavy metals,
oxidants, chloramines, creatinine, other organic species,

Fig. 2 The automated wearable artificial kidney (AWAK) has a discon-
tinuous flow of peritoneal dialysate. aOutflow circuit with spent dialysate
effluents pumped through a fibrin filter and sorbents and then through a
degassing chamber before being retained in a storage chamber. There is a

separate collecting chamber for ultrafiltrate. b The AWAK in-flow circuit
with spent dialysate refreshed by the addition of glucose, bicarbonate and
electrolytes before being passed through an ammonia sensor and then
pumped back into the patient
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middle molecules, including beta 2 microglobulin, and also
the protein-bound solutes indoxyl-sulphate and p-
aminohippurate [31]. Urea is cleared enzymatically in the
AWAK using urease, which converts urea into ammonium
carbonate, producing ammonia and carbon dioxide. As am-
monia is toxic, the sorbent system has to contain compounds
designed to remove ammonia [32]. Zirconium phosphate will
readily adsorb ammonium, but also potassium, calcium, mag-
nesium and other cations and metals. However, when zirco-
nium phosphate adsorbs these molecules they are exchanged,
thereby releasing hydrogen and to a lesser extent sodium ions.
As hydrogen ion release is not desirable, yet another sorbent is
required to remove these hydrogen ions. Zirconium carbonate
will absorb hydrogen ions, along with phosphate, fluoride and
heavy metals, but once again adsorption is by exchange, so
releasing bicarbonate, acetate and to a lesser extent sodium
[33].

Although azotaemic toxins are removed by the sorbents,
there will also be some changes in electrolytes. Glucose and
lactate will have been lost through diffusion from the perito-
neal cavity so the dialysate will need to be refreshed by adding
glucose, bicarbonate and electrolytes [34] (Fig. 2b). The
refreshed dialysate is then pumped back into the patient after
passing through an ammonia sensor. This sensor has been
designed as a safety mechanism to detect the very small
quantities of ammonia which start to enter the dialysate when
the sorbents have neared their capacity to adsorb ammonium,
thus warning the patient that fresh sorbents are required.
Compared to the conventional PD modality, the AWAK de-
sign proposes a tidal protocol with a residual volume of 500–
1,000 ml with rapid exchanges of around 250-ml aliquots
aiming for exchanges of around 4 l/h [35]. Although the
pumps are operated by small light-weight rechargeable batte-
ries, they require recharging overnight.

One of the key decisions to be made in designing a portable
or wearable device is to determine the amount of sorbent to be
used, as too little sorbent will lead to earlier saturation and
sorbent exhaustion with increased frequency of sorbent ex-
changes, whereas although additional sorbent will reduce the
frequency of sorbent exchanges, it will add extra weight [36].
Thus, designers have to take care to balance what weight

patients are prepared to carry around versus the inconvenience
of sorbent exchange. Taking these considerations into ac-
count, the AWAK design has two proposed versions, one
weighing around 1 kg and the other 3 kg, depending on the
difference in the size of the sorbent cartridges. Replacing the
sorbents currently requires the patient to drain out peritoneal
dialysate and then re-instil fresh dialysate with each sorbent
exchange. Thus, it is important that the sorbents last for at least
24 h to prevent the patient having to perform additional PD
exchanges.

Clinical trials aimed at testing the capacity of the current
sorbents are expected in 2015. Not surprisingly, the recent
enthusiasm for developing wearable and portable dialysis
devices has sparked new interest and research into a new
generation of more effective and lighter weight sorbents [37].

Wearable ultrafiltration and haemofiltration devices

The advent of dialysers with increased hydraulic permeability
[2] led to the development of wearable and portable
haemofiltration designs. However, for haemofiltration to pro-
vide effective clearance, large ultrafiltration volumes with the
corresponding return of large volumes of a replacement fluid
are required. These technical difficulties led to the abandon-
ment of the first generation of wearable haemofiltration de-
vices [38] or resulted in devices being limited to providing
low volume ultrafiltration for the treatment of refractory heart
failure rather than for treatment of end-stage kidney disease
[39]. More recently, a new design based on passing a plasma
ultrafiltrate through a silica-based nanoclay sorbent has been
developed (Fig. 3) [40], with the majority of plasma ultrafil-
trate being returned (to the patient), but some expelled to
control fluid balance. As yet, clinical trials of this prototype
have been limited to large animal studies with goats. More
work is required to refine this design and to determine the
capacity of the silica-based nanoclay sorbents.

Wearable HD devices

The advent of nanotechnology manufacturing techniques
coupled with miniaturisation and computer technology has

Fig. 3 A prototype wearable
haemofiltration device using a
plasma haemofilter silica-based
nanoclay sorbent
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allowed the development of experimental wearable HD de-
vices [41]. Current designs are based on the concept of
pumping blood and dialysate in a counter-current direction
through a standard high-flux dialyser [42]. A single dual
chamber battery powered shuttle pump was designed in order
to reduce weight and power requirements (Fig. 4). The stan-
dard HD machine blood pump produces an almost constant
blood flow into the dialyser at a relatively constant pressure. In
contrast, the dual chamber shuttle pump pumps blood and
dialysate at almost equal flow rates of around 50 ml/min, but
as this pump either pumps blood or dialysate, it produces
oscillating pressure gradients across the dialyser membrane
[43]. The standard HD session is based on delivering a highly
efficient but short duration treatment, so although protein
deposition on the dialyser membrane and membrane fouling
reduce treatment efficiency somewhat, this is not clinically
relevant in routine practice. However, for the lower efficiency
wearable device which produces much lower creatinine and
urea clearances, i.e. of approximately 20–30ml/min [44], then
membrane fouling could potentially markedly reduce efficien-
cy over time. As such, one of the key designs behind theWAK
is the shuttle pump, which by generating a pulsatile flow
across the dialyser membrane, minimises dialyser membrane
protein deposition, thereby maintaining solute clearances over
time [45]. A low-sodium sterile dialysate is pumped through
the dialyser and then through a series of sorbents in the order
of activated microporous carbon, followed by urease to re-
move urea and then by a number of zirconium-containing
sorbents to remove ammonium and hydrogen ions. As these
latter sorbents are in effect ion exchangers, they will then
release bicarbonate and sodium. Before returning through
the dialyser, the dialysate needs to be refreshed by adding
bicarbonate, sodium, calcium and magnesium (Fig. 5) [44].
Currently the WAK has only been worn by patients for up to
8 h. Consequently, new trials of treating patients for 24 h are
planned later this year to determine the capacity of the sor-
bents and the composition and requirements of the electrolyte

refreshing solution, as these are likely to vary between
patients.

As with the AWAK, microbubbles of carbon dioxide
develop within the extracorporeal circuit, both in the
dialysate and blood compartments. Whereas the conven-
tional HD circuit has an arterial expansion chamber and
venous bubble chamber which can accommodate
microbubbles, the WAK has no such chambers and, there-
fore, parts of the plastic tubing in the circuit have been
designed using water-impermeable but gas-permeable
plastics [43].

The main disadvantage of a wearable HD device is that
there is a risk of clotting in the extracorporeal circuit. In
the intensive care setting many continuous forms of renal
replacement therapy have to be replaced due to circuit
clotting [46]. Although there are differences in the
balance of pro- and anticoagulants between critically ill
patients with acute kidney injury and those with end stage
kidney disease [47, 48], clotting in the extracorporeal
circuit remains a major hurdle to overcome. It is important
to design the blood circuit to minimise areas of turbulence
and stagnation, as well as blood–air interfaces as these
promote clotting. Equally important is dialyser design and
priming to minimise air and microbubble entrapment dur-
ing priming and operating. Appropriate selection of the
central venous access catheter and dialyser design [49],
coupled with the dual chamber pump, can all help towards
reducing the risk of clotting in the extracorporeal circuit.
Currently, a bolus followed by a continuous infusion of
unfractionated heparin has been used to anticoagulate
patients using the WAK. Repeated exposure to unfrac-
tionated heparin has been reported to lead to osteoporosis;
in addition, patients differ in heparin requirements. Other
alternatives, including repeated daily bolus injections of
low-molecular-weight heparins or of heparinoids which
have a much longer half-life, have not been explored.
The ideal extracorporeal anticoagulant would be an oral

Fig. 4 The wearable artificial
kidney (WAK) utilises a dual
chamber shuttle pump which
either pumps blood or dialysate in
a counter-current direction
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medication that had predictable effects and so would not
require regular monitoring and, preferably, not be a sys-
temic anticoagulant. Currently only oral systemic antico-
agulants are available. Consequently, such future designs
of wearable HD devices may require alternative anticoa-
gulant strategies [50, 51], such as oral anti-thrombin or
anti-factor Xa inhibitors.

Implantable HD devices

The commercial market for wearable and portable dialysis
devices would be limited to the more active and self-reliant
patient, whereas an implantable device could potentially be
made available to all dialysis patients. However, any implant-
able device not only has to haveminimal risks for insertion but
also has to operate effectively and not fail prematurely. Cur-
rently there are no implantable devices undergoing trials, but
research is underway to overcome the three main hurdles
faced by an implantable dialysis device. Implanting a device
between the iliac arteries and veins has the advantage of not
requiring a blood pump. Although arterial grafts have been a
major success in treating patients with arterial vascular dis-
ease, arterio-venous grafts have not been as successful for HD
access due to an increased risk of graft thrombosis. As such,
thrombus of access darts has been a major hurdle to overcome
[52], although polyethylene glycol coating of silicone vascular
access darts can reduce or even prevent thrombus formation in
the short term [52, 53]. These access darts provide a high
blood flow which would lead to an increased risk of protein
deposition and clotting if used with conventional
haemodialyser designs. Different dialyser designs based on
the glomerular basement membrane, which produces a large
volume ultrafiltrate from a high-pressure arteriolar input, have
been developed using ultrathin silicone slit membranes, sim-
ilar to a storm drain in the street [54]. In the healthy kidney,
although a large volume of ultrafiltrate is produced by the
glomerulus, there is then a highly specialised renal tubule
designed to selectively reabsorb most of the glomerular

filtrate. So although design technology could come up with
an equivalent artificial glomerulus design, the search is still
on for an equivalent of the human renal tubule. The reverse
osmosis water purification system uses a tightly coiled
membrane to separate domestic tap water into waste water
and a much smaller amount of water for dialysis. This
principle could be used to treat the large volume of filtrate,
i.e. to reduce the volume, but it would not provide the
highly selective capacity provided by the renal tubule in
terms of which solutes to conserve and which to discard. A
more futuristic approach would be to try and develop an
artificial cell-based renal tubule, but even so the function
and cell types in the human renal tubule differ from seg-
ment to segment of the tubule [55].

Summary

The concept of wearable and portable dialysis devices dates
back to the pioneering days of the 1970s. However, it is only
recently with the more recent advances in nanotechnology
manufacturing processes, miniaturisation and computer tech-
nology has it been possible to develop a number of wearable
and portable devices based on PD, haemofiltration and HD.
The current generation of wearable devices weigh between 1–
3 kg, as there is a balance between sorbent life and sorbent
exchanges. As such the weight of the devices may well restrict
their use. However, this renewed interest in wearable devices
has equally led to improvements in sorbent technology that
hopefully will lead to lighter weight devices and underpins the
potential success of these devices. We therefore look forward
to the development of a newer generation of dialysis devices
which could potentially substantially improve the quality of
life of the patient with CKD.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and

Fig. 5 The WAK has both a
blood side and a dialysate side,
with spent dialysate regenerated
by passage through a series of
sorbents, followed by the addition
of bicarbonate and electrolytes
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