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Abstract
This study presents an innovative approach for developing a reduced-order model (ROM) tailored specifically for nearly
incompressible materials at large deformations. The formulation relies on a three-field variational approach to capture the
behavior of these materials. To construct the ROM, the full-scale model is initially solved using the finite element method
(FEM), with snapshots of the displacement field being recorded and organized into a snapshot matrix. Subsequently, proper
orthogonal decomposition is employed to extract dominant modes, forming a reduced basis for the ROM. Furthermore, we
efficiently address the pressure and volumetric deformation fields by employing the k-means algorithm for clustering. A
well-known three-field variational principle allows us to incorporate the clustered field variables into the ROM. To assess the
performance of our proposed ROM, we conduct a comprehensive comparison of the ROM with and without clustering with
the FEM solution. The results highlight the superiority of the ROM with pressure clustering, particularly when considering
a limited number of modes, typically fewer than 10 displacement modes. Our findings are validated through two standard
examples: one involving a block under compression and another featuring Cook’s membrane. In both cases, we achieve
substantial improvements based on the three-field mixed approach. These compelling results underscore the effectiveness
of our ROM approach, which accurately captures nearly incompressible material behavior while significantly reducing
computational expenses.

Keywords Incompressibility · K-means · Hyperelasticity · Reduced-order modeling · Proper orthogonal decomposition

1 Introduction

In recent years, the field of computationalmechanics has seen
remarkable progress, especially in modeling the behaviors of
complex materials. One particular area of focus is the mod-
eling of nearly incompressible materials, such as rubber-like
elastomers and soft tissues, which play vital roles in vari-
ous engineering and biomedical applications which exhibit
substantial shape changes while maintaining a relatively
constant volume under applied loads resulting in intricate
stress–strain relationships that standard finite element meth-
ods designed for fully compressible materials struggle to
accurately represent [13]. This has led to increased explo-
ration of advanced modeling techniques. These techniques
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aim to capture material responses of nearly incompress-
iblematerialswith increased accuracy.Multi-field variational
formulations, which introduce additional variables into the
problem statement, offer a versatile framework for improving
accuracy and robustness [28].

For example, Reese et al. [26] developed a locking-free
element for large deformations based on reduced integration
and stabilization concepts using enhanced strain methods.
Doll et al. [10] proposed selective reduced integration as
an effective method to overcome volumetric locking, and
Chiumenti et al. [8] presented a mixed three-field formula-
tion to address incompressibility constraints. Nakshatrala et
al. [17] introduced mixed stabilized finite element formula-
tions based on a multiscale variational principle to overcome
locking issues. Wulfinghoff et al. [30] developed an effi-
cient discontinuous Galerkin element for mitigating locking
in large deformation problems.

Reduced Order Modeling techniques have gained atten-
tion due to their potential to significantly reduce com-
putational costs while maintaining accuracy. These tech-
niques exploit the underlying structure of the governing
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equations to represent high-dimensional problems in lower-
dimensional subspaces. Various ROM techniques, including
ProperOrthogonalDecomposition (POD) [2, 5, 25],Galerkin
projection [24, 27], andReducedBasisMethods (RBM) [12],
have been successfully applied in various engineering disci-
plines.

However, when dealing with nearly incompressible mate-
rials, stability and robustness become critical considerations
for reduced order models. Traditional ROM techniques may
struggle to accurately reproduce the stress–strain behavior of
these materials. Ensuring stability while preserving compu-
tational advantages is a key research area.

To address this, Niroomandi et al. [18, 19] developed a
reduced order model for materials undergoing large strains
that reduces the need for the Newton algorithmwhen search-
ing for stable positions in nonlinearly behaving elastic
bodies compared to conventional POD. They also proposed
a method for handling geometrically nonlinear models by
combining model reduction techniques with an efficient
nonlinear solver [20]. Caicedo et al. [4] utilized POD to
create a reduced basis from micro-deformation gradient
fluctuations, simplifying micro-force balance, stress homog-
enization, and macro-constitutive tangent tensor equations
through Galerkin projection. Radermacher and Reese [23]
used POD with empirical interpolation to address non-linear
elasticity problems, resulting in faster results than conven-
tional POD methods.

Fresca and Manzoni [11] introduced deep learning-based
ReducedOrderModels (DL-ROMs),which excel in handling
nonlinear time-dependent parametrized partial differential
equations (PDEs). Bhattacharjee and Matouš [3] introduced
a novel manifold-based reduced order model for address-
ing nonlinear problems in multiscale modeling of complex
hyperelastic materials. Baiges et al. [1] introduced an adap-
tive finite element-based reduced-order model employing
artificial neural networks to correct and enhance simula-
tions with coarse finite element meshes applied to vari-
ous nonlinear solid mechanics, quasi-incompressible flow,
and fluid–structure interaction problems. Wulfinghoff et al.
[31] presented a nonlinear homogenization approach using
model order reduction through a combination of a Hashin–
Shtrikman-type variational principle with data clustering,
dividing typical deformation patterns in microstructures into
clusters.

Recent literature highlights the efforts of researchers
to develop robust reduced order modeling techniques tai-
lored for nearly incompressible materials. These advance-
ments encompass various approaches, including incorpo-
rating additional kinematic variables, modifying variational
formulations, and leveraging adaptive strategies to enhance
accuracy and stability. Furthermore, the integrationofmachine
learning anddata-driven techniqueswithROMholds promise

for addressing challenges related to modeling complex
behaviors.

In this context, this paper aims to develop a fast and reli-
able reduced-order model for nearly incompressible materi-
als. The novelty of this ROM lies in the utilization of pressure
clustering within the domain using the k-means algorithm
[14, 16], applied to a Hu-Washizu type three-field formula-
tion, initially developed by Simo et al. [29] to model nearly
incompressible hyperelastic and elastoplastic materials. This
concept was successfully applied to remove volumetric lock-
ing from finite element models in the nearly incompressible
case. The aim of this work is to investigate the potential of
this concept when transferred to reduced-order models.

The paper proceeds as follows: Sect. 2 provides com-
pact equations for nearly incompressible materials, followed
by the presentation of the reduced-order model. Section 3
demonstrates the application of the ROM to different exam-
ples, and Sect. 4 concludes the paper while suggesting
directions for future work.

The notation conventions are as follows: Scalar quantities
are presented in light-face italic characters, for example, ‘a’
or ‘A’. First and second-order tensors are denoted using bold-
face italic letters, e.g., ‘a’ or ‘A’. Fourth-order tensors are
represented using blackboard bold-faced letters, such as C or
C.

In addition, we denote the transpose of a second-order
tensor as ‘AT ’. To represent the symmetric and deviatoric
parts of a second-order tensor ‘A’, we use ‘sym(A)’ for the
symmetric part (1/2)(A + AT ) and ‘A’ for the deviatoric
part (A− (1/3)tr(A)I). Here, ‘I’ signifies the second-order
identity tensor, and ‘tr(A)’ represents the trace of ‘A’.

Furthermore, the double contraction of two tensors ‘A’
and ‘B’ is indicated as ‘A : B’, while the dyadic product is
represented as ‘a ⊗ b.’ The determinant of a tensor ‘A’ can
be designated by ‘det(A)’.

2 Modeling framework

Within the context of a continuous deformable body, charac-
terized by a reference configuration B0 and current config-
uration B, we define the displacement vector u. This vector
represents the change in position at a given time t of a mate-
rial point initially located at position X . Mathematically, this
displacement vector is defined as the difference between the
point’s current position vector x and its reference position
vector X , denoted as u(X, t) = x(X, t) − X .

To precisely quantify how infinitesimal line elements are
mapped from the reference configuration to the current con-
figuration, we introduce the deformation gradient:

F = Grad(x(X, t)) = F = ∂x
∂X

. (2.1)
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The local volume change is described by

dv

dV
= J = det(F), (2.2)

where dv and dV denote the volume of an infinitesimal
volume element in the reference and current configuration,
respectively.

Defining the isochoric part of the deformation gradient as

F̄ = J−1/3F, (2.3)

it is easily seen that

det(F̄) = 1. (2.4)

The right Cauchy–Green tensor can be represented as fol-
lows:

C = FT F. (2.5)

The isochoric part of the right Cauchy–Green tensor can
be represented as

C̄ = III−1/3
C C = F̄

T
F̄, (2.6)

where IIIC = det(C) = J 2.
We assume a decoupled representation of the strain energy

density function:

ψ(C̄, J ) = ψiso(C̄) + ψvol(J ). (2.7)

Then, the second Piola–Kirchhoff stress tensor S and its
fictitious counterpart can be represented as

S = 2
∂ψ

∂C
S̄ = 2

∂ψiso

∂ C̄
, (2.8)

where S is a symmetric tensor and can be converted to the
first Piola–Kirchhoff stress tensor by P = FS.

In the reference configuration, we can express the linear
momentum balance as follows:

DivP + ρ0b = 0, (2.9)

where b denotes the body force and ρ0 represents the refer-
ence mass density. The boundary conditions are defined by
u = ū on ∂B0u, and t̂ = PN on ∂B0t. Here, t̂ signifies a
given traction vector, and N represents the external normal
in the reference configuration.

A variational principle for modeling nearly incompress-
ible materials used in the following was first introduced by
Simo et al. [29]. This approach is widely used for the treat-
ment of nearly incompressible materials in finite element
simulations.

In contrast to traditional approaches that focus solely on
displacement u and pressure p, thismethod introduces a third
kinematic field variable, denoted as J̃ . The related potential
is decomposed into isochoric, volumetric and external force
components as follows:

�[u, p, J̃ ] =
∫
B0

(ψ(C̄, J̃ ) − p( J̃ − J )) dV

−
∫

∂B0t

t̂ · u dS −
∫
B0

ρ0 b · u dV . (2.10)

The first two terms are dedicated to capturing the behavior
of nearly incompressible materials, specifically addressing
volume-changing (dilational) deformations. These terms are
mathematically formulated using variables J = det(F), p,
and a new variable J̃ . It’s important to note that the constraint
J = J̃ is enforcedby theLagrangemultiplier p oftendenoted
as ’pressure’, where p itself is treated as an independent field
variable.

To mitigate the issue of volumetric locking, the Q1P0 ele-
ment [29] is often employed. With this element, J̃ and p are
discretized using a discontinuous (element-wise constant)
ansatz. This approach allows for the elimination of J̃ and
p at the element level through a technique known as static
condensation.

2.1 Stationarity conditions

The state variables are obtained by solving the following
saddle point problem:

inf
u∈κu

sup
p

inf
J̃

� (2.11)

In this context, κu = {u : u = ū on ∂B0u} represents the
set of admissible displacement fields that satisfy the specified
Dirichlet boundary conditions on ∂B0u . We can derive the
weak form of the quasi-static linear momentum balance by
performing a variation of the potential with respect to the
displacements. After a short derivation, we find (for details
see Simo et al. [29])

δu� =
∫
B0

(τ ′
fic + pJ I) : dδ dV −

∫
∂B0t

t̂ · δu dS

−
∫
B0

ρ0b · δu dV = 0, (2.12)

where δF and δu are the variations of the deformation gra-

dient and displacement vector, respectively, τfic = F̄ S̄ F̄
T
is

the fictitiousKirchhoff stress tensor and dδ = sym(δFF−1).
Additionally, by varying the potential with respect to p

and J̃ , we derive the weak equality of J and J̃ , along with
the constitutive equation governing volumetric changes.
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Fig. 1 Offline–online concept
for model order reduction

The variation with respect to p yields

δp� =
∫
B0

(J − J̃ )δ p dV = 0. (2.13)

This implies that the additional independent variable J̃
is equal to J = det(F), which represents a kinematic con-
straint. The variation with respect to J̃ gives

δ J̃� =
∫
B0

(
∂ψvol( J̃ )

∂ J̃
− p

)
δ J̃ dV = 0, (2.14)

⇒ p = ∂ψvol( J̃ )

∂ J̃
. (2.15)

2.2 Reduced order modeling

Following the solution of a fully resolved FEMmodel across
a broad range of parameter values, snapshots, representing
the discrete model’s state variable vectors, are systematically
stored in a snapshotmatrix.By applyingPOD to this snapshot
matrix, we derive a reduced basis that efficiently captures
the system’s behavior through a limited set of displacement
modes denoted as φi (X), where i ranges from 1 to N . This
procedure is also shown in Fig. 1. The POD procedure is
comprehensively elucidated in the following seminal works
[6, 7, 9, 21, 22].

With this reduced basis in place, we can express the
reduced solution for the displacement vector, incorporating
mode coefficients ξi (t), as follows:

u(X, t) =
N∑
i=1

ξi (t)φi (X) Grad (u(X, t))

=
N∑
i=1

ξi (t)Gradφi (X). (2.16)

Fig. 2 Reference configuration of the domain with pressure clusters

Further, we decompose B0 into M subdomains B0k :

B0 =
M⋃
k=1

B0k . (2.17)

The authors have opted to adapt the concept of piecewise
constant pressure values from Q1P0 element, as introduced
by Simo et al. [29], for use inMOR. In the Q1P0 element, we
utilize piecewise constant ansatz functions for the pressure
p and the kinematic field variable J̃ . However, in our MOR
approach, we employ subdomain-wise constant ansatz func-
tions for p and J̃ (Fig. 2), enabling the elimination of these
variables at the global level through static condensation.

Now, the state variables for the reduced problem are
obtained by solving the following discrete saddle point prob-
lem

inf
ξ
sup
p
inf
J̃

� (2.18)

where ξ = (ξ1, ξ2, . . . , ξN )T , p = (p1, p2, . . . , pM ) and
J̃ = ( J̃1, J̃2, . . . , J̃M ).

Taking the derivative of the potential with respect to ξ

will give the weak form of the linear momentum balance in
analogy to (2.10).
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Now incorporating the reduced basis into dδ as follows:

dδ = sym(lδ) = sym(δFF−1)

=
N∑
i=1

δξi

gsi (F)︷ ︸︸ ︷
sym(Gradφi (X)F−1︸ ︷︷ ︸

=:gi
), (2.19)

will give the reduced weak form:

δξ � =
N∑
i=1

δξi

[∫
B0

(τ ′
fic + pJ I) : gsi dV −

∫
∂B0t

t̂ · φidS −
∫
B0

ρ0 b · φi dV

]

︸ ︷︷ ︸
Ru
i

,

(2.20)

where Ru = (Ru
1 , R

u
2 , . . . , R

u
N )T is the residual for the

reduced problem. Additionally, by varying the potential with
respect to changes in p, we derive the weak equality of J
and J̃ :

δp� =
M∑
k=1

∫
B0k

(J − J̃k)δ pkdV = 0, (2.21)

⇒ J̃k = 1

B0k

∫
B0k

JdV , (2.22)

that is J̃k is equal to J in B0k only in an average sense. The
variationwith respect to J̃ results in the constitutive equation
for the pressure as follows:

δ J̃� =
M∑
k=1

∫
B0k

(
∂ψvol

∂ J̃k
− pk

)
δ J̃kdV (2.23)

⇒ pk = ∂ψvol( J̃k)

∂ J̃k
. (2.24)

The nonlinear term in the residual Ru is linearized. The
linearization process and the formulation of the tangent mod-
uli can be found in “Appendix 6”.

2.3 Pressure clusters

The purpose of pressure clustering is to aggregate similar
pressure values within distinct regions B0k of the com-
putational domain. This process is executed following the
generation of snapshots of pressure values in each element
by running the full-scale model for various parameter sets
and load cases. Subsequently, a clustering operation is per-
formed using the k-means algorithm, which groups elements
with similar pressure values into separate clusters or regions.

To ensure the effectiveness of this clustering process, it is
essential to normalize the pressure data. This normalization
step is crucial because pressure values can exhibit significant
variations between elements, especially when comparing the

Fig. 3 2D representation of pressure clustering

pressure values at time step 1 to those at the last time step. The
normalized pressure value, denoted as p̃, is used to ensure
that all elements are on a common scale, facilitating mean-
ingful clustering

p̃e = pe − p̄

σ
, (2.25)

where p̄ = 1
Ne

∑
e pe and σ =

√
1
Ne

∑
e(pe − p̄)2.

To illustrate this process, consider Fig. 3, which schemat-
ically represents the clustering of pressure values for all
elements (with index ’e’) at two different time steps, namely
timestep 1 and timestep 2. The distinct regions highlighted
in the figure correspond to separate clusters.

By performing pressure clustering in this manner, we can
effectively group elements with similar pressure responses,
enabling a more insightful analysis of the behavior of nearly
incompressiblematerials within different regions of the com-
putational domain.

3 Numerical examples

In this section, simulation results are presented and the newly
developed ROM technique is compared against FEM results
utilizing two standard examples.

3.1 Block in compression

The block’s dimensions used in this study are adopted from
the work of Reese et al. [26].

The geometric configuration, loading conditions, and
boundary constraints of the system are illustrated in Fig. 4. To
maintain computational efficiency and symmetry, only one-
quarter of the system is discretized, and symmetry conditions
are enforced along the planes x = 0 and y = 0.
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Fig. 4 Dimensions and boundary conditions of the block in compres-
sion

The nodes located at the top of the structure are con-
strained in both the x- and y-directions. Additionally, a
surface load, denoted as f , is applied within one quarter of
the top of the block.

Thematerial model employed in this analysis is the hyper-
elastic Neo–Hookean model:

ψ(C̄, J ) = μ

2
(IC̄ − 3) + λ

4
(J 2 − 1 − 2lnJ ) (3.1)

where IC̄ = trC̄ is the first invariant of the isochoric part
of the right Cauchy–Green tensor. The material parameters
used in this study are set as follows: the shear modulus μ

is set to 80.194 N/mm2, while the first Lamé parameter λ is
taken as 40,088 N/mm2, which gives a Poisson’s ratio ν of
0.499.

For the FEM simulation, reduced integration with hour-
glass stabilization is applied and a mesh convergence study
was carried out to assure mesh convergence.

Figure5 provides a visual representation of the eight dif-
ferent load cases utilized during the training of the POD
technique. These load cases serve as the foundation for
predicting various combinations of loading scenarios. The
loading for each square region is f = 210N in the downward
z-direction. For each load case, 200 snapshots are captured
and the final snapshot matrix contains 1600 snapshots. By
creating a training dataset from these cases, we enable the
model to learn and generalize the behavior of the system
under diverse loading conditions.

Subsequently, we generate pressure clusters based on the
data obtained from these training cases. The pressure clusters
are depicted in Fig. 6, and an exploded view is presented
in Fig. 7. These clusters highlight regions within the system
where the pressure is similar across adjacent elements. In this
analysis, we have opted to create eight distinct clusters, each
encompassing elements with similar pressure values.

It’sworth noting that the choice of the number of clusters is
a critical consideration in relation to the number of displace-
ment modes. Increasing the number of clusters implies that
fewer elements are grouped together in each cluster, which
can introduce errors when using a lower number of modes
for the analysis. However, with a higher number of modes,

Fig. 5 Load cases for the training of the POD
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Fig. 6 Pressure clusters developed based on the loading cases

Fig. 7 Exploded view of the constant pressure subdomains

the impact of clustering becomes less significant, and the
results tend to be more accurate. Nevertheless, it’s important
to strike a balance between the number of modes and com-
putational effort, as a higher number of modes can increase
computational demands.

Figure8 provides a comparison of the displacements at
point A within the compressed block example when the pre-
diction is made for an unseen loading case scenario. The load
applied for both the regions is f = 210 N in the downward
z-direction. In this comparison, we consider results obtained
from the FEM as well as the MOR technique, both with and
without the incorporation of pressure clusters.

In the visualization, the mesh representation of the FEM
results is depicted using black lines, while the MOR results,
with and without pressure clusters, are shown in white wire-
frame representation.

In the left-hand comparison (Fig. 8, left), the deformed
meshes of the FEM and MOR results overlap to a significant
degree. This overlapping suggests a close correspondence
between the two approaches, indicating that the MOR tech-
nique with pressure clusters accurately captures the behavior
of the compressed block, aligning well with the FEM results.

In contrast, the right-hand figure (Fig. 8, right) reveals
noticeable differences between the FEMmodel and the wire-
frame representations of the MOR results without pressure
clusters. This discrepancy implies that the inclusion of pres-
sure clusters has a positive impact on the MOR outcomes.
This effect can be attributed to the presence of clusters. In the
incompressible limit, in each integration point of the reduced
model (i.e., in each element) the constraint det(F) = 1would
have to be satisfied. Facing the low number ofmodes/degrees
of freedom, this would mean that the model is severely
overconstrained. It is expected that this problem occurs sim-
ilarly in the nearly incompressible case. Therefore, pressure
clusters are introduced in order to reduce the number of ’con-
straints’ to the number of clusters.

Obviously MOR with clusters is able to closely follow
and replicate the FEM solution, even with a relatively small
number of displacement modes as shown in Fig. 9.

3.2 Cook’s membrane

In the second example,we delve intoCook’smembrane prob-
lem, a classic mechanical scenario. Here, we investigate the
behavior of a tapered cantilever beam, as illustrated inFig. 10.
The beamhas afixed left end. In contrast, the right end, is sub-
jected to a vertical traction applied in the positive z-direction.
This loading configuration represents a fundamental test case
in computational mechanics. Here again, we have considered
the hyperelastic Neo-Hooke material model with the same
material parameters as discussed in the block in compres-
sion.

3.2.1 Comparison of FEM versus MOR with and without
clusters for diagonal loading

Figure11 provides a visual representation of the four dis-
tinct load cases utilized in the training via POD, specifically
for the diagonal loading case. The (dead) load applied is
f = 4.096 kN for each case in the 4 diagonal directions
(45◦, 135◦, 225◦ and 315◦) to obtain 4 different deforma-
tions.

Figure12 provides a graphical representation of the clus-
ters formed for the diagonal load case. These clusters are a
result of applying the above described clustering techniques
to the data obtained during the diagonal loading scenarios.

To gain a more detailed perspective on these clusters,
Fig. 13 presents an exploded view.
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Fig. 8 FEM versus MOR comparison of point A z-displacement. Left: with clusters and right: without clusters

Fig. 9 Graphical z-displacement comparison of FEM versus MOR
(with and without clusters) recorded at point A

Figure14 offers a comparison of results obtained from
three different approaches: FEM, MOR with clustering, and
MORwithout clustering for 8 displacement modes. Here, we
have made a prediction for the diagonal loading condition
generated by applying f = 4.096 kN along 135◦ for FEM
andMOR.We intentionally reproduce a load case, whichwas
already seen during training in order to demonstrate the prob-
lems of the fully integrated ROM, already in this seemingly
simple case.

The FEM results serve as a reference, representing the
most accurate and computationally intensive solution to the
problem. MOR with clustering demonstrates the capabil-
ity of the ROM technique to capture the system’s behavior
efficiently by simplifying the pressure distributionusing clus-
ters. MOR without clustering retains individual pressure
values for each element, which may lead to a less accurate
predictions under lower number of modes as visualized in
Fig. 14.

Fig. 10 Dimensions and boundary conditions of the Cook’s membrane
example

Figure14 highlights that there is a noticeable discrepancy
between the FEM and the MOR with clusters. To mitigate
this discrepancy, an increase in number of modes and pres-
sure clusters can be considered. This enhanced agreement is
vividly depicted in Fig. 15, where the FEM and MOR with
clusters improves when 10 modes and 10 pressure clusters
are taken into account.
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Fig. 11 Load cases utilized for the training of the POD

Fig. 12 Pressure clusters developed based on the, diagonal load cases

3.2.2 Comparison of FEM versus MOR with and without
clusters for diagonal loading with � = 0.49999

We present here the comparison between FEM and MOR
with andwithout clusters at ν = 0.49999 to justify the impor-
tance of pressure clusters, particularly as ν approaches the
incompressible limit.

The load cases utilized in the training via POD are same
as in Sect. 3.2.1 We collect 500 snapshots for each diagonal
loading case. The (dead) load applied is f = 15.36 kN for
each case in the 4 diagonal directions to obtain 4 different
deformations as shown in Sect. 3.2.1. Within this context,
we present computations for the diagonal loading condition,
achieved by applying a force of f = 15.36 kN along 135◦ for
both FEM and MOR with and without clusters. We utilized
10 pressure clusters for MOR with clusters.

Fig. 13 Exploded view of the constant pressure subdomains

The MOR with clusters clearly outperforms the MOR
without clusters for ν = 0.49999, as illustrated in Fig. 16.
Notably, MOR with clusters consistently provides reason-
able results even with only 10 modes, a stark contrast to
MOR without clusters, where approximately 70 modes are
required to achieve a comparable approximation of nearly
incompressible behavior. The computational efficiency of
our approach is further highlighted in Fig. 17 (left), reveal-
ing a rapid increase in computational time as the number of
modes grow. This emphasizes the efficiency and practical-
ity of our proposed method, especially when considering the
challenging scenario of nearly incompressible materials.

To quantify the accuracy of these computations, we cal-
culate the error using the following formula:

Error =
√√√√ 1

N

N∑
i=1

‖uMORwoc
i − uFEM

i ‖2, (3.2)

where uFEM
i and uMORwoc

i (for i = 1, . . . , N ) represent the
displacement solutions obtained from the FEM and MOR
without clusters, respectively, N denotes the total number of
nodes. Likewise, the error for MOR with clusters is calcu-
lated. We compute the error using Eq.3.2 for time steps 7,
14, 21, and 28 (of 30 equal time steps in total), followed by
averaging these values to obtain the overall error.
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Fig. 14 x-,y- and z-displacement comparison between FEM and MOR (with and without clusters) of point A

Fig. 15 x-,y- and z-displacement comparison between FEM and MOR (with and without clusters) of point A with higher number of modes and
pressure clusters

Fig. 16 x-displacement comparison between FEM and MOR (with and without clusters) of point A
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Table 1 Speedup factor and
error for MOR without clusters

FEM CPU time (s) Displacement modes MORwoc CPU time (s) Speedup Error (mm)

1560 10 30 52 10.90

1560 20 75 20.8 1.23

1560 30 130 12 0.97

1560 50 275 5.67 0.64

1560 70 445 3.5 0.48

1560 90 655 2.38 0.38

Fig. 17 Left: computational
time as a function of the number
of modes considered. Right:
error comparison between MOR
with and without clusters

These simulations are carried out on an Intel�CoreTM

i7-8850H CPU@ 2.60GHz with 32 GB RAM. The speedup
factors obtained for this example are summarized in Table 1.

Figure17 (right) illustrates that the error is notably small
for MOR with clusters even with just 10 modes. In contrast,
achieving a comparable level of accuracy for MOR without
clusters requires a higher number of modes, leading to longer
solution times, as depicted in Fig. 17 (left).

3.2.3 Comparison of FEM versus MOR with and without
clusters for rotational load

In this particular analysis, we tackle a more intricate sce-
nario to test the capabilities of MOR with and without the
incorporation of pressure clusters. The Poisson’s ratio ν con-
sidered in this example is 0.499. The load cases used for
training the POD model are depicted in Fig. 18. The (dead)
load applied is f = 4.096 kN for each case (positive and
negative x-direction, positive and negative z-direction and
along the diagonal 135◦ and 90◦).

Following the training phase and the generation of a
reduced basis,we proceed to obtain pressure clusters, as illus-
trated in Fig. 19.

Now the prediction is made for the application of the rota-
tional load to the xz-plane as shown in Fig. 20. The load is
expressed as

fx = f̂ cos(ωt) fz = f̂ sin(ωt) (3.3)

where fx and fz is the load applied along the x- and z-
directions, f̂ is the magnitude of the load applied in this

Fig. 18 Load cases for the training of the POD

case which is f = 4.096 kN and ω is the angular frequency
which is 1 rad/s.

Figure20 provides a comparison between the FEM and
MOR results, both with and without the incorporation of
pressure clusters with 8 displacement modes. In the left fig-
ure, the black wireframe represents the FEM results, while
the white wireframe represents MOR with clusters. In the
right figure, the black wireframe also represents the FEM
results, while the white wireframe represents MOR results
without clusters. Again, the accuracy improvement due to
the clustering is clearly visible.
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Fig. 19 Pressure clusters developed based on the loading cases

Fig. 20 FEMversusMOR comparison of point A z-displacement. Left:
with clusters and right: without clusters

The data recorded at point A is analyzed graphically as
illustrated in Fig. 21. The comparison highlights that MOR
with clusters closely aligns with the FEM results when
considering a lower number of modes for analysis. This
agreement demonstrates the effectiveness ofMORwith clus-
tering in efficiently capturing the system’s behavior.

3.2.4 Comparison of FEM versus MOR with and without
clusters with higher number of modes for rotational
load case

In Fig. 22, we compare the displacement in the x-, y-, and
z-directions of FEM and MOR, both with and without pres-
sure clusters for the case of 30 modes. In the case of MOR
with pressure clusters, 30 clusters are created. These compar-
isons reveal a close agreement in displacement values among
all approaches. This agreement underscores the capability of
both MOR techniques, with and without clustering, to accu-
rately capture the system’s behavior when a higher number
of modes is considered. It is worth noting that MOR without
clusters appears to exhibit a slightly superior performance
compared to MOR with clusters. The advantage of pressure
clustering becomes evident when considering a lower num-
ber of modes.

4 Conclusions

In conclusion, this study introduces an innovative approach
for developing a Reduced-Order Model (ROM) tailored
specifically for the analysis of nearly incompressible mate-
rials. Our method leverages a three-field variational formu-
lation, effectively capturing the intricate behavior of such
materials. The ROM construction process involves solving
the full-scale model using the FEM, recording displacement
field snapshots, and organizing them into a snapshot matrix.
Additionally, Proper orthogonal decomposition (POD) is
applied to extract dominant modes, forming a reduced basis
for the ROM.We address the pressure field, a critical compo-

Fig. 21 Comparison of point A displacement in x-, y- and z-direction between FEM and MOR (with and without clusters)
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Fig. 22 Comparison of point A displacement in x-, y- and z-direction between FEM and MOR (with and without clusters) with higher number of
modes

nent, by utilizing the k-means algorithm for clustering. This
approach allows us to incorporate the clustered pressure field
into the reduced-order model.

Our comparison, involving the ROM with pressure clus-
tering, the ROM without pressure clustering, and the FEM
solution, reveals the remarkable superiority of the ROM
with pressure clustering. This superiority is particularly evi-
dent when considering a limited number of modes, typically
fewer than10displacementmodes.Ourfindings are validated
through two standard examples for nearly incompressible
material behavior: one featuring a block under compres-
sion and the other focusing on Cook’s membrane. The
results underscore the effectiveness of our ROM approach in
accurately capturing the behavior of nearly incompressible
materials. As an outlook, one may investigate how this pres-
sure cluster based MOR works for large strain elastoplastic
materials.
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6 Appendix

6.1 Linearization

Consider the weak form of the linear momentum balance

Gξ =
∫
B0

(τ ′
fic + pJ I)︸ ︷︷ ︸

τ

: dδdV −
∫

∂B0t

t̂ · δu dS

−
∫
B0

ρ0b · δu dV (6.1)

=
∫
B0

τ ′
fic : dδdV +

M∑
k=1

pk

∫
B0k

J I : dδdV

−
∫

∂B0t

t̂ · δu dS

−
∫
B0

ρ0b · δu dV . (6.2)

Treatment of the volumetric part:

d(pk J I : dδ) = dpk J I : dδ

+ pk J (F−T : dF)I : dδ − pk J I :
lδ ld︷ ︸︸ ︷

δFF−1dFF−1

+ (ld pk J I lTδ ) : I
− pk J I : ld lTδ (6.3)

= dδ : (J I)
dpk
d J̃k

=:〈J I :dd 〉k︷ ︸︸ ︷
1

0k

∫
0k

J I : dd dV

+ pk J (I ⊗ I)::(dδ ⊗ dd) + (ld pk J I lTδ ) : I
− 2pk J dδ : dd (6.4)

⇒
∫

0k

d(pk J I : dδ)dV

= 0k〈dδ : J I〉k dpk
d J̃k

〈J I : dd 〉k
+ 0k〈dδ : pk J (I ⊗ I − 2Is) : dd 〉k
+

∫
0k

(ld pk J lTδ ) : IdV (6.5)
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⇒
∫
B0

d(τ : dδ)dV =
∫
B0

[
(ldτ lTδ ) : I

+ dδ :
(
pJ (I ⊗ I − 2Is) + C

a
iso

)
: dd

]
dV

+
M∑
k=1

1

B0

∫
0k

dδ : J I dV dpk

d J̃k

∫
0k

J I : dd dV (6.6)

= d
∫
B0

τ : dδ dV = dξGξ =
N∑

i, j=1

δξidξi
( ∫

B

[
(giτ g

T
i ) : I

+ gsi :
(
pJ (I ⊗ I − 2Is) + C

a
iso

)
: gsj

]
dV

+
M∑
k=1

1

0k

∫
0k

tr(gsi )J dV
dpk
d J̃k

∫
0k

tr(gsj )J dV

︸ ︷︷ ︸
kui j

)
(6.7)

where kui j is the tangent matrix, subscript M represents the
number of subdomain and N represents the number of modes
considered. Caiso is the isochoric part of the consistent tangent
moduli (see below) and Is is the symmetric 4th order identity
tensor.

6.2 Isochoric tangent moduli

Consider [15]

d(τfic : d ′
δ) = d(F̄ S̄ F̄

T :
l ′δ︷ ︸︸ ︷

δ F̄ F̄
−1

)

=
C̄
a :d ′

d︷ ︸︸ ︷
F̄d S̄ F̄

T : d ′
δ + d F̄ F̄

−1
τfic : l ′δ

+F̄ S̄ : dδ F̄ (6.8)

where C̄
a is the fourth order fictitious elasticity tensor and

dδ F̄ = d
(
δ(J− 1

3 F)
)

= d
(
J− 1

3 δF

−1

3
J− 4

3 J (F−T : δF)F
)

=

d
(
J− 1

3

)(
δF − 1

3
tr(lδ)F

)

+J− 1
3

⎛
⎜⎝−1

3
tr (dlδ)︸︷︷︸

−δFF−1dFF−1

F − 1

3
tr(lδ)dF

⎞
⎟⎠ (6.9)

= −1

3
J− 4

3 J (F−T : dF)

(
δF − 1

3
tr(lδ)F

)

+J− 1
3

(
1

3
(lδ : lTd )F − 1

3
tr(lδ)dF

)
(6.10)

and

⇒ d(δ F̄)F̄
−1 = −1

3
tr(ld)

(
lδ − 1

3
tr(lδ)I

)
︸ ︷︷ ︸

l ′δ

+1

3

[
(lδ : lTd )I − tr(lδ)ld

]
. (6.11)

Now, incorporating derivatives of δ F̄ and (δ F̄)F̄
−1

in
Eq.6.8, results:

⇒ d(τfic : d ′
δ) = d ′

δ : C̄
a : d ′

d + l ′dτfic : l ′δ
+τfic :

(
−1

3
tr(dd )d ′

δ + 1

3
(lδ : lTd )I − 1

3
tr(lδ)dd

)
(6.12)

= d ′
δ : C̄

a : d ′
d +

[
ld − 1

3
tr(dd )I

]
τfic :

(
lδ − 1

3
tr(dδ)I

)

−1

3
tr(dd )τfic : dδ + 1

9
tr(dd )tr(dδ)tr(τfic)

+1

3
(lδ : lTd )tr(τfic) − 1

3
tr(dδ)dd : τfic

−1

3
tr(τfic)I : ld lTδ + 1

3
tr(τfic)(ld : lδ) (6.13)

= d ′
δ : C̄

a : d ′
d + (ldτficlTδ ) : I

−1

3
tr(dδ)τfic : dd − 1

3
tr(dd )τfic : dδ

+1

9
tr(dd )tr(dδ)tr(τfic)

−1

3
tr(dd )τfic : dδ + 1

9
tr(dd )tr(dδ)tr(τfic) + 1

3
(lδ : lTd )tr(τfic)

−1

3
tr(dδ)dd : τfic −1

3
tr(τfic)I : ld lTδ + 1

3
tr(τfic)(ld : lδ)︸ ︷︷ ︸

0

(6.14)
= d ′

δ : C̄
a : d ′

d + (ldτ ′
ficl

T
δ ) : I

−2

3
dδ : τfic ⊗ I : dd + 2.

1

3
tr(τfic)

2. 14 (ld :lδ+ld :lTδ )︷ ︸︸ ︷
dd : Is : dδ

−2

3
dδ : I ⊗ τfic : dd

+2

9
tr(τfic) dδ : I ⊗ I : dd (6.15)

= d ′
δ : C̄

a : d ′
d + (ldτ ′

ficl
T
δ ) : I + dδ :⎛

⎜⎜⎝−2

3

τfic− 1
3 tr(τfic)I︷︸︸︷
τ ′
fic ⊗I − 2

3
I ⊗ τ ′

fic

⎞
⎟⎟⎠ : dd

−2

9
tr(τfic)tr(dd )tr(dδ) + 2

3
tr(τfic) dδ : Is : dd (6.16)

finally

d(τfic : d ′
δ) = dδ :
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(
P

′ : C̄
a : P′ − 2

3
τ ′
fic ⊗ I − 2

3
I ⊗ τ ′

fic + 2

3
tr(τfic)P

′
)

︸ ︷︷ ︸
C
a
iso

: dd

+(ldτ ′
ficl

T
δ ) : I (6.17)

where C̄
a is the fourth order fictitious elasticity tensor and P′

is the fourth-order deviatoric projector.
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