
Computational Mechanics
https://doi.org/10.1007/s00466-024-02488-y

ORIG INAL PAPER

Digital twin of surface acoustic wave transceivers for a computational
design of an optimal wave guiding layer thickness

Ufuk Tan Baler1 · Ali Fethi Okyar1 · Bilen Emek Abali2

Received: 3 December 2023 / Accepted: 15 April 2024
© The Author(s) 2024

Abstract
Detection of biomarkers is exploited in lab-on-a-chip devices by means of Love type Surface Acoustic Waves (SAW).
Finger type arrangement of electrodes, used for InterDigital-Transducers (IDT), perform well to create and detect SAW by
using electro-mechanical coupling. Efficiency of such a transceiver depends on design parameters such as chosen material
orientation, thickness, placement of electrodes. An optimized design reduces production costs, hence, we need a digital twin
of the device with multiphysics simulations that compute deformation and electric field. In this study, we develop a framework
with the open-source package called FEniCS for modal and transient analyses of IDTs by using the Finite Element Method
(FEM). Specifically, we discuss all possible sensor design parameters and propose a computational design guideline that
determines the “best” thickness parameter by maximizing mass sensitivity, thus, efficiency for a Love surface acoustic wave
sensor.

Keywords Lab-on-a-chip · Love-wave · Optimization · Mass-sensitivity · FEM · IDT

1 Introduction

Among Surface Acoustic Waves (SAW), Love wave is a
subset of horizontally polarized shear waves that is uti-
lized widely for detecting biomarkers in microfluidics [1–3].
Owing to the wave confinement via the so-called guiding
layer on a substrate, such devices that utilize Love waves
have better performance as depicted in Fig. 1. Provided by the
right combination of a substrate with a relatively thin guid-
ing layer, high efficiency is acquired. Substrate and guiding
layer have different bulk shear-horizontal wave speeds [4–
6], guiding layer has, by design, a lower wave speed. SAW
propagate along e1 direction. On the surface their amplitude
are maximum and decay exponentially downward into the
substrate in −e3 direction. Love wave propagation is on pur-
pose within a confined guiding layer in order to minimize the
attenuation loss [7–9].
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On the piezoelectric substrate, Love wave is excited by
an InterDigital-Transducer (IDT) array that is composed of
a finger arrangement of electrode pins as visualized in the
inset of Fig. 1. Half of the fingers are assigned to an alter-
nating potential, Vf(t) in V, while the others are grounded,
Vg = 0. Electrode pairs with different potentials impose
indirect piezoelectric effect, which causes mechanical waves
to propagate at the surface in time. Biomarkers passing by
within convecting fluid are accumulated on a functionalized
surface above the guiding layer in a sensing operation [10–
12]. Accumulated agents increase the mass that imposes a
mechanical perturbation on the surface and shift the reso-
nance frequency due to the change in the Love wave speed
[13–15].

Design of an optimized Love wave sensor is considered
in this study. Sensor design exploits computational models
[16] by usingmaterials response [17–19] as well as structural
configuration [20, 21]. Specifically, a bilayer composition is
utilized for igniting different mechanisms within the struc-
ture [22, 23]. The objective is to achieve the highest mass
sensitivity, Sv

m in cm2/g, with respect to guiding layer thick-
ness, h in μm. Sv

m is selected as a design criterion because it
can directly be related to the dispersive characteristic of the
Love waves. Mass sensitivity, Sv

m , may be defined in terms of
the added mass by resorting to the perturbation theory [24–
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Fig. 1 Illustration of Love wave mechanics on a section of a two-layered medium, where (x) and (m) are the device (global) and the material
coordinate systems, respectively

26]. However, [27] indicates that perturbation theory based
calculation deviates from experimental results. Alternatively,
[28] also gives Sv

m using the wave speed dispersion curves.
Calculation of Sv

m from the dispersion curve performs bet-
ter such that [29] has presented an explicit calculation of Sv

m
from a transient finite element solution for a two-pins-array
sensor geometry. Yet, the transient solution has to reach the
steady-state response forwhich timeand resourcemight scale
up with respect to the time step duration and mesh resolu-
tion. In fact, steady-state wavemode obtained in the transient
solution is made up of a number of waves and Sv

m solution
for a specific wave mode may not be applicable.

Taking advantage of the dispersion phenomenon in sub-
strate/layer systems, we propose a digital twin of this
complex system in order to design computationally the
parameters in such a device. We explain and verify the per-
formed guideline based on modal analysis to determine the
optimal wave guiding layer thickness, h, providing highest
mass sensitivity. In this regard, in Sect. 2, we explain the
methodology and determine the optimal wave guiding layer
thickness. We develop a digital twin of the system with two
different approaches. A transient formulation is shown with
a minimum amount of assumptions. A modal analysis based

formulation is presented that allows a fast solution of the
system. Then, in Sect. 3, we verify the prediction capacity
of this reduced order model by using the transient formula-
tion. Results are then discussed in Sect. 4 with possible future
studies in Sect. 5.

2 Digital twin and optimization of
parameters

Design of an optimized Love wave sensor is based on the
so-called mass sensitivity that is related to the wave speed,
v, along e1 within the wave guiding layer in Fig. 1. This
wave speed, v, varies as a function of the following design
parameters:

• Substrate material
• Guiding layer material
• Crystallographic cutting plane, θ
• Layer thickness, h
• Interdigital electrode spacing, λ/2

123



Computational Mechanics

Table 1 Parameter design space
with examples from existing
products

Parameter Possible choices or interval

Substrate material Lithium niobate (LiNbO3), lithium tantalate (LiTaO3),
quartz, etc. [30, 31]

Wave guiding layer material Silica (SiO2), zinc oxide (ZnO), titanium dioxide (TiO2),
gold (Au), SU-8 photoresists, polymethylmethacrylate
(PMMA), polyimide, polydimethylsiloxane (PDMS)

Crystallographic cutting plane, θ 64YX (LiNbO3), 41YX (LiNbO3), 36YX (LiTaO3),
90-ST (quartz), etc

Interdigital electrode spacing, λ/2 wavelength, λ ∈ [52, 78, 104, 130, 156]
Layer thickness, h h ∈ [0, λ]

Fig. 2 Design flowchart to find the optimum layer thickness

In the case of commercial Love wave based transceivers,
these parametersmaybe chosen fromavariety of possibilities
that we compile the design space in Table1.

We develop a framework to determine optimal parameters
in a design as described in Sect. 2.1. Continuum mechan-
ics based formulation of a sensor design is presented in
Sect. 2.2 for acquiring Love wave modes. A reduced order
modeling is introduced in Sect. 2.3 in order to obtain a fast
digital twin of this complex system. All numerical simula-
tions are computed by the Finite ElementMethod (FEM). All
implementations are utilizedwith the help of the open-source
FEniCS [32].

2.1 Design guideline

We propose a design guideline depicted in Fig. 2 that is
based on performing a series of numerical simulations within
a Representative Volume Element (RVE) while the design
parameter h is varied over an appropriate range of values.

The RVE size (length) is set equal to the wavelength, λ,
since the fundamental Love wave mode is λ-periodic. The

RVE and its periodic boundaries are shown in Fig. 3, where
the layer thickness, h, is varied.

Wecircumvent ourselves frommodeling electrodes between
the substrate and thewaveguiding layer, as thewaves induced
by them are generated as an intrinsic property of the RVE.
Thus, the Love wave modes appear naturally in the solu-
tion to the EigenValue Problem (EVP), because the material
configuration provides in-plane particle motion in the vicin-
ity of the free surface. The bottom surface of the substrate
is clamped and we perform eigenfrequency calculations for
geometries with different layer thicknesses.

Hereinwe have selected the combination as LiNbO3/silica
from theTable1. The substratematerial LiNbO3 is piezoelec-
tric with a lattice structure belonging to trigonal symmetry
class, and thus, anisotropic.

Therefore, crystallographic cutting plane, θ , affects the
system response significantly. The electro-mechanical cou-
pling is provided by the piezoelectric material behavior and
used for creating a wave within the wave guiding layer. The
correct choice of θ makes it possible for Love waves to form.
LiNbO3 crystal and its chemical composition are illustrated
in Fig. 4 generated by VESTA version 3.5.8 (64-bit). Herein,
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Fig. 3 SAW sensor’s RVE with electrode pins in gray

b

c

a

Fig. 4 Crystal structure of ilmenite typeLiNbO3 (Li: yellow,Nb: green,
O: red), where the cutting plane is depicted inmagenta. The unit cell has
coordinates e1

(m)
, along a, in the crystallographic system. The cut resides

on the e1
(x )
–e2
(x )
plane. The identifier number of the data used to generate

this image is 0019589 that is accessed from American Mineralogist
Crystal Structure Database [33]

we use a so-called 64YX-cut configuration that is commonly
used in surface acoustic waves transceivers. This nomen-
clature is specific to piezoelectric materials. For example, a
64YX lithium niobate wafer has the thickness along y-axis
(the first letter) and is rotated to 64◦ about x-axis (second
letter). After this rotation, the crystal is cut into wafers. In
other words, the rotation matrix reads

R =
⎛
⎝
1 0 0
0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

⎞
⎠ (1)

between material local coordinates and Cartesian global
coordinates.

Interdigital electrode spacing depends on the chosen
wavelength, λ. Herein, we use λ = 104μm that is caused
by manufacturing limitations. Smaller wavelength parame-
ters are possible but seldom used in order to reduce costs.
Guiding layer has the thickness of h that is optimized in
this study. Technically, it is possible to circumvent a design
from using a wave guiding layer, h = 0. Since the prop-
agating wave is a surface wave, the maximum thickness is
taken as the wavelength, λ. For growing values of h, the wave
speed asymptotically converges to the wave guiding layer’s
shear-horizontal wave speed, and the transition region occurs
within a single wavelength.

2.2 Electro-mechanical coupling in the finite
elementmethod

Alternating voltage is applied, Vf(t), to the respective elec-
trodes of the IDT while grounding others, Vg = 0. At a
given frequency, f , a weighted superposition of eigenmodes
is expected; yet, the eigenmode closest to f will dominate all
other modes. Such an observation is possible by a transient
solution of the dynamic problem.

We use standard continuum mechanics notation and
understand a summation over repeated indices. Piezoceram-
ics have a coupled phenomenon of mechanics and electricity,
we refer to [34, Sect. 3.5] for the complete theory, applica-
tion examples for small [35] and large [36] deformations. For
mechanics, we solve the balance of momentum in order to
obtain the displacement, u in m, by satisfying

ρüi − Tji, j − ρ fi = Fi (2)

where (̇) means rate (time derivative); the mass density, ρ

in kg/m3, is given; the specific (per mass) body force due to
gravity, f inN/kg, is neglected for small devices; and electro-
magnetic force density (per volume), F inN/m3, vanishes for
dielectric (electric insulator) materials. Under these assump-
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tions, we model the mechanical stress, T in Pa, in relation
with strain, S, and electric field, E in V/m, as follows:

Ti j = Ci jkl Skl − eki j Ek (3)

for a linear material by using stiffness tensor of rank four, C
in Pa, and piezoelectric tensor of rank three, e in PaV/m.
Instead of piezoelectric tensor, the so-called piezoelectric
coefficients, d in V/m, are used in the literature, where

emi j = Ci jkldmkl (4)

The latter is inserted into Eq. (3) and C is factored out,

Ti j = Ci jkl Skl − Ci jkldmkl Em ,

= Ci jkl(Skl − dmkl Em) , (5)

in order to observe the total infinitesimal linear strain

Si j = 1

2

(
ui, j + u j,i

)
(6)

and the linearized piezoelectric strain, dmkl Em . The comma
notation denotes a partial derivative in space. In this man-
ner, it is possible to consider the difference between the total
strain, Si j , and the piezoelectric strain, dmkl Em , yielding a
so-called elastic strain that is in linear relation to stress as
known as the Hooke’s law. We model a wave propagation in
elastic medium, hence, the deformation is small. Therefore,
a linear strain measure is used. However, the implemen-
tation is generic and linearization is symbolic such that a
nonlinear strain measure is possible for incorporating geo-
metric nonlinearities but not necessary for the application
herein. The choice of linear material equations is an assump-
tion that is the usual case in the literature for piezoceramics
[37–41]. Moreover, use of first order material equations is
another assumption. Indeed, higher order material model-
ing exist [42, 43]; however, such flexoelectric responses
are caused by an internal periodic microstructure [44] that
is then used to obtain strain gradient parameters [45, 46].
Herein, we use a bulk material without internal substruc-
ture such that higher order in strain may be neglected. A
crucial assumption is the reversible process because of low
Q-impendance of this device. In other words, we neglect any
dissipative mechanisms in modeling, otherwise, frequency
sweep measurements and material parameters are needed for
deformation and polarization [47, 48].

In order to obtain the electric field, we begin with the
Gauß’s law

Di,i = 0 (7)

where the charge potential, D in C/m2, reads

Di = eikl Skl + εik Ek (8)

with permittivity, εik . By using Voigt notation, we may write
the rank three and four tensors of material coefficients as,

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212

⎞
⎟⎟⎟⎟⎟⎟⎠

d =
⎛
⎝
d111 d122 d133 d123 d131 d112
d211 d222 d233 d223 d231 d212
d311 d322 d333 d323 d331 d312

⎞
⎠ . (9)

No externalmagnetic flux is applied and allmaterials are non-
conductive such that no magnetic flux is induced. Hence, we
neglect the magnetic flux and the electric field is then given
as

Ei = −φ,i (10)

where an electric potential, φ in V, is the unknown to be
computed from the Gauß’s law in Eq. (7).

Governing Eqs. (2) and (7) are rewritten in a so-called
weak form by multiplying Eqs. (2), (7) by appropriate test
functions, δu in m, δφ in V=̂J/C, leading to integral forms
in J,
∫

�

(
ρüi − Tji, j

)
δui dV = 0,

−
∫

�

Di,iδφ dV = 0. (11)

For a discrete representation, we use a mixed space formula-
tion such that the unknowns, φ, u, are solved at once instead
of a staggered approach. This monolithic solution method
ensures that the electro-mechanical coupling is captured at
the accuracy of the solver tolerances. We employ a dis-
cretization using Lagrange elements and generate piecewise
continuous polynomials that are adequate for approxima-
tion in H0. This triangulation is denoted T and consists of
non-overlapping triangles, τ . We use linear elements, P1,
with a polynomial degree 1 for all unknowns. As known as
the Galerkin approach, we use the same space for trial and
test functions, thus, four unknowns, φ, u1, u2, u3, construct
a mixed space of a scalar and vector in 3-D as a discrete
representation of the continuum

V =
{{

φ
} ∈ [

H0(�)
]1 : {φ}

∣∣∣
τ

∈ P1(τ ) ∀τ ∈ T

∧ {
ui

} ∈ [
H0(�)

]3 : {ui }
∣∣∣
τ

∈ P1(τ ) ∀τ ∈ T
}

. (12)
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In connection with this choice, we utilize an integration by
parts, for obtaining the following weak forms that are well
defined in the aforementioned space

Formu =
∫

�

(
ρüiδui + Tjiδui, j

)
dV

−
∫

∂�

n j Tjiδui dA = 0 ,

Formφ =
∫

�

Diδφ,i dV −
∫

∂�

ni Diδφ dA = 0 . (13)

On internal boundaries, boundary integrals cancel out because
of jump conditions. For a field, α, we may introduce jump
brackets, �α� = α+ − α−, indicating the difference between
α value calculated by shape functions of one element and
neighboring element. In the case of displacements, stress pro-
jected along the surface normal is the same on neighboring
elements, n j �Tji � = 0, which is also called Newton’s sec-
ond lemma or “actio” equals “reactio.” In the case of charge
potential the jump vanishes as a result of Maxwell equations,
ni �Di � = 0, since there are no surface charges in internal
boundaries. For the boundaries of the outer surface, we must
define boundary conditions. On the bottom and top surfaces
we assume, n jσ j i = 0, and electric isolation, ni Di = 0,
such that we obtain

Form = Formu + Formφ = 0

Form =
∫

�

(
ρüiδui + Tjiδui, j + Diδφ,i

)
dV , (14)

where we stress that the forms have the same unit. Inserting
Eqs. (6) and (10) into the latter, we obtain

Form =
∫

�

(
ρδui üi + δui, jC jikl Skl

− δui, j ek ji Ek + δφ,i eikl Skl + δφ,iεik Ek
)
dV .(15)

Solving the weak form by equating it to zero delivers u and
φ.

We use a time and space discretization for solving
Eq. (15). For time discretization, a finite difference method
is employed by the Euler backward scheme with a constant
time step


t = 1

f nt
(16)

where f is the frequency and nt is the number of time steps
in one period. The weak form reads

Form
t =
∫

�

(
ρδui

ui − 2u0i + u00i

t2

+ δui, jC jikl Skl

−δui, j ek ji Ek + δφ,i eikl Skl + δφ,iεik Ek
)
dV

(17)

where 0 and 00 superscripts represent previous time steps in
increasing order.

2.3 Generalized eigenvalue problem

We create an eigenvalue problem and search the Love modes
around intrinsic SAW phase speeds of the two layered sys-
tem. Yet the solution of this eigenvalue problem proves to
create a computational challenge as the second time deriva-
tive of displacement brings the so-called mass terms in
Formu , while no such terms exists in Formφ . Thus, the defi-
ciency is in mass terms and a possible solution relies on
a method known as static condensation [49, 50]. In this
approach, the problem is reformulated in such a way that
the electric potential degrees of freedom are replaced.

Formulating the problem as a first-order system allows
rewriting the equations of motion by decomposing space and
time dependencies using the Bernoulli separation ansatz as
follows:

u j (x, t) = u j (x) exp(−iωt) ,

φ(x, t) = φ(x) exp(−iωt) , (18)

where ω is the monotonic frequency of excitation in rad/s,
and the exponential function that collects sinus and cosinus
responses in time, such that the second order terms reduce to
ü j = −ω2u j . For each unknown in the form functionals, we
select test and trial functions from the same function space,
as in the Galerkin approach. As usual, we approximate the
fields by using shape functions, Ni and N , as vector and
scalar depending only on space,

ui =
3n∑
ID

N ID
i ûID δui =

3n∑
ID

N ID
i 1ID

φ =
n∑
ID

N IDφ̂ID δφ =
n∑
ID

N ID1ID (19)

where n is the number of mesh nodes. In this way, as we
sum up over elements, denoted by

∑
e, and obtain û and

φ̂ as arrays of the nodal values within the computational
domain, the first expression within the integrand in Eq. (15)
is assembled as the mass matrix,
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δuT · K uu · u =
∑
e

∫
V

δu j,iCi jkl Skl dV

=
( ∑

e

∫
�e

N ID
j,iCi jkl N

ID
k,l dV

)
ûID

δuT · K uφ · φ = −
∑
e

∫
V

δu j,i eki j Ek dV

=
( ∑

e

∫
�e

N ID
j,i eki j N

ID
,k dV

)
φ̂ID

δφT · Kφu · u =
∑
e

∫
V

δφ,i eikl Skl dV

=
( ∑

e

∫
�e

N ID
,i eikl N

ID
k,l dV

)
ûID

δφT · Kφφ · φ =
∑
e

∫
V

δφ,iεik Ek dV

=
( ∑

e

∫
�e

N ID
,i εik N

ID
,k dV

)
φ̂ID

δuT · M · u = −
∑
e

ω2
∫
V

ρδu ju j dV

=
(

−
∑
e

ω2
∫

�e
ρN ID

j N ID
j dV

)
ûID (20)

By observing Eq. (20)2,3, we realize that Kφu is the trans-
pose of K uφ . Now, we rewrite in the matrix form

((
K uu K uφ

KT
uφ Kφφ

)
− ω2

(
M 0
0 0

)){
û
φ̂

}
= 0 . (21)

The second line is observed as

KT
uφ · û + Kφφ · φ̂ = 0 (22)

which is used to solve for φ̂ = −K−1
φφ · KT

uφ · û. By inserting
this into the first row of Eq. (21), we acquire

K uu · û − K uφ · K−1
φφ · KT

uφ · û − ω2M · û = 0. (23)

By collecting the coefficients of û from the first two terms
we arrive at the condensed stiffness matrix, written as

K∗ = K uu − K uφ · K−1
φφ · KT

uφ. (24)

Substituting this back into Eq. (23), we arrive at the simpli-
fied form of the generalized eigenvalue problem having two
Hermitian (equivalent to symmetric since all entries are real
numbers) non-identity matrices, while M shall be a positive
definite matrix [51].

(K∗ − ω2M)û = 0. (25)

The corresponding eigenvectors, or the modeshapes, to the
calculated eigenvalues, ω2, are the displacements, û.

SLEPc provides iterative methods such as ARPACK [52]
to solve the eigenvalues of largematricesmore efficiently.We
utilize spectral transform in order to specify a target eigen-
value, σ , around which a number of eigenvalues, neig, are
solved [53]. The target eigenvalue, σ , is determined after cal-
culating the bulk shear-horizontalwave speed in thematerials
on x1x2 plane.

vb =
√
C1212

ρ
. (26)

Selection of σ should be experimented after execution of the
solver. But, a rule of thumb is to choose vb as vs if h̄ is less
than or equal to 0.5, else as vg , such that

σ =
(
2πvb

λ

)2

, (27)

while keeping neig at 30 that one may get enough range of
eigenvectors to visually assess the Love mode. After ascer-
taining the mode and therefore its eigenvalue, ω2

i , we find

vi = λ
ωi

2π
, (28)

and thus the resulting operating frequency, f , shall be

fi = vi

λ
. (29)

2.4 Thickness optimization

For each wave guiding layer thicknesses in Table 2, a mesh
is prepared and used in FEniCS in order to solve the corre-
sponding generalized eigenvalue problem. Eigenvalues have
been converted into wave speeds and then used for fitting by
the mass sensitivity function in Eq. (40). The optimal wave
guiding layer thickness is expected at the minimum value of
the mass sensitivity curve.

The computational domain is composed of a substrate and
a wave guiding layer. We emphasize that the substrate mate-
rial is anisotropic such thatwedifferentiate between themate-
rial coordinate system denoted by (m) and global coordinate
system for the simulation denoted by (x). We define mate-

rial parameters of the substrate

(
C
(m)

sub, e
(m)

sub, ε
(m)

sub, ρsub
)
and

the wave guiding layer

(
C
(m)

lay, e
(m)

lay, ε
(m)

lay, ρlay
)
as given in

Eq. (30). The lithium niobate material is anisotropic with the
aforementioned crystal structure in Fig. 4, hence, we obtain
from [54] the following values presented in Voigt notation
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C
(m)

sub =

⎛
⎜⎜⎜⎜⎜⎜⎝

198.86 54.67 67.99 7.83 0 0
54.67 198.86 67.99 −7.83 0 0
67.99 67.99 234.18 0 0 0
7.83 −7.83 0 59.85 0 0
0 0 0 0 59.85 7.83
0 0 0 0 7.83 720.9

⎞
⎟⎟⎟⎟⎟⎟⎠

× 10−3 TPa (30)

e
(m)

sub =
⎛
⎝

0 0 0 0 3.655 0
−2.407 2.407 0 3.655 0 0
0.328 0.328 1.894 0 0 0

⎞
⎠

× 10−6μC/μm2

ε
(m)

sub =
⎛
⎝
44.9 0 0
0 44.9 0
0 0 26.7

⎞
⎠ (31)

ρsub = 4642.8 × 10−12 mg/μm3 (32)

For the isotropic SiO2 wave guiding layer the following
properties [55] have been used.

C
(m)

lay =

⎛
⎜⎜⎜⎜⎜⎜⎝

70.94 14.53 14.53 0 0 0
14.53 70.94 14.53 0 0 0
14.53 14.53 70.94 0 0 0
0 0 0 28.21 0 0
0 0 0 0 28.21 0
0 0 0 0 0 28.21

⎞
⎟⎟⎟⎟⎟⎟⎠

× 10−3 TPa (33)

e
(m)

lay =0 C/μm2

ε
(m)

lay =
⎛
⎝
3.8 0 0
0 3.8 0
0 0 3.8

⎞
⎠ (34)

ρlay = 2196.0 × 10−12 mg/μm3 (35)

Lovewaves have been acquired by rotating thematerial coor-
dinates to global coordinates by using the transformation
matrix,

Q = RT =
⎛
⎝
1 0 0
0 cos(ϕ) sin(ϕ)

0 − sin(ϕ) cos(ϕ)

⎞
⎠ . (36)

This transformation is in line with the YX-cut 64◦ such that a
rotation around x-axis is performed first. Then a subsequent
rotation is performed around x-axis by−90◦ in order to align
the thickness direction with z-axis in the simulation.

By using the coordinate transformation, we obtain

C
(x )

sub
i jkl = Qai Qbj Qck Qdl C

(m)

sub
abcd ,

e
(x )

sub
i jk = Qai Qbj Qck e

(m)

sub
abc ,

ε
(x )

sub
i j = Qai Qbj ε

(m)

sub
ab (37)

The meshes in Fig. 5 (prepared in Gmsh, [56]) correspond
to the RVE model in Fig. 3 utilizing the thicknesses pro-
vided in Table2. The substrate dimensions in the e1

(x )
, e2

(x )
, and e3

(x )

directions are equal to 104 μm, 20 μm, and 700 μm, respec-
tively. Periodic boundary conditions have been applied over
adjacent planes normal to e1

(x )
and e2

(x )
directions. Identical face

meshing is applied on each periodic face pair. The electrical
potential, φ as well as displacement, ui , degrees of freedom
are linked periodically across the appropriate face pairs.

Each line in Eq. (20) is assembled in matrices and then
converted to M and K∗ as in Eq. (24). M, and K∗ are
Hermitian matrices due to the fact that they are equal to
their conjugate transpose. A spectral transform algorithm is
applied in order to solve for a group of 30 modes (ω2 values)
in the vicinity of σ using the ARPACK solver.

We select the ω2 values associated with the mode shape
corresponding to the Love wave modes. These values may
be converted to v by Eq. (28) and are presented in the second
row of Table2 as well as depicted in Fig. 5. In the literature,
a relation of wave guiding layer’s thickness to frequency (or
wave speed) is often called a dispersion equation [29, 57,
58] that is also expressed in a closed form solution after the
following assumptions:

• Kinematics of the surfacewavehas been assumed to show
surface-transverse particle displacements.

• A wave propagation in e1
(x )
direction.

• Continuous displacements at the interface of two mate-
rials.

• The substrate and the wave guiding layer are both
isotropic.

For presenting the result in the used notation herein, we nor-
malize the layer thickness with respect to the wavelength,

h̄ = h

λ
. (38)

In addition, a constant, α, is introduced as the moduli ratio
of the material system,

α = μs

μg
(39)
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Fig. 5 Meshes, v, and û
obtained for different h

Table 2 Each mesh is created for a wave guiding layer thickness given
in the first row. Solution is from the generalized eigenvalue problem
with the resulting Love wave speeds

h (μm) 2.6 5.2 10.4 20.8 41.6 62.4 83.2 104

v (m/s) 4605 4629 4555 4280 3983 3807 3756 3690

where μs and μg (in Pa) denote the shear moduli of the
substrate and thewaveguiding layer, respectively.After some
straightforward mathematical manipulations, the dispersion
equation reads in terms of the above parameters as:

h̄ = 1

2π
√

v2/v2g − 1
arctan

⎛
⎝α

√√√√1 − v2/v2s

v2/v2g − 1

⎞
⎠ (40)

where vs , and vg are the bulk shear-horizontal wave speeds
in the substrate and the wave guiding layer (in m/s), respec-
tively. The mass sensitivity, S f

m , is defined as

S f
m = 1

ρg fs

∂ f

∂ h̄
(41)

where f is the frequency of the surfacewave,ρg is the density
of the wave guiding layer, and fs is the frequency of the bulk
shear-horizontal wave of the substrate. Since the wave speed

will be used in plotting wave dispersion curves instead of the
resonance frequency, we rewrite Eq. (41) in terms of v as

Sv
m = 1

vs

1

λρg

∂v

∂ h̄
. (42)

Finally, we postulate that the mass sensitivity is the highest
at a layer thickness

h∗ = argmin

(
1

vsλρg

∂v

∂ h̄

)
. (43)

Equation (43) is different from the mass sensitivity solution
that uses perturbation theory mentioned in [24, 29, 57].

Under the aforementioned simplifications, Eq. (40) is rep-
resenting the dispersion relation. Herein, we have used an
eigenvalue solution by circumventingmany of these assump-
tions, hence, we expect a more accurate relation. However,
the functional form is probably related to the obtained numer-
ical solution. Hence, we use Eq. (40) as a fit function with
parameters, α, vs, vg to determine. Initial condition for α are
calculated as
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Table 3 Difference between the values supplied asmaterial parameters,
α from Eq. (44), vs from [30], and vg from Eq. (45), and those obtained
from the fit

Parameter Initial values Fit values Difference (%)

α 2.30167 2.32484 1.01

vs (m/s) 4712.0 4609.8 2.17

vg (m/s) 3629.0 3603.7 0.70

Fig. 6 Plot of fitted Eq. (40) on the computed v from the eigenvalue
problem of Eq. (25)

α0 =
C
(x )

sub
1212

C
(x )

lay
1212

= 64.92 × 10−3 TPa

28.92 × 10−3 TPa
= 2.30167, (44)

while the initial condition for the SAW speed for an open
circuit configuration, vs , has been taken as 4712m/s accord-
ing to [30]. Finally, the initial condition for vg is calculated
using

vg0 =
√

μg

ρg

=
√

28.92 × 10−3 TPa

2196 × 10−12 mg/μm3 = 3628.97 . (45)

The initial values and fitted values are tabulated with their
asymptotic standard error (ASE) in Table3.

For demonstrating the quality of the fit, we plot the numer-
ical values and obtained fit curve in Fig. 6. The sensitivity Sv

m
from Eq. (42) has been plotted on the same figure as well.

Minimum of the Sv
m is equal to −21.158cm2/g, which

is obtained at h∗ = 21.96μm. The wave velocity at h∗ is
implicitly solved by Eq. (40), and determined as 4325 m/s.
f ∗ is equal to 41.59 MHz, which is solved by Eq. (29). We
verify the wave mode by an additional transient solution for
the same RVE in what follows.

3 Verification of the numerical solution

We have performed a digital twin by a reduced order sys-
tem and an optimization procedure in order to obtain the
wave guiding layer’s thickness. Two additional simulations
are conducted in order to verify the assumed Love mode and
functionality of the device, as follows:

• Verifying the assumed Love mode by a transient solution
of the RVE

• Verifying the working principle of the IDT device as a
full sensor model

In order to verify the assume Love mode, a transient solu-
tion has been solved for the unit cell geometry with the
optimal guiding layer of 21.96μm thickness. The compu-
tational domain has 3936 DOFs. The waves are excited by
applying a sinusoidal electric potential at the corresponding
frequency of 41.59MHz determined in the last section. The
electric potential is applied on the gray patches visible in
Fig. 3. At a point on the electrode, the displacement response
of the unit cell is shown in Fig. 7, which is a shear dominated
wave in the x1 x2-plane. Propagating along x1 direction, a
Love wave mode is visible since u2 is larger than u1 and u3.
Still, there is a significant contribution of u1 and u3 such that
there is a mixture of thickness shear and twist modes.

In order to verify theworking principle of the IDTarrange-
ment, aDirectNumerical Simulation (DNS) of the full sensor
has been realized. In this way, we verify the taken assump-
tions’ significance to the output. The whole application is
visualized in Fig. 1 and the full sensor model is composed
of a substrate, wave guiding layer, interdigital transducer
(IDT) as different materials. The IDT array has a well-
established finger arrangement to generate and detect waves
in a three-dimensional geometry as shown in Fig. 8 designed
in SALOME v9.9 [59]. As the generated acoustic wave’s
shape and propagation is effected by piezoelectric cut (mate-
rial orientation) and chosen vibration frequency, we perform
a direct numerical study with the domain in Fig. 8 consist-
ing of 4802636 DOFs. The wave guiding layer is of height
21.96μm. The IDTs are made of brass, modeled as a linear,
isotropic and elastic solid. The displacement at the bottom
plane are fixed using Dirichlet boundary condition. A sinu-
soidal electric potential input is given at the interface between
the floating input electrodes and the substrate at a frequency
of 41.59MHz that is the optimized guiding layer determined
in the last section.

The DNS of the full sensor results in displacement and
electric voltage distribution for a period divided by 50 time
steps in order to capture the detailed change over time. For
a time instant at 700th time step corresponding to 0.337μs,
we visualize the solution in Fig. 9, where the electric poten-
tial vanishes and rate of displacement is maximum creating
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Fig. 7 Displacement-time
history is monitored at 0.204 μs
at a point on the free-surface of
the RVE having the optimized
thickness

Fig. 8 Full sensor geometry
used in the transient solution
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Fig. 9 Solution at t = 0.337μs,
presented are electric potential,
φ, in colors (top) and
displacement, u, as its
magnitude (bottom) and scaled
deformation (scale factor is
50000)

a moving surface wave that is visible in the scaled defor-
mation. The displacement is localized in the IDT where the
finger arrangement is placed, yet it gets “wider” showing an
undesired spreading away from the IDT leading to an atten-
uation that is discussed further below.

Transient solution of a large model necessitate a parallel
solution. The implementation is used with mpirun [60] and
a preliminary analysis is conducted in order to determine the
fastest solver configuration. For one time step, we measure
the computation time after assembly by varying two param-
eters:

• The number of processors are increased varied in an
increasedmanner for generalizedminimal residual (gmres)
[61] solver combined with hypre-euclid [62] precondi-
tioner.

• The preconditioner selection is varied for gmres solver.

These variations are demonstrated in Fig. 10.
For this simulation, six processors lead to the fastest solu-

tion. A so-called overparallelization occurs such that the
communication time between processors starts dominating.

After setting up the number of processors, we detect that
successive over-relaxation (sor) preconditioner performs the
best. Therefore, the solver configuration is gmres-sorwith six
processors. The partitioned displacement solution at 0.466μs
is illustrated with six partitions in Fig. 11.

At different locations along the propagation direction, we
monitor displacements in Fig. 12 for visualizing the behavior
of traveling anharmonic overtones caused by shear and twist
modes. Finger type arrangement is understood as an acoustic
cavity such that the undesired modes propagate other than
in x1 direction and lead to their dissipation at the bound-
aries of the domain—for such a “leaky” wave [63], this
design is described “energy trapped” [64]. Therefore, the
wave demonstrates an attenuation such that the amplitude
in u1 decreases. Despite this attenuation caused amplitude
decay is also called “propagation loss,” we emphasize that
the amplitude decrease is not related to a viscous dissipa-
tion. This result is supported by observing no phase change
in different directions. The amplitude decay for a propaga-
tion along one direction is spread to different directions away
from the IDT. All amplitudes and characteristics of u1, u2,
and u3 are analogous to the ones in Fig. 7. Overall displace-
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Fig. 10 For the full scale model
in one time step: a solution time
in minute of gmres and
hypre-euclid combination with
1, 2, 3, 6, 12, 24 threads (every
thread runs on one Intel Xeon
E7-4850 with 40 MB cache) b
in case of six processors, the
solution time variation for
different preconditioners all
with gmres solver

Fig. 11 Parallelized partitions in the transient solution of the full sensor,
for the sake of visualization, solutions at different threads are separated
in space, the image is created by Paraview and Gimp

ment pattern indicates dominance of the Lovewavemode but
we stress that other undesired modes exist as well. Hence, a
direct numerical simulation is of importance to verify the
obtained optimal values.

4 Discussion

Results prove that the suggested methodology is work-
ing adequately for performing computations with varying
geometries and thus properties. Computational optimization
is often not feasible since numerical simulation may fail with
instabilities due to varying parameters. A robust implemen-
tation is beneficial; herein, the static condensation method
is of importance to obtain a robust numerical implementa-
tion. The reason is that the eigenvalue problem is attempting
to detect the frequencies where inertia becomes dominant.
The mass matrix in Eq. (21) has vanishing components for
electric potential. This fact is related to the gauge condition
(rate of electric potential) that is not restricted in the for-
mulation. Hence, it is possible to eliminate this line from
the eigenvalue problem as in Eq. (25) increasing the robust-

ness of the system by exploiting solvers using the sparsity
of the matrices. For several frequencies, a mixed mode is
visible where a shear and normal wave is propagating at the
same time. As the eigenvalue problem captures the deforma-
tion vector direction correctly but not the amplitude, a mixed
mode is difficult to separate into Rayleigh and Love type
waves. Therefore, we have performed a transient simulation
in the RVE for comprehending the true nature of the surface
acoustic wave.

The application herein is performing an optimization
by changing the thickness parameter. This parameter is an
important designvariable that is usually determinedbyexper-
imental trials. Not only such an optimization procedure is
costly—prototype manufacturing and experimental charac-
terization are the largest sums in product development—but
a trial-and-error based approach has no guarantee that the
determined value is the “best” value at all. The proposed
method uses a simplification for mass sensitivity. In general,
the sensor is detecting a frequency shift, which is related to
the added mass on the functionalized surface. This addition
of mass is due to the agents collocating on the surface such
that they form a layer by adding a mass to the system and
altering its inertia. Here we use a direct analogy and vary the
thickness that is indeed adding a mass because of its own
weight. The effect is the same that the mass sensitivity, in
the case of an increased thickness, mimics the surface load
caused by a layer of agents on the surface. Obviously, the
mass density of to-be-detected agents are different (usually
less) than the wave guiding layer’s mass density. However,
within the numerical computation’s error such a distinction
has been circumvented for the sake of simplification.

The difference between the supplied initial values and the
converged values of the fitted parameters are in an adequate
agreement in Table3. This observation indicates the consis-
tency between the dispersion relation provided in Eq.(40)
and the FEM eigenvalues of the meshes. A transient analy-
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Fig. 12 Displacement-time history monitored at locations at a distance of about 5λ on the full sensor model with the optimized values (thickness
and frequency)

sis is in general necessary to verify the interpretation of the
eigenvalue problem results. The transient solution, with the
optimal value of thickness and frequency, revealed that the
targeted Love wave has been obtained. However, undesired
modes exist as well such that themaximum efficiency has not
been achieved. We fail to claim that there is no possibility of
creating a pure Love wave resonator in general. In general,
the efficiency of such devices are measured by a quality (Q)
factor that is indeed related to the attenuation effected by
these mixed modes.

For this application, we refer to Fig. 1 once more, the
device is sensing agents in a fluid flowing in x2 direction.
We emphasize the importance that there is a negligible x3

displacement in order to minimize the perturbation of the
fluid flow. Therefore, the design aims for a shear domi-
nated wave, practically a Love type wave performing well
in an application as demonstrated herein. The ratio of shear
and thickness amplitudes varies with the thickness. Vertical
motion increases for larger layer thicknesses that may cause
eddy currents in the fluid leading to a performance loss by
altering the mass flow of the mixture.

Cyclic deformation has been excited by the given har-
monic voltage difference creating an electric field. The
piezoelectric material has an instantaneous response to the
electric field by deforming as we have modeled accurately.
In reality, there is a viscoelastic response as well that we have
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neglected for the sake of simplicity. This viscous response,
the case of a rheologically simple and linear material, causes
a shift in the response and for the same frequency this shift
fails to alter the mass sensitivity. However, there is a dissi-
pation in the system reducing the deformation in different
directions as well as the overall performance such that the
aforementioned Q-factor measures this dissipation as well.
Only a computational study allows to isolate such effects in
this complex system. Owing to the cyclic nature of the defor-
mation, this dissipation is expected to cause a fatigue and a
crack initiation in the design. Such computations are possible
and left to future studies.

5 Conclusion

Product development in transceivers is possible to optimize
by computational design guidelines. Especially in Surface
Acoustic Waves (SAW) based systems, the tailored choice
of design parameters become of utmost importance such as
layer thicknesses of multi-layered designs or orientation of
anisotropic materials. For an increased efficiency, or even for
drafting a new design for replacing materials, we necessitate
computational design guidelines.

We have discussed the eigenvalue problem of an electro-
mechanical problemwith a piezoelectric component creating
a fully coupled system. For an efficient yet robust solution of
this system, we have utilized a so-called static condensation
and transformed the system of equations. The new solution is
more stable, we have experienced no numerical convergence
problems in the optimization procedure. The nature of the
proposed methodology sweeps a given interval instead of an
automatized algorithm such as steepest gradient, hence, an
unrealistic thickness has been circumvented in this method-
ology.

The optimized value is a suggestion without knowing the
dynamic solution and accurately estimating the displacement
amplitude. Therefore, we have solved a transient full scale
problem and demonstrated the displacement amplitudes in
shear, along x2, and normal, along x3, waves in time. Even if
the thickness is fine-tuned, a purely Love wave generation is
not possible by using the selected substrate orientation and
other design parameters.We emphasize that themethodology
herein may be extended to compute the whole design space
and achieve a better design as well, certainly beneficial for
the industry but of little interest in basic research.
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