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Abstract Congenital obstructive nephropathy remains one of
the leading causes of chronic renal failure in children. The
direct link between obstructed urine flow and abnormal renal
development and subsequent dysfunction represents a central
paradigm of urogenital pathogenesis that has far-reaching
clinical implications. Even so, a number of diagnostic, prog-
nostic, and therapeutic quandaries still exist in the manage-
ment of congenital obstructive nephropathy. Studies in our
laboratory have characterized a unique mutant mouse line that
develops in utero megabladder, variable hydronephrosis, and
progressive renal failure. Megabladder mice represent a valu-
able functional model for the study of congenital obstructive
nephropathy. Recent studies have begun to shed light on the
genetic etiology of mgb−/− mice as well as the molecular
pathways controlling disease progression in these animals.
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ESRD End-stage renal disease
Cbg Corticosteroid-binding globulin
Hdac Histone deacetylase

Introduction

One key component in studying the complex processes in-
volved in the pathogenesis of human disease is the use of
animal models. Whether experimental, surgical or genetic,
animal models provide a wealth of information on how path-
ogenic processes affect the whole organism in the context of
dynamic pathophysiological responses. Gaining a better un-
derstanding of the etiology and progression of a disease is
critical in determining the precise prognostic and therapeutic
strategies needed to stage, treat, and cure the disease. In this
review, we will examine two key elements of urogenital
pathogenesis associated with the mgb mouse model of con-
genital obstructive nephropathy (CON): genetic etiology and
renal pathogenesis.

Genetic etiology

The mgb mouse model

Homozygoticmgb mice (mgb−/−) develop lower urinary tract
obstruction in utero due to a primary defect in bladder smooth
muscle differentiation [1]. This defect is the result of a random
transgene insertion into chromosome 16 and translocation of a
fragment of chromosome 16 containing the transgene into
chromosome 11. Genetic studies indicate that the transgene
plays no biological role in generating the mgb phenotype [1].
In addition, although transcriptional profiling ofmgb−/− mice
identified an over-expressed cluster of three genes on the
translocated fragment of chromosome 16, none of these tran-
scripts plays a direct role in generating the mgb phenotype [2].

These observations suggest that the primary genetic defect
associated with the mgb−/− phenotype resides on chromo-
some 11. Unpublished results indicate that the translocation
breakpoint on chromosome 11 occurs approximately 500 kb
upstream of a key transcription factor associated with smooth
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muscle development—myocardin. Complementation and ex-
pression studies have confirmed that the gene responsible for
the mgb−/− phenotype is myocardin and that this gene plays
no role in normal kidney development or function [2].

Mgb−/− mice develop a nonfunctional, over-distended
bladder that most closely resembles a non-neurogenic neuro-
genic bladder. Affected animals develop low-pressure
hydronephrosis that initiates in utero, producing a functional
lower urinary tract obstruction, antenatal hydronephrosis, and
signs of renal failure evident shortly after birth [1]. Mgb−/−

mice are born with histopathological evidence of renal injury
and exhibit a variable clinical course similar to children with
posterior urethral valves (PUV). In addition, affected animals
preferentially develop unilateral, right-sided hydronephrosis
reminiscent of the “pop-off” mechanism theorized in children
with PUV and secondary unilateral vesicoureteral reflux [3].
Finally,mgb−/−mice can be rescued from the complications of
renal failure by cutaneous vesicostomy even though 40 % die
within the first 2 weeks despite a patent stoma and no apparent
surgical complications, a result reminiscent of the fact that
27 % to 70 % of children with PUV will have progressive
chronic kidney disease despite surgery [4–6].

Patent ductus arteriosus

Recent studies indicate that further reduction in myocardin
expression through genetic manipulation not only recapitu-
lates the mgb−/− bladder phenotype, but also results in the
appearance of a second genetic defect—patent ductus
arteriosus (Fig. 1). Although a direct link between bladder
smooth muscle development and patent ductus arteriosus may
not be self-evident, a review of their developmental origins
identifies a common cellular lineage. During cardiac develop-
ment, the outflow tract receives a critical contribution from the
cranial neural crest associated with the branchial arches. These
cells seed the developing cardiac outflow tract and its associ-
ated vessels providing them with the smooth muscle progen-
itors necessary for normal vascular development. Even though
bladder smooth muscle is principally derived from splanchnic
mesenchyme (mesoderm) and not neura l c res t
(neuroectoderm), the smooth muscle differentiation program
in both cell types is controlled by myocardin expression.
Morphological analysis confirmed a lack of smooth muscle
cells within the ductus arteriosus of these animals (unpub-
lished results). Therefore, the appearance of patent ductus
arteriosus in genetically altered mgb mice represents a struc-
tural defect in the target cell type necessary for normal phys-
iological closure.

Long-range enhancers

The genetic distance of the chromosome 11 insertion site from
the myocardin gene suggests that the mgb phenotype occurs

as a result of a position effect mutation. A wide range of
important position effect mutations have been described [7],
one of the most commonly proposed mechanisms being the
disruption of a long-range enhancer element. The complex
insertion/translocation defect characterized in mgb−/− mice
involves the loss of a 26-kb segment of chromosome 11
during the 1-mb insertion of a transcriptionally active region
chromosome 16. Either of these genetic events could have
easily disrupted a long-range enhancer element critical to the
normal temporal and spatial expression of myocardin. A sim-
ilar loss of positive acting long-range enhancer elements has
been shown to lead to a variety of human genetic diseases
i n c l u d i n g Va n Bu c h em d i s e a s e , L e r i –We i l l
dyschondrosteosis, Saethre–Chotzen syndrome, hypoparathy-
roidism, Rieger syndrome, Greig cephalopolysyndactyly, and
X-linked deafness [8–14]. Each of these defects results from a
tissue-specific gene dosage effect that occurs from the deletion
or distal translocation of long-range cis-acting regulatory ele-
ments. These observations suggest that the organ-specific
defects observed in the mgb−/− mouse result from a gene
dosage effect associated with the interruption of a tissue-
specific, long-range, cis-acting enhancer element located on
chromosome 11 upstream from the myocardin transcriptional
start site.

In summary, characterization of the genetic defects associ-
ated with the mgb phenotype has led to the discovery of a
novel long-range regulatory element that is critical in modu-
lating the tissue-specific expression of myocardin. Many key
developmental control genes, like myocardin, appear to be
regulated by overlapping enhancer activity, suggesting that
gene dosage plays an important role in modulating the func-
tional activity of these genes [7]. Long-range enhancers can be
found in almost any genetic domain (introns, embedded with-
in other gene promoters, etc.) and their activity can be mod-
ified by a single base mutation [7]. In addition, most long-
range enhancer defects appear less severe than those directly
associated with the gene transcript. These observations sug-
gest that long-range enhancers might play a subtle but impor-
tant role in many common diseases, making them attractive
targets for SNPs or CNVs that appear spatially dissociated
from their target gene.

Renal pathogenesis

The mgb−/− mouse model of CON displays a highly
orchestrated adaptive response that is designed to pre-
vent permanent renal injury and permit rapid morpho-
logical and functional recovery. This model of renal
adaptation appears to involve a balance between
transforming growth factor beta (TGFβ)-directed patho-
genesis, retinoic acid (RA)-mediated remodeling/repair,
and steroid hormone modulation.
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Renal response to injury

Over half of the top 20 canonical pathways identified in
affected mgb−/− kidneys involved renal response to injury,
with the most activated upstream regulator being the TGFβ
pathway [15]. This finding confirms prior morphological and
biochemical studies in affected mgb−/− kidneys showing ex-
panded TGFβ1 and connective tissue growth factor expres-
sion, increased density of α-smooth muscle actin-positive
myofibroblasts, and the development of renal fibrosis [16].
These observations are highly consistent with current litera-
ture and highlight the key role that TGFβ plays in modulating
progressive renal injury and fibrosis in a variety of kidney
injury models including CON [17–19].

Retinoic acid signaling

The role of RA in kidney development has been well charac-
terized [20, 21]. We hypothesize that these same developmen-
tal functions are recapitulated during renal pathogenesis as a
transient repair mechanism. This hypothesis is consistent with
prior observations indicating that the mgb−/− kidneys show
delayed maturation following birth [16]. In addition, retinoic
acid has been shown to promote cell survival, antagonize the
development of renal fibrosis, and mediate urothelial differ-
entiation [22–24].

Steroid hormone metabolism

The most significantly up-regulated mRNA detected in affect-
ed mgb−/− kidneys is corticosteroid-binding globulin (Cbg),
which encodes the major transport protein for glucocorticoids

and progestins in the blood. Cbg expression in the developing
and postnatal kidney is highly regulated at both the mRNA
and protein levels, and increases in the local concentration of
glucocorticoid/progestin would be predicted to dampen the
inflammatory response [25]. These observations are highly
consistent with the fact that affected mgb−/− kidneys display
limited inflammatory infiltrates during renal adaptation [16].

Gender-specific responses

The most inhibited upstream pathway observed in mgb−/−

kidneys involved histone deacetylases (Hdacs). Hdacs are a
class of enzymes that remove acetyl groups from histones,
permitting tight DNA packaging that often results in the
down-regulation or inactivation of gene transcription [26].
Prior studies have shown that androgen, estrogen, and gluco-
corticoid receptors are substrates/binding partners for various
members of the Hdac family, and that steroid hormone ex-
pression can influence perinatal programming [27]. This ob-
servation is intriguing, since affected male mgb−/− kidneys
misexpress 18 sexually dimorphic gene targets, resulting in
the down-regulation of 12 male-specific transcripts and up-
regulation of 6 female-specific transcripts [15]. Epidemiolog-
ical and experimental data support the concept that female
gender is protective for some forms of renal disease [28–34].
Therefore, the expression of a more “female” transcriptome in
affected male mgb−/− kidneys may initiate a transient
cytoprotective genetic program that supports kidney remodel-
ing and repair. Taken together, these observations suggest that
steroid hormones play a complex role in modulating renal
adaptation by suppressing acute inflammation and/or modify-
ing the genetic control of cellular differentiation. These data

Fig. 1 Postnatal day 2 outflow
tracts a , b without and c , d with
methylene blue injection showing
patent ductus arteriosus in the
mgb compound heterozygote (a ,
c ; arrow) versus ligamentum
arteriosum in the control (b , d ;
arrow). Left carotid artery (L
Carotid), innominate
(brachiocephalic) artery
(Innominate), ascending aorta
(AAo), and pulmonary trunk (PT)
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provide a potential mechanism for gender-based differences in
renal pathogenesis and identifies targets for the development
of novel therapeutics in patients with CON.

Renal urothelium

Comparison of mgb−/− transcriptomes with varying degrees
of hydronephrosis identified an urothelial gene expression
signature associated with severe obstruction [15]. The renal
urothelium also showed alterations in organization and in-
creased proliferation in affected kidneys. These changes in
urothelial morphology represent some of the earliest detect-
able pathogenic events in affected mgb−/− kidneys, suggest-
ing that the renal urothelium may play a key role in initiating
the early remodeling/repair signals during renal pathogenesis.
We postulate that these changes in urothelial morphology
represent an early adaptive response to progressive renal
injury that initiates a localized and reversible RA-based repair
mechanism. In the face of continued renal insult, these early
remodeling/repair responses may become exacerbated and
irreversible resulting in permanent kidney damage and altered
renal function.

In summary, CON in mgb−/− mice results in a progressive
increase in back pressure within the renal pelvis, causing a
gradual expansion of the renal urothelium (Fig. 2). Pelvic
expansion triggers an RA-mediated response that results in
renal urothelial cell proliferation from morphologically well-
defined regions that are associated with large neurovascular
bundles. This association provides direct access for neurohu-
moral input/output that may be important in modulating the
pathogenic response in the contralateral kidney as well as
other organ systems. Proliferating urothelial cells also display
a less mature cellular phenotype that results in altered cell-to-
cell interactions and apical plaque composition [15]. Although
these changes may have short-term deleterious effects on
membrane permeability and function, they most likely are
critical in initiating activation of submucosal myofibroblasts
resulting in collagen deposition immediately underlying the
renal urothelium—one of the first major histopathological
finding observed in mgb−/− kidneys [16].

Further progression of renal injury appears to be associated
with a “second hit” on the affected kidney. This hypothesis is
supported by the fact that longevity in female mgb−/− mice is
relatively normal even in the face of chronic hydronephrosis
[16]. In contrast, the majority of male mgb−/− mice die by 5–
6 weeks of age as a result of several confounding processes
that include transient development of acute high-pressure
obstruction, urolithiasis, or ascending infection and pyelone-
phritis [16, 35]. Each of these events drives the molecular
balance away from renal remodeling/repair toward expanded
TGFβ–mediated renal pathogenesis. Under these conditions,
there is increased recruitment of inflammatory cells and inter-
stitial myofibroblasts, which can result in the development of

severe interstitial fibrosis/scarring, the loss of renal tubules
and glomeruli, reduced renal function, and eventually end-
stage renal disease (ESRD) [35]. It is intriguing to postulate
that the changes induced during renal adaptation alter the
functionality of the urothelium, thereby increasing the kid-
ney’s susceptibility to further disease progression. For exam-
ple, altered apical plaque content during urothelial prolifera-
tion may increase the kidneys’ susceptibility to infection. In a
similar manner, predetermined genetic susceptibilities, as well
as environmental exposures, may also play key roles in exac-
erbating or attenuating renal pathogenesis.

Conclusions: lessons learned from the mgb−/− mouse

Animal models provide a unique window into the complex
pathophysiological responses associated with the develop-
ment and progression of disease. The mgb mouse model of
CON provides several unique insights into the mechanisms
associated with lower urinary tract development and patho-
genesis. First, genetic defects associated with long-range reg-
ulatory domains have the potential to alter the level of gene
expression in a temporal and spatially specific manner. Stan-
dard genetic approaches to identifying disease-specific loci
may overlook these regulatory domains, since they often
occur at great distances from their given gene target. The
mgb mouse highlights the importance of long-range transcrip-
tional regulatory domains in modulating quantitative trait loci,
and suggests that these “hidden” genetic elements might play
a key role in many human diseases.

Second, the mgb−/− mouse model of CON demonstrates
that a chronic, low-pressure obstruction results in significant
renal remodeling that may in turn prime the kidney for con-
tinued disease progression if left untreated. Similar models of
disease adaptation and progression are observed in a variety of
other organ systems. For example, cardiac remodeling

Fig. 2 Model of renal adaptation and pathogenesis
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following the development of hypertension results in left
ventricular hypertrophy, increased cardiac risk, and the poten-
tial, if left untreated, for organ failure. These similarities
suggest a common functional paradigm in organ pathogenesis
and that early surgical intervention might be warranted in the
treatment of CON.

Open AccessThis article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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