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Abstract
We present an approach for the data-driven modeling of nonlinear viscoelastic materials at small strains which is based on
physics-augmented neural networks (NNs) and requires only stress and strain paths for training. The model is built on the
concept of generalized standard materials and is therefore thermodynamically consistent by construction. It consists of a
free energy and a dissipation potential, which can be either expressed by the components of their tensor arguments or by a
suitable set of invariants. The two potentials are described by fully/partially input convex neural networks. For training of
the NN model by paths of stress and strain, an efficient and flexible training method based on a long short-term memory
cell is developed to automatically generate the internal variable(s) during the training process. The proposed method is
benchmarked and thoroughly compared with existing approaches. Different databases with either ideal or noisy stress data
are generated for training by using a conventional nonlinear viscoelastic reference model. The coordinate-based and the
invariant-based formulation are compared and the advantages of the latter are demonstrated. Afterwards, the invariant-based
model is calibrated by applying the three training methods using ideal or noisy stress data. All methods yield good results,
but differ in computation time and usability for large data sets. The presented training method based on a recurrent cell turns
out to be particularly robust and widely applicable. We show that the presented model together with the recurrent cell for
training yield complete and accurate 3D constitutive models even for sparse bi- or uniaxial training data.

Keywords Artificial neural networks · Viscoelasticity · Thermodynamic consistency · Internal variables · Recurrent neural
networks · Input convex neural networks

1 Introduction

Despite a large number of existing classical constitutive
models for nonlinear elastic and inelastic materials [1, 2],
the description of novel materials with complex constitutive
behavior remains a challenging task. The choice of a suitable
model and the identification of the corresponding material
parameters is time-consuming and does not necessarily lead
to results with the desired accuracy, so that the development
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of new specialized models may be necessary. For this reason,
a new class of approaches has emerged in recent years, which
are often referred to as data-driven or data-based methods
[3, 4].

1.1 Constitutive modeling with neural networks

Historically, the pioneering work of Ghaboussi et al. [5]
from the beginning of the 1990s is particularly noteworthy.
In this work, NNs, specifically feedforward neural networks
(FNNs), are used for the first time to predict hysteresis in uni-
axial andmultiaxial stress states. Therein, theFNN is fedwith
information from several previous time steps to enable it to
learn history-dependent behavior. In Furukawa and Yagawa
[6], a constitutive model based on an FNN is presented that
can be used to train uniaxial viscoplastic behavior. How-
ever, this requires internal variables in the training process,
whose experimental identification is also described. Despite
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the rather simple nature of these models from today’s point
of view, approaches of this kind indicate the potential of
data-driven constitutive modeling. Without having to decide
on a specific model, it is possible to learn complex mate-
rial behavior. With the recent rise in popularity of NNs and
the associated rapid progress in efficiency and accessibility,
many different methods have emerged in an extremely short
time, extending and improving these approaches. For exam-
ple, the works [7–11] propose advanced techniques using
FNNs, while [10–14] make use of recurrent neural networks
(RNNs), which are capable of making predictions based on
past events due to their internal structure [15].

Thus, recurrent architectures are an appealing way to
model inelastic behavior, since the provision of history
variables or internal variables can be avoided [17]. In par-
ticular, the development of advanced RNN cells such as long
short-term memory (LSTM) [18] or gated recurrent units
(GRUs) [19], which provide increased memory capacity and
enable an efficient training, lead to great popularity and rapid
progress in this field.

What remains a challenge for NN-based approaches is
the lack of a fundamental inclusion of physics, especially
the second law of thermodynamics. The networks map input
quantities directly to the variable of interest, for example
the stress, and thus approximate only the phenomenological
relationship between input and output [5, 6]. Compared to
most classical constitutive models, the physical motivation
is completely missing. This has some significant downsides.
Such models, often denoted as black box models, cannot
guarantee robustness of the predictions beyond the train-
ing range covered by the used training data. Exceeding this
range may not only lead to wrong but also to physically
implausible predictions [20, 21]. Furthermore, the training
process is entirely driven by the training data and is not
supported by existing knowledge from classical constitutive
modeling. Thismay lead tomore complex optimization prob-
lems that exhibit gradient conflicts and require more training
data [21]. For this reason, it seems natural to integrate the
existing knowledge from continuum mechanics and consti-
tutive modeling into the NN architecture to combine the
advantages of both concepts. This kind of NN-based con-
stitutive models or scientific machine learning approaches in
general are labeled as physics-informed [22, 23],mechanics-
informed [24], physics-augmented [25], physics-constrained
[26], thermodynamics-informed [27] or thermodynamics-
based [21]. These approaches have been intensively pursued
for a few years with great success in constitutive model-
ing for elastic [20, 23, 25, 26, 28–30] elastoplastic [21, 27,
31–36] or viscoelastic behavior [36–40]. Thereby, a distinc-
tion must be made between methods with weak fulfillment
of the principles by an additional term in the loss func-
tion and strong fulfillment with a priori compliance with
the respective principle by constraining the architecture of

the network [41]. According to the comparative study pre-
sented in Rosenkranz et al. [17], the second approach is more
promising since it is more efficient in terms of required data,
robust and can extrapolate very well due to the high degree
of incorporated physics, but involves some difficulties. The
challenge here is to efficiently restrict the network without
loosing too much flexibility.

For elastic and especially hyperelastic materials, many
works have been published on that topic, e.g., [20, 24, 26,
28, 29, 42–44], among others, in which different require-
ments for a constitutive model are incorporated in a strong
sense. Thereby, an elastic potential is approximated by using
an FNN with the deformation or strain invariants as input.
To allow the calibration of the network directly by tuples of
stress and strain, the derivative of the potential with respect
to the deformation, i.e., the network’s input, is included into
the loss, which is also called Sobolev training [20, 45]. With
easily accessible implementations for automatic differenti-
ation [46] in popular libraries like TensorFlow, PyTorch or
JAX, this is no longer a major difficulty and is used in a wide
variety of research areas [22, 47]. Furthermore, polyconvex
NN models [20, 29, 48] have been formulated by using fully
input convex neural networks (FICNNs) as introduced by
Amos et al. [49]. Also parametrized polyconvex models [50]
have been formulated with partially input convex neural net-
works (PICNNs) [49].

Regarding NN-based constitutive modeling of inelastic
behavior with a strong physical background, a variety of
works have been published meanwhile. Thereby, approaches
applying the concept of internal variables have shown to be
particularilywell suited. Remarkableworks on theNN-based
modeling of plasticity in recent years are, for example [21,
27, 31–33, 51–53], among others. In many of these works,
however, the thermodynamic consistency is only fulfilled in
a weak sense by adding a penalty term to the loss or inter-
nal variables must be known prior to training. When using
the models in multiscale problems, internal variables can be
determined, e.g., by autoencoders [54, 55], but in real experi-
mental setups the determinationmight not be practical. Thus,
there are still some challenges to overcome, in particular with
regard to the fulfillment of physical conditions by construc-
tion or the provision of internal variables during training.
Only the elasto-plastic NNmodels [32, 33] a priori fulfill the
second law of thermodynamics and do not require internal
variables in the training data set at the same time. A pio-
neering NN-based approach to model viscoelastic behavior
is presented in [56]. Thereby, thermodynamic consistency is
ensured by using a convex dissipation potential but internal
variables are required for training. Several approaches based
on a similar modeling strategy can be found [17, 39, 44, 57].
In contrast to [56], however, no prior knowledge of the inter-
nal variable(s) is needed for training there.
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Fig. 1 Overview and classification of the work: a A data base contain-
ing time sequences of stresses σ(t) and strains ε(t) is required for the
calibration of the constitutive model. This data can be obtained from
computational homogenization simulations, data-driven identification
(DDI) [16], or common experiments. In this work, the data is generated
in a simplified way using a given constitutive model. b The data set is

used for calibrating the NN-based model using two established meth-
ods and a novel RNN-based method. c The trained model can be tested
with unseen sequences and d applied in Finite Element (FE) simula-
tions. The FE simulations are not addressed herein. Thus, the focus of
this work is on (b) and (c)

1.2 Objectives and contributions of this work

As outlined above, NN-based constitutive models for vis-
coelastic problems using internal variables and accounting
for fundamental physics as the second law of thermody-
namics have so far received comparatively little attention.
In addition, the techniques for providing internal variables
during training are not satisfactory in every case, as either
a high computational effort is required or flexibility and
accuracy are not sufficient. Thus, within this contribution,
we present a physics-augmented NN model for viscoelas-
tic materials and an efficient training method which only
requires stress and strain paths for training. The model is
built on the concept of generalized standard materials and is
therefore thermodynamically consistent by construction. It
consists of a free energy and a dissipation potential, which
can be either expressed by the coordinates of their tensor
arguments or by a suitable set of invariants. The two poten-
tials are expressed by FICNNs/PICNNs [49]. For training of
the NN model by paths of stress and strain, an efficient and
flexible training method based on an LSTM cell is developed
to automatically provide the internal variable(s) during the
training process. The focus of this work is on a comprehen-
sive benchmark test of the proposedmethod based on existing
approaches. These include a method that obtains the inter-

nal variable by integrating the evolution equation over the
entire sequence [37],while the othermethoduses an auxiliary
FNN for the internal variable(s) [24]. Databases for training
are generated by using a conventional nonlinear viscoelastic
reference model. These training data sets include either mul-
tiaxial, biaxial, uniaxial stress states with either ideal or noisy
data points. The coordinate-based and the invariant-based
formulation are compared and the three training methods
are applied. We show that the presented framework yields
complete and accurate 3D constitutive models with all of
these datasets, using only a single short training sequence.
An overview about this work and a classification in a larger
context is schematically illustrated in Fig. 1.

The article is organized as follows: After a short summary
of the concept of generalized standard materials in Sect. 2,
the NN-based model is described in Sect. 3. In Sect. 4, three
methods to calibrate the NN model are explained. Subse-
quently, the presented model and the training methods are
tested and compared within numerical examples in Sect. 5
using different data sets with stress states of decreasing com-
plexity and either ideal or noisy stress data. After a discussion
of the results, some closing remarks are given in Sect. 6.
Notation

Throughout this work, several important quantities are
tensors of different ranks. The space of tensors of rank
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n ≥ 1 is denoted as Ln . Especially, the cases of n = 2
and n = 4, i.e., tensors of rank two and four, are of
importance herein. A tensor of rank two is denoted with
upright bold symbols as T = Ti j ei ⊗ e j ∈ L2 and a ten-
sor of rank four with blackboard bold symbols as C =
Ci jklei ⊗ e j ⊗ ek ⊗ el ∈ L4. Therein, the Einstein sum-
mation convention is used, ⊗ is the dyadic product and
ei ∈ L1 is the i-th Cartesian basis vector. For tensors of
rank two, only symmetric second order tensors S ∈ Sym2 ⊂
L2 are relevant in the scope of this work, with Sym2 ={
S ∈ L2 | S = S� }

and S� = S ji ei ⊗e j denoting the trans-
pose of S. For tensors of rank four, the subset Sym4 ⊂ L4

of tensors with major and minor symmetries is defined as
Sym4 = {

C ∈ L4 | Ci jkl = Ci jlk = C jikl = Ckli j
}
. Some

special fourth order tensors required here are the fully sym-
metric fourth order identity tensor IS = 1

2

(
δikδ jl + δilδ jk

)

ei ⊗ e j ⊗ ek ⊗ el ∈ Sym4, the spherical projector IK =
1
31 ⊗ 1 ∈ Sym4 with 1 = δi j ei ⊗ e j and the deviatoric
projector given by ID = I

S − I
K. In the above definitions, ..

denotes double contraction of adjacent indices. Furthermore,
tr(T) = Tkk is the trace of T ∈ L2, the square of a tensor is
T2 = TikTk j ei ⊗ e j and the Frobenius norm is denoted by

‖T‖ in this work and is defined as ‖T‖ =
√
T .. T�.

2 Generalized standardmaterials

The concept of generalized standard materials (GSMs) [58–
65] allows the formulation of thermodynamically consistent
constitutive models that are entirely described by two scalar
valued functions. In the context of this work, thermodynamic
consistency is equivalent to satisfying the Clausius-Duhem
inequality

D = σ .. ε̇ − ψ̇ ≥ 0, (1)

where D is the dissipation rate, σ ∈ Sym2 is the stress,
ε̇ ∈ Sym2 is the strain rate, and ψ is the Helmholtz free
energy density, or free energy for short. This free energy
ψ(ε,qα) depends on the current strain ε ∈ Sym2 and a set of
internal variables qα ∈ Sym2. The stress σ and the internal
forces τα ∈ Sym2 are obtained by differentiating the free
energy with respect to the strain or the internal variables,
respectively, i.e.,

σ = ∂ψ

∂ε
and τα = − ∂ψ

∂qα

. (2)

In the context of GSMs, there exists another potential
besides the free energy, the so-called dissipation potential
φ(q̇α,qα, ε), which depends on the rates of the internal
variables q̇α and possibly on the strain and the internal vari-
ables themselves. Differentiating the dissipation potential

with respect to the rate of the internal variables again yields
the internal forces

τ̂α = ∂φ

∂q̇α

, (3)

which are denoted with an additional ˆ(·) to distinguish them
from the internal forces τα obtained with the free energy. To
construct a constitutive model that complies with in Eq. (1),
the dissipation potentialmust satisfy all of the following three
requirements:

(i) φ(q̇α,qα, ε) must be convex in all q̇α ,
(ii) φ(q̇α = 0,qα, ε) = 0 and
(iii) φ(q̇α,qα, ε) ≥ 0.

The material law is formulated with the Biot equation [66],
that relates both potentials via

∂ψ

∂qα

+ ∂φ

∂q̇α

= 0 or equivalently τα = τ̂α. (4)

Evaluating Eq. (4) gives rise to the evolution laws [67] and is
thus the evolution equation for the internal variables given in
an implicit form.1 The stated conditions on φ automatically
construct these evolution laws such that inequality Eq. (1) is
satisfied. This framework of GSMs contains various classi-
cal constitutive models, including the viscoelastic reference
model in Sect. 5.1.1 that is used to generate the data for the
numerical experiments.

3 Formulation of the physics-augmented
neural network-basedmodel

Based on the theoretical background from Sect. 2, an
NN-based constitutive model for viscoelastic materials is
presented. It uses a single internal variable q ∈ Sym2 of
strain type to model the inelastic behavior. The model adapts
the concept of generalized standard materials, where the two
potentials are expressed as FNNswith incorporated convexity
constraints [20, 25, 37, 39, 43, 49, 50], see App. A. First, the
modeling approaches for free energy and dissipation poten-
tial are described, followed by the prediction process using
the adapted free energy and dissipation potential. The train-
ing methods to find the weights and biases of the FNNs
without requiring the internal variable in the training data
set are explained in Sect. 4.

1 In Haupt [1], it is postulated that the internal variables’ evolution is
described by a system of ordinary differential equations (ODEs) of the
form q̇α = f α(ε,q1,q2, . . . ,qn), referred to as evolution equations.
We refer to Eq. (4) as an implicitly given evolution equation, since
the given form of the ODEs cannot be explicitly determined for every
permissible potential φ. The Biot equation is nevertheless equivalent.
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3.1 Modeling of the potentials

The potentials ψ and φ can be either expressed in terms of
tensor coordinates (ψ(ε,q) and φ(q̇,q, ε)) or with a set of
invariants of those tensors (ψ(Iψ) and φ(Iφ)) [20, 57, 68].
Since some details must be taken into account in the invari-
ant formulation, this formulation is explained in more detail
below. The coordinate formulation is obtained analogously
with the corresponding simplifications.

3.1.1 Free energy

The free energy is additively decomposed into an equilib-
rium part ψeq(ε) and a non-equilibrium part ψov(ε,q), i.e.,
ψ(ε,q) = ψeq(ε) +ψov(ε,q). For the non-equilibriumpart
it is assumed, that the dependency on (ε,q) can be expressed
as ψov(ε,q) = ψov(p(ε,q)), where p = ε − q [39]. The
free energy is formulated with the following assumptions:

(i) ψ is an isotropic tensor function.
(ii) In the initial state ε = q = 0, the free energy vanishes,

i.e., ψ(0, 0) = 0.
(iii) In the initial state, the stress vanishes, i.e., ∂εψ(0, 0) =

0.
(iv) In the initial state, the internal force vanishes, i.e.,

−∂qψ(0, 0) = 0.
(v) ψ(ε,q) is assumed to be convex in ε and q.

Condition (v) is used for several reasons. On the one hand,
the convexity of ψ results in the positive definiteness of the
material tangent ∂εεψ , which offers numerical advantages in
the application [69]. On the other hand, the resulting restric-
tions simplify the training of the model. Furthermore, (v)
is fulfilled for the used reference model from Sect. 5.1.1.
Furterhmore, it should be noted that other works assume the
convexity of ψ as well [39, 70].

These constraints have to be incorporated into the FNN
representation of ψ , where ψeq and ψov are each described
by an FNN. These FNNs are denoted as ψ̃eq and ψ̃ov, respec-
tively. Requirements (i)–(v) can be satisfied as follows:

(i) In order to ensure an isotropic free energy, ψeq and
ψov are expressed in terms of invariants of their tensor
arguments [20], summarized in the invariant set Iψeq =
(Iψeq

α )3α=1 andIψov = (Iψov

α )3α=1, resp. That is,ψ
eq(ε)

becomes ψeq(Iψeq
) and ψov(p) becomes ψov(Iψov

)

with

Iψeq
(ε) = ( tr ε, tr ε2, tr ε4 ) (5)

Iψov
(p) = ( tr p, tr p2, tr p4 ) . (6)

The specific choice of the invariant sets is explained in
(v), where the convexity properties are discussed.

(ii) In order to ensureψ(0, 0) = 0, each partψeq(Iψeq
(ε))

and ψov(Iψov
(p)) is set to zero in the initial state,

i.e., ψeq(Iψeq
(0)) = 0 and ψov(Iψov

(0)) = 0.
These requirements are not incorporated into the
network functions themselves. Instead, a correction
term is appended to the definitions of ψeq(Iψeq

) and
ψov(Iψov

), that is, ψeq(Iψeq
) = ψ̃eq(Iψeq

) − ψ
eq
0

and ψov(Iψov
) = ψ̃ov(Iψov

) − ψov
0 , where ψ

eq
0 =

ψ̃eq(Iψeq
(ε = 0)) and ψ

eq
0 = ψ̃eq(Iψov

(p = 0)).
(iii) For the stress to vanish in the initial state, the equi-

librium stress ∂εψeq and the overstress ∂εψov must
vanish. This is enforced with another set of correc-
tion terms ψ

eq
σ and ψov

σ , such that ψeq(Iψeq
) =

ψ̃eq(Iψeq
) − ψ

eq
0 − ψ

eq
σ (Iψeq

) and ψov(Iψov
) =

ψ̃ov(Iψov
)− ψov

0 − ψov
σ (Iψov

) [20, 24, 56]. These cor-
rection terms are defined such that, when differentiated
with respect toε, they compensate the error in the initial
stress prediction by ψ̃eq(Iψeq

) or ψ̃ov(Iψov
), respec-

tively. A possible, but inconvenient way to achieve this
is to set

ψ
eq
σ (Iψeq

, ε) =
3∑

α=1

[
∂ψ̃eq

∂ Iψeq

α

∣∣∣∣
ε=0

∂ Iψeq

α

∂ε

∣∣∣∣
ε=0

]
.. ε (7)

and analogous for ψov. However, this leads to a free
energy that depends on not only the invariants, but also
on the strain tensor itself, which may violate (i). There-
fore, ψ

eq
σ (Iψeq

) and ψov
σ (Iψov

) may only depend on
the invariants. This is achieved with

ψ
eq
σ (Iψeq

) = ∂ψ̃eq

∂ Iψeq

1

∣∣∣∣
ε=0

Iψeq

1 and (8)

ψov
σ (Iψov

) = ∂ψ̃ov

∂ Iψov

1

∣∣∣∣
p=0

Iψov

1 . (9)

Since Iψeq

1 = tr ε and Iψov

1 = tr p are linear functions
in ε and p, this does not effect convexity of ψ .

(iv) The internal force vanishes, if−∂qψ
ov

∣∣∣∣
p=0

= 0. Since

−∂qψ
ov = ∂εψov holds and ∂εψov

∣∣∣∣
p=0

= 0 is already

assured with (iii), this requirement is already secured.
(v) Convexity in ε and q can be achieved if two condi-

tions are met: (a) The chosen invariants are convex
with respect to ε and q and (b) ψ̃eq and ψ̃ov are con-
vex and non-decreasing in those invariants [29]. Since
both ψeq(ε) and ψov(p) depend on a single symmet-
ric tensor of rank two, a complete set of invariants
composes, e.g., the invariants (tr S, tr S2, tr S3), where
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S ∈ Sym2. The third invariant tr S3, however, is not
convex in S, as shown in App. B. Therefore, the func-
tional basis is adjusted suitably by replacing tr S3 by
the convex invariant tr S4. This is allowed, since tr S3

can be expressed by tr S, tr S2 and tr S4 using the
Cayley-Hamilton theorem and the original basis can
be recovered. A comment on the convexity of the used
invariants can be found in Appendix B. Consequently,
the invariant bases in Eqs. (5) and (6) allow for the
construction of convex functions using non-decreasing
fully input convex neural networks(FICNNs)2 [20, 29,
49, 71] as described in App. A.1.1.

Summarizing, the free energy is modeled with an additive
decomposition, where each part is a non-decreasing FICNN
with additional correction terms and is expressed in a set of
three convex invariants, such that

ψ(ε,q) = ψeq(ε) + ψov(p(ε,q)), where (10)

ψeq(ε) = ψeq(Iψeq
(ε)) = ψ̃eq(Iψeq

) − ψ
eq
0 − ψ

eq
σ (Iψeq

)

and (11)

ψov(p) = ψov(Iψov
(p)) = ψ̃ov(Iψov

) − ψov
0 − ψov

σ (Iψov
).

(12)

With that, the free energy representation is physically mean-
ingful, even in the untrained state of theNNmodel. Details on
the hyperparameters of the FICNNs can be found in Sec. A.3
To simplify notation, the weights and biases of the two FIC-
NNs are summarized in a single parameter set wψ .

The dissipation potential is constructed using similar tech-
niques.

3.1.2 Dissipation potential

The NN-based dissipation potential depends on (q̇, ε,q)

[17]. Similar to the non-equilibrium part of the free energy,
the dependency of ε and q is expressed in terms of p = ε−q.
Consequently, φ = φ(q̇,p(ε,q)). As discussed in Sect. 2,
the dissipation potential must obey some constraints:

(a) φ is an isotropic tensor function.
(b) φ is convex with respect to its first argument, the rate of

the internal variable q̇.
(c) If the internal variable does not evolve, the dissipation

potential vanishes, i.e., φ(0,p) = 0.

2 Since the invariants tr ε and tr p are linear functions of ε and q, the
constraints on the corresponding weights in the passthrough layers of
the non-decreasing FICNN as described in Sec. A are in general too
restrictive. However, for the here shown NN-based model and the used
reference material, this does not effect the prediction quality and is
henceforth ignored.

(d) If the inelastic strain does not evolve, the dissipation
potential is in a minimum, i.e., ∂q̇φ(0,p) = 0.

The respective network to model this function is denoted
as φ̃. The stated requirements are enforced with techniques
similar to those used to construct the free energy.

(a) Formulating φ in invariants enforces isotropy of the
resulting function. The network φ̃(Iφ(q̇,p)) depends on
the six invariants

Iφ(q̇,p) = ( tr q̇, tr q̇2, tr q̇4, tr p, tr p2, tr p3 ). (13)

Here, no mixed invariants between q̇ and p are used.
(b) To enforce convexity with respect to the rate of the inter-

nal variable, a non-decreasing partially input convex
neural network (PICNN) [49, 50] is used, which is con-
vexwith respect to the three invariants ( tr q̇, tr q̇2, tr q̇4 )

and not necessarily convex with respect to
( tr p, tr p2, tr p3 ).

(c) Analogous to the free energy, a correction term φ0 is
appended to the definition of φ, such that φ = φ̃ − φ0.
φ0 compensates the offset in φ̃ and is defined as φ0 =
φ̃(Iφ(q̇ = 0,p)).

(d) By adapting the stress correction term for the free energy,
a correction termφτ is appended, such thatφ = φ̃−φ0−
φτ, where φτ is

φτ = ∂φ̃

∂ Iφ
1

∣∣∣∣
q̇=0

Iφ
1 . (14)

Summarizing, the dissipation potential is modeled with a
non-decreasing PICNN and additional correction terms. The
dependency on q̇ is expressed with convex invariants of q̇.
That is,

φ(q̇, ε,q) = φ̃(Iφ(q̇,p(ε,q))) − φ0 − φτ . (15)

The NN model is thus thermodynamically consistent and
isotropic by construction. All weights and biases of the
PICNN with the hyperparamters from Sec. A.3 are summa-
rized in the parameter set wφ .

3.1.3 Coordinate formulation

The previous explanations refer to the invariant formulation.
For the formulation with coordinates [39], requirements (i)
and (a), i.e., the isotropy of the potentials, cannot be ful-
filled. In principle, the same techniques are used to comply
with the remaining requirements, but instead of convex and
non-decreasing NNs, only convex NNs are used, as the ten-
sors themselves are inputs of the networks. The coordinate
formulations of the additional terms for zero energy and zero
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Fig. 2 Structure of the invariant-based two-potential model and predic-
tion process. The rate of the internal variables is determined iteratively
so that the internal stress τ calculated from the free energy and the
internal stress τ̂ calculated from the dissipation potential are equal

within a specified tolerance e. Note that the invariant set nIψeq =
( tr (nε), tr (nε2), tr (nε4)) as input for the ψeq network has no sub-
script i , since it only depends on nε

stress in the initial state are briefly explained using the exam-
ple of ψeq: The term ψ

eq
0 for zero energy in the initial state

is calculated as

ψ
eq
0 = ψ̃eq(ε = 0) (16)

and the term ψ
eq
σ for the stress free initial state becomes

ψ
eq
σ = ∂ψ̃eq

∂ε

∣∣∣∣
ε=0

.. ε. (17)

The other additional terms forψov and φ are calculated anal-
ogously.

3.2 Incremental predictions with the trainedmodels

Once the weights and biases of the networks for free
energy and dissipation potential have been adapted, the
constitutive model can be used to predict the constitutive
response to a prescribed strain path consisting of multiple
discrete time steps. In order to solve the evolution equation
numerically, an implicit Euler scheme is applied for the tem-
poral discretization, in which the rate of the internal variable
is approximated as n q̇ ≈ (nq− n−1q)/n�t , where the super-
script n corresponds to the n-th time step of a sequence and
n�t = nt−n−1t is the time increment. This ensures stability
of the evolution of q. In each time step, the rate of the internal
variable is adapted iteratively, such that Eq. (4) is fulfilled up
to a prescribed tolerance. That is, the resulting internal force,
which is calculated from the free energy, i.e.,τ = −∂qψ , and
the internal force calculated from the dissipation potential,
i.e., τ̂ = ∂q̇φ, are supposed to be identical within a given
tolerance. This iterative solution of Eq. (4) is done using a
Newton–Raphson scheme, as depicted in Fig. 2.

4 Trainingmethods

Since the internal variable and its rate are arguments of
the free energy and the dissipation potential, they must be
provided in the training process to render training possible.
In the following, however, it is assumed, that they are not
present in the training data set. For data obtained through
homogenization, a few approaches have been developed to
enable the determination of internal variables using autoen-
coders [54, 55]. The training data setD = (ε(t),σ(t),q(t))
then comprises sequences of stresses, strains and internal
variable(s). In real experiments, however, the determination
of internal variables is in general not possible, shrinking the
data set D = (ε(t),σ(t)) to sequences of only stresses and
strains. This section introduces three methods to address this
issue. Twomethods from the literature determine the internal
variable by integrating the evolution equation over the entire
sequence or by means of an additional auxiliary network in
the form of an FNN. In the newly developed third method,
the auxiliary network is replaced by an RNN.

4.1 Integration

The training approach denoted as integration in the following
is probably the most intuitive among the three presented and
has been applied in [37, 57]. In every training epoch, the stress
response to individual sequences is determined following the
scheme provided in Figs. 2 and 3. Starting from the initial
state 0ε = 0σ = 0q = 0, the stress 1σ for the new strain
1ε and the corresponding time step 1�t is calculated. The
obtained internal variable is then passed on to the next time
step and so forth until the last time step of the sequence is
reached. The stresses σ determined this way are compared
to the expected stresses σ̄ from the training data set using the
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Fig. 3 Schematic representation of the training process using the inte-
gration strategy. In each time step, the new material state is obtained
iteratively with the procedure given in Fig. 2. The internal variable is
passed on to every time step as starting point for the next integration

step until the last time step of the sequence is reached. Consequently,
the calculation of the stress for time step n requires the evaluation of all
time steps 1, 2, . . . , n − 1 in advance

Fig. 4 Schematic representation of the training process using an FNN
as auxiliary network for the internal variable. This FNN receives a sin-
gle input, the time nt , and outputs the six independent entries of nq. To
calculate the rate n q̇ ≈ nq−n−1q)/n�t , n−1q is obtained by evaluating

this FNN with n−1t as input. Note that each time step can be evaluated
detached from the others, which allows fast training and the creation of
minibatches within a sequence, if required

Fig. 5 Schematic representation of the training process using an RNN
as auxiliary network for the internal variable. In each time step n, this
RNN receives three inputs: the strain nε, the stress nσ and the time
increment n�t . Together with the hidden state n−1h and cell state n−1c
from the previous time step, the RNN-cell processes these data into a

new hidden state, that contains the information about the new internal
variable. This new hidden state is forwarded to an FNN, that reduces
the dimensionality to six for the six independent entries of nq. The new
hidden state and cell state are passed on to the next time step, until the
final time step of the sequence is reached

loss function

L = Lσ with Lσ = MAE(σ, σ̄)/sσ , (18)

where MAE(σ, σ̄) is the mean absolute error between pre-
dicted stressσ and expected stress σ̄. Compared to the mean
squared error, the mean absolute error performed best for the
problems in this article and is therefore used within the scope
of this work. Furthermore, sσ is the normalization factor for

the stress, that normalizes the loss to magnitude 1. The cal-
culation of sσ is explained in A.2. To adapt the weights and
biases of the networks, the loss function Eq. (18) is mini-
mized in the optimization problem

(ŵψ
, ŵφ

) = argmin
wψ∈Cψ ,wφ∈Cφ

L , (19)

123



Computational Mechanics

where the parameterswψ andwφ correspond to the weights
and biases of the two FICNNs of the free energy and the
PICNN of the dissipation potential. They are constrained by
the sets Cψ and Cφ containing restrictions for weights and
biases of these ICNNs as described in App. A. Due to the
iterative solution scheme, the evaluation of the loss function
is very expensive [37]. Hence, an optimizer with fast conver-
gence is favorable. The optimizer Sequential Least Squares
Programming (SLSQP) has shown to perform well for this
application [17, 20, 26, 72] and is therefore used in the numer-
ical examples in Sect. 5.

4.2 Auxiliary feedforward network

To avoid the challenges of the integration method, another
method has been proposed by As’ad and Farhat [39] and is
adopted with slight modifications herein [17]. This method
introduces an additional FNN, that is supposed to learn the
temporal course of the internal variable. Let q̃(t) denote this
additional FNN. It depends on only a single input, the time
t , and has six outputs corresponding to the six independent
entries of the symmetric tensor q, as shown in Fig. 4. For
the training of the networks for free energy and dissipa-
tion potential, values for the internal variable and its rate
are taken from this network, where the rate is approximated
as n q̇ ≈ (nq−n−1q)/n�t to be consistent with the prediction
process. The weights and biases of q̃ are adapted such that
the predicted temporal course of q̃(t) allows the loss function

L = Lσ + LBiot with (20)

Lσ = MAE(σ, σ̄)/sσ and LBiot = MAE(τ, τ̂)/sσ (21)

to become as small as possible. The loss function consists of
a termLσ for the accurate stress prediction and anotherLBiot

term to comply with the Biot relation Eq. (4) [17]. Thus, the
reformulated optimization problem reads

(ŵψ
, ŵφ

, ŵq
) = argmin

wψ∈Cψ ,wφ∈Cφ,wq
(L) , (22)

where the parameter set wq contains weights and biases of
the auxiliary FNN as specified in Sec. A.3. This leads to
a reasonable representation of the internal variable without
explicitly specifying its value in advance or having to inte-
grate every sequence in every iteration of training. However,
we have found that starting the optimization with randomly
initialized weights for q̃makes the problem too complex for
common optimizers and does not lead to the desired results.
In order to facilitate the training, the auxiliary network is
pre-trained using the strain ε(t) as an initial guess for q̃(t).
Once the pre-training and subsequent actual training is fin-
ished, the auxiliary network is no longer necessary and the

prediction process can be carried out using only free energy
and dissipation potential.

Remark 1 With this architecture, the temporal course of the
internal variable for a single sequence can be modeled via
a single FNN. However, if data from several sequences are
available in the data set, another FNN must be added for
each additional sequence, making the optimization problem
increasingly difficult.

4.3 Auxiliary recurrent network

RNNs have proven to be particularly suitable for describ-
ing the behavior of path-dependent systems [10, 12, 14, 51].
Therefore, the auxiliary FNN is now to be replaced by an
RNN. Using an RNN cell to generate the internal variable
allows to use multiple sequences for training without requir-
ing a new auxiliary network for every training sequence. We
use an LSTM cell [18] as RNN cell. This LSTM cell has two
different state vectors, that allow the cell to store information
from past time steps. These state vectors are the hidden state
h and the cell state c, where h is the output of the cell for
every time step. The training with the auxiliary RNN works
as shown in Fig. 5: In each time step, the RNN cell receives
the current strain nε, the associated stress nσ from the data
set as well as the time step n�t . An FNN reduces the output
of the RNN cell, the hidden state nh, to 6 entries correspond-
ing to the 6 independent entries of nq. The rate of the internal
variable n q̇ is calculated using n�t and n−1q from the pre-
vious time step. Through differentiation of ψ(nε, nq) and
φ(n q̇, nε, nq), the stress nσ and the internal forces nτ and
nτ̂ are obtained. The status of the LSTM cell, i.e., nh and nc,
is passed on to the next time step, to obtain the next material
state and so on. Using the calculated stresses and internal
forces, the loss function

L = Lσ + LBiot with (23)

Lσ = MAE(σ, σ̄) and LBiot = MAE(τ, τ̂) (24)

is evaluated. This loss function again contains a term for the
error in the stress prediction and a term for compliance with
the Biot equation. The optimization problem thus reads

(ŵψ
, ŵφ

, ŵq
) = argmin

wψ∈Cψ ,wφ∈Cφ,wq
(L) , (25)

where the weights and biases of the auxiliary LSTM and the
connected FNNare summarized in the parameter setwq . The
concrete architecture of the LSTM and FNN can be found in
Sec. A.3. Finally, after training, the RNN and the attached
FNNcanbe discarded, leavingψ andφ as constitutivemodel.
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Fig. 6 Rheological model of the viscoelastic reference solid with a
single internal variable q = εin

5 Numerical examples

In the following, the presented framework is examined com-
prehensively. First, the reference material is introduced and
several data sets are generated using this reference model.
These data sets differ in terms of the material states they
contain, for example multiaxial stress state or uniaxial stress
states, and the presence of noise in the stress data. The data
sets are then used as the basis for calibrating themodel in dif-
ferent scenarios. An overview of the conducted experiments
is given in Table 1.

5.1 Data base

5.1.1 Reference material

To generate the training data, a referencemodel consisting
of a spring and a parallel Maxwell element as depicted in
Fig. 6 is used. The free energy and the dissipation potential
for such a model are defined as

ψ(ε, εin) = 1

2
ε .

. C
eq .

. ε + 1

2
εel .

. C
ov .

. εel and (26)

φ(ε̇in, εin, ε) = 1

2
ε̇in .

. V(εin, ε)
.
. ε̇in, (27)

where ε̇in is defined to be the internal variable, εel = ε−εin,

C
eq = 3K eq

I
K + 2Geq

I
D and C

ov = 3K ov
I
K + 2Gov

I
D

(28)

are the equilibrium and non-equilibrium stiffness tensors,
respectively, and V(εin, ε) is a positive semidefinite fourth
order tensor describing the viscous properties of thematerial.
This tensor is not constant, but depends on the overstress
σov = C

ov .. (ε − εin) via

V = (1 − o)V0 exp(−‖1
a

σov‖b) + o with (29)

V0 = 3ηKIK + 2ηDID. (30)

This ansatz is motivated from [73]. The specific material
parameters are given in Table 2.

5.1.2 Generation of the data base

The data base D = { ε(t),σ(t) } contains information
about the temporal course of strain and stress for a single
or multiple sequences. The generation of such sequences is
explained in the subsequent paragraphs, where a distinction
is made between training data with multi-, bi- and uniaxial
stress states and test data to evaluate the prediction quality of
trained models. To indicate the different data sets, a super-
script and a subscript is appended to the symbol for the data
set that describe the type of data and the number of sequences
and timesteps. For example, the data set Dmultiax

1×200 contains
ideal multiaxial data in a single sequence of 200 timesteps.
Multiaxial training data Multiaxial training data sequences
are obtained by prescribing a randomized strain path ε(t)
and evaluating the respective stress response of the reference
constitutive model from Sect. 5.1.1. A possible randomized
strain path ε(t) is shown in Fig. 7. This strain path is created
with cubic splines that connect a set of randomly sampled
knots [17, 39]. Starting from εknoti j = 0 and tknot = 0, a

time increment �tknot is sampled from a uniform distribu-
tion between�tknotmin = 0.2s and�tknotmax = 1s. The increments
of the six independent coordinates of the strain tensor are
sampled from a normal distribution with standard deviation
sknot�ε = 0.5s around mean 0. If the resulting absolute value
of the strain |εknoti j + �εknoti j | exceeds 2s, the strain incre-

ment �εknot is sampled again. Once this strain path ε(t)
is generated, it is applied to the reference material with ran-
dom time increments�t froma uniformdistribution between
�tmin = 0.03s and �tmax = 0.07s to obtain the correspond-
ing stresses σ(t). The symbol Dmultiax

1×200 indicates such a data
set with ideal multiaxial data.
Multiaxial training data with noise To investigate the perfor-
mance of the training methods with non-ideal data, another
training data set with noisy stress data is generated. This data
set reuses the ideal multiaxial training data and modifies the
stress data therein. To receive the noisy stress data, Gaussian
noise is added to the ideal stress, such that σ̃i j = σi j +�σi j ,
where �σi j is sampled from a normal distribution with stan-
dard deviation s�σ = 1.5MPa and mean 0. The ideal and
noisy data are shown in Fig. 7. To indicate the noise in the
stress data, the symbol D̃multiax

1×200 for this data set has an addi-
tional tilde.
Plane strain training data To generate the plane strain data
set, the strain paths that were used to generate the multiaxial
data set are reused. These strain paths are modified so that
the corresponding coordinates are set to zero, i.e. ε13(t) =
ε23(t) = ε33(t) = 0. The stress response to these strain paths
is calculated and the data set is assembled. Plane strain data
sets are denoted as Dplane

1×200, for example.
Biaxial training data In order to analyze the applicability of
the training methods with potential experimental data, a data
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Table 1 Overview about the numerical examples in this section

Training data set Methods Figure
Name Sequences Timesteps per sequence Noise Material states Driven by q given Model formulation Training method

Dmultiax
5×200 5 200 No Multiaxial Strain Yes Invar./Coord – 8

D
plane
5×200 5 200 No Plane strain Strain Yes Invar./Coord – 8

Dmultiax
1×200 1 200 No Multiaxial Strain No Invariants Int./FNN/RNN 9/11

D̃multiax
1×200 1 200 Yes Multiaxial Strain No Invariants Int./FNN/RNN 9/10

Dmultiax
100×100 100 100 No Multiaxial Strain No Invariants RNN 12

Dbiax
1×200 1 200 No Biaxial Stress No Invariants RNN 13

Duniax
1×200 1 200 No Uniaxial Stress No Invariants RNN 13

Table 2 Material parameters for
the viscoelastic reference
material that is used to generate
the training data

( K eq, Geq ) in MPa ( K ov,Gov ) in MPa ( ηK, ηD ) in MPa. S−1 ( a, b, o ) in MPa, -, - )

( 500, 300 ) ( 1000, 700 ) ( 400, 200 ) ( 10, 2, 0.1 )

Fig. 7 A strain path ε(t) from
the training data set with
respective ideal stress response
σ(t) for the data sets Dmultiax

and noisy data for the data set
D̃multiax. The curve ε(t) is
generated using cubic splines
connecting a set of randomly
sampled points, indicated as red
plus signs

set with data from a simulated stress driven biaxial tension
test is generated. In this biaxial tension test, the temporal
course of the stress coordinates σ11(t) 
= σ22(t) is pre-
scribed and in general non-zero, while all other coordinates
are σi j (t) = 0. The path of the non-zero stress coordinates is
generated randomly in the same way as for the strain compo-
nents in the multiaxial training data set. That is, cubic splines
are used that connect randomly sampled knots with positions
(t, σ knot

i j ). These random knots are generated with the time

increments from a uniform distribution with �tknotmin = 0.2s
and�tknotmax = 1s, a standard deviation of the stress increments
of s�σ = 12.5MPa and a maximum absolute stress value for
the knots of 25MPa. The stress path described by this cubic
spline is evaluated with time increments �t from a uniform
distribution within �tmin = 0.03s and �tmax = 0.07s and
the corresponding strain ε(t) is determined iteratively, such
that the strain ε(t) results in the prescribed stress path σ(t).
A biaxial data set is indicated with Dbiax

1×200.
Uniaxial training data To simulate an uniaxial tension test,
the course of the stress coordinate σ11(t) is prescribed and

non-zero, while all other coordinates are σi j (t) = 0. The
same technique as for the biaxial data set is used, i.e.,
cubic splines are generated for σ11(t). Here, the parameters
�tknotmin = 0.2s and �tknotmax = 1s for the limits of �tknot, the
standard deviation s�σ = 25MPa and the maximum abso-
lute value 50MPa for the stress are used. Again, the spline is
scannedwith�tmin = 0.03s and�tmax = 0.07s to obtain the
strain ε(t). Uniaxial training data is denoted with Duniax

1×200.
Test data Following the training, the models are tested with
an unseen path, that is not part of the training data set. For this
purpose, a strain path ε(t) is generated using the method for
the generation of multiaxial training data. The corresponding
stress response of the reference material is calculated. That
is, the trained models are tested on an arbitrary multiaxial
test path where all stress and strain coordinates are generally
non-zero, i.e., εi j (t) 
= 0 and σi j (t) 
= 0. This test sequence
is used as a benchmark for all trained models, regardless of
the data set used.
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5.2 Training withmultiaxial data

The presented NN-based constitutive model and training
methods are now to be tested in different scenarios. In the
first part of the subsection, it is exploited that the used data
is generated synthetically and it is assumed that the internal
variable is given in the data set to compare the invariant for-
mulation and the coordinate formulation of the potentials in
a simple test case, i.e., D = (ε(t),σ(t),q(t)) additionally
contains information about the internal variable. Afterwards,
the internal variable is removed from the data set and the three
training methods are compared for the invariant formulation,
using both ideal and noisy stress data.

5.2.1 Comparison of invariant vs. coordinate formulation

Tocompare themodel formulationusing invariants and the
formulation using tensor coordinates as inputs of the poten-
tials, a data set Dmultiax

5×200 with 5 sequences à 200 time steps

and the corresponding plane strain data set Dplane
5×200 are used.

These data sets are sufficiently large to show the full potential
of both models and contain the internal variable. The train-
ing is carried out using the Adam optimizer with 20, 000
epochs, an initial learning rate of 0.01 and an exponential
learning rate decay such that the learning rate is multiplied
with 0.1 every 4, 000 epochs. To reduce the effect of the ran-
dom weights initialization, both models are trained 25 times
for each data set. The models with the lowest final value of
the loss function are then tested on the unseen test strain path.
The results are shown as scatter diagrams in Fig. 8a.

For the coordinate formulation, it can be seen that the
model is able to make fairly accurate predictions for the test
path based on data setDmultiax

5×200 . Using data setDplane
5×200, how-

ever, the model fails to extrapolate from the plane strain data
to the full strain states. To illustrate this behavior, Fig. 8b
shows the actual course of predicted stresses σ11, σ12 and
σ13. It becomes evident that the large deviations from the
expected values mainly concern the out-of-plane coordinates
for which the training data set lacks sufficient data.

However, looking at the invariant formulation, it can be
seen that it produces very accurate results regardless of the
used data set, even exceeding the accuracy of the coordi-
nate formulation with data set Duniax

5×200. Thus, the invariant
formulation enables extrapolation from plane strain data to
full strain states without notable loss of accuracy. Such a
well-developed extrapolation behavior also occurs with elas-
tic NN models based on invariants [20, 26]. This benefit
arises from the choice of a specific set of invariants that pro-
vides additional information about the anisotropy class of
the underlying material law to the model. In fact, the change
from plane strain to full strain states may not correspond to
an extrapolation in the invariant space at all [28].

Table 3 Calculation time comparison of different training methods for
the model for one epoch

Integration FNN RNN RNN

Data set Dmultiax
1×200 Dmultiax

1×200 Dmultiax
1×200 Dmultiax

100×100

Time per epoch 35.0s 0.021s 0.059s 0.112s

Moreover, the invariant formulation requires significantly
less training data. The decision to use 5 sequences of 200 time
stepswasmadedue to the larger amount of data needed for the
coordinate formulation, whereas the invariant formulation
can operate on a single sequence of 200 steps with similar
prediction accuracy.

For this reason, only the invariant formulation is used
in the following studies and the data set is reduced to one
sequence of length 200.

5.2.2 Comparison of the three training methods

The internal variable is now removed from the data set and
has to be generated during the training process. To do so, the
methods described in Sect. 4 are applied, where the data sets
Dmultiax

1×200 and its noisy equivalent D̃multiax
1×200 are used to com-

pare the methods. Again, all models are trained 25 times and
the weigths of the training run with the lowest final value of
the loss function are chosen. The result graphs show scat-
ter diagrams of the stress predictions for the unseen test
path (Fig. 9), the stress predictions over time for the data
set D̃multiax

1×200 (Fig. 10) and the learned course of the internal
variable for the training sequence as used in the last epoch of
training (Fig. 11). The history of the losses over iterations for
the different methods are shown in Appendix C, exemplarily
on the example of the data set Dmultiax

1×200 .
Integration

The integration training method yields highly accurate
results for the ideal data set and outperforms the other meth-
ods in terms of accuracy. However, it should be noted that
this method uses the SLSQP optimizer for computational
reasons, which has been shown to provide better results for
smaller networks than Adam [72]. Since no additional net-
work is required for this method, SLSQP can be used in a
computationally efficient manner with fewer function evalu-
ations compared toAdam.Nevertheless, the evaluation of the
loss function consumes the majority of computational time
for training, since an iterative solution is required at each time
step, regardless of the optimizer, see Fig. 3. Adding another
sequence to the data set or doubling its length roughly dou-
bles the cost for the evaluation of the loss function, making
it more and more inefficient. However, very good results can
be achieved with both the ideal training data as well as the
noisy training data set as Figs. 9 and 10 show.

123



Computational Mechanics

Fig. 8 Comparison of the formulation with invariants and coordinates
as inputs to the networks: a shows scatter diagrams for the prediction
results for both formulations using the data sets Dmultiax

5×200 (full strain

states) and D
plane
5×200 (plane strain states) with given internal variable. b

shows the stress response σ(t) for the coordinate formulation with the
data set Dplane

5×200 to emphasize the lacking extrapolation capability for
the out-of-plane coordinates on the example of σ13

Fig. 9 Comparison of the
training methods with scatter
diagrams for the results of the
stress prediction for the unseen
test path. The models were
trained with the data sets
Dmultiax
1×200 and D̃multiax

1×200 ,
respectively. For the noisy data,
the reference stress refers to the
underlying ground truth, i.e., the
noiseless data
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Fig. 10 Stress responses σ(t) of the trained models for the unseen test path ε(t) on the example of the coordinates σ11 and σ12. The models were
trained with the data set D̃multiax

1×200 . The grey marks indicate noisy stress data to illustrate the amount of noise in the training data set

Fig. 11 Predicted temporal course of the internal variable q(t) of the training sequence for the three training methods using the example of the
coordinates q11 and q12. The models were trained with the data set Dmultiax

1×200

Auxiliary feedforward network
Although this training method shows the least accurate

predictions for the training with ideal data, the results are
still sufficient for both ideal as well as noisy data. In addi-
tion to that, the computational time per iteration is very low.
However, before the actual training starts, the auxiliary FNN
must be pre-trained to a reasonable initial guess for q(t) to
have good starting values for the weights and biases. Using
randomly initialized parameters at the beginning of the actual
training did not yield useful results in the numerical exper-
iments shown here. We used q(t) = ε(t) as initial guess to
pre-train the FNN. Another major drawback of this method
is the increasing demand of trainable parameters for a longer
sequence or additional sequences in the training data set.
Since a single FNN only predicts the temporal course of one
sequence, every new sequence requires a new FNN, mak-
ing the optimization more and more complex. For a single

sequence of moderate length, however, the method can yield
useful results, see Figs. 9 and 10.
Auxiliary recurrent network

The RNN as auxiliary network for the generation of the
internal variable also provides precise results with both data
sets. Compared to the integration method, the training is very
fast and in contrast to the FNN it does not need a pre-training
and the final value of the loss function is smaller, see Fig. 18
in the appendix.

Moreover, using a training data set with several sequences
instead of only one sequence does not increase the number
of trainable parameters, as the RNN implicitly learns how
the internal variable evolves instead of memorizing its tem-
poral course. Thus, we consider a test case which is more
complex compared to the works [37, 39, 57], where only one
path has been used for training. To do so, several sequences
with multiaxial states are added to the training data set to
obtain Dmultiax

100×100 with 100 sequences. The prediction results
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Fig. 12 Scatter diagram for the prediction results for the unseen test
path using the RNN training method with the data set Dmultiax

100×100, i.e.,
with 100 sequences

Table 4 Advantages and disadvantages of the different training meth-
ods

Integration FNN RNN

Good results for ideal data � � �
Good results for noisy data � � �
Fast training ✗ � �
No pre-training � ✗ �
Data set with many sequences (�) ✗ �

for the architecture trained with the set Dmultiax
100×100 are shown

in Fig. 12. As can be seen, the stress response for the unseen
strain path is even more precise, while the required time per
training iteration remains short. Although the data set con-
tains 50-times the number of time steps, the time per iteration
increases from 0.059s to only 0.112s. This shows that the
RNN method allows to use multiple sequences efficiently
without increasing amount of trainable parameters andwithin
reasonable training time.
Summary

Each of the analyzed techniques exhibits certain advan-
tages compared to the others. In order to provide a com-
prehensive summary of this comparison, the advantages and
disadvantages of each approach are listed in Table 4. The
integration training is very accurate. However, the biggest
disadvantage of this method is the training time, which
also affects the applicability for large data sets with many
sequences, such that this combination is not practically man-
ageable due to cost reasons. Using an FNN as an auxiliary
network is extremely fast, but requires a pre-training of the
FNN. It is also limited to one or very few sequences. In con-
trast, the RNN is fast, does not require pre-training, and can
be applied to large data sets with multiple sequences without
further adjustments. This feature is particularly relevant for
real-world applications with experimental or homogeniza-
tion data.

5.3 Training with biaxial data

So far, data sets were used that are difficult to obtain
experimentally. In the following, data sets will be used for
which experimental approaches are available. Themodels are
trained with the RNN method. First, the data set Dbiax

1×200 is
used, which contains data from a virtual biaxial test in a sin-
gle sequence with 200 time steps with ideal stress data. The
model is again calibrated 25 times with the RNNmethod and
the model with the lowest final loss value is kept and tested
with themultiaxial test path. The results of the predictions for
this test path are shown in Fig. 13. These show that the model
is able to predict arbitrary multiaxial stress states despite the
training data set being limited to biaxial data. The slight loss
of accuracy compared to the multiaxial data set is due to the
lacking coverage of the full invariant range in the training.
However, with a suitable choice of load path for the train-
ing data, this problem can be minimized and the model can
also be trained and applied with biaxial data using a suitable
training method—in this case the RNN.

5.4 Training with uniaxial data

The previous paragraph shows that good prediction results
can also be achieved with biaxial stress training data.Wewill
proceed by assuming that only data from uniaxial stress test-
ing is available. For this purpose, the data setDuniax

1×200 is used,
which contains synthetic data from a uniaxial test. This data
set again contains 1 sequence with 200 time steps and ideal
stress data. Compared to the data sets used so far, however,
the maximum achievable stress and the rate of the stress are
increased for this data set as described in Sect. 5.1.2 in order
to compensate the unideal coverage of the invariant space.
The model is calibrated 25 times using the RNN method.
The prediction results of the best model are shown in the
right plot in Fig. 13. This shows that the model can predict
arbitrary multiaxial states without suffering from substantial
limitations in accuracy, despite being restricted to uniaxial
training data. However, it can also be seen that there are sys-
tematic deviations from the reference for large σi j , which
indicate that the model extrapolates strongly in the invariant
space within this region.3 Nevertheless, it can be stated that
by restricting the anisotropy class and incorporating basic
physical principles, both the number of data points and the
complexity of stress states in the training data can be greatly
reduced, which allows to use experimental methods to gen-
erate training data for the presented model.

3 With the uniaxial data set, only a small area in the invariant space can
be scanned. In the case of isotropic elasticity, it is even only a single
path, since ε11 and the transverse strains ε22 = ε33 can be uniquely
assigned to each uniaxial stress state [28, 42].
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Fig. 13 Comparison of stress
prediction quality for a given
multiaxial test strain path using
different training data sets and
the RNN training method. All
data sets consist of 1 sequence
of 200 time steps and contain
stress states with different
complexity: (1) complete
multiaxial states, strain driven
(see Fig. 7) (2) biaxial stress
states with different magnitude
in the two non-zero directions,
stress driven, and (3) uniaxial
stress states, stress driven

6 Conclusions

This paper proposes a fast and widely applicable method to
calibrate inelastic constitutive models without prior knowl-
edge of the internal variables. This method is compared
comprehensively with two existing methods. For this com-
parison, we propose and use a physics-augmented NN-based
model for viscoelastic materials based on the concept of
GSMs.

In the beginning of this work, the concept of GSMs is
briefly described. Subsequently, the NN-based model is pre-
sented, which consists of two potentials: the free energy and
the dissipation potential. These potentials are constrained in
a physically meaningful way so that thermodynamic consis-
tency is ensured in advance. The potentials can be expressed
using either tensor coordinates or invariants of the tensor
arguments. Following the presentation of the NN-based con-
stitutive model, three training methods are introduced. These
comprise a method that integrates entire sequences and two
methods that use an additionalNN, either an FNNor anRNN,
to provide the internal variable. Based on these techniques,
numerical experiments are conducted using synthetically
generated data from classical constitutive models. First, it
is assumed that the internal variable is present in the multi-
axial and plane strain training data sets. Using these data sets,
the invariant formulation is compared to the coordinate for-
mulation. It is shown, that the invariant formulation requires
less data, yields more accurate results and exhibits far bet-
ter extrapolation capabilities when predicting stresses for
arbitrary strain paths with plane strain training data. Hence-
forth, only the invariant formulation is used in the subsequent
studies. In order to compare the three training methods, the
internal variable is erased from the multiaxial data set and
the performance of themethods is examined using only stress
and strain data. It shows, that all threemethods are able to pro-
vide models that yield accurate predictions for unseen data,
even for a small data set with noisy stress data. However, only
the proposed RNN model allows to achieve fast and accu-
rate results with large data sets comprising many sequences
and is therefore the method with the broadest applicability.

Finally, the applicability of the framework with an invariant-
based NN model and the RNN training method for biaxial
and uniaxial stress training data is examined.We show, that a
complete 3D model can be calibrated, that is capable of pre-
dicting arbitrary multiaxial stress states, although only bi- or
uniaxial stress data is used for training. Thus, this paper pro-
poses a flexible constitutive model for viscoelastic materials
and an efficient method for calibrating such models without
prior knowledge of the internal variable. The presented train-
ing method exceeds the application possibilities of existing
approaches and can form the basis for future extensions in
the context of NN-based data driven constitutive modeling.

However, this study also has limitations. Specifically, the
presented algorithms assume that constitutive behavior can
be modeled with a single internal variable expressed by a
symmetric second-order tensor. While this assumption is
valid for the synthetically generated data used herein, it
may not be sufficient to generalize for more complex behav-
ior. In this case, the number of internal variables can be
increased stepwise until the desired accuracy is achieved.
Therefore, possible future studies include the implemen-
tation and testing of such algorithms, the application to
elastoplastic materials [27, 32], extension to viscoelasticity
at finite strains [39] as well as the use of experimental [38]
or homogenization data [26].

A neural networks

This section describes the concept of input convex feed-
forward neural networks, the normalization of inputs and
outputs and gives an overview about the chosen hyperparam-
eters of the networks, that are used in the numerical examples.
In order to provide a compact explanation, some symbols are
introduced: The network function is denoted as N (i) and
depends on an input vector i. The output ul of the layer l is
calculated using the activation functionAl , the biases bl and
the weights W l connecting this layer to the previous layer
l − 1. The following concepts are mainly based on Amos,
Xu, and Kolter [49], with extensions to functions that are not
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only convex with respect to the inputs i, but also with respect
to some x in a network N (i(x)) by making the network
non-decreasing in i [20, 50].

A.1 Input convex neural networks

A.1.1 Fully input convex neural networks

A fully input convex neural network (FICNN) is an FNN,
that is convex in all of its arguments. There are several
ways to construct such an FNN, but not all variants are
equivalent. Consider for example a normal FNN with non-
negative weights across all layers as well as convex and
non-decreasing activation functions. Such an FNN is con-
vex, but is also extremely restrictive. Therefore, the more
flexible approach of Amos, Xu, and Kolter [49], shown in
Fig. 14, is adopted. It is characterized by two different sets
of weights: the weights inWu

l connect the layer l−1with the
layer l and the weights W i

l connect the input i with the layer
l. The outputs of the layers l ∈ (1, . . . , L) is now calculated
as

u1 = A1

(
W i

1i + b1
)

for layer l = 1 and (31)

ul = Al

(
Wu

l ul−1 + W i
l i + bl

)
∀l ∈ (2, . . . , L). (32)

The network N (i) = uL is convex if the following three
conditions are fulfilled:

(i) all weights in Wu
l are non-negative,

(ii) all Al are convex, and
(iii) all Al are non-decreasing.

This approach offers greater flexibility since the weights
W i

l remain unconstrained as shown in Fig. 14a. A common
choice for a convex and non-decreasing activation function
is the softplus activation function, which is defined by

SP : R → R>0, x 
→ SP(x) = ln(1 + exp x). (33)

So far, the network has been constructed in such a way that
it is convex with respect to its direct inputs. However, this
must not always be sufficient. For example, in the context
of this work, networks are to be implemented, that are con-
vex with respect to a tensor, although the network inputs are
invariants. The arbitrariness of the W i

l follows from the fact
that the second derivatives of W i

l i with respect to i vanish
and consequently do not have any influence on the convexity
in i of the network functionN (i). This changes ifN is not
supposed to be convex in its inputs, but in another variable x ,
which the inputs depend on. That is,N (i(x)) is supposed to
be convex in x . Then, the second derivatives of W i

l i(x) with
respect to x do not vanish if i(x) is a nonlinear function of x .

Fig. 14 Two types of FICNN architectures: the architecture in (a) is
convex with respect to all entries in the input vector i with unrestricted
weights in the passthrough layers. The architecture in (b) is constructed,
such that it is convex and non-decreasing in i(x), making it convex in
x . This affects the weights in passthrough layers, which may no longer
take negative values. This significantly limits the effectiveness of the
passthrough layers, but enforces convexity in x . The illustrations are
based on Klein et al. [50]

Consequently, another restriction on the weights arises, see
Fig. 14b: besides the conditions (i)–(iii), it must also hold
that

(iv) all entries in i(x) are convex functions of x , and
(v) all weights in W i

l are non-negative [29].

A.1.2 Partially input convex neural networks

A partially input convex neural network (PICNN) is, in
contrast to an FICNN, only convex in some of its inputs. Let
N (i∪, i�) denote the network, that is convex in i∪, but not
necessarily convex in i�. The architecture of such a network
is shown in Fig. 15. The figure shows the two different paths
corresponding to the convex (bottom) and non-convex part
(top). The non-convex part with the layer outputs vl is a reg-
ular FNN, i.e., each layer is connected to only the previous
layer of the non-convex path. A layer in the convex path with
layer outputs ul , however, depends on not only the previous
layer of the convex path, but also on the output of previ-
ous layer in the non-convex path and the convex inputs. The
outputs of the layers in the non-convex path are defined as

v1 = A �
1

(
Wvv

1 i� + bvv1
)

for the first layer l = 1 and

vl = A �
l

(
Wvv

l vl−1 + bvvl
) ∀l ∈ (2, . . . , L − 1) (34)

and for the convex path as

u1 = A ∪
1

(
Wui∪

1

[
i∪ � A i∪v

1 (W̃
i∪v
1 i� + b̃

i∪v
1 )

]
+

Wuv
1 i� + bu1

)
for the first layer l = 1 and

(35)
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Fig. 15 The PICNN architecture is both convex and non-decreasing in
i∪, but allows arbitrary functional relations in i�. For this purpose, the
PICNN is divided into two paths, one for the convex part (ul ) and one
for the non-convex part (vl ). The non-convex path vl is independent

of the convex path ul , while the layers in the convex path take into
account both the output of the non-convex path as well as multiplica-
tions between vl , ul and the convex input i∪. The final output is the last
layer in the convex path. The illustration is based on Klein et al. [50]

ul = A ∪
l

(
Wuu

l

[
ul−1 � A uv

l (W̃
vv

l vl−1 + b̃
uv
l )

]
+

Wui∪
l

[
i∪ � A i∪v

l (W̃
i∪v
l vl−1 + b̃

i∪v
l )

]
+

Wuv
l vl−1 + bul

)
∀l ∈ (2, . . . , L) . (36)

The final output of the network is the last layer of the convex
path, i.e.,N (i∪, i�) = uL . Instead of two sets of weights, a
PICNN comprises six different sets of weights (Wvv

l , Wuu
l ,

Wui∪
l , Wuv

l , W̃
vv

l , W̃
i∪v
l ) to take into account possible prod-

ucts between the twopaths and the convex input. The network
is convex in i∪ if the following four conditions are fulfilled:

(i) all weights in Wuu
l are non-negative,

(ii) all activations A ∪
l are convex,

(iii) all activations A ∪
l are non-decreasing, and

(iv) all activations A uv
l map to non-negative values.

All other weights may as well take negative values and the
activations A �

l and A i∪v
l can be chosen arbitrarily. A valid

choice for A ∪
l is, like for the FICNN, the softplus function

SP , which additionally is non-negative and thus can be
used as A uv

l as well. The mentioned conditions yield a net-
workN (i∪, i�), that is convex in all entries of i∪. As already
discussed for the FICNN, this is not always sufficient. If a
networkN (i∪(x), i�) is supposed to be convex in x , it is not
the first function acting on x , which leads to further restric-
tions on the weights and activations.N (i∪(x), i�) is convex
in x , if in addition to (i)–(iv) it holds:

(v) all entries of i∪ are convex functions of x ,
(vi) all weights in Wui∪

l are non-negative, and

(vii) all A i∪v
l map to non-negative values.

These additional restrictions are only necessary if the
entries of i∪ are non-linear function in x , i.e., the second
derivatives do not vanish. Otherwise, the standard architec-
ture is also valid.

A.2 Normalization

The training process of neural networks is typically more
stable and efficient if the inputs and outputs of the network
are values of magnitude 1. In particular, since the free energy
and the dissipation potential take on large numerical values
in the range> 106, normalization is essential for a successful
training. Normalization of a known quantity (◦) to the range
(−1, 1) � ˜(◦) can be carried out with

˜(◦) = (◦) − m(◦)

s(◦)

with (37)

s(◦) = 1

2
((◦)max − (◦)min) and (38)

m(◦) = 1

2
((◦)max + (◦)min) , (39)

where ˜(◦) represents the normalized quantity and (◦)max and
(◦)min are themaximumandminimumvalue of (◦) across the
whole training data set. For the problem described here, the
inputs ε,q, q̇, t and�t or the respective invariants Iψeq

, Iψov

and Iφ have to be normalized, as well as the outputs ψeq,
ψov and φ. The difficulty for the proposed model arises from
the fact that neither q and q̇ as inputs nor ψeq, ψov or φ as
outputs are known before the training, but only ε(t), σ(t)
and t are known in advance. For this reason, the order of
magnitude of the expected values for the unknown variables
is estimated based on the available variables. Therefore, the
normalization parameters s andm are determined on the basis
of the following assumptions: the internal variable and the
variable p = ε − q are normalized with the values of ε, i.e.,

123



Computational Mechanics

sq = sp = sε, while the rate q̇ is normalized with ε̇. The
normalization parameters for the potentials are defined to be
sψeq = sψov = mψeq = mψov = sε · sσ, where the choice
of the ms exploits the fact that ψeq, ψov, φ ≥ 0. Using these
normalization parameters, the network itself maps only from
values of magnitudes around 1 to values of magnitude 1,
which enables an efficient training.Note, that due to the linear
nature of the transformation Eq. (37), this type of normaliza-
tion does not effect the convexity properties of the resulting
network function.

A.3 Architecture details

A.3.1 Potentials

The free energy and the dissipationpotential are implemented
as twoFICNNs and aPICNN.The details about the size of the
networks, i.e., number of hidden layers, number of neurons
or used activation functions can be found in Table 5.

A.3.2 Auxiliary networks

Integration No auxiliary network is necessary for this train-
ing method.
FNN The auxiliary network for the internal variable is an
ordinary FNNwith a single input (the time t), 2 hidden layers
with 50 neurons each, tanh activations in the hidden layers
and 6 output neurons with linear activation.
RNN The auxiliary network comprises an RNN cell and a
subsequent FNN. The RNN cell is an LSTM cell with 13
inputs (6 for the strain tensor ε, 6 for the stress tensor σ

and one for the time increment �t), 50 entries in the hidden
state and tanh activations. The FNN takes the hidden state
as input, has no hidden layers, i.e., it consists of only the
input and output layer, and 6 has output neurons with linear
activations.

B Convexity of the invariant basis

To enforce convexity of a network with respect to a sym-
metric second order tensor S ∈ Sym2, the invariant basis
I = ( tr S, tr S2, tr S4 ) is used throughout thiswork. Tomoti-
vate this choice, the convexity of

(i) f (S) = tr S,
(ii) f (S) = tr S2,
(iii) f (S) = tr S3 and
(iv) f (S) = tr S4

is examined. Two equivalent definitions of convexity are used
here. A function f (S) is convex, if

f (A + λ [B − A]) ≤ f (A)+λ [ f (B) − f (A)]

∀A,B ∈ Sym2, ∀λ ∈ [0, 1] .

(40)

or, under the assumption, that f is twice continuously differ-
entiable,

A ..
∂2 f

∂S∂S
.. A ≥ 0 ∀A ∈ Sym2. (41)

Note that for twice differentiable f , Eq. (41) follows from
Eq. (40) and vice versa.

(i) From Eq. (40) follows directly

tr(A + λ [B − A]) = tr(A) + λ [tr(B) − tr(A)] . (42)

As a linear function, the invariant tr(S) is thus (weakly)
convex.

(ii) Applying Eq. (40) to f (S) = tr S2 yields

tr
(
(A + λ [B − A])2

) = tr
(
A2 + λA · [B − A]+

λ [B − A] · A+
λ2

[
B2 − A · B − B · A + A2]) .

(43)

With tr(A ·B) = tr(B ·A), this expression simplifies to

tr(A2) + 2λ tr(A · B − A2)+
λ2 tr(B − 2A · B + A2) ≤ tr(A2)+

λ
[
tr(B2) − tr(A2)

]

λ2 tr(B2 − 2A · B + A2) ≤ λ tr(B2 − 2A · B + A2)

λ2 tr((B − A)2) ≤ λ tr((B − A)2)

λ ≤ 1 . (44)

(iii) For f (S) = tr S3, the tensors A = 0 and B = −1 are
considered. With Eq. (40) it follows

tr
(
(0 + λ [−1 − 0])3

) = −3λ3 ≤ tr(03)+
λ

[
tr((−1)3) − tr(03)

]

−3λ3 ≤ −3λ

λ3 ≥ λ, (45)

which is a contradiction for λ ∈ [0, 1]. The invariant
tr S3 is thus not convex in S.

(iv) To show the convexity of f (S) = tr S4, Eq. (41) is used.
Evaluating Eq. (41) and introducing the abbreviation
Aik Sk j = ri j yields
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Table 5 Hyperparameters, that were used for the NNs of the potentials

Network ψ̃eq ψ̃eq ψ̃ov ψ̃ov φ̃ φ̃

Input type Invariants Coordinates Invariants Coordinates Invariants Coordinates

Architecture FICNN FICNN FICNN FICNN PICNN PICNN

Inputs (convex path) 3 6 3 6 3 6

Inputs (non-convex path) – – – – 3 6

Hidden layers 1 1 1 1 1 1

Neurons in hidden layer (convex path) 10 20 10 20 10 20

Neurons in hidden layer (non-convex path) – – – – 10 20

Outputs 1 1 1 1 1 1

Activation (convex path) SP SP SP SP – –

Activation (non-convex path) – – – – tanh tanh

Fig. 16 Value of the loss function over iterations for the integration
training method. The model was trained 25 times using the optimizer
SLSQP, the best attempt is highlighted as thick blue curve

∂ f

∂Si j∂Skl
Ai j Akl = 4 [2rmnrmn + rmnrnm] . (46)

Decomposing r into the symmetric part si j = s ji and
antisymmetric part ai j = −a ji , such that rmn = smn +
amn and using smnamn = 0 finally leads to

∂ f

∂Si j∂Skl
Ai j Akl = 4 [3smnsmn + aknakn] ≥ 0. (47)

Consequently, I = ( tr S, tr S2, tr S4 ) forms a complete and
convex set of invariants.

C Loss over iterations

In 5.2.2, the three presented training methods are compared.
Therefor, the data sets Dmultiax

1×200 and D̃multiax
1×200 are used for

training. The value of the respective loss functions for each
method over the number of training iterations using the data
set with ideal stress data Dmultiax

1×200 is shown in this section.
Recall, that every training method was used 25 times. To

Fig. 17 Value of the loss function over iterations for the trainingmethod
with an FNN as auxiliary network for the internal variable. The model
was trained 25 times using the optimizer Adam

Fig. 18 Value of the loss function over iterations for the trainingmethod
with an RNN as auxiliary network for the internal variable. The model
was trained 25 times using the optimizer Adam

show how reliable each method is, all 25 curves with dif-
ferent random initializations are shown and the best run is
highlighted with a thicker curve.
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