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Abstract
Background The objectives of this study were to investigate
pharmacokinetic and pharmacogenetic parameters during the
conversion on a 1:1 (mg:mg) basis from a twice-daily
(Prograf) to once-daily (Advagraf) tacrolimus formulation in
pediatric kidney transplant recipients.
Methods Twenty-four-hour pharmacokinetic profiles were
analyzed before and after conversion in 19 stable renal
transplant recipients (age 7–19 years). Tacrolimus pharmaco-
kinetic parameters [area under the concentration-time curve
(AUC0–24), minimum whole-blood concentration (Cmin),
maximum whole-blood concentration (Cmax), and time to
achieve maximum whole-blood concentration (tmax)] were
compared between Tac formulations and between CYP3A5
and MDR1 genotypes after dose normalization.
Results Both AUC0–24 and Cmin decreased after conversion
(223.3 to 197.5 ng.h/ml and 6.5 to 5.6 ng/ml; p=0.03 and
0.01, respectively). However, the ratio of the least square
means (LSM) for AUC0–24 was 90.8 %, with 90 % CI limits
of 85.3 to 96.7 %, falling within bioequivalence limits. The
CYP3A5 genotype influences the dose-normalized Cmin with
the twice-daily formulation only.
Conclusions Both tacrolimus formulations are bioequivalent
in pediatric renal recipients. However, we observed a decrease

in AUC0–24 and Cmin after the conversion, requiring close
pharmacokinetic monitoring during the conversion period.
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Abbreviations
AUC Area under the concentration-time curve
Cmin Minimum whole-blood concentration
Cmax Maximum whole-blood concentration
Tac-QD Once-daily tacrolimus
Tac-BID Twice-daily tacrolimus
PK Pharmacokinetic
Tac Tacrolimus
tmax Time to achieve maximum

whole-blood concentration

Introduction

In pediatric kidney transplant recipients, non-compliance with
immunosuppressive medications ranges from 5 to 80 % in
adolescents [1–3], contributing to late acute transplant rejec-
tion and resulting in a 50 % incidence of graft loss [4].
Forgetfulness is the most common reason for non-
compliance as reported by caregivers and patients [5]. Com-
pliance is higher with once-daily compared to twice-daily
treatment regimens in chronic diseases [6]. Assessment of
tacrolimus (Tac) levels is required in clinical practice, because
of the narrow therapeutic index and variance in pharmacoki-
netics (PK) among different patients [7–9].

Advagraf (Astellas Pharma Canada, Inc; Markham, ON,
Canada; hereafter referred to as Tac-QD) is a once-daily
extended-release formulation of Tac initially developed to
improve patient adherence. Clinical trials in stable and de novo

A.<L. Lapeyraque (*) :Y. Théorêt :M.<J. Clermont :V. Phan
Service de Néphrologie, Département de Pédiatrie,
CHU de Sainte-Justine, Université de Montréal, Montréal, Canada
e-mail: anne.laure.lapeyraque@umontreal.ca

A.<L. Lapeyraque :Y. Théorêt :M. Krajinovic : C. Litalien
Unité de Pharmacologie Clinique, CHU de Sainte-Justine,
Université de Montréal, Montréal, Canada

N. Kassir
Département de Pharmacie, Université de Montréal,
Montréal, Canada

Pediatr Nephrol (2014) 29:1081–1088
DOI 10.1007/s00467-013-2724-0



solid-organ adult recipients showed similar efficacy, tolerance,
and safety when compared to Prograf (Astellas Pharma Cana-
da, Inc; hereafter referred to as Tac-BID) the original twice-
daily Tac formulation [10]. Both formulations were shown to
be bioequivalent on a 1:1 basis according to the FDA criteria.
However, more recent reports indicated that the use of Tac-QD
may be associated with a lower Tac exposure (lower Cmin and
lower AUC0−24) after a 1:1 conversion from Tac-BID [10–15].

Tac PK parameters have high variability among patients,
depending on several factors, such as type of organ
transplanted and pharmacogenetics. It is well established that
CYP3A5 expression contributes significantly to the variability
in Tac PK. Only individuals with at least one CYP3A5*1 allele
express a significant amount of CYP3A5 enzyme. The pres-
ence of a single-nucleotide polymorphism (SNP) in intron 3 of
CYP3A5 causes alternative splicing and protein truncation
resulting in the absence of CYP3A5 enzyme in homozygous
carriers (CYP3A5*3/*3) [16–19]. Another important factor
affecting the PK of Tac is MDR1 expression, the gene
encoding the active transporter P-glycoprotein [20]. Homozy-
gous individuals for the T-allele in MDR1 of exon 26
(C3435T), have significantly lower intestinal and leucocyte
protein expression than the homozygote C-allele. Other poly-
morphisms in exon 12 (C1236T) and exon 21 (G2677T) have
been studied in Tac PK parameters, and their role remains
controversial [16, 21, 22]. Given that the drug release rate and
location differ between Tac-BID and Tac-QD, the effect of
CYP3A5 and MDR1 genotypes on Tac PK parameters may
differ between formulations [23].

Therefore, the aims of this study were to compare Tac PK
parameters and the impact of CYP3A5 and MDR1 genotypes
on Tac exposure before and after formulation conversion in
stable pediatric renal transplant recipients.

Materials and methods

This open-label, single-center, PK study was conducted at the
Centre Hospitalier Universitaire Sainte-Justine (Montreal,
Canada). Health Canada and our Institutional Review Board
approved the protocol. The first patient was enrolled on June
29, 2010. Informed consent was obtained prior to participation.

Patients

Eligible patients were required to be (1) kidney transplant
recipients between 6 and 20 years old (able to swallow intact
capsules), (2) at least 6 months after transplantation, and (3)
taking Tac-BID for at least 2 weeks prior to study entry, in
addition to mycophenolic acid and prednisone. Patients were
included if their kidney function was stable (no modification
in the Tac-BID, mycophenolate mofetil, and steroid doses
within 2 weeks prior to enrollment), as well as their hepatic

function and general medical condition. Patients were exclud-
ed if they (1) were receiving drugs known to interact with Tac
metabolism, (2) had begun any newmedicationwithin 30 days
prior to study enrollment, (3) had had a rejection episode
within 180 days before study enrollment, (4) could not swal-
low capsules, or (5) were receiving rapamycin.

Study design

Patients were admitted to the Clinical Research facility on the
morning of day 1, after having fasted from midnight the day
before (day 0) until 60 min after the start of the study. A 24-h
PK profile was obtained before conversion (baseline, day 1).
Patients were converted to Tac-QD on a 1:1 (mg:mg) basis for
their total daily dose on the morning of day 2, and were then
discharged from the hospital. Blood samples for the second
24-h PK profile were collected any morning between day 14
and day 42. Serial whole-blood samples were collected im-
mediately before drug administration (pre-dose), and 0.5, 1, 2,
3, 6, 8, 12, 13, 14, 15, 18, 20, and 24 h after.

All immunosuppressants used in combination with Tac
were maintained at constant doses until the second 24-h PK
profile was performed.

Pharmacokinetic analysis

Whole blood samples for PK analysis were frozen at −80 °C
until analysis then determined using a validated HPLC/MS/
MS assay (lower limit of quantification 0.1 ng/ml). AUCwere
obtained using the linear trapezoidal method applied to the full
PK profiles (0 to 24 h). Cmin values were determined using the
observed Tac whole-blood concentration value at the 24-h
time point. Cmax and tmax were determined after the morning
dose of Tac-BID.

Consistent with the two one-sided test for bioequivalence
(Schuirmann, 1987), 90 % confidence intervals (CI) for the
ratio between drug formulation least-squares means (LSM)
for the Tac-BID to the reference formulation Tac-QD were
calculated for the parameters AUC0−24 and Cmin using ln-
transformed data and then back transformed to the original
scale. The LS means and CI were expressed as a percentage
relative to the LS mean of the reference formulation. Tac-BID
was considered bioequivalent to Tac-QD if the 90 % confi-
dence intervals (CI) for the LSM ratio fell within the equiva-
lence limits of 80–125 %.

Genotyping assay

The analyses were performed for three single-nucleotide poly-
morphisms (SNPs) in the MDR1 gene (1236C/T, 2677 G/AT,
3435C/T) and the CYP3A5 6986 A/G substitution, defining
allele *1 and *3, respectively. DNA segments containing the
polymorphic MDR1 and CYP3A5 sites were amplified by
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PCR. Genotyping was performed by allele-specific oligonu-
cleotide (ASO) hybridization, as previously described [24].
Primers set as described by Dulucq and colleagues were used
[25].

Statistical analysis

The clinical characteristics of renal transplant recipients and
the PK parameters of Tac-BID and Tac-QD were expressed as
the median [range, standard deviations and coefficient of
variation (%)]. The Wilcoxon test (paired t test) was used to
compare Tac PK parameters according to Tac formulations
and the Mann–Whitney test was used to compare Tac PK
parameters according to CYP3A5 genotype. A p value of less
than 0.05 was considered statistically significant.

All statistical analysis were made using GraphPad Prism
version 5.00 for Windows, GraphPad Software, San Diego,
CA, USA.

Results

Patient demographics

Patient characteristics are presented in Table 1. Nineteen pa-
tients (12 males) between 7 and 18.9 (median age, 15.3) years
were included. Median posttransplant duration was
43.7 months (range, 9.5–128.5 months). The median total
daily baseline Tac dose was 0.11 mg/kg (0.06–0.19). The
allele frequencies of CYP3A5*1/*1, *1/*3, and *3/*3 were
5.3, 21, and 73.7 %, respectively. The alleles of different
MDR1 polymorphisms are summarized in Table 1.

Tac exposure and PK analysis

Thirty-eight 24-h Tac PK profiles were obtained for 19 patients.
The Tac-BID and Tac-QD PK parameters are shown in Table 2.

Themedian TacAUC0−24 (ng.h/ml) of Tac-BID and Tac-QD
was 223.3 and 197.5 (p=0.03), respectively. Despite this statis-
tical difference in AUC0−24, the ratio of the least square means
(LSM) for AUC0–24 was 90.8 %, with 90 % CI limits of 85.3–
96.7 % (Table 3), falling within 80 % to 125 % bioequivalence
limits. Therefore, the two formulations were bioequivalent.

The median Cmin of Tac-BID (6.5 ng/ml) was significantly
higher than Tac-QD median Cmin (5.6 ng/ml) with a p of 0.01.
Furthermore, the ratio of the LSM for Cmin (77.69 %) and its
90 % CI (69.3–87 %) did not achieve bioequivalence limits of
80–125 % (Table 3). Based on the latter Cmin results, Tac-BID
and Tac-QD are no longer deemed bioequivalent on a 1:1
conversion basis. In addition, no differences were found in
Cmax between formulations. As expected, the observed tmax (0
to 12 h) was significantly increased after conversion (1 and 2 h
for Tac-BID and Tac-QD, respectively).

The whole-blood Tac concentration-time profiles of the 19
patients are shown in Figs. 1 and 2. We observed high inter-
patient variability for the two Tac formulations. Coefficients
of variations (CV) for each dose-normalized Tac PK parame-
ters (AUC0–24h, Cmin, Cmax) are summarized in Table 2.

Pharmacogenetic analysis

No association was found between the concentration/dose
ratio and MDR1 genotypes for either Tac formulation.

The CYP3A5 expresser group (*1*1 or 1*3 genotypes)
demonstrated lower inter-patient variability (19.5, 23.1, and
30.8 %, respectively) compared to the CYP3A5 nonexpresser

Table 1 Clinical characteristics of pediatric renal recipients converting
from Tac-BID (Prograf) and Tac-QD (Advagraf)

Characteristics n

Sex

Male/female 12/7

Race

Caucasian/black 17/2

Age (years) 15.3 (7–18.9)

Post transplantation time (months) 43.7 (9.5–128.5)

Type of current transplant

Deceased/living donor 15/4

Previous history of acute rejection

No/Yes 15/4

Retransplant

No/Yes 19/0

Total Tac daily dose (mg/kg) 0.11 (0.06–0.19)

Pre-existing non-compliance

No/Yes 17/2

CYP3A5 genotypes

*1/*1 1

*1/*3 4

*3/*3 14

MDR1 polymorphisms

3435C >T

C/C 4

C/T 10

T/T 5

1236C >T

C/C 3

C/T 10

T/T 6

2677G >A/T

G/G 5

G/T 8

TT 6

Values are expressed as the number (n) or median (range)

Tac tacrolimus
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group (41.7, 37.5, and 56.5 %, respectively) for all dose-
normalized Tac PK parameters (AUC0–24, Cmin and Cmax).

The median dose-normalized Cmin levels increased in
CYP3A5 nonexpressers (*3*3 genotype) compared to ex-
pressers with Tac-BID, but not with Tac-QD despite a similar
trend (Table 2). Furthermore, median dose-normalized Cmin

levels decreased significantly with Tac-QD compared to Tac-
BID in CYP3A5 nonexpressers only.

On the other hand, there were no significant differences in
the dose-normalized AUC0–24h between CYP3A5 expressers
and nonexpressers with the two formulations, and median

dose-normalized AUC0–24 was not significantly different be-
tween formulations in each group of the CYP3A5 genotype.
Median dose-normalized Cmax levels were not statistically
different between the two formulations and between CYP3A5
genotypes.

Discussion

Adolescents are particularly at risk of graft loss because of
non-compliance with immunosuppression [26]. Any drug
regimen that improves adherence by simplifying its adminis-
tration is encouraged, although few studies have shown im-
proved adherence one year after conversion to once-daily
formulations [27, 28]. The FDA considers Tac-QD, a new
formulation of tacrolimus, to be bioequivalent to Tac-BID in
adult renal and hepatic transplant recipients [10].

To confirm its bioequivalence in pediatric renal recipients,
and to evaluate the safety of conversion, we performed Tac PK
studies before and after a 1:1 conversion. The best marker of
Tac exposure is the AUC0–24, so we assessed 24-h PK profiles
before and after conversion for each patient.

Table 2 Tacrolimus (Tac) pharmacokinetic parameters for Tac-BID (Prograf) and Tac-QD (Advagraf): all patients and CYP3A5 genotypes subgroups

Parameters Tac-BID (Prograf) Tac-QD (Advagraf)

Median Range SD CV Median Range SD CV p*

AUC0−24 223.7 149.7–278.6 32.5 15 197.5 129.3–278.5 47.1 23.5 0.04

AUC0−24/dose 1,815 1,028–4,643 967.6 44.5 1,665 982.7–4,641 1,065 52.3 0.04

*1/*1 and *1/*3 1,480 1,177–1,815 288.4 19.5 1,329 982.7–1,665 244.3 18.2 0.31

*3/*3 2,428 1,028–4,643 1,010 41.7 2,111 994.2–4,641 1,140 49.8 0.13

p 0.07 0.1

Cmin 6.5 5–8.2 0.8 12.5 5.6 3.5–8.3 1.4 25.2 0.01

Cmin/daily dose 55.6 31–125 27.2 41.8 46. 25.3–138.3 30.7 53.1 0.007

*1/*1 and *1/*3 43.1 33.2–58.6 10 23.1 37.1 25.3–49.4 8.7 23.2 0.3

*3/*3 75.6 31–125 27.3 37.5 58.3 27.7–138.3 32.7 50.3 0.01

p 0.03 0.1

Cmax 15.1 11.1–32.6 5.8 33.8 16.3 8.0–28.9 5.4 35.2 0.32

Cmax/daily dose 151.8 61.6–433.3 89.6 53.6 114.3 65–313.3 83.4 53.8 0.32

*1/*1 and *1/*3 145 86.9–182.9 42.3 30.8 90 87.9–180.6 39.9 36.1 0.81

*3/*3 158.1 61.6–433.3 100.5 56.5 159.4 65–313.3 90.1 52.7 0.58

p 0.54 0.28

tmax 1 1–3 2 1–3 0.04

Values are expressed as the median (range). CV coefficient of variation (%), AUC0–24h, area under the blood concentration-time curve from 0 to 24 h
((ng.h/ml),Cmin trough blood concentration at 24 h (ng/ml), Cmaxmaximum blood concentrations (ng/ml), tmax, observed time to reach the maximum
blood concentration (h); *1 and *1/*3, CYP3A5 expresser; *3/*3, CYP3A5 nonexpresser; p*1 and *1/*3 vs. *3/*3; p*, Tac-BID (Prograf) vs. Tac-QD
(Advagraf)

CV coefficient of variation, SD standard deviation, AUC 0–24h 0–24 h area under the tacrolimus concentration-time curve (ng.h/ml), Dose total daily
tacrolimus dose/weight (mg/kg), Cminminimum whole-blood tacrolimus concentration (ng/ml), Cmaxmaximum whole-blood tacrolimus concentration
(ng/ml), tmax time to achieve maximum whole-blood tacrolimus concentration (h), *1 and *1/*3 CYP3A5 expresser, *3/*3 CYP3A5 nonexpresser, p*1
and *1/*3 vs. *3/*3, P* Tac-BID (Prograf) vs. Tac-QD (Advagraf)

Table 3 Bioequivalence statistics for AUC 0–24h and Cmin for Tac-BID
(Prograf) and Tac-QD (Advagraf)

PK Geometric LSM Ratio A/B
of LSM (%)

90 % CI for ratio
of the LSM (%)

Parameters Tac-QD Tac-BID

AUC0-24 5.27 5.37 90.82 85.27, 96.73

Cmin 1.68 1.93 77.69 69.33, 87.05

CI confidence interval, PK pharmacokinetic, LSM least square means,
AUC0–24h area under the blood concentration-time curve from 0 to 24 h,
Cmin trough blood concentration at 24 h
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In this study, the ratio of the least square means (LSM) for
AUC0–24 and the 90 % CI limits (Table 3) fell within bio-
equivalence limits as defined by the FDA. However, we found
the 1:1 conversion to be associated with a sustained decrease
in Tac exposure, as shown by lower AUC and lower Cmin

(Table 2). Even though the interval between PK profiles was
between 14 and 42 days, there were no changes in the patient

condition or medications that could have modify Tac pharma-
cokinetic. Our results are in accordance with recent data
reporting Tac-QD to be associated with a significantly lower
Tac exposure after a 1:1 conversion in de novo or stable renal
and liver transplant recipients [12, 14, 15, 23, 29–40].

Tac is known to have a narrow therapeutic index, already
making it tedious to monitor in transplanted patients [41]. An
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Fig. 1 Whole-blood tacrolimus concentration-time profiles in 19 stable pediatric kidney transplant recipients on Prograf (before the conversion) (a) and
Advagraf (after the conversion) (b)
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Fig. 2 Whole-blood tacrolimus concentration-time profiles in the 5 CYP3A5 expressers pediatric kidney transplant recipients on Prograf (a) and on
Advagraf (b) and in the 14 CYP3A5 non-expressers on Prograf (c) and on Advagraf (d)
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unexpected decrease in Tac exposure may either increase the
risk of acute rejection, or conversely cause fewer side effects
such as hypertension, hyperglycemia, and nephrotoxicity. An
increase in acute rejection has not yet been reported, but the
long-term effects of this unexpected decrease in Tac exposure
remain unknown. The absence of acute events does not pre-
clude subclinical graft rejection, which may compromise
long-term graft survival. The decrease in nephrotoxicity was
reported in non-randomized studies [29, 42] but not been
confirmed in randomized control trials [43, 44].

These PK results illustrate the increasing evidence that narrow
therapeutic index immunosuppressive drugs should not just ful-
fill standard criteria of bioequivalence [45]. This concern is
particularly important in the development of generics [46]. For
this reason, the EuropeanMedicines Agency and Health Canada
recently changed the interval of the relative mean AUC so it
would fall within 90–112 % for all drugs inclusively, with a
narrow therapeutic index [11]. With these more stringent limits,
Tac-QD and Tac-BID may no longer be considered bioequiva-
lent. Therefore, because of the decrease in Tac exposure with
Tac-QD, we recommend that pediatric patients should be closely
monitored posttransplant. Furthermore, in non-compliant pa-
tients, missing one dose may have greater consequences with a
single compared to a twice-daily regimen. Furthermore, the
impact of Tac-QD on the simultaneous intake of mycophenolic
acid (administered twice daily) also needs to be addressed.
Taking a single dose of Tac in the morning might increase the
risk of the mycophenolic acid evening dose being forgotten.
Long-term studies are required to measure adherence of all
immunosuppressive medications in this setting.

In contrast to other Tac-QD PK studies in healthy adults
and adult kidney transplant recipients, Cmax did not signifi-
cantly differ between Tac formulations in our population. On
the other hand, as expected, tmax was later for Tac-QD, which
was absorbed with delay. This element should be monitored
closely if a drug interaction is expected to affect the absorption
phase of metabolism.

Few studies have compared inter-patient PK variability for
Tac-BID and Tac-QD [47]. In our study, we report a moder-
ately higher inter-patient variability in dose-normalized Tac
PK parameters (AUC0–24 and Cmin) for Tac-QD compared
with Tac-BID, with a similar magnitude to that which was
reported previously with Tac-BID [48]. Other factors affecting
drug absorption (age, ethnicity, gastrointestinal mobility, eve-
ning food intake) may explain those discrepancies.

The correlation between Tac Cmin and CYP3A5 genotypes
also differed between the formulations. Higher dose-
normalized Cmin levels were seen in CYP3A5 nonexpressers
(*3*3 genotype) compared to expressers (*1*1 and *1*3
genotypes combined) with Tac-BID, but not with Tac-QD,
despite a similar trend. Although differences in dose-
normalized AUC in CYP3A5 expresser and non-expressers
do not reach the statistical significance the trend is similar to

Cmin. Obviously numbers limits the power of the
comparisons.

The impact of the genotype of nonexpressers (patients with
lower clearance) on the dose-normalized Tac Cmin is therefore
less significant with Tac-QD than with Tac-BID. Furthermore, a
notable decrease in dose-normalized Cmin was observed between
formulations only in the CYP3A5 nonexpressers group. These
results are consistent with another study in stable adult renal
transplant recipients [49]. There is some evidence to suggest that
CYP3A5messenger RNA and protein expressionmay be higher
in the jejunum than in the ileum [50, 51]. Since Tac-QD is likely
absorbed more distally than Tac-BID, it is possible that the lower
presystemic metabolism resulting from the lack of CYP3A5
expression has more influence on Tac-BID compared to Tac-
QD. To date, three studies have shown the controversial impact
of CYP3A5 polymorphisms on Tac PK when converting from
Tac-BID to Tac-QD in stable renal transplant recipients [23, 49,
52].

Our study, like others, failed to demonstrate an association
between Tac PK for both formulations and MDR1 genotypes
[16, 17, 19, 23].

Conclusions

We demonstrated that Tac-BID and Tac-QD are bioequiva-
lent in pediatric kidney recipients. The question still remains
whether the definition of bioequivalence is relevant in clin-
ical practice, in order to evaluate narrow therapeutic index
drugs. In fact, a decrease in Tac exposure was demonstrated
in our study population after a 1:1 (mg:mg) conversion,
requiring closer pharmacokinetic monitoring during the pro-
cess. The Tac-QD formulation was associated with a lower
impact of CYP3A5 polymorphisms on Tac PK parameters.
Development of sampling strategies to estimate Tac-QD
AUC0–24 may be helpful to clinicians to optimize monitor-
ing after conversion from Tac-BID to Tac-QD. Studies to
evaluate long-term adherence to this new formulation and to
other immunosuppressive drugs after conversion are
necessary.
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