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Abstract
Large-scale structural simulations based onmicro-mechanical models of paper products require extensive numerical resources
and time. In such models, the fibrous material is often represented by connected beams. Whereas previous micro-mechanical
simulations have been restricted to smaller sample problems, large-scale micro-mechanical models are considered here. These
large-scale simulations are possible on a non-specialized desktop computer with 128GB of RAM using an iterative method
developed for network models and based on domain decomposition. Moreover, this method is parallelizable and is also well-
suited for computational clusters. In this work, the proposed memory-efficient iterative method is numerically validated for
linear systems resulting from large networks of Timoshenko beams. Tensile stiffness and out-of-plane bending stiffness are
simulated and validated for various commercial-grade three-ply paperboards consisting of layers composed of two different
types of paper fibers. The results of these simulations show that a linear network model produces results consistent with theory
and published experimental data

Keywords Bending · Conjugate gradient · Domain decomposition · Network · Paperboard · Timoshenko

1 Introduction

Wood-fiber-basedmaterials havenumerous engineering appli-
cations, with the scope expanding alongside the increased
focus on sustainability. With the paper and pulp industry
accounting for 6% of the global industrial energy use and
2% of direct CO2 emissions [13], even minor improvements
in the production of paper-based products can have substan-
tial effects. These improvements include usingmore recycled
paper in products, using less pulp in production, or switching
to pulp with a smaller environmental footprint.

Mechanical and chemical processes are used to turn virgin
wood into pulp (pulping). These processes produce different
types of fiber that are suitable for different applications. For
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example, kraft pulp has fine fibers from processes involving
chemicals and heat that are well-suited for printing paper,
whereas chemi-thermomechanical pulp (CTMP) has larger
fibers that are preferable for bulk in paperboard. These dif-
ferences also extend to mechanical properties in the finished
products, such as sheet strength and bending stiffness [35].
Tools that provide insights into these mechanical properties
can help paper product developers produce better and less
resource-intensive products.

Analyses of paper-basedmaterials are challengingbecause
of their complex fibrous structure, where individual fibers
are connected throughmechanical interlocking and hydrogen
bonds [19, 31]. Despite the complexity, there is a rich history
of analyzing the structural properties of paper based on its
fiber composition with continuum models [8, 32, 33], with
more recent development focusing on, for example, paper-
board [2, 37]. These continuum models provide insights into
fundamental concepts. However, they are usually limited by
a wide range of specialized parameters that are not always
accessible to a paper developer in the industry.

A different approach is to simulate the entire microstruc-
ture, which involves modeling all the individual paper fibers
in the paper product. With this approach, the model parame-
ters are primarily based on the fibers used in the product.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-024-02487-z&domain=pdf


Computational Mechanics

These micro-mechanical models require properties of the
individual cellulose fibers [10, 11, 21, 45] and the fiber-fiber
interactions in the material [19, 22, 34]. Early simulations
with micro-mechanical models evaluated structural proper-
ties on sparse network structures [16, 18, 26, 38] using linear
beam models, with recent research analyzing the forming of
paper products [6, 23, 42], and accurate failure mechanics [3,
43, 44].

Modern micromechanical paper models capture more
details but require more computational power to evaluate.
Instead of adding complexity, [14] re-evaluated a simple
approach similar to [16], with a dimension reduction as in [1],
on sheets of lightweight paper. This re-evaluation compared
simulated results, experimental results, and theoretical iden-
tities for papers composed entirely of a kraft pulp. This article
continues that work with the standard Timoshenko model
proposed by [26]with heavier, commercial-grade paperboard
composed of both CTMP and kraft pulp.

The paperboard models considered in this work are com-
posed of millions of beams, with the dimension of the largest
linear system exceeding 100 million degrees of freedom
(400g/m2, 50mm× 4mm, pure kraft). Thesemodels require
extensive amounts of memory to solve using direct linear
solvers, so memory-efficient linear solvers such as iterative
methods are preferable. Standard iterative methods require
the matrices in these systems to be well-conditioned, which
these types of beammodels are notoriously not [7]. This hur-
dle can be overcome using a well-chosen preconditioner [39]
that transforms the problem into a well-conditioned system.
Whereas several preconditioning approaches exist for mod-
els posed on continuums [25, 47], few approaches exist for
the discrete network models considered in this work.

Recently [15], a preconditioner for the conjugate gradient
method for network models was developed, mathematically
motivated, and numerically validated for the network mod-
els used in [14]. This preconditioner was inspired by the
domain decomposition approach for elliptic problems on
continuums [25]. This method divides the model into smaller
sub-problems using a finite element grid. These smaller
micro-mechanical problems can be solved trivially in paral-
lel, and the method is well suited for computational clusters.
Here, the memory efficiency of the method is utilized to
solve large-scale problems, which with a direct solver would
require specialized hardware. Moreover, this article presents
the numerical validation of themethod for structural network
models based on Timoshenko beams.

This work simulates tensile and bending stiffness exper-
iments of paperboards consisting of an unbleached sulfate
kraft pulp and CTMP presented in [5]. These experiments
were performed on various three-ply paperboards consisting
of layers with different pulps, and in this work, these experi-
ments are re-evaluated digitally using the micro-mechanical
model.

Fig. 1 An overview of the three-ply paperboards considered in this
work, along with ply coordinates zk and board thickness t

Table 1 Experimental data provided in [5]

Sheet properties Kraft CTMP

Grammage 400g/m2 400g/m2

Density (ρs ) 770kg/m3 423kg/m3

Tensile stiff. MD (EMD
S ) 10.4 GPa 2.79 GPa

Tensile stiff. CD (ECD
S ) 2.46 GPa 0.423 GPa

Tensile stiff. effective (E∗
S) 6.43 GPa 1.61 GPa

The paper starts by introducing the paperboards consid-
ered, followed by the presentation of the micro-mechanical
model. With the model defined, the iterative numerical
method [15] is formulated. Then, the setups of the micro-
mechanical simulations are introduced, along with how the
results are evaluated. The results are split into three parts: (1)
simulations using a direct linear solver on 200g/m2 paper-
boards, (2) numerical evaluationof using adirect linear solver
and convergence analysis of the iterative method in [15],
(3) simulations of 400g/m2 paperboard models requiring
an iterative approach to be performable on non-specialized
hardware (2024). All of the results in this article can be
performed on a consumer-grade desktop computer (AMD
Ryzen 9 3900X 12-Core, 128GB RAM).

2 Three-ply paperboard

Tensile and bending stiffness for three-ply paperboards are
simulated and compared to the experimental results in [5].
The boards have a surface weight (grammage) of 400g/m2

and are symmetric in structure with two surface layers and
one bulk layer. Figure1 presents the cross-sectional geometry
of the paperboards. The surface layers are composed of kraft
pulp, and the bulk is composed of CTMP. The sheets in [5]
have orthotropic properties due to fiber bias in the material
(machine-direction, MD, and cross-direction, CD). Table 1
presents the experimental results in [5] for boards composed
of a single pulp that are used to build the models.
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2.1 Multi-laminar stiffness

The tensile stiffness of layered materials, such as the three-
ply paperboards considered, can be estimated using the
associated rule of mixtures. In this case:

ESheet = ECTMP
tCTMP

t
+ Ekraft

tkraft
t

, (1)

where t is the thickness of the paperboard, tCTMP is the
thickness of the layer composed of CTMP, and tkraft is the
combined thicknesses of the two surface layers composed of
kraft.

Paper bending stiffness, Sb, is defined as:

Sb = E I

w
= Et3

12
,

where E is the Young’s modulus, I the second moment of
area, w the width, and t is the thickness of the paper. This
stiffness is useful because it can be calculated without having
the thickness of the paper.

The theoretical bending stiffness of multi-layered paper-
board was presented and validated experimentally in [5]. For
three-ply paperboard, the following scaling was proposed:

Sb = D − B2

A
, (2)

A =
3∑

k=1

(ES)k(zk − zk−1),

B = 1

2

3∑

k=1

(ES)k(z
2
k − z2k−1),

D = 1

3

3∑

k=1

(ES)k(z
3
k − z3k−1),

where (ES)k is the associated tensile stiffness of the k:th ply
and the ply-coordinates, zk , are defined as:

zk =
{

−t/2, k = 0,

zk−1 + tk, else,

where t is the thickness of the paperboard and tk is the thick-
ness of the k:th ply. For an illustration of the ply coordinates
zk for a three-ply paperboard, see Fig. 1.

3 Micro-mechanical model

A paper-based material is composed of paper fibers. The
proposedmethodmodels eachfiber as several connected one-

Fig. 2 Illustration of the
projected length (dotted line) of
a fiber (black). The dashed
circle is the smallest circle that
contains the fiber

dimensional beams in a spatial network model. The bonds
between fibers are also modeled as beams. All beams are
linear Timoshenko beams [26] with paramters motivated by
micro-scale experiments and established constitutive rela-
tions used to evaluate various properties of paper.

All except three of the micro-mechanical model parame-
ters are uniquely determined by experiments or constitutive
relations, with two of them being related to bonding. The
first of the three exceptions is the cell wall thickness of the
fibers, the second is Young’s modulus of the bonds, and the
third is the cross-section of the beams representing the bonds.
Instead of fitting these parameters to get anticipated results,
the values are taken from experiments to show how close the
predictions are without the need for fitting.

The micro-scale model is introduced by first describing
the methodology of discretizing, placing, and connecting
(bonding) the fibers. Then, the constitutive beam model
is presented for the beams in the model, followed by the
micro-mechanical parameters used. For an overview of the
properties, see Tables 2 and 3.

3.1 Network generation

Figure1 presents the cross-section of the three-ply paper-
boards considered. A specified board width, length, weight,
and coarseness define how many fibers are placed in each
layer. Each fiber shape is generated stochastically based
on the geometrical distribution from pulp experiments and
deduced properties presented in Tables 2 and 3.

The curvature of a fiber is defined by the experimental dis-
tributions of arc length and shape factor using the following
relation:

shape factor = projected length

arc length
,

where length and projected length are specified in Fig. 2. The
curvature of the fiber is implemented by giving the fiber a
cosine or sine shape with 0.5 to 2 periods based on the shape
factor of the fiber.

The fibers are modeled as chains of 0.1 mm Timoshenko
beams and placed stochastically and periodically in the plane
of the model, with a small random rotation out of the plane
(from horizontal to approximately twice the thickness of a
fiber). The in-plane angle of the fibers, γ , has to be biased for
the micro-mechanical model to have orthotropic properties.
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For the kraft fibers, it is possible to get an associated cos-
1 probability density function (PDF) (4) of the orientations
of the fibers in the network based on the orthotropy of the
sheet [8]:

3.73 ≈ EMD
kraft

ECD
kraft

= 6 + 4η

6 − 4η
⇔ η ≈ 0.865. (3)

f cos1η (γ ) = 1

π
(1 + η cos(2γ )), γ ∈

[
−π

2
,
π

2

]
. (4)

For straight fibers, the cos-1 distribution can be used directly.
To account for the curvature of the fibers, the following
weighted version of the cos-1 distribution, fη,s(γ ), is used
when placing the fibers:

fη,s(γ ) = f̂η,s(γ )
∫ 0.5π
−0.5π f̂η,s(γ )dγ

, γ ∈
[
−π

2
,
π

2

]

f̂η,s(γ ) = f cos1η (γ ) f normal
s (γ ),

f normal
s (γ ) = 1

s
√
2π

exp(−0.5(γ /s)2).

(5)

By generating networks with curved kraft fibers and com-
puting the orientation distribution, which is based on fiber
segments, it was found that η = 1, s = 0.8 produce a good
match corresponding to f cos10.865, (3), (4), for straight fibers.

Similarly, using (3) for theCTMPfibers gives anη = 1.06,
which is outside the scope of cos-1 (the PDF becomes nega-
tive). Instead, the choice of distribution for the CTMP fibers
was determined by testing different fη,s(γ ) to reproduce the
experimental tensile stiffness of sheets composed solely of
CTMP. With this approach, f1,0.6(γ )was found to be a good
match and is used for the CTMP fibers.

Using a stochastic approach to place fibers will lead to
overlaps. A more realistic approach would be to simulate
the laydown process [23, 42] or to simulate compaction [6].
Here, randomization was used for simplicity, especially con-
sidering the scales of the problems considered.

With fiber shapes and positions generated in each of the
three layers, the fibers are connected (bonded). The bonding
is based on the three-dimensional volume of the fibers. If any
two types of fibers intersect, the intersection region is found
between the two fibers. This region is then discretized by
placing nodes with a fixed distance along the two fibers in
the region. These nodes are then connected by beams with
circular cross-sections with area 30 µm times the region dis-
cretized, where 30 µm is a typical fiber width. These beams
are isotropic with Young’s modulus 0.5(ECTMP

f + Ekraft
f ).

The discretization distance was chosen to be 0.075 mm, as
further discretization led to minimal change in the simula-
tion results. Figure3 presents an illustration of this bonding
process.

Fig. 3 The left figure shows parts of two fibers that intersect, with the
middle picture highlighting the intersection. The right figure presents
the network model representation of the intersection, with two bonds
added that discretize the intersecting region

Fig. 4 Cross-section (left) and overview (right) of a 1mm × 1mm,
400g/m2 paper model with 1/3 of the mass in the surface layers (kraft)
and 2/3 of the mass in bulk (CTMP). The fibers are colored to illustrate
the three layers, with yellow for the surface layers (kraft) and green for
the bulk (CTMP). Note that the weight distribution is not the same as
the volume distribution

With the network bonded, the largest connected subnet-
work is found, and all components not connected to this
network are removed. This step is necessary to make the
system solvable, as periodically placing fibers can result
in tiny disconnected parts of fibers on the boundaries. Fig-
ure4 presents the cross-section of a generated three-ply paper
model.

3.2 Constitutive model

The beams representing the paper fibers and bonds are mod-
eled using the linear Timoshenko model proposed in [26] for
paper materials. In the linear Timoshenko framework, each
node i in the network is described by six degrees of freedom:
[ui ,φφφi ] = [uix , uiy, uiz, φi

x , φ
i
y, φ

i
z], with ui representing the

displacement and φφφi the rotation in the corresponding net-
work node.

For each beam, say between node i and j , in the network,
a linear relationship between the twelve degrees of freedom
of the two nodes, (ui ,φφφi ,u j ,φφφ j ), is mapped to directional
forces and moments resulting from the displacement as fol-
lows:

Ki j

⎡

⎢⎢⎣

ui

φφφi

u j

φφφ j

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

Fi

Mi

F j

M j ,

⎤

⎥⎥⎦

where [F�,M�] = [F�
x , F�

y , F
�
z , M�

x , M
�
y , M

�
z ], for � = i, j .
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The linear relation, or stiffness contribution, can be
defined by [7]:

Ki j = li j Q
T
i j (B

T
i jCi j Bi j )Qi j ,

where li j is the length of the beam, Qi j ∈ R
12×12 is an

orthogonal matrix mapping the beam’s initial direction to a
reference configuration (beam along the x-axis, the two per-
pendicular axes aligned with the y- and z-axis), Bi j ∈ R

6×12

contains the structure of the relation dependant on the length
of the beam, and Ci j ∈ R

6×6 is a diagonal matrix with the
beam’s structural parameters. The six diagonal elements of
Ci j are [E f Ai j , kGt

f A
i j , kGt

f A
i j ,G f I

i j
x , Et

f I
i j
y , Et

f I
i j
z ].

Of these, E f , Et
f are the axial and transversal elastic mod-

ulus of the specific beam. The shear moduli of the beams
are chosen as for isotropic beams with Poisson’s ratio 1/3,
G = 3E/8, with associated Young’s modulus E . Cross-
section area (Ai j ) and the second moment of areas (I i j ) are
calculated based on the cross-section geometry of the beam.
The shear correction factor k is chosen according to Cowper
selection for a circular cross-section with Poisson’s ratio 1/3,

Adding all of these stiffness contributions from each beam
in the network together into one global system results in the
following linear system:

K

[
u
φφφ

]
=

[
F
M

]
,

u = [u1,u2, . . . ,un]T , F = [F1,F2, . . . ,Fn]T ,

φφφ = [φφφ1,φφφ2, . . . ,φφφn]T , M = [M1,M2, . . . ,Mn]T .

(6)

The stiffness matrix, K , in (6) can be used to construct
linear systems to analyze a paper’s structural properties. In
this work, linear systems are created and solved with explic-
itly imposed boundary conditions depending on the specific
structural simulation.

3.3 Model parameters

Experimentalmeasurements define theweight, length,width,
and shape of the individual fibers in the model. These mea-
surements were performed by Stora Enso in 2020, using
L&W’s Fiber Tester Plus on two pulps. Table 2 presents
the results from these measurements for the two pulps: an
unbleached sulfate kraft pulp and a CTMP. Mean results for
the pulp, such as coarseness (weight per unit length) andmea-
surements for five specificfiber length intervals, are provided.
The coarseness of the kraft pulp is lower than the CTMP,
with the fibers from the CTMP generally being shorter and
wider. This fiber analysis provides most of the geometric
information necessary to model representative fibers from

each pulp but does not provide information about the fibers’
cross-section area.

For the cross-section area, the linear relation A f = c f /ρ f

is assumed where A f is the cross-section area (without
lumen), c f is the coarseness of the fiber, and ρ f = 1500
kg/m3 is the density of cellulose. This means that the cross-
section areas of the kraft pulp are 131 µm2 andCTMP are 202
µm2. The linear relation is consistent with the experimental
measurements performed by [21]. In [4, 28], cell-wall thick-
nesses 2.36 µm and 4.0 µm are proposed for softwood fibers,
here, the same constant cell-wall thickness of 3 µm as in [14]
is chosen.

Young’s moduli of the paper fibers were calculated using
constitutive formulas similar to [9]. In [9], they use Cox’s
formulation [8], which is valid for higher-density paper.
Here, both low-density and high-density are considered, so
Perkins’ formula for tensile stiffness [20] is appropriate:

E∗
s = 1

3

ρs

ρ f
φP E f , (7)

where E∗
s = 0.5(EMD

s + ECD
s ), EMD

s and ECD
s are the stiff-

ness of the sheet in both principle directions, ρs and ρ f are
the densities of the sheet and cellulose respectively, E f is the
tensile stiffness of the fiber, and φP is a constant depending
on the average fiber length and the sheet bonds. Interpolating
the values in the table in [20] with respect to sheet density
gives φCTMP

P = 0.813. For the kraft sheets, the Cox part is
sufficient (φkraft

P = 1). The tensile stiffness and density of
comparable sheets composed entirely of a groundwood pulp
(CTMP) and a chemical pulp (kraft) were measured by [5].
The relevant results are presented in Table 1, and using these
values with (7) gives Ekraft

f ≈ 38 GPa and ECTMP
f ≈ 20 GPa

which will be used as the axial stiffness for the respective
fibers in the network models. The transverse modulus of the
fibers is 1/3 of the tensile stiffness to model the anisotropy
of the fibers [10].

4 Simulation setups

The tensile and bending stiffness of various three-ply paper-
board models is evaluated. In the simulations, the board
models have a width of 4mm, which is deemed sufficient by
evaluating wider models that produce similar results. In the
tensile stiffness simulations, the models have a 4mm length
whichwas similarly deemed sufficient. For bending stiffness,
models of various lengths are evaluated and analyzed.

In the tensile stiffness simulation, the model is fixed
both spatially and rotationally on two opposite sides, with
one displaced 0.5% to introduce stress. The equilibrium of
the problem is solved, and the resulting internal forces are
summed up and used to calculate the tensile stiffness.
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Table 2 Geometrical breakdown of an unbleached kraft pulp and a
CTMP, provided by Stora Enso

Properties Kraft CTMP

Coarseness 196 µg/m 303 µg/m

Mean arc length 2.2 mm 1.7 mm

Mean width 32 µm 36.8 µm

Mean shape factor 86.8% 88%

Arc length: 0.2–0.5 mm 8.5% 20%

Mean width 22.2 µm 25.4 µm

Mean shape factor 91.4% 88.1%

Arc length: 0.5−1.5 mm 20.1% 30.2%

Mean width 29.3 µm 35.9 µm

Mean shape factor 88.8% 88.1 %

Arc length: 1.5–3mm 45.9% 34.9%

Mean width 32.8 µm 40.9 µm

Mean shape factor 87.1% 89.3 %

Arc length: 3–4.5 mm 23.5% 13.0%

Mean width 35.6 µm 44.1µm

Mean shape factor 83.7% 85.7 %

Arc length: 4.5–7.5 mm 2% 1.9%

Mean width 38.3 µm 46.9µm

Mean shape factor 73.6% 78.4 %

Table 3 Deduced parameters of the fiber models

Properties Kraft CTMP

Cross-section area (A) 131 µm2 202 µm2

Axial modulus (E f ) 38 GPa 20 GPa

Transverse modulus (Et
f ) 13 GPa 6.7 GPa

Axial shear modulus (G f ) 14 GPa 7.5 GPa

Transverse shear modulus (Gt
f ) 4.9 GPa 2.5 GPa

Shear correction factor (k) 0.89 0.89

Cell wall thickness 3.0 µm 3.0 µm

Typical cross section Rectangular Ellipse

4.1 Bending stiffness

For paper products like paper and paperboard, bending
stiffness is normalized with Euler–Bernoulli theory. These
calculations assume pure bendingwith no shearing or bound-
ary effects. Long levers are used to mitigate shearing effects,
with [30] recommending lever-to-thickness ratios over 40.
The thickest 200g/m2 paperboard considered is the board
composed entirely of CTMP and has a thickness of 0.47 mm.
This means that for accurate bending stiffness experiments,
a lever of at least 19mm is suggested. This work simulates
two methods to evaluate bending stiffness: the two-point
and four-point methods. The two-point method is a common
method for evaluating the bending stiffness of paperboard,

Fig. 5 Illustration of the two (left) and four-point (right) bending stiff-
ness experiments

whereas, for thicker materials with greater anisotropic shear
properties (such as porous material and corrugated paper-
board), the four-pointmethod can allow representative results
for bending-type experiments with smaller bending levers.
Figure5 illustrates the two-point and four-point bending stiff-
ness methods.

The experiments [5] used to validate the bending stiff-
ness simulations used a two-point method. Taking the same
approach in the simulation results in a clamped and displaced
side. In the experiment, themeasurement/displacement probe
is free to move along the paper, with only the z-coordinate
locked in the simulation for the displaced nodes. Anisotropic
behavior is observed for the choice of bending lever, so mul-
tiple levers are simulated and analyzed. The bending stiffness
for the model is evaluated as follows [30]:

Sb = Fbl3b
3δbwb

, (8)

where Fb is the lateral force resulting from the displacement,
lb, δb are the lever and displacement in the two-point method,
and wb is the width of the paper model.

Four-point bending stiffness experiments are simulated by
adding Dirichlet conditions in five planes perpendicular to
the bending lever (x-axis). For beams crossing such a plane,
the beam is subdivided and a Dirichlet node is created in
the plane. First, a network model is generated in the domain
[0, l] × [0, 4 mm] × [0, t], where l is the length, 4mm is
the width, and t is the thickness of the paper modeled. The
first set of Dirichlet nodes is the two planes at the ends of
the paper model. Here, the model is only fixed in the out-of-
plane direction to some specified displacement. In the second
set of Dirichlet nodes, the planes at x = 0.25l and x =
(1 − 0.25)l = 0.75l are fixed in the out-of-plane direction.
The final plane where Dirichlet nodes are placed is in the
middle of the model, x = l/2 where the model is fixed in-
plane. No Dirichlet conditions are imposed on the rotational
degrees of freedom. The bending stiffness is then evaluated
by solving the linear system with the Dirichlet conditions
explicitly imposed and using the formula [30]:

Sb = F̄b(0.25l)(0.5l)2

8δbwb
, (9)
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where F̄b is the average size of the four out-of-plane forces
acting on the four planes with out-of-plane Dirichlet condi-
tions and δb is the average out-of-plane displacement in the
center plane with in-plane Dirichlet conditions.

5 Domain decomposition

In the largest structural simulations, systems of equations
requiring large amounts of primary memory are evaluated.
For the full 400g/m2 bending simulations, 500GBof primary
memory (by swapping to secondary memory) was insuffi-
cient for the direct linear solver. To handle these problems
with hardware with 128GB of RAM, a different approach
is necessary. One such approach is using an iterative solver.
Standard iterative solvers typically require the matrices in
these problems to be well-conditioned, which these linear
network models are not [7]. However, ill-conditioned prob-
lems can be transformed into somethingmore appropriate for
iterative methods with a well-chosen preconditioning tech-
nique.

In [15], a preconditioner based on domain decomposition
for the iterative conjugate gradient method was proposed and
mathematically motivated for linear network problems sim-
ilar to those considered in this work. This iterative approach
is based on a subspace decomposition into a finite element
space, defined on a coarse grid, and overlapping local sub-
spaces, defined for each node in the coarse grid. In each
iteration, a single global solve on the finite element grid is
made followed by one local solve for each grid point. All
these problems can be solved in parallel, which makes the
method appropriate for computer clusters.

The ideal choice of the grid is based on the network’s
connectivity, homogeneity, and locality, which is generally
as fine as possible but where each element contains a well-
connected similar-sized network. The finite element grids
used in this work are three-dimensional square grids with
1mm×1mmelements in-planewith one element throughout
the thickness of the paper model.

The iterative method approximates the solution [u,φφφ] in
(6), by solving a slightly modified problem:

K ([uh,φφφh]T + [ug0 ,φφφg0 ]T ) = [F,M]T ,

where ug0 , φφφg0 are arbitrary functions that fulfills the Dirich-
let conditions. This transforms the problem into:

K [uh,φφφh]T = [F,M]T − K [ug0 ,φφφg0 ]T ,

[u,φφφ] = [uh + ug0 ,φφφh + φφφg0 ],

which is a similar problem but has homogeneous Dirich-
let conditions, which is required for the method. The

domain decomposition method then finds subsequently bet-
ter approximations [u(k)

h φφφ
(k)
h ], k = 1, . . . iteratively, where

u(0)
h = φφφ

(0)
h = 0, and the approximation to the original prob-

lem (6) is [u(k),φφφ(k)] = [u(k)
h +ug0 ,φφφ

(k)
h +φφφg0 ].The required

amount of iterations is dependent on the problem, initial error
(|u − u(0)| and |φφφ − φφφ(0)|), and specified convergence con-
dition.

The choices of ug0 , φφφg0 are arbitrary, but with this con-
struction, it acts as an initial guess.Here, the guess is based on
a one-dimensional Timoshenko-beam representation of the
paper sheet. For the tensile stiffness simulations, this means
that ug0 is the pure linear displacement in the x-coordinate
and φφφg0 = 0.

In the bending stiffness simulations, ug0 , φφφg0 is found by
interpolating the solution of the simplified continuum model
of the sheet. For this, a Timoshenko beam model represents
the bend profile of the sheet. The structural parameters of
the model are E = 5GPa and E/G = 50, where the shear
ratio is taken from the literature [30], and the elastic modulus
is between the values presented in [5]. With the solution to
the continuum representation ([usheet,φφφsheet]), the approxi-
mation ug0 , φφφg0 to the fiber-based approach is:

⎧
⎪⎪⎨

⎪⎪⎩

ukg0,x = (t/2 − z) arctan(−φ
sheet,k̃
y ),

ukg0,z = usheet,k̃z , ukg0,y = 0,

φk
g0,y = arctan(φsheet,k̃

y ), φk
g0,x = φk

g0,z = 0,

where [x, y, z] is the position of the node k, t is the thickness
of the paperboard modeled, and usheet,k̃z , φφφ

sheet,k̃
y is the z-

displacement and y-rotation in the closest discretization point
in the simplified continuummodel to the node k. Figure5was
constructed by displacing a micro-mechanical paperboard
model to ug0 , φφφg0 for a two-point and four-point simulation.

6 Micro-mechanical simulations

Micro-mechanical simulations in both machine-direction
and cross-direction using the networkmodel are compared to
the experimental results of [5]. In the experiments, 400g/m2

sheets are composed of mechanical and chemical pulp. Both
200g/m2 and 400g/m2 models are simulated. A direct linear
solver is able to solve the 200g/m2 models, but the densest
paper models hit the computational limit for a computer with
128GBofRAM.Adifferent approach is necessary for the full
400g/m2 models. Here, the convergence rate and accuracy
for the proposed domain decomposition method are evalu-
ated in detail for these Timoshenko beam models, and using
these results, problems surpassing the computational limit of
the direct approach are solved.
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6.1 200 g/m2 simulations

The experiments in [5] for 400g/m2 paperboard models are
compared to tensile stiffness simulations on 200g/m2 paper-
board models. These 200g/m2 models are similar to Stora
Enso’s CKB Nude™ 205 with similar grammage, structure,
and pulp. In the experiments [5], the bending stiffness is ana-
lyzed with respect to the following weight-fraction:

weight fraction = weight of surface layers

total weight
,

where a board with weight fraction 0% is entirely bulk
(CTMP), and 100% is one large surface layer (kraft pulp).

Figure 6 and Table 4 presents the experimentally obtained
tensile stiffness in [5], rule of mixtures (1), and the tensile
stiffness from the micro-mechanical simulation of several
different three-ply paperboards with various weight frac-
tions. The stresses on individual fibers in amicro-mechanical
tensile stiffness simulation are presented in Fig. 7. The results
of these simulations show that the tensile stiffness of papers
composed entirely of one pulp is consistent with Perkins’
formula for tensile stiffness (7) for kraft pulp, with the
micro-mechanical models composed of CTMP predicting
25% stiffer effective tensile stiffness:

E∗
kraft, sim

E∗
kraft,exp

= 1.054,
E∗
CTMP, sim

E∗
CTMP,exp

= 1.24.

The discrepancy for the CTMP fibers can be removed by
choosing a 20% lower φP when choosing the tensile stiffness
for the CTMP fibers.

The orthotropy is captured to a large extent in the model:

σkraft,sim

σkraft,exp
= 0.90,

σCTMP,sim

σCTMP,exp
= 0.84, σ� = EMD

�

ECD
�

,

with the model predicting roughly 10% less anisotropy for
sheets made of kraft and 15% less for sheets made of CTMP
compared to the experiments. The kraft discrepancy can be
fixed by using a more weighted orientation distribution, but
for sheets composed of CTMP, the orientation distribution of
the fibers in the model is already quite extreme. For further
orthotropy, it might be necessary to use other fiber shapes
than the ones considered in this work.

The non-linear curves in Fig. 6 are calculated based on the
tensile stiffness of the paperboards composed entirely of one
pulp in both machine and cross-direction. For comparison,
both curves derived from the experiments in [5] and the sim-
ulated stiffness are presented. The results clearly show that
the linear network model captures the anticipated scaling for
the evaluated three-ply paperboards.

Figure 8 presents the simulated bending stiffness for the
thickest 200g/m2 paperboard considered in both principle

Fig. 6 Tensile stiffness for 200g/m2 three-ply paperboard models
with different weight distributions for the surface/bulk layers in both
machine-direction and cross-direction. The circular markers are exper-
imental measurements [5], the colored markers are simulated results,
and the dashed lines are the rule of mixtures based on the experiments
(gray) and simulation (colored)

Table 4 Selected data, (MD, CD), presented in Fig. 6

W. F Sim. Ex , GPa Exp. Ex , GPa

0% (2.88, 0.614) (2.46, 0.43)

50% (5.64, 1.56) ×
100% (10.7, 3.21) (10.4, 2.79)

Fig. 7 An illustration of the solution of a 200g/m2 tensile stiffness
simulation

directions with varying bending levers by both the two-point
and four-point setup. Along with these simulated results,
theoretical bending stiffness scaling is calculated using a
Timoshenko beam representing the sheet. These beam rep-
resentations are evaluated with Elastic–Shear modulus ratio
(E/G) of 50 [30], 130 [46], and 274 [29].

From comparison in Fig. 8, it is clear that the two-
point results anticipate a shear ratio on the higher end with
a slightly different scaling in the machine-direction. For
cross-direction the scaling seems in line with the previous
experiments. Differences in the theoretic scaling and scal-
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Fig. 8 Results from two-point and four-point bending stiffness simu-
lations for different bending levers for 200g/m2 paperboard composed
entirely of CTMP in both principle directions. The dashed lines are
predictions based on the simulated tensile stiffness of the sheet using
a Timoshenko beam representation of the paper sheet for different ten-
sile/shear stiffness ratios found in the literature

ing observed in experiments are discussed in [30], where
experimental results show a similar difference between two-
and four-point methods. Here, it is argued that the bound-
ary effects of clamping the paper could be the reason for
the discrepancy. The simulated results in this domain study
show that a 16mm bending lever is sufficient for the four-
point method, with the two-point simulations having almost
converged to the anticipated bending stiffness at 24mm.

The bending stiffnesses of 200g/m2 three-ply paper-
boards with varying surface layer thickness are evaluated
numerically using the linear network model. Two- and four-
point methods are evaluated, and the simulated results are
compared to the theoretical bending stiffness based on the
constitutive Eq. (2), with parameters found experimentally
in [5]. The results are presented in Fig. 9 and Table 5 for
simulations on the scale 24mm × 4mm for the two-point
method and 16mm × 4mm for the four-point method. From
these results, one can observe that the bending stiffness is
lower in the machine-direction than predicted by the con-
stitutive formula based on the simulated tensile stiffness but
is consistent with the formula in cross-direction. However,
with the slightly lower orthotropy, it is clear that the linear
network model can predict the quadratic relation between
weight fraction and bending stiffness.

6.2 Comparison of the linear solvers

The simulations performed for the results in Fig. 9 were
solved with a direct linear solver. These simulations are
resource intensive; see Table 6. In the case of the two-point

Fig. 9 Bending stiffness for different weight distributions in various
200g/m2 three-ply paperboard. The markers are simulated results, and
the dashed lines are calculated using multi-laminar theory using the
simulated tensile stiffness for sheets composed of one pulp in Fig. 6

Table 5 Selected data, (MD, CD), presented in Fig. 9

W. F Sim. 2-P Sb, mNm Sim. 4-P Sb, mNm

0% (22.9, 5.05) (23.8, 5.37)

50% (31.7, 9.76) (33.0, 10.1)

100% (14.5, 4.57) (14.9, 4.67)

Table 6 Numerical metrics for solving three four-point bending stiff-
ness simulations (CD) in Fig. 9

Weight fraction 0 % 50 % 100 %

Nodes (106) 2.3 3.2 4.1

Beams (106) 3.2 4.5 5.8

System dim. (106) 14 19 25

Memory (primary, GB) 42 66 93

Wall-clock (min) 12 22 37

simulations, all but the last three data points (80%, 90%,
100% kraft) required more than 128GB of RAM, at which
the utilized computer had to resort to secondary memory
for those points. The main reason for the excessive memory
consumption is due to using a direct solver to solve the ill-
conditioned linear systems. With 128GB of RAM, 30mm3

paperboard models is a rough limit when using a direct linear
solver.

The experiments performed in [5] evaluate paperboards
with twice the grammage, requiring twice the bending lever,
which results in roughly four times larger problems. A dif-
ferent approach is necessary to enable these simulations on
non-specialized (2024) hardware.
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Fig. 10 Convergence analysis of the iterative solver for three different
200g/m2 three-ply paperboards with weight fraction: 0%, 50%, and
100%. This analysis is performed on the tensile stiffness and the two
(two-/four-point) bending stiffness simulations. In all figures, the iter-
ation is plotted against the relative error of the structural evaluation

compared to using a direct solver. The left figure presents the con-
vergence of the iterative method for the tensile stiffness simulations
presented in Fig. 6. The center plot is the convergence of the two-point,
the right plot the four-point, simulation presented in Fig. 9

Three 200g/m2 paperboards (Figs. 6 and9)were evaluated
using the domain decomposition method. The convergence
of the iterative approach is presented in Fig. 10. From these
results, we can see that the network structure does not affect
the convergence rate, but the iterations in cross-directional
simulations have errors about 10 times larger at each itera-
tion compared to the machine-directional counterpart. This
is most evident in the cross-directional simulation of the
four-point method, where anisotropy compounds the errors
to around 40 times larger than in the machine-direction.
For tensile stiffness, only ten iterations were required to
obtain tensile stiffnesses with a 0.1% difference compared
to the direct approach. Similar accuracy for the two-point
and four-point bending simulations required 50 iterations for
the two-point and 60 iterations for the four-point method. It
should be noted that the relative errors of the initial guesses
have larger magnitudes in the bending simulations compared
to the tensile simulations.Moreover, the algorithm converges
to the solution attained using the direct linear solver. Unlike
the direct approach, the domain decomposition required, at
most, 4.7GB of primary memory per thread for the problems
evaluated.

6.3 400 g/m2 simulations

The domain decomposition method can handle far larger
problems than the direct approachwithout running intomem-
ory limitations. Here, paperboards of the grammage in [5] are
modeled and evaluated. In [5], bending stiffness for paper-
boards of five weight fractions (0%, 25%, 50%, 75%, and
100%) were evaluated experimentally, and here, these five
types of paperboards will be modeled and evaluated.

Fig. 11 Bending stiffness for individual iterates in the domain decom-
position method for three of the five full 400g/m2 paperboard models.
The two left figures present the bending stiffness for the iterates in the
two-point simulations, and the right two present the bending stiffness
in the four-point simulations. The dashed lines are the converged values

Simulating the tensile stiffness of the 400g/m2 paper-
board models is less resource intensive than performing
the two-point bending stiffness simulations on the 200g/m2

paperboards in Fig. 9. Figure12 presents the tensile stiffness
for the five 400g/m2 paperboard models in both principle
directions solved using a direct linear solver. These results
are practically identical to the 200g/m2 tensile evaluations
in Fig. 6.

Twice the bending levers are necessary when simulating
the bending stiffness of the full 400g/m2 compared to the
200g/m2 models, and this would mean 48mm levers for
the two-point method and 32mm for the four-point method.
In the bending stiffness experiments in [5], the two-point
method was performed with a 50mm lever, and here, the
full 50mm lever is simulated for the two-point method. The
four-point method is simulated with a 32mm lever.
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Fig. 12 Replicated
experimental results in [5]
(re-drawn) with micro-scale
fiber-based simulations of five
types of 400g/m2 three-ply
paperboards. The colored
markers and lines are found
through simulation, and the gray
markers and lines are the
experimental results in [5]. The
left figure presents the tensile
stiffness results, and the right
presents the bending stiffness
results, which was only possible
with the domain decomposition
method

Table 7 The values, (MD, CD),
of the data points in Fig. 12

W. F Exp. Ex , GPa Sim. Ex , GPa Exp. Sb, mNm Sim. 2-P Sb, mNm Sim. 4-P Sb, mNm

0 % (2.46,0.423) (2.90,0.628) (189,29.2) (184,41.3) (191,42.2)

25% × (4.12,1.04) (276,60.6) (267,80.1) (276,78.2)

50% × (5.69,1.58) (260,61.1) (255,80.1) (262,78.1)

75% × (7.77,2.27) (204,56.9) (191,61.2) (197,61.7)

100% (10.4,2.79) (10.7,3.28) (114,30.6) (115,36.6) (118,37.0)

Thesemodels are gigantic compared to the 200g/m2 coun-
terparts that were pushing the limit with a direct approach,
and because of this, only the iterative domain decomposition
method is used. The lack of an exact reference solutionmeans
that unlike the 200g/m2 example in Fig. 10, it is not possible
to calculate the exact state of convergence in 400g/m2 sim-
ulations. Instead, the bending stiffnesses are analyzed with
the convergence results in Fig. 10 in mind.

Figure 11 presents the bending stiffness of individual iter-
ates for both the two-point and four-point simulations for
three of the five paperboards evaluated. From these results,
the bending stiffness seems to converge at around 50 iter-
ations for the two-point method and 60 iterations for the
four-point method, similar to the convergence analysis in
Fig. 10. This invariance of larger domain sizes of the model
is consistent with the theory in [15]. For good measure, 60
iterations were performed for the two-point method, and 70
iterationswere performed for the four-pointmethod, atwhich
pointminimal changes to the bending stiffnesswere observed
between iterations.

Figure 12 and Table 7 present the bending stiffness for the
evaluated five 400g/m2 paperboards. The relative difference
between the theoretical scaling and the two-point and four-
point simulation is similar to the 200g/m2 results in Fig. 9,
with the cross-directional bending stiffness being consistent
with the constitutive equationbasedon simulated tensile stiff-
ness, and the machine-directional bending stiffness being
slightly lower than the constitutive prediction. Unlike the
200g/m2, the bending stiffnesses of the sheets simulated

were experimentally evaluated in [5]. Comparing the sim-
ulations with the experiments shows that the simulation
produces similar results to those in [5], with cross-direction
simulations being slightly stiffer than the experiments, as
in the tensile stiffness simulations. Interestingly, the experi-
mental values in the machine-direction seem slightly lower
than the constitutive prediction, but this could be because of
variance in the experiment. Overall, it is surprising how close
the predictions of the micro-mechanical models are, consid-
ering the pulp scans are not of the exact pulps used in the
experiments [5], the model considered is linear, and there is
no fitting in the model.

7 Summary and conclusion

Three-ply paperboards consistingofCTMPandkraft pulp are
simulated in both principal directions, with the shape of each
paper fiber in the model based on detailed pulp analysis and
deduced parameters. First, the mechanical parameters of the
fibers from each pulp were deduced from the tensile exper-
iments presented by [5] using Perkins’ formula for tensile
stiffness [20]. Then, tensile stiffness and bending stiffness
simulations on various three-ply paperboards showed that
the network model was consistent with the experiments and
multi-laminar theory that [5] presented.

Out-of-plane micro-mechanical simulations of paper-
board have been limited [41], with compaction simulations
and out-of-plane responses [6, 27] analyzed on smaller
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scales. In this work, the bending stiffness is evaluated on far
larger models, and it is shown that linear models can predict
the expected theoretical and experimental bending stiffness
and tensile stiffness. It would be interesting to evaluate the
shear ratio, G/E , for network generation techniques other
than randomization [6, 23, 42].

Simulations of paperboard models with volumes around
30mm3 were possible with a direct solver, whereas larger
models required an alternative approach. Iterative approaches
that can solve these Timoshenko beam models require spe-
cial consideration because of how ill-conditioned the systems
are [7]. The iterative method proposed in [15] was numeri-
cally validated for these types of systems and used to push the
computational limit for network models on consumer-grade
hardware accessible to a paper product developer. Moreover,
themethod is trivially parallelizable andwell-suited for com-
putational clusters.

Several optimization techniques could be used to improve
the domain decomposition method. Currently, an algebraic
version of the network theory used to motivate the method
in [15] is being developed [17], and an algebraic version of
the iterative method could mean substantial improvements
in efficiency. With a more efficient version of the solver, it
would be interesting to see how well the domain decomposi-
tion approach can handle simulations where multiple linear
systems are solved in succession, for example, networkmod-
els based on non-linear Simo-Reissner beams [36, 40].

Using the same theoretical framework as the iterative
domain decompositionmethod in [15], the theory for amulti-
scale method has been developed [12, 24]. This method finds
approximations to the micro-scale problem by constructing a
representative finite element-inspired coarse scale.With peri-
odicity on some representative element scale in the model,
efficient fiber-based simulations should be possible on the
scale of A4 sheets.
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