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Abstract
This paper presents a methodology where a macroscopic linear material response incorporates microscopic variations, such
as transient interactions and micro-inertia effects. This is achieved by implementing the temporal coupling between macro
and microstructures, along with the spatial coupling, within a dynamic computational homogenisation framework. In the
context of dynamic multiscale modelling, the temporal coupling method offers significant advantages by effectively reducing
deviations emerging from micro-inertia effects and transient phenomena. The effectiveness of the developed procedure is
validated by a comparison of the macroscopic results with the solutions of direct numerical simulation for a one-dimensional
periodic laminate bar with different contrast levels. The homogenised results obtained using the developed procedure indicate
that a better prediction of the macroscopic requires a larger Representative Volume Element (RVE) which improves the
estimation of multiscale strain energy and a larger time window which improves the estimation of multiscale kinetic energy.
The simultaneous increase in the RVE size and the time averaging window yields the best results in predicting themacroscopic
response.

Keywords Computational homogenisation · Wave propagation · Space-time transitions · Temporal coupling · Periodic
laminates

1 Introduction

Modelling the mechanical behaviour of periodic compos-
ites with engineered microstructures has gained importance
in recent decades due to their use in advanced engineering
applications. Effectively capturing complex microstructural
properties intrinct to compositematerials is amain challenge.
Even though direct numerical simulations (DNSs) provide a
robust methodology for handling this complexity and gain-
ing an understanding ofmaterial behaviour at themicroscale,
it is important to acknowledge that this approach comes with
extensive computational effort. In contrast, homogenisation
methods enable a more computationally efficient means to
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model the mechanical and physical behaviour of microstruc-
tures in composites.

Computational homogenisation has become prominent
as an effective tool within multiscale methods by mod-
elling the complex mechanical behaviour of materials at
different scales [1, 2]. The computational homogenisation
method has not replaced other homogenisation methods, but
it is clearly becoming a fundamental tool for modelling the
mechanics of complex materials. Namely, the computational
homogenisation method gives direct solutions compared to
other homogenisation methods, so there is no need to formu-
late constitutive equations at the macroscale [3]. As long as
the behaviour of the material constituents at the microscale
is well-defined, the outcomes obtained with the computa-
tional homogenisation method converge as the RVE size
increases, aligning closelywith the solution acquired through
the DNS. Compared to analytical and numerical homogeni-
sation, the computational homogenisation method involves
solving a boundary value problem at both the macro and
microscales. The macroscopic solutions are used as input
for a set of microscopic boundary value problems, while
the microscopic solutions are used as input for the macro-
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Fig. 1 A schematic illustration
of the dynamic computational
homogenisation method

scopic boundary problem at the macroscopic integration
points. This generates the cycle illustrated in Fig. 1 for
the computational homogenisationmethod. Themicroscopic
boundary value problem is assigned to each macroscopic
integration point obtained using a finite element discreti-
sation [4]. Even though the form of nested boundary value
problems causes an increase in computational effort, the com-
putational homogenisation method accelerated by parallel
computations is still faster than the direct numerical simula-
tion method [1, 5].

The computational homogenisation method has been
extensively applied to quasi-static problems in various
material types, including periodic composites [6, 7], poly-
crystalline materials [8], porous materials [9] and cellular
materials [10]. However, Geers et al. [11] have addressed
the challenges encountered in the computational homogeni-
sation method. These include developing effective boundary
value problems at both micro and macro scales, tackling
dynamic cases that incorporate micro-inertia effects and
wave propagation, and developing upscaling features that
take into account spatial-temporal and kinematic factors.
Notably, the use of this method in materials with complex
microstructures has resulted in emerging extensions of the
computational homogenisation technique to overcome these
challenges. These extensions have facilitated a more com-
prehensive understanding of the mechanical behaviour of
materials, particularly microstructural features. For instance,
one extension is the dynamic computational homogenisation
algorithm as presented in Pham et al. [12] to analyse meta-
materials under dynamic excitation. These authors extended
the Hill-Mandel principle to includemacroscopic stress from
the static contribution, but also macroscopic linear momen-
tum from the dynamic contribution. In addition to the work
of strain, the algorithm integrates the work of acceleration
into the variation of work performed on both scales, lead-

ing to the Hill-Mandel condition in dynamics. Besides, Van
Nuland et al. [13] have been performed the dynamic com-
putational homogenisation on a nonlinear resonant acoustic
metamaterial by transferring macroscopic constitutive tan-
gents obtained from the Newton–Raphson method. The
dynamic computational homogenisation method extended
with the Newton-Raphson method was applied to a non-
linear metamaterial with rubber-coated inclusions, resulting
in good estimation of band gap characteristics [13]. Fur-
thermore, the boundary value problems have been analysed
within frequency domain to investigate the behaviour of
heterogeneous materials under dynamic loading at different
frequencies [14].

The classic computational homogenisation method con-
tains two (or possibly more) coupled and nested boundary
value problems in which a macroscopic analysis is cou-
pled with a microscopic analysis in defining the constitu-
tive behaviour [15]. Namely, the macroscopic constitutive
behaviour is adopted by the solution of the associated
microstructural problem implemented over typically a rep-
resentative volume element (RVE) through successive tran-
sitions between macro and microscales. Scale transitions
enable exchanging information, which includes the macro-
scopic kinematic relations establishing the microstructural
problem and averaging relations in accordance with energy
conservation between the scales. The transition of kinematic
relations from macroscopic to microscopic scales is defined
as downscaling. Conversely, the transition of averaging rela-
tions in the opposite direction is defined as upscaling.

Scale transitions are performed in accordance with the
principle of separation of scales on which the computational
homogenisation method is based. In cases where the charac-
teristics of a microscopic wave amplify due to consecutive
wave reflections and refractions, wave dispersion emerges
at the macroscale [16]. However, this interaction between
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micro and macroscales impedes the complete adoption of
the separation of scales. Consequently, the classic compu-
tational homogenisation approach might not be applicable
for transient problems (e.g. locally resonant acoustic meta-
materials) [17]. To address this limitation, an extension of
the computational homogenisation method with additional
scale separation assumptions is used for periodic composites
with dynamic kinematic and averaging relations to account
for these micro-inertia effects [12, 18, 19]. Even though the
development of dynamic transition relations achieves the
problems emerging from the size ofmicrostructures, the con-
cept of separation of scales in computational homogenisation
methods is not fully addressed for the transient problems [17].

A computational homogenisation method is developed
using finite element discretisation in space and time inte-
gration, where the separation of both length and time scales
is adopted. A macrostructure is spatially and temporally
coupled with the RVE encapsulating the characteristics of
a microstructure for scale transition relations between the
two scales. The separation of scales principle enhances scale
transitions across the scales. As a purpose of this work, a
separationof time scale is presented to overcome thedeficien-
cies in scale transitions emerging from the microstructure in
dynamics. The recent findings indicate that accurate estima-
tion of macroscopic material properties in dynamics requires
a larger RVE size with a longer time period on themicroscale
[20]. Furthermore, the improvement in the convergence of
the macroscopic material properties with the time averag-
ing presented by the previous work [20] leads to adopting
the separation of time scales in the dynamic computational
homogenisation method. This approach to time averaging
has also been used successfully in the context of numerical
homogenisation of a visco-elastic material [21].

In this paper, the scale transitions strategy is reformulated
by the simultaneous separation of length and time scales.
The concept of the separation of length and time scales
involves breaking down a complex material into multiple
levels, with each scale capturing different characteristics of
the material behaviour in both spatial and temporal dimen-
sions. Consequently, the microstructure is separated with the
associated macrostructure regarding space and time discreti-
sation on the microscale. In the framework of multiscale
(or multirate) time integration as introduced by Hodge [22],
the resolution of macro and microscales in both space and
time yields results similar to fully resolving microscales.
Insteadof relying solely on the separation of length scales, the
simultaneous separations of length and time scales provide
significant computational savings [23]. The proposed work
exploits the benefits of simultaneous separations of length
and time scales by increasing the RVE size as well as the time
period on the microscale to obtain satisfactory accuracy in
the macroscopic response of a material. Notably, the effects
of separation of length and time scales in a dynamic compu-

tational homogenisation framework are studied for various
material properties and validated against the direct numeri-
cal solution results. As such, the present paper extends the
upscaling findings of the previous work [20] to a computa-
tional homogenisation framework that involves upscaling as
well as downscaling.

The structure of the article is as follows. Whereas Sect. 2
gives an overview of the dynamic computational homogeni-
sation framework and contains a novel approach to temporal
coupling. Related scale transitions, including a novel down-
scaling procedure, are also formulated and constructed in this
Section. The numerical implementation of this methodology
is detailed in Sect. 3, followed by the demonstration of its
effectiveness in Sect. 4. Concluding remarks and contribu-
tions of this research are then presented in Sect. 5.

2 Dynamic computational homogenisation
setting

Thecomputational homogenisationmethodestablishes stress–
strain σM − εM and momentum-velocity pM − u̇M relations
between the microscale and macroscale by averaging the
response of the RVEs according to the Hill-Mandel principle
to estimate the macroscopic response of periodic compos-
ites. This leads to coupling boundary value problems on the
two scales. The solution of these nested boundary value prob-
lems is coupled by scale transition relations as regards energy
consistency between these scales. The macroscopic constitu-
tive behaviour is provided by the solution of the microscopic
response instead of an analytical constitutive model so that
there is no need to make any constitutive assumption on
the macroscale. Briefly, the computational homogenisation
method schematised in Fig. 1 consists of three main steps:

• Solution of a macroscopic boundary value problem
• Transfer of solutions between macro and microstructure
models

• Solution of a microscopic boundary value problem.

For simplicity and to illustrate the concepts, a very well-
known problem is considered. At the macroscale, the bar
is subjected to a constant load F at its right end and con-
strained at its left end. At the microscale, the bar consists
of periodic unit cells of length �. The macroscopic material
properties are homogenised by the response of the RVE. At
the microscale, the material of first laminate component is
defined by Young’s modulus E1 and mass density ρ1, while
for the second laminate component, the material properties
are denoted as E2 and ρ2. The size of laminate components
are determined depending on volume fractions, which are h1
and h2 for the first and second laminate components, respec-
tively.
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2.1 Scale separation

In the extended computational homogenisation methods, the
scale transitions described in Sect. 2.4 contain spatial and
temporal relations between the macro and microscales. In
accordance with this strategy, an extended separation of
scales principle is presented in this section not only the sepa-
ration of length scales but also the separation of time scales.

2.1.1 Separation of length scales

In homogenisation methods, the principle of separation of
length scales assumes that the size of the microstructure �

is much smaller than the size of the macrostructure L [24]
and the shortest wavelength of the macroscopic response for
a given applied load λM [11]:

� � L (1)

� � λM (2)

In the case of transient problems, the size of the macrostruc-
ture L is no longer the sole, dominant macrostructural length
scale. Its significance is reduced by the size of the macro-
fluctuations �M tending to be considerably small compared
to the size of the microstructure �. To tackle these addi-
tional length scales, the long-wavelength approximation is
assumed for the scale separations in homogenisation meth-
ods. The long-wavelength approximation states that the size
of the microstructure � should be sufficiently smaller than
the shortest wavelength of the microscopic response for a
given applied load λm [12]. In addition, the size of micro-
fluctuations �μ due to the micro-inertia effects must be
taken into account and must be smaller than the size of the
microstructure � as follows

� � λm (3)

�μ < � � �M (4)

Satisfaction of Expressions (1), (2), (4) and (3) ensures that
the macroscopic response is independent of the size of the
microstructure �. In other words, the macroscopic strain εM
and macroscopic velocity u̇M are constant over the RVE so
that these downscaling parameters can be applied as uni-
form loads on the boundary of the RVE. Expressions (4)
and (3) become invalid when the scales are inseparable (e.g.
larger micro-fluctuations �μ, smaller macro-fluctuations �M
and thewavelength of themicroscopic response λm) owing to
the design requirements of periodic composites with tailored
microstructures, which are

�μ ≤ � ≤ �M (5)

� ≤ λm (6)

To obtain a convergentmacroscopic response by dealingwith
inseparable scale inequalities, the spatial coupling between
macro andmicrostructures is resolved by increasing the RVE
size Lm. The spatial separation scheme between the two
scales is presented in Fig. 2 for a one-dimensional period-
ically laminated bar. The size of the microstructure � is
separated from the size of themacrostructure L by increasing
the number of unit cells Nuc at the microscale until obtain-
ing the convergent macroscopic response. Therefore, at the
microscale, the size of the RVE Lm is directly linked with
the size of the microstructure � and the number of unit cells
Nuc.

As can be seen in Fig. 2, the size of microscopic unit
cell � is kept the same and the length of the bar at the
microscale increases with an increase in Nuc until the macro-
scopic response becomes independent of the size of dynamic
RVE Lm is given by

Lm = Nuc � (7)

where Lm and � are the size of the dynamic RVE and the size
of microscopic unit cell, respectively.

2.1.2 Separation of time scales

The modelling of transient problems in the computational
homogenisation method requires dynamic transition rela-
tions (i.e. momentum-velocity pM−u̇M coupling) in addition
to stress–strain σM − εM coupling. Thus, the shortest wave-
length of the microscopic response λm, the size of the
macro-fluctuations �M and the size of the micro-fluctuations
�μ become significant according to the long-wavelength
approximation. The importance of the principle of separation
of length scales is that the convergent macroscopic response
for transient problems can be obtained by increasing the RVE
sizes. The principle of separation of time scales is formu-
lated analogously to the principle of separation of length
scales: it is assumed that the timewindowatwhich significant
microstructural changes occur is much smaller than the time
window at which significant macrostructural changes occur.
In accordance with this, the principle of separation of time
scales assumes that a convergent macroscopic response can
also be obtained by longer time periods of the microscopic
analysis so that amicroscopic wave propagates during a large
enough time window over the RVE to average the variations
of the microscopic response (e.g. micro-fluctuations and
micro-inertia effects). Thus, the temporal coupling between
the macro and microscales is controlled by increasing the
microstructure time window Tm.

In the extended computational homogenisation method
proposed in this work, dynamic kinematic and averag-
ing relations are not only coupled between the macro and
microscales, but time integration parameters such as the
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Fig. 2 Homogenised
macrostructure separated
spatially with laminated
microstructure through
macroscopic integration point

microscopic simulation time t fm and the macroscopic time
step �tM are also coupled to build a temporal relation
between the two scales as shown in Fig. 3. The microscopic
simulation time t fm equals the macroscopic time step �tM on
the account of the temporal coupling between the micro-
scopic and the associated macroscopic time integrations.
To illustrate, downscaling parameters are transferred from
the macroscale at the current macroscopic time tnM with the
macroscopic time step �tM used as the microscopic simu-
lation time t fm. After performing the microscopic analysis,
upscaling parameters are transferred back to the macroscale
at the next macroscopic time tn+1M .

As an alternative, similar to the separation of length scales,
the microscopic time integration can also be performed inde-
pendently from the macroscopic time integration to allow a
large enough microscopic time window to include the vari-
ations of the microscopic response. The principle of the
separation of time scales enables the macroscopic time step
�tM to be separated from the microscopic simulation time
t fm. The temporal coupling is presented in Fig. 4 between the
two scales in order to ensure the macroscopic response not
to be affected by the microscopic simulation time t fm. A more
relaxed relation is built depending on the time requiring the
microscopicwave to propagate across theRVE tλm. Therefore,
themicrostructure timewindow Tm is directly linkedwith the
microscopic time interval tλm to ensure the microscopic wave
experience the variations in the RVE. Thus, the time window
of the microscopic analysis Tm is determined by the number
of wave propagations Nwp over the RVE as follows

Tm = Nwp t
λ
m (8)

where tλm is the microscopic time interval. The number of
wave propagations Nwp increases to extend the microstruc-
ture time window Tm until the macroscopic response is not
affected by the variations of the microscopic response.

2.2 Macroscopic boundary value problem

To model the dynamic response of one-dimensional linear
elastic laminated bar using computational homogenisation as
depicted in Fig. 1, the macroscopic boundary value problem
is formulated by the linear balance of momentum with the
body forces as follows

∂

∂x
σM − ṗM = fext (9)

where σM and ṗM are the macroscopic stress and the macro-
scopic momentum rate, respectively.
The macroscopic relations linking u̇M and εM with pM and
σM, respectively, are required at the macroscale to solve
the macroscopic boundary problem defined by Eq. (9). In
the computational homogenisation method, there is no need
to assume a constitutive model at the macroscale since
the macroscopic constitutive relations are determined by
averaging the results of a microscale boundary value prob-
lem. The averaged microscopic quantities are transferred to
the macroscale through associated macroscopic integration
points. The averaged microscopic stress and momentum are
embedded as residual forces in the macroscopic boundary
value problem through the upscaling procedure. Conse-
quently, the effects of heterogeneity explicitly defined at
the microscale are introduced to the constitutive behaviour
adopted as homogeneous at the macroscale.

2.3 Microscopic boundary value problem

As representative model of the macrostructure, a one-
dimensional periodically laminated microstructural bound-
aryvalueproblemover anRVE is considered for amicrostruc-
ture assigned to each macroscopic integration point shown
in Fig. 2. The constitutive behaviour of the macrostructure
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Fig. 3 Homogenised macrostructure linked temporally with laminated microstructure through macroscopic integration point

Fig. 4 Homogenised macrostructure separated temporally from laminated microstructure

is obtained from the results of the microstructural bound-
ary value problems. The RVE size and the microstructure
timewindow for themicrostructural boundary value problem
should be taken large enough not to affect the macroscopic
response significantly. For transient problems, the RVE size
in dynamics is typically larger than one unit cell of periodic
composites and the microstructure time window is longer
than the macroscopic time step �tM [20]. Accordingly, the
separation of length and time scales procedures explained in
Sects. 2.1.1 and 2.1.2 are performed to determine the RVE
size Lm and the microstructure time window Tm for the
microscopic boundary value problem. At the microscale, the
selected RVE is solved by the balance of linear momentum
with the absence of body forces

∂

∂x
σm − ṗm = 0 (10)

where σm is the microscopic stress and pm is the microscopic
linear momentum. In order to solve the microstructural
boundary value problems, the constitutive relations at the
microscale are defined by constitutive laws, which accounts
for heterogeneity in the RVE. Following earlier findings [7,
25, 26], it has been established that periodic boundary con-
ditions offer advantages for modelling the RVE behaviour.
Particularly, Yağmuroğlu et al. [20] highlighted specific ben-
efits associated with imposing periodic boundary conditions

on the RVE under dynamic loading conditions as compared
to Dirichlet conditions. In the context of non-periodic RVE
boundaries, Tamsen and Balzani [27] have introduced the
concept of extended microscopic boundary conditions. Ini-
tial and boundary conditions are applied to the RVE through
the dynamic kinematic relations via the downscaling pro-
cedure described in Sect. 2.4.1. The macroscopic kinematic
quantities (the macroscopic strain εM and velocity u̇M) are
transferred through the macroscopic integration point to the
microscale as a prescribed boundary condition.

2.4 Kinematics of the scale transitions

In the computational homogenisation method, the dynamic
scale transitions construct spatial and temporal relations
between the macro and microscales based on conservation
of mass, momentum and energy [12, 28]. The downscaling
and upscaling procedures are linked with the separation of
length and time scales. Namely, the dynamic scale transitions
occur at the microstructure time window Tm determined by
the principle of the separation of time scales. In addition,
dynamic scale transitions are performed over the RVE fol-
lowing the principle of the separation of length scales. In this
section, we expand on how the principle of the separation
of length and time scales is related to the downscaling and
upscaling procedures.
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2.4.1 Downscaling

The solution of the macroscopic boundary value problem
provides themacroscopic strain εM and velocity u̇M as down-
scaling parameters for theRVE. The downscaling parameters
are formulated as periodic boundary conditions for the RVE.
The downscaling parameters are used to obtain microscopic
momentum from the macroscopic velocity u̇M as well as
microscopic stress from the macroscopic strain εM. For these
purposes, the prescribed boundary condition of the RVE is
formulated using Taylor series so that microscopic displace-
ment um and velocity u̇m can be related to the macroscopic
strain εM and the macroscopic velocity u̇M as

um(x, t) = uM + ∂uM
∂x

�xM + ∂uM
∂t

�tM (11)

where �xM is the size of a macroscopic unit cell and �tm
is the macroscopic time step when the dynamic kinematic
relations are coupled at themacro andmicroscales. Rewriting
Eq. (11) based on the principle of separation of length and
time scales explained in Sects. (2.1.1) and (2.1.2) gives

um = uM + ∂uM
∂x

Lm + ∂uM
∂t

Tm (12)

where Lm and Tm are the size of the RVE and themicroscopic
time window of the microscopic analysis, respectively.

2.4.2 Upscaling

After solving the microscopic boundary value problem,
the averaged microscopic stress 〈σm〉x and the averaged
microscopic momentum 〈pm〉x parameters are transferred to
the macro level as upscaling parameters. According to the
Hill-Mandel averaging, themicroscopic stress and themicro-
scopic momentum are averaged as follows

〈σm〉x = 1

Lm

Lm∫

0

σm dx (13)

〈pm〉x = 1

Lm

Lm∫

0

pm dx (14)

where σm and pm are microscopic stress and momentum,
and Lm is the RVE size. For each micro time step, the aver-
aged stress 〈σm〉x and the averaged momentum 〈pm〉x values
are calculated. These intermediate averaging equations (13)
and (14) are not employed independently at the microscale;
rather, they are presented for conceptual clarity. Once the
microscopic time window Tm selected based on the separa-
tion of time scales procedure is completed at the microscale,

the values at the end of the simulation t fm are transferred as
residual forces to the macroscale.

σM = 〈σm(t fm )〉x (15)

pM = 〈pm(t fm )〉x (16)

3 Numerical model implementation

3.1 Macroscopic equation of motion in a linear
problem

In order to solve the macroscopic boundary value problem,
Eq. (9) is implemented in a finite element discretisation with
the implicit time integration scheme. The constant average
acceleration is adopted as a variant of Newmark time integra-
tion methods, which enables the average of the microscopic
stress 〈σm〉x and momentum 〈pm〉x to be embedded into
the macroscopic boundary value problem as residual forces.
Hence, the weak form of Eq. (9) is expressed as

∫
NTρN dx üt+�t

M =
∫

NTtM dx ut+�t
M −

∫
BTEB dx ut+�t

M

(17)

where N and B contain interpolation functions and their
derivatives, respectively. The macroscopic displacement
ut+�t
M and acceleration üt+�t

M can be computed as utM+�uM
and ütM +�üM to place the average of the microscopic stress
and momentum in Eq (17). Incorporating the macroscopic
displacement �uM and acceleration �üM increments into
Eq (17) leads to

∫
NTρN dx (ütM + �üM) =

∫
NTtM dx ut+�t

M

−
∫

BTEB dx dx (utM + �uM)

(18)

The macroscopic acceleration increment�üM is replaced by
the Newmark equation using the constant average accelera-
tion method; hence, Eq. (18) is rewritten as

∫
NTρN dx ütM

+
∫

NTρN dx

[
4

�t2

(
�uM − u̇tM�t − 1

4
ütM�t2

)]

=
∫

NTtM dx ut+�t
M −

∫
BTEB dx (utM + �uM) (19)

Reorganising Eq. (19) for the solution of the macroscopic
displacement increment �uM results in
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[
4

�t2

∫
NTρN dx +

∫
BTEB dx

]
�uM

=
∫

NTtM dx ut+�t
M −

∫
BTEB dx utM

+ 4

�t

∫
NTρN dx u̇tM +

∫
NTρN dx ütM (20)

The right hand side of Eq. (20) is assigned as a residual
force f resM at the macroscale. The macroscopic residual force
is updated by the average of the microscopic stress 〈σm〉x
and momentum 〈pm〉x for each current macroscopic time tnM,
given by

f resM = fext − f tM(σ ) + f tM(p) + f tM( ṗ) (21)

where f tM(σ ), f tM(p) and f tM( ṗ) are the static, momentum
and momentum rate residual forces, respectively. Replacing
f tM(σ ), f tM(p) and f tM( ṗ) in Eq. (21) with the average of the
microscopic stress 〈σm〉x and momentum 〈pm〉x then leads to
the following equations

f tM(σ ) =
∫

BT〈σm〉tx =
∫

BTσ t
M dx (22)

f tM(p) =
∫

NT〈pm〉tx =
∫

NT ptM dx (23)

f tM( ṗ) =
∫

NT〈 ṗm〉tx =
∫

NT ṗtM dx (24)

where 〈 ṗm〉tx is the average of the microscopic momentum
rate. As the microscopic stress σm gives better accuracy than
the microscopic momentum rate ṗm due to the increased
oscillations that emerge when derivatives are taken, the aver-
age of the microscopic momentum rate is replaced by the
average of the microscopic stress depending on Eq. (10), i.e.

f tM( ṗ) = f tM(σ ) (25)

In the context of the dynamic computational homogenisa-
tion method addressing the macrostructural boundary value
problem, a standard finite element discretisation is employed
typicallywith implicit time integrationmethods. On the other
hand, it is noteworthy that explicit time integration meth-
ods have demonstrated considerable efficacy, particularly in
addressing highly accelerated problems [18].

3.2 Microscopic equation of motion in linear
problem

In order to solve the microscopic boundary value problem,
Eq. (10) is implemented in a finite element discretisation
with implicit and explicit time integration schemes. The con-
stant average acceleration variant of the Newmark scheme is
adopted for the implicit time integration, whereas the central

difference scheme is used for the explicit time integration.
The left and right edge of the RVE are constrained by the
downscaling parameters applied as periodic boundary con-
ditions. The microscopic displacement utm and velocity u̇tm
at the current microscopic time step tnm are imposed on the
prescribed nodes of the RVE as follows

utp = uM + εM Lm + u̇Mt
n
m (26)

where the nth microscopic time step tnm is given by tnm =
n�tm. The microscopic time window is given by Tm =
N�tm, where N is the total number of microscopic steps.
The macroscopic velocity u̇M is linearly increased over the
microscopic time window Tm. Equation (10) is derived for
the time integration schemes in the next Sections to obtain the
residual forces with respect to the microscopic displacement
utm and velocity u̇tm.

3.2.1 The constant average acceleration scheme

The strong form of Eq. (10) in the constant average acceler-
ation scheme is given by

∫
NTρN dx üt+�t

m +
∫

BTEB dx ut+�t
m = 0 (27)

The microscopic displacement ut+�t
m and acceleration üt+�t

m

can be written as utm + �um and ütm + �üm to replace the
microscopic displacement utp and velocity u̇tp of the pre-
scribed nodes. Incorporating the microscopic displacement
�um and acceleration �üm increments into in Eq. (27) leads
to

∫
NTρN dx (ütm + �üm) +

∫
BTEB dx (utm + �um) = 0

(28)

The microscopic acceleration increment �üm is replaced by
the Newmark equation based on an displacement expansion
in the constant average acceleration scheme; hence, Eq. (28)
is rewritten as

∫
BTEB dx (utm + �um) +

∫
NTρN dx ütm

+
∫

NTρN dx

[
4

�t2

(
�um − u̇tm�t − 1

4
ütm�t2

)]
= 0

(29)

Reorganising Eq. (29) for the solution of the microscopic
displacement increment �um results in

[ ∫
BTEB dx + 4

�t2

∫
NTρN dx

]
�um
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= −
∫

BTEB dx utm

+ 4

�t

∫
NTρN dx u̇tm +

∫
NTρN dx ütm (30)

The right hand side of Eq. (30) is assigned as a residual
force f resm at the microscale. The microscopic residual force
is imposed by the microscopic displacement utp and velocity
u̇tp of the prescribed nodes for each current microscopic time
tnm, given by

f resm = − f σ
m (um) + f pm (u̇m) + f ṗm (üm) = 0 (31)

3.2.2 The central difference scheme

The strong form of Eq. (10) in the central difference scheme
is given by

∫
NTρN dx ütm +

∫
BTEB dx utm = 0 (32)

Both terms of the left hand side of Eq. (32) are assigned as
a residual force f resm for the central difference scheme at the
microscale. The microscopic residual force is imposed by
the microscopic displacement utp of the prescribed nodes for
each current microscopic time tnm, given by

f resm = − f σ
m (um) − f ṗm (üm) = 0 (33)

Comparing implicit and explicit time integrations, themicro-
scopic residual force in the constant average acceleration
scheme can be expressed in terms of the prescribed displace-
ment utp and velocity u̇

t
p, while themicroscopic residual force

in the central difference method is only defined by the pre-
scribed displacement utp. Examples of using time integration
methods are discussed in Sect. 4.4

3.3 Computational homogenisation solution
algorithm

The procedure of dynamic computational homogenisation
method is schematised in Fig. 5 which can be concisely
described by the following steps.

The macrostructural boundary value problem is defined
at the macroscale by using a finite element scheme. The
macrostructure is discretised in space and time. The bound-
ary condition is imposed on themacrostructure, togetherwith
the external load in compliance with spatial and temporal
discretisations. A microstructural boundary value problem
(BVP) over the RVE is assigned to eachmacroscopic integra-
tion point. At the microscale, the RVE is determined accord-
ing to the separation of length and time scales explained in
Sects. 2.1.1 and 2.1.2.

In order to obtain the inital constitutivematerial model, an
artificial initial macroscopic strain ε0M = 1 is applied as the
prescribed boundary condition of theRVEat the initialmacro
time step t0M. This forms the static microstructural BVP at
the microscale. The solution of the microstructural BVP pro-
vides the average of the microscopic stress 〈σm〉x to calculate
themacrosopicYoung’smodulus EM.Themacroscopicmass
density ρM is simply obtained by the equation of the rule of
mixture ρM = ∑K

k=1 αkρk. The initial macroscopic mate-
rial properties are transferred back to the macroscale. With
the initial estimates for the Young’s modulus and the mass
density, an estimate for the wave speed can be determined
which in turn aids the selection of a suitable time averaging
window.

At the macroscale, the global stiffness and mass matrices
are assembled using the initial macroscopic material prop-
erties. The macroscopic time integration is carried out to
solve the macrostructural BVP for each macroscopic time
increment �tM. The solution of the macrostructural BVP
provides the macroscopic acceleration üM, velocity u̇M and
displacementuM. For eachmacroscopic integration point, the
macroscopic strain εM and velocity u̇M are imposed as the
prescribed boundary condition of its associated RVE through
the downscaling procedure explained in Sect. 2.4.1.

The microscopic time integration is carried out to solve
the microstructural BVP for each microscopic time incre-
ment �tm. When the microstructural analysis is completed,
the solution of the microstructural BVP provides the micro-
scopic acceleration ü f

m, velocity u̇ f
m and displacement u f

m at
the end of the microscopic analysis t fm. As per the upscaling
procedure explained in Sect. 2.4.2, the macroscopic velocity
u̇ f
m and displacement u f

m are spatially integrated to obtain
the microscopic averaged stress 〈σm〉x and momentum 〈pm〉x
(i.e. the macroscopic stress σM and momentum pM). The
microscopic averaged stress 〈σm〉x and momentum 〈pm〉x are
embedded as the residual force into the macroscopic BVP
for the next macroscopic time step tn+1

M , thereby one loop of
the dynamic computational homogenization is completed.

When the macroscopic time integration is completed, the
macroscopic response of the periodic composite for the given
applied load is obtained for eachmacroscopic time increment
�tM. In case better accuracy in the macroscopic response
is required, the choice of the RVE, examples of which are
given in the next Section, can be updated depending on the
separation of length and time scales.

4 Numerical results

In this section, a one-dimensional linear elastic laminate bar
is modelled using the dynamic computational homogenisa-
tion procedure explained in Sects. 3.3 to assess the effects
of Nuc and Nwp at the microscale. The bar is clamped on
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Fig. 5 Computational flowchart
of dynamic computational
homogenisation scheme

the left end and a constant load F = 10 N is applied
at the right end throughout the simulation. For the macro-
scopic boundary value problem, linear finite elements are
used with the Newmark time discretisation. This investiga-
tion is conducted using a fixed-length macrostructure of 1
m, discretized into four elements, while a macroscopic time
step of 1 s is employed for a simulation duration of 5 s. On

the other hand, for microscopic boundary value problems,
both the constant average acceleration scheme and the cen-
tral difference method are implemented. The critical time
step size tcrit = 0.0625 s is used in the central difference
method for reasons of stability as well as accuracy. Further-
more, certainly, the spatial and temporal coupling is assumed
for all analyses below. Specifically, when applying the spa-
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tial coupling exclusively, the microstructure size is adjusted
according to the number of unit cells, with each unit cell
having a length of 0.0625 m. Conversely, in cases where the
temporal coupling is exclusively applied, the microstructure
size remains fixed at 0.25 m, while the microscopic simula-
tion time varies accordingly.

The results of the multiscale problem are compared with
those obtained by direct numerical simulations (DNS) to
verify the accuracy of the multiscale model. In direct numer-
ical simulations, the one-dimensional laminate bar is only
analysed on the heterogeneous microscale. For all numerical
examples, the error estimation formula is given by

e = |xCH − xDNS|
|xDNS| · 100% (34)

where xCH and xDNS are values obtained from the results of
computational homogenisation and direct numerical simula-
tions, respectively. The comparison ofmacroscopic displace-
ments and velocities against those obtained with DNS allows
one to assess the accuracy of the local response of the multi-
scale model. In order to compare the global response of the
multiscale model, averaged strain and kinetic energies con-
tainingmicroscopic stress andmomentum can be formulated
as follows

U = 1

2
uTMKMuM = 1

2

∫
εTM〈σm〉tx dx (35)

K = 1

2
u̇TMMu̇ = 1

2

∫
u̇TNT〈pm〉tx dx (36)

whereU andK are strain and kinetic energies, respectively.
〈σm〉tx and 〈pm〉tx are upscaling quantities comprising micro-
scopic material constitutive relations.

4.1 Effect of number of unit cells

As a first examination of the influence of Nuc, the strain and
kinetic energies of a one-dimensional linear elastic laminated
bar are investigated. Strain and kinetic energies are appropri-
ate quantities to evaluate the impact of an increase in the
number of unit cells on the global effectiveness of the multi-
scale model. In this analysis, the strain and kinetic energies
obtained by the DNS are compared with those obtained by
the dynamic computational homogenisation method.

As shown in Fig. 6, an increase in the number of unit cells
Nuc results in better estimation of themultiscale strain energy,
while the multiscale kinetic energy does not show the same
trend. The multiscale acceleration and displacement values
presented inFig. 7 have good correlationswith those obtained
by the DNS with time at higher values of Nuc. On the other
hand, the multiscale velocity values remain lower than the
velocity values obtained by the DNS so that the momentum

Fig. 6 Effect of the number of unit cells on strain and kinetic energies
against the reference solution obtained by the DNS

internal force f pM causes a huge error in themultiscale kinetic
energy.

In addition to evaluating the effect of the number of unit
cells on the dynamic response of 1D bar system, macro-
scopic displacements and velocities at the local scale are also
assessed using the dynamic computational homogenisation
method. As has been depicted in Fig. 7, despite showing a
consistent trend in both macroscopic results, a higher num-
ber of unit cells gives better estimations of the macroscopic
displacement and velocity compared to those results obtained
from theDNS. Particularly,when Nuc = 8 (green line), errors
in macroscopic displacement and velocity at tm = 5 s, are
obtained as 5.44% and 13.41%, respectively.

4.2 Effect of number of wave propagations

In contrast with Nuc analysis, the number of wave prop-
agations (i.e. the number of times the wave front travels
through the entire microscopic sample, indicated with Nwp,)
is increased while eight unit cells are used throughout this
analysis. For each number of wave propagations the results
obtained from the dynamic computational homogenisation
are comparedwith the results obtained by theDNS.At higher
values of Nwp displayed in Fig. 8, the kinetic energy con-
verges perfectly. Although the error in strain energy tend
to decrease with an increase in Nwp, higher Nuc provides
better results for strain energy. When Nwp increases, longer
averaged stress profiles can be obtained on the micro-level.
As a upscaling parameter, the averaged stress at the end of
the micro simulation time is transferred to the macro-level.
The micro simulation time is critical to be determined since
a microscopic wave is required to reach at the end of the
microscopic bar to contain all microscopic characteristics for
multiscale analyses. When the spatial and temporal links are
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Fig. 7 Macroscopic displacement-time (left) and velocity-time (right) curves for Nwp = 8 and various Nuc together with the reference solution
obtained by the DNS

Fig. 8 Effect of the number of wave propagations on strain U and
kinetic energiesK against the reference solution obtained by the DNS

performed between macro and microstructures, the results of
macroscopic stress and momentum are not accurate. As long
as the numerical parameters such asminimumwave propaga-
tion time and critical time step are satisfied, higher number of
wave propagations gives better estimates for averaged stress
and momentum. Therefore, this also proves the importance
of Nwp on multiscale results obtained by the dynamic com-
putational homogenisation method.

The local responses of macroscopic boundary value prob-
lem is also observed. In Fig. 9, higher number of wave
propagation results in a good approximation of macroscopic
displacement and velocity compared to the DNS results. In
particular, when Nwp = 8 (green line), the errors in macro-
scopic displacement and velocity at tm = 5 s are 2.97% and

6.85%, respectively. Additionally, a slight change in Nwp

leads to a great amount of reduction in displacement and
velocity errors, as shown in Fig. 9.

4.3 Combination of number of unit cells and number
of wave propagations

Building upon the findings presented in Reference [20], the
advantages of Nuc for accurately calculating the strain energy
and Nwp for accurately calculating the kinetic energy are
combined. Therefore, to achieve the highest level of accuracy
in both strain and kinetic energy calculations, the superior
effectiveness of an simultaneous increase in Nuc and Nwp is
evaluated by comparing to their individual components. As
demonstrated in Sects. 4.1 and 4.2, the closest satisfactory
results of the dynamic response of 1D bar are accomplished
by applying eight unit cells and eight wave propagations,
which are considered the minimum starting values for all
analyses. As shown in Fig. 10, for the strain and kinetic
energy, the combination of Nuc = 64 and Nwp = 64 gives
minimum error at 10.5% and 0.6%, respectively. For any
point in Fig. 10, the simultaneous increase of Nuc and Nwp

results in higher accuracies than separate increases of either
Nuc or Nwp.

4.4 Time integration algorithms for microstructure

Instead of implicit time integration on themicroscale, explicit
time integration can also be used for the microscopic bound-
ary value problem. The central difference method, which is
conditionally stable depending on the critical time step�tcrit,
is used to discretise the microstructural response in time. For
reasons of stability, the microscopic time step �tm used in
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Fig. 9 Macroscopic displacement-time (left) and velocity-time (right) curves at the value of Nuc = 8 for various Nwp values with the reference
solution obtained by the DNS

Fig. 10 Comparison of different Nuc and Nwp combinations with regards to strain energy (left) and kinetic energy (right)

the developed algorithm is required to be not larger than the
critical time step on the microscale.

Firstly, we illustrate the dynamic response of the bar,
focusing on macroscopic displacements and velocities in
Fig. 11 under the conditions where Nuc = 8 and Nwp = 8.
This comparison serves to evaluate the influence of the cen-
tral difference method and the constant average method on
the averaged response of theRVE in contrast to theDNS solu-
tions. Even though the results obtainedwith bothmethods are
coincidentwith those provided by theDNS, the central differ-
encemethod shows better agreementwith theDNScompared
to the constant average method.

As presented in Fig. 12, at higher values of Nuc and
Nwp, both strain and kinetic energies result in lower error
estimations. Specifically, the errors in strain energy, when

employingvarious time integrationmethods, range from30%
to 32%, while those in kinetic energy fall within the range of
0.03% to 3%. Notably, while the error in both energies tends
to diminish with the implicit time integration method as Nuc

and Nwp increase, a more consistent trend is observed in the
errors associated with the explicit time integration method.
These results confirm that both explicit and implicit time
integration schemes can be used on the microscale, with the
choice left to the preference of the user.

4.5 Different impedance contrasts

The simultaneous increase of Nuc and Nwp presented in
Sect. 4.3 is considered the best effective estimation tool for
overall properties. Therefore, the effect of this combina-
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Fig. 11 Comparisons of implicit and explicit model with the reference solution obtained by the DNS regarding macroscopic displacement-time
(left) and velocity-time (right) curves at the values of Nuc = 8 and Nuc = 8

Fig. 12 Influence of explicit and implicit time integration methods on strain energy (left) and kinetic energy (right) while simultaneously increasing
in Nuc and Nwp. Error estimations in strain (left) and kinetic (right) energies are computed based on the DNS solutions

tion on the contrast in mechanical impedance of materials
is investigated in this section. The material properties of the
microscopic structure such as Young’s modulus E and mass
density ρ are arranged in accordance with a user-defined
impedance contrast factor z = √

Eρ, yet the wave speeds of
each material c = √

E/ρ are aimed to remain unchanged.
Tobeginwith, the local displacement responses at themid-

point of the bar are shown in Fig. 13 for various impedance
contrasts from low to moderate. The simultaneous increase
in Nuc and Nwp provides good estimations for all impedance
contrast factors compared to the DNS solutions. In addition,
there is a consistent trend for different impedance contrast
factors and their error estimation. When the impedance con-
trast factor is low (e.g. zm = 1.2), the local error estimation

reaches the lowest value of 0.5%. With the moderately high
impedance contrast factor (e.g. zm = 2), the local error esti-
mation is approximately 10.8%.

Moreover, the effectiveness of simultaneous increase in
Nuc and Nwp is also observed on the global response of the
bar based on the strain and kinetic energies. As depicted in
Fig. 14, errors in the strain energy at Nuc = 64 and Nwp = 64
are concentrated around 6–10% for all impedance contrast
factors. On the other hand, as expected, the prediction of this
model becomes less accurate for higher impedance contrast
values (e.g. zm = 2). While the error in kinetic energy for
low impedance contrast (e.g. zm = 1.2) is 0.6%, the one for
moderately high impedance contrast (e.g. zm = 2) is 29.7%.
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Fig. 13 Influence of Nuc and Nwp on macroscopic displacements at
the mid-point of the bar for various impedance contrast factors. Error
estimations in macroscopic displacements are computed based on the
DNS solutions

5 Conclusions

In this work, a spatial and temporal separation procedure
is integrated into the dynamic computational homogenisa-
tion method to obtain improved estimation of elastodynamic
response for multiscale periodic composites. A simultane-
ous separation of length and time scales between macro and
microstructures is introduced to capture transient interactions
and micro-inertia effects emerged from wave dispersion.
The proposed model contains upscaling and downscaling
formulations within the dynamic computational homogeni-

sation framework that establish scale interactions between
the macro and microscales for spatial-temporal separation.

In order to investigate the effectiveness of the proposed
work, linear dynamic analyses are carried out for a one-
dimensional laminate bar with several levels of impedance
contrast. Results of the analyses are validated by comparing
against the direct finite element solutions. From the global
response perspective, it is observed that increasing the num-
ber of unit cells significantly reduces the error in strain
energy, while increasing the number of wave propagations
significantly reduces the error in kinetic energy. To combine
advantages of increases in the numbers of unit cells and wave
propagations, these two parameters are simultaneously con-
trolled to obtain better convergence of macroscopic response
in dynamics. Significantly, the simultaneous increases in
both parameters lead to achieving higher accuracy com-
pared to increasing each parameter individually. From the
local response perspective, the macroscopic displacement
and velocity results obtained by higher numbers of unit
cells and wave propagation converge quickly to those results
obtained through the DNS. Additionally, the effect of these
simultaneous increases is evaluated for various impedance
contrasts of material properties at the microscale. Despite
achieving considerable improvement in the convergence of
macroscopic response, the model becomes less accurate
when high impedance contrasts exist in the material prop-
erties. Despite this progress, achieving closer convergence
to DNS outcomes remains an ongoing focus for future itera-
tions. Further enhancements toward reaching DNS accuracy
constitute an imperative area for future research.

Fig. 14 Global influences of Nuc and Nwp on strain energy (left) and kinetic energy (right) for various impedance contrast factors. Error estimations
in macroscopic displacements are computed based on the DNS solutions
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