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Abstract
This paper presents a novel framework combining proper generalized decomposition (PGD) with the shooting method to
determine the steady-state response of nonlinear dynamical systems upon a general periodic input. The proposed PGD
approximates the response as a low-rank separated representation of the spatial and temporal dimensions. The Galerkin
projection is employed to formulate the subproblem for each dimension, then the fixed-point iteration is applied. The sub-
problem for the spatial vector can be regarded as computing a set of reduced-order basis vectors, and the shooting problem
projected onto the subspace spanned by these basis vectors is defined to obtain the temporal coefficients. From this procedure,
the proposed framework replaces the complex nonlinear time integration of the full-order model with the series of solving
simple iterative subproblems. The proposed framework is validated through two descriptive numerical examples considering
the conventional linear normal mode method for comparison. The results show that the proposed shooting method based
on PGD can accurately capture nonlinear characteristics within 10 modes, whereas linear modes cannot easily approximate
these behaviors. In terms of computational efficiency, the proposed method enables CPU time savings of about one order of
magnitude compared with the conventional shooting methods.

Keywords Shooting method · Proper generalized decomposition · Steady state response analysis · Nonlinear systems ·
Reduced order model

1 Introduction

In structural dynamics, the steady-state response of a non-
linear dynamical system plays an important role in under-
standing the forced vibration characteristics in case of
large deformations, nonlinear material behavior, cracks, and
boundary conditions with contact. Various attempts have
been made to find the steady-state response of a nonlinear

B Yong-Hwa Park
yhpark@kaist.ac.kr

Dae-Guen Lim
ldg0201@kaist.ac.kr

Gil-Yong Lee
lgy@kaeri.re.kr

1 Department of Mechanical Engineering, KAIST, 291
Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea

2 SMART System Development Division, Korea Atomic
Energy Research Institute, 111, Daedeok-daero 989beon-gil,
Yuseong-gu, Daejeon 10587, Republic of Korea

dynamical system under periodic excitation, which can be
classified into two categories: frequency domain and time
domain approaches [1, 2].

The harmonic balance method (HBM) is the frequency
domain approach, which relies on the assumption that the
steady-state response is represented by a truncated Fourier
series [3, 4]. A set of nonlinear algebraic equations for
unknown Fourier coefficients is formulated by applying the
truncated Fourier series of the solution to the nonlinear differ-
ential equation. Since the nonlinear terms are not explicitly
defined in the frequency domain, the alternating frequency
time (AFT) scheme is usually combined with HBM [5, 6].
Although HBM exhibits fast convergence for weakly nonlin-
ear problems, the response of highly nonlinear problems, e.g.,
in case of contact cannot be easily captured by the smooth
harmonic basis [7].

The shooting method is available for calculating the peri-
odic responses in the time domain. Under general periodic
inputs, the steady-state response of a nonlinear dynamic sys-
tem exhibits periodic characteristics. The shooting method
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Fig. 1 Iterations of the shooting
method: integration of one
period a from the initial
conditions, b, c, and d after the
first, second, and final iterations,
respectively

formulates a two-point boundary value problem (BVP) to
find the initial conditions (i.e. displacement and velocity) of
the nonlinear differential equation that satisfy the periodic-
ity condition [8]. The shooting method is advantageous as it
easily avoids the cumbersome AFT method and direct time
integration for long transient processes, achieving the steady-
state response effortlessly by time integrating only the range
corresponding to the periodic response. Moreover, the shoot-
ing method offers the flexibility to incorporate various types
of nonlinearity without assuming that the response character-
istics can be accurately represented by approximations such
as the Fourier approximation. Recently, various numerical
methods have been proposed to analyze vibrations by using
the shootingmethodwhen non-smooth nonlinear forces such
as contact and friction are applied [9, 10]. Studies on the
shooting method considering geometric nonlinearities such
as large deformations or rotations, have been introduced [11–
13].The applications of the shooting method for the analysis
of the time response of nonlinear systems, such as stability
and optimization, have been reported [14–18]. However, the
shooting method still has limitations when solving nonlinear
BVP through theNewton–Raphson iteration. The first limita-
tion is that a good initial guess is required for the convergence
because the solution is very sensitive to initial conditions. The
second limitation is due to computing the derivative of the
residual, whichmakes the algorithm extremely expensive for
a large-scale dynamical model [9, 10].

Ensuring computational efficiency in the HBM and shoot-
ingmethod becomes increasingly challenging as the system’s
degree of freedom expands. Thus, recently with emphasis on
computational efficiency, there have been efforts to advance
research inmodel-order reduction (MOR) techniques. As the
conventional linear normal mode (LNM)-based MOR tech-
nique faces challenges in accurately representing nonlinear
system behavior [19], several MOR techniques based on the
proper orthogonal decomposition (POD) and proper gener-
alized decomposition (PGD) have been proposed [20–25].
POD has been widely used to compute a reduced-order basis
that captures the dominant behavior of a full-order model
[23]. The extracted basis is utilized to build a reduced-order
model through the Galerkin projection, and the compu-
tational efficiency can be accelerated [26]. However, the
applicability of POD to the time integration strongly depends
on the choice of the time period. This is due to the posterior
feature of POD, which applies singular value decompo-
sition to the solution of a full-order model to obtain the
reduced-order basis [27]. As an alternative, PGD is a pri-
ori model-reduction approach that approximates the solution
as a low-rank separated representation [24, 25, 28]. The
reduced-order basis associated with the spatial dimension
and the corresponding component in temporal dimension are
obtained simultaneously [27] without prior knowledge of the
response features in contrast to the POD approach [29–31].
Although the price of this advantage is that PGD requires
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Fig. 2 Flowchart of the proposed framework

additional implementation for formulating subproblems for
each dimension, i.e., it effectively alleviates the computa-
tional effort through low-rank representation.

This paper presents a novel approach where PGD is com-
bined with a shooting method to tackle the computational
inefficiency inherent in the conventional shooting method.
The main computational cost of the conventional shooting
method arises from the iterative calculation of the inverse
of Jacobian matrix using the Newton–Raphson method to
obtain the periodic response. As the size of the Jacobian
matrix depends on the degrees of freedom (DOFs) of the
system, reducing its dimensionality is a crucial aspect in
improving computational speed. To reduce the dimension of
Jacobian matrix in the shooting method, we employ PGD to

separate the periodic response of the equation of motion into
spatial and temporal dimensions, followed by formulating
subproblems for each dimension, namely spatial and tem-
poral problems, using Galerkin projection. In the temporal
problem, the shooting problem is definedbyprojecting it onto
the subspace spanned by the spatial basis vectors. The main
concept of the subproblem implementation is equivalent to
the various applications of PGD in dynamic problems [31–
35]. In the temporal problem, the shooting problem is defined
by projecting it onto the subspace spanned by the spatial
basis vectors. The initial conditions are non-parametric and
represent unknown values that will be determined through
Newton–Raphson iteration. Considering that the size of the
Jacobian matrix in the temporal problem is determined by
the rank of the spatial basis vectors, this approach can yield
computational advantages, especially when it is possible to
approximate the system with a relatively small number of
spatial modes in comparison to its DOFs. To obtain the
entire steady-state response, the enrichment is progressively
introduced until the PGD approximation satisfies the target
tolerance.

The rest of paper is organized as follows. In Sect. 2,
the shooting method based on the Newmark integration is
described with the Jacobian computation. Section3 presents
the proposed algorithm, which is the use of PGD in the
shooting method. In Sect. 4, the performance of the proposed
framework is validated through numerical examples. Finally,
the conclusions are drawn in Sect. 5.

2 Proper generalized decomposition (PGD)
for time-domain analysis of nonlinear
system

In this section, we present a model order reduction approach
based on proper generalized decomposition (PGD) to address
the computational inefficiency associated with time-domain
analysis of nonlinear systems. The equations of motion of a
nonlinear system with N degrees of freedom (DOFs) under
a periodic excitation can be expressed as

Mẍ + Cẋ + Kx + fnl(t, x, ẋ) = fext(t) (1)

where M,C,K ∈ R
N×N denote the mass, damping, and

linear stiffness matrices; fnl ∈ R
N and fext ∈ R

N are
the nonlinear force and external force with period T ; and,
x, ẋ, ẍ ∈ R

N represent displacement, velocity, and accel-
eration vectors, respectively. PGD finds the solution of
governing equations as a low-rank separated representation,
resolving the subproblems defined in each approximation
space [24, 25]. In the present context, we approximate the
periodic response x(t) using the spatial vector pi and tempo-
ral function qi (t) as follows:
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Fig. 3 The nonlinear contact
interface between two
cantilevers

x(t) ≈ xm(t) =
m∑

i=1

pi qi (t) = Pq(t) (2)

where P=[p1, . . . ,pm] ∈ R
N×m , q(t)={q1(t), . . . , qm(t)}T

∈ R
m and rank m. All components P and q with rank m

are unknown and should be determined to satisfy the target
accuracy.This is a clear difference fromother posteriormodel
reduction methods [22, 23] that first construct a basis P and
then compute the expansion coefficients q.

In obtaining the unknown components, we progressively
construct the current vector pm and update q(t) through the
Galerkin projection, assuming that the previous components
{pi }m−1

i=1 are already computed. Substituting Eq. (2) into Eq.
(1), the nonlinear equations of motions for unknown vector
pm can be expressed as

Mpmq̈m(t) + Cpmq̇m(t) + Kpmqm(t) + fnl(t,Pq(t),

Pq̇(t)) = r(t) (3)

where the residual vector r(t) ∈ R
N is determined by

r(t) = fext(t) −
m−1∑

i=1

[Mpi q̈i (t) + Cpi q̇i (t) + Kpi qi (t)]

(4)

Using a calculus of variations, the test (weight) function for
the approximation x∗

m(t) are obtained by In the calculus of
variations, test functions play a crucial role in the derivation
of the decomposed subproblems. By considering how the
function changes concerning the test function, conditions for
minimizing or maximizing a functional are derived.Using
a calculus of variations, the test (weight) function for the
approximation x∗

m is obtained by

x∗
m = p∗

mqm(t) + Pq∗(t) (5)

Multiplying Eqs. (5) to (3), and integrating over the period
T , the two equations for each test function p∗

m and q∗(t) are
formulated as follows:

(p∗
m)T

[(∫ T

0
qmq̈mdt

)
M +

(∫ T

0
qmq̇mdt

)
C

+
(∫ T

0
qmqmdt

)
K

]
pm =(p∗

m)T
(∫ T

0
qm(r−fnl)dt

)

(6)

∫ T

0
q∗[(PTMP)q̈ + (PTCP)q̇ + (PTMP)q + PTfnl

− PTfextdt] = 0 (7)

Here, Eqs. (6) and (7) are so-called spatial and temporal
problems, since each problem is related to the correspond-
ing test function. The Galerkin projection imposes the error,
viz., x(t) − xm(t), orthogonal to space spanned by the
test function. The proposed framework differs from the
conventional Galerkin-based discretization by newly iden-
tifying two unknowns pm and qm . Owing to the variation
in this approximation, subproblems incorporating presently
unknown variables are formulated in a manner distinct from
existing methods.

Let us define the operator for Eqs. (6) and (7) by pm =
F(q(t)) and q(t) = f (pm), respectively [36]. Using these
relations, we introduce the following mapping:

pm = F(q(t)) ◦ f (pm) = G(pm) (8)

Eq. (8) can be seen as a pseudo-eigenproblem, where pm can
be interpreted as the eigenvector associated with the operator
G(pm). This interpretation allows the adoption of existing
well-known techniques for solving the eigenvalue problem,
andfixed-point iteration (power-method) is considered in this
work.
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Fig. 4 Evolution of last mode contribution and cumulative energy in
the cantilever beam with contact nonlinearity

Assuming that q(t) is known, the spatial problem (Eq. (6))
is derived as nonlinear equations for pm as follows:

Hspm − rs = 0 (9)

where the matrix Hs ∈ R
N×N and residual vector rs ∈ R

N

in the spatial problem, which can be obtained by

Hs =
(∫ T

0
qmq̈mdt

)
M +

(∫ T

0
qmq̇mdt

)
C

+
(∫ T

0
qmqmdt

)
Krs =

∫ T

0
qm(r − fnl)dt (10)

In order to solve Eq. (10), the Newton–Raphson procedure
is applied as follows:

(Hs + ∂rs
∂pm

)�pksm = rs − Hspksm (11)

where superscript ks denotes the ks-th iteration count for the
Newton–Raphson procedure in the spatial problem. Equation
(11) iteratively solved (pks+1

m = pksm +�pksm ) until the criteria
||rs − Hsp

ks
m || < εtol,s is satisfied.

Once Eq. (11) is resolved, a set of spatial functions P is
ortho-normalized by the Gram-Schmidt process to improve
the condition of the matrix. The temporal problem (Eq. (7))
then finds the components q, q̇, q̈ based on the fixed P and
is derived under in period t ∈ [0, T ] as follows:

M̄q̈ + C̄q̇ + K̄q + f̄nl = f̄ext (12)

where,

M̄ = PTMP, C̄ = PTCP, K̄ = PTKP, f̄nl = PTfnl,

f̄ext = PTfext (13)

Eq. (12) can be seen as the reduced-ordermodel by projecting
the Eq. (1) onto the subspace spanned by P, and its reduced
dimension is m. The temporal component of this subprob-
lem can be obtained using the usual direct time integration
method. Therefore, the rankm is expected to bemuch smaller
than N (i.e., m � N ), and the effort to solve the temporal
problem Eq. (12) can greatly improve the computational effi-
ciency of the original problem Eq. (1).

3 Shootingmethod combined with proper
generalized decomposition (PGD)

In this section, we present a novel framework that combines a
proper generalized decomposition (PGD)-basedmodel order
reduction technique with the shooting method to address
computational inefficiency. The primary objective of the
shootingmethod is to determine the initial values. In the tem-
poral problem defined by Eq. (12), the initial values denoted
as y(0) = {q(0)T, q̇(0)T}T ∈ R

2m are required to satisfy the
following periodicity condition [8]:

R = y(0) − y(T ) = {q(0) − q(T )

q̇(0) − q̇(T )
} = 0 (14)

where y(T ) = {q(T )T, q̇(T )T}T ∈ R
2m is the response at

the end of the period T . Equation (14) can be seen as a two-
point boundary value problem (BVP), where the difference
between initial conditions and the responses at t = T is zero.

The numerical implementation of the shooting method
consists of two steps: (1) compute y(T ) through the time
integration, and (2) adjust the initial condition until y(T )

reaches y(0) by solving Eq. (14). The graphical illustration
of this procedure as the evolution of initial values is presented
in Fig. 1. In the first step, time integration can be conducted
in either explicit or implicit schemes, and between these two
approaches, the implicit Newmarkmethod based on the aver-
age acceleration is adopted in this work.

Suppose that the time interval t ∈ [0, T ] is discretized
into NT ) time steps with interval. Denoting each time instant
by ti = i�t(i = 0, . . . , NT ), Eq. (12) at the i + 1 step can
be written as

M̄q̈i+1 + C̄q̇i+1 + K̄qi+1 + f̄nl(ti+1,Pqi+1,Pq̇i+1)

= f̄ext(ti+1) (15)

Based on the average acceleration scheme, the velocity and
acceleration vectors at the i +1 step can be approximated by

q̇i+1 = 2

�t
(qi+1 − qi ) − q̇i

q̈i+1 = 4

(�t)2
(qi+1 − qi ) − 4

�t
q̇i − q̈i

(16)
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Fig. 5 The time response (left) and phase diagram (right) of the cantilever beam with contact nonlinearity

Fig. 6 Spectrum (FFT result) of the time response in the y-direction of
the lower beam at the tip node

Substituting Eq. (16) into Eq. (15) yields

Aqi+1 = b(ti+1) − f̄nl(ti+1,Pqi+1,Pq̇i+1) (17)

where the matrix A ∈ R
m×m and vector b ∈ R

m in Eq. (17)
are computed by

A = 4

(�t)2
M̄ + 2

�t
C̄ + K̄

b(ti+1) = f̄ext(ti+1) + M̄(
4

(�t)2
qi + 4

�t
q̇i + q̈i )

+ C̄(
2

�t
qi + q̇i ) (18)

In order to solve Eq. (17) which is nonlinear, the Newton-
Raphson method is applied as follows:

(
A + ∂ f̄nl(ti+1,Pq

kt
i+1,Pq̇

kt
i+1)

∂qkti+1

)
�qkti+1

= b(ti+1) − f̄nl(ti+1,Pq
kt
i+1,Pq̇

kt
i+1) − Aqkti+1

(19)

where the superscript kt denotes the kt-th iteration count
for the Newton–Raphson procedure in the time integration.
Under the given tolerance εtol,NR, Eq. (19) is solved itera-
tively (qkt+1i+1 = qkti+1 + �qkti+1) until the criterion is satisfied
as follows:

||Aqkti+1 −
(
b(ti+1) − f̄nl(ti+1,Pq

kt
i+1,Pq̇

kt
i+1)

)
|| < εtol,NR

(20)

Once Eq. (17) is converged to obtain the displacement qi+1,
the velocity q̇i+1 and acceleration at the i + 1 step are easily
obtained by Eq. (16).

For the given initial condition y0 = y(0), the solution
yNT = y(T ) at the time T is obtained by time integration. The
next task is to update the initial condition by solving Eq. (14).
Until the residual of Eq. (14)meet the criterion ||R|| < εtol,sh,
the Newton–Raphson method is again employed by

R(yksh0 , yNT ) + ∂R(yksh0 , yNT )

∂yksh0

�yksh0 = 0 (21)

where the superscript ksh is denotes the ksh-th iteration count
for the shooting method (yksh+1

i+1 = ykshi+1 + �ykshi+1). The
derivative of the residual (i.e., Jacobian) ∂R/∂y0 ∈ R

2m×2m

is computed by
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Fig. 7 The first six mode results of C-shooting and PGD-shooting in the cantilever beam with contact nonlinearity

Fig. 8 The modal assurance criterion (MAC) computed by the identi-
fied modes obtained from the C-shooting and PGD-shooting methods
in the first example

∂R
∂y0

= ∂(y0 − yNT )

∂y0
= I −

⎡

⎣
∂qNT
∂y0

∂q̇NT
∂y0

⎤

⎦ (22)

where I ∈ R
2m×2m is the identity matrix. In order to obtain

Eq. (22), taking the derivative of Eq. (17) with respect to y0
yields

(
A + ∂ f̄nl(ti+1,Pqi+1,Pq̇i+1)

∂qi+1

)
∂qi+1

∂y0

= ∂b(ti+1)

∂y0
− ∂ f̄nl(ti+1,Pqi+1,Pq̇i+1)

∂q̇i+1

∂q̇i+1

∂y0

(23)

In the same manner, differentiating Eq. (16) with respect to
y0 yields

∂q̇i+1

∂y0
= 2

�t

(
∂qi+1

∂y0
− ∂qi

∂y0

)
− ∂q̇i

∂y0
∂q̈i+1

∂y0
= 4

�t2

(
∂qi+1

∂y0
− ∂qi

∂y0

)
− 4

�t

∂q̇i
∂y0

− ∂q̈i
∂y0

(24)

Inserting Eq. (24) into Eq. (23), the derivative of the displace-
ment vector is obtained as follows:

∂qi+1

∂y0
=

(
A + ∂ f̄nl(ti+1,Pqi+1,Pq̇i+1)

∂qi+1

)−1

×
[

∂b(ti+1)

∂y0
− ∂ f̄nl(ti+1,Pqi+1,Pq̇i+1)

∂q̇i+1
(

2

�t

(
∂qi+1

∂y0
− ∂qi

∂y0

)
− ∂q̇i

∂y0

]

(25)
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By commencing time integration from the initial time step
t0 = 0, the derivative terms ∂qNT /∂y0 ∈ R

2m×2m and
∂q̇NT /∂y0 ∈ R

2m×2m are finally obtained at the solution
of the last step tNT .

The fixed-point iteration, which solves iteratively the spa-
tial problem and temporal problem, is performed until the
following criterion is satisfied from the initial responsex0m(t):

||xl+1
m (t) − xlm(t)||/||xlm(t)|| < εtol,f (26)

where subscript l denotes the l-th iteration count for the
fixed-point iteration; εtol,f is the tolerance value. After the
approximation converges to the fixed values, it is necessary
to decide whether to use an additional enrichment step. In
this study, the enrichment process is terminated when the
contribution of the last mode is less than the tolerance εtol,e,
namely

elast = ||qm ||/
m∑

i=1

||qi || < εtol,e (27)

where elast denotes the last mode contribution. The overall
flowchart of the proposed framework is summarized in Fig. 2.

4 Numerical validation

In this section, the proposed framework is validated through
three typical but significant engineering examples of nonlin-
ear problemswith contact, friction, and crack. In the example
problems, Young’s modulus E = 210GPa, and density
ρ = 7850 kg · m−3 are assigned to the material properties.
The structural damping is considered in the form of propor-
tional damping as follows:

C = αM + βK (28)

where α = 1 and β = 10−4 are the Rayleigh damping coef-
ficients. The external force is limited to periodic excitation,
and self-excitation is not considered. The convergence of the
proposedmethod is checked using the last mode contribution
elast in Eq. (27) and cumulative energy ecum is defined by

ecum =
m∑

j=1

||q j ||/
M∑

i=1

||qi || (29)

where M is the maximum rank. In the time integration of
the shooting method, time step �t = 10−4 s, the Newton–
Raphson tolerance εtol,NR = 10−4 and the shooting tolerance
εtol,sh = 10−3 are applied. In PGD framework, the fixed-
point iteration tolerance εtol,f = 10−2, and the maximum

Fig. 9 Relative errors of LNM-shooting and PGD-shooting methods
with respect to the number of modes versus time progress in the can-
tilever beam with contact nonlinearity

rank M = 50 are used. To compare the accuracy of the pro-
posed approach (PGD-shooting), we consider the method
where linear normal modes are applied to the shooting
method (LNM-shooting). The conventional shootingmethod
(C-shooting) is considered as the reference [37, 38], and the
relative error is computed by:

εrel = ||x(·)(t) − xC-shooting(t)||
||xC-shooting(t)|| (30)

where x(·) is either PGD-Shooting or LNM-Shooting meth-
ods. Lastly, all the algorithms are developed in MATLAB
R2021b and the CPU time was checked for the comparison
of computational cost.

4.1 Two cantilever beams with a contact interface

The first example is two cantilever beams with the contact
interface, as depicted in Fig. 3. Each beam is modeled as
a linear Euler-Bernoulli bending beam with clamped end,
discretized by 100 finite elements with 101 nodes. The total
DOF of the system is N = 400. The length L , width w,
and height h are 2 m, 0.3 m, and 0.1 m, respectively. An
external force fext = Acos(2π f t) is applied to the center of
each beam. The contact refers to pairs of two nodes situated
within the overlapping region of two beams, with a total of
21 contact pairs identified. The penetration depth δ based on
two contact nodes is depicted in Fig. 3, and can be defined
by

δi = uiu − uil (31)

where the superscript i denotes the index number of a pair of
contact nodes; uiu and uil are the positions of the upper and
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Table 1 Computational efficiency of PGD-shooting compared to theC-
Shooting in the cantilever beam with contact nonlinearity. (CPU time
of C-Shooting is 132.3 s)

Rank Contribution of last mode CPU time (s) Speed-up

5 4.1397e−04 8.00 16.54

10 2.5208e−08 13.10 10.10

15 4.4996e−10 18.90 7.00

20 3.9774e−11 27.95 4.73

lower part of the cantilever beam at the contact nodes. The
contact occurs if δi < 0. Based on the penetration depth δi ,
the elastic normal contact force is given by Hunt-Crossley’s
contact model [39] as follows:

f inl = { 0 when δi ≥ 0
kcnt(δi )n when δi < 0

(32)

where kcnt is the contact stiffness, n is the Hertz contact
exponent. In this example, the contact parameters kcnt =
3.0 × 106 N/m and n = 1 are assigned.

Under the external force fext = Acos(2π f t) with ampli-
tude A = 100N and excitation frequency f = 20Hz, the
last mode contribution along with the cumulative energy of
PGD-shooting versus the number of PGDmodes is presented
in Fig. 4 The obtained results show that as the number of
PGD modes increases, the last mode contribution gradually
decreases in log-scale and the accumulated energy converges.
The number ofmodes under the target tolerance εtol,e = 10−4

is six (m = 6), which ismuch less than theDOFs of the given
system N = 400.

Based on the six PGD modes (m = 6), the time response
and phase diagram of steady-state response are presented in
Fig. 5, and frequency spectrum using fast Fourier transform
(FFT) is depicted in Fig. 6. The quantity of interest (QOI) is
the y-direction displacement and velocity of the lower beam
at the tip node. The time response of the tip displacement is
plotted under the normalized time t/T . It can be seen from
the results that, due to the contact nonlinearity, the steady-
state responses can have multiple frequency components in
addition to the excitation frequency f = 20Hz. Although
the 1X and 2X frequency components are dominant, the
other higher frequency components are not negligible. The
proposed framework can accurately estimate this complex
nonlinear behavior, implying that PGD can contribute effec-
tively to the shooting method to compute the nonlinear
steady-state solutions with fewer modes.

To investigate the dominant subspace of C-shooting, we
conduct the singular value decomposition (SVD) onto the
response matrix F ∈ R

N×NT as

F = [x(0), · · · , x(T )] = U
VT (33)

where U ∈ R
N×N and V ∈ RNT ×NT denote the unitary

matrices. A diagonal matrix 
 ∈ R
N×NT is composed of

the singular values of F in the diagonal terms in descending
order. The dominant modes are then extracted by selecting
the first columns of matrix U . In addition, we considered
selecting the diagonal term of matrix 
 to extract eigenval-
ues and compare the root mean square error of eigenvalues.
Sixmodes are shown inFig. 7,which indicates the close prox-
imity between the two methods. Also, the root mean square
error of eigenvalues 5.8748e−10. For the purpose of quan-
titative evaluation, the Modal Assurance Criterion (MAC)
matrices are computed as follows [40]:

MACi j = |{φi }H {φ j }|({φi }H {φi }
) ({φ j }H {φ j }

) (34)

where i and j are PGD-shooting mode number and C-
shooting mode number, respectively. Figure8 is presented
to identify the similarity of modes between two methods. As
the diagonal terms of the MAC approach 1, we demonstrate
the similarity of themodes obtained from two different meth-
ods. This confirms that the proposed PGD can sequentially
find the dominant behavior of periodic responses without any
precomputation or prior information on response character-
istics.

The relative errors (Eq. (29)) of LNM and PGD shoot-
ing methods are computed for 5 and 20 modes as shown in
Fig. 9. Despite the increment in the relative errors around
0 ≤ t/T ≤ 0.2 and 0.9 ≤ t/T ≤ 1, PGD-shooing with 5
modes shows that the relative errors are less than 10−3 similar
to error of LNM-shooting utilizing 20 modes. This indicates
that the approximation with PGD-shooting is more accu-
rate than that with LNM-shooting, even with a small number
of modes. This is because LNM is obtained by solving the
eigenvalue problem of the linearized system, which cannot
reflect the contact behavior in the steady-state. However, the
proposed PGD-shooting framework by solving spatial and
temporal problems catches the most dominant modes, which
effectively describe the nonlinear response characteristics.

Finally, the CPU times of PGD-shooting and C-shooting
are compared to measure the computational efficiency, as
listed in Table 1. The CPU time of PGD-shooting with 5
modes is about 16.54 times faster than that of C-shooting.
It is observed that the last mode contribution of the tenth
mode is of the order 10−8, which makes it clear that the
PGD approximation is converging. In this example, the
speed of PGD-shooting is more than 10 times faster than
C-shooting. This drastic acceleration in computational effi-
ciency is attributed to the separate representation of the
spatial and temporal components in PGD. Especially, since
the dimension of the temporal problem in the fixed-point iter-
ation is reduced from 2N to 2m, the computation time can
be significantly saved compared to the case of C-shooting.
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Fig. 10 The nonlinear dry
friction interface between two
cantilevers

4.2 Two cantilever beams with nonlinear dry friction

The second example replaces the contact pairs in the first
example with nonlinear dry friction, as shown in Fig. 10. The
friction refers to pairs of two nodes situated within the over-
lapping region of two beams, with a total of 21 friction pairs
identified. The relative velocity based on the two interface
nodes can be represented as

vi = viu − vil (35)

where the superscript i denotes the index number of a pair
of friction nodes; viu and vil are the velocity of the upper and
lower part of the cantilever beam at the friction nodes. A pair
of friction forces acting on the nodes of each beam ismodeled
using the smoothed Coulomb friction model as follows [40]:

f inl = μ fn tanh

(
vi

ε

)
(36)

where μ is the coefficient of friction, fn is the normal force
and ε is the conditioning factor, respectively. The dry friction
parameters are specified by μ fn = 1N and ε = 10−5, and
external force with amplitude A = 10N and frequency f =
100Hz is applied.

Figure11 represents the evolution of last mode contribu-
tion and cumulative energy of PGD-shooting. The last mode
contribution decreases rapidly in the early enrichment steps,
and when the tolerance εtol,e = 10−4 is applied, the PGD-
shooting can approximate the responsewith the sevenmodes.
After sufficient modes are included in which the cumula-
tive energy reaches a converged value, the decaying ratio
of the last mode contribution is reduced and can be slightly
increased.

Using seven modes under the εtol,e = 10−4, Fig. 12 rep-
resents the time response and phase diagram of steady-state
response. TheQOI is the y-direction displacement and veloc-
ity of the lower beam at the tip node, which is the same as the

Fig. 11 Evolution of last mode contribution and cumulative energy
versus the number of PGDmodes in the cantilever beamwith dry friction

previous case. The results indicate that the response curves of
PGD-shooting and C-shooting are close to each other. More-
over, the phase diagram clearly deviates from the ellipse,
indicating that it differs from the perfect ellipse, which is the
characteristic of viscous friction in a linear system, due to
the nonlinear dry friction.

The dominant modes, which are obtained through SVD
from solutions of the C-shooting, are compared with modes
from PGD-shooting, and the results are given in Fig. 13. It
can be seen that the first five modes exhibit close similarity
between two methods, while slight differences are observed
in the sixth and seventh modes. Similar to the first example,
Fig. 14 illustrates MAC matrices that were used to assess
the mutual correlation between modes. The proximity of the
diagonal components of the matrix to the value 1 indicates a
notable similarity of the modes. The root mean square error
of eigenvalues 8.0814e−11. This similarity confirms that the
PGD-shooting mode effectively serves as an approximation
for the response of the C-shooting.
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Fig. 12 The time response (left) and phase diagram (right) of the cantilever beam with dry friction

Fig. 13 The first seven modes of C-shooting and PGD-shooting methods in the cantilever beam with dry friction
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Fig. 14 The modal assurance criterion (MAC) computed by the iden-
tified modes obtained from the C-shooting and PGD-shooting methods
in the second example

Fig. 15 Relative errors of LNM and PGD-shooting methods for the
number of modes in the cantilever beam with dry friction

Figure15 shows the relative errors of LNM-shooting and
PGD-shooting based on the 5 and 20 modes. In this example,
there are two points where the response of QOI passes zero,
which caused instability in calculating the relative error. Even
considering the instability, the relative error of PGD-shooting
is smaller than that of LNM-shooting when the same number
of modes are applied. Also, the relative error of PGD shoot-
ing using 5 modes is smaller than that of 20 linear normal
modes. This confirms that LNM is not suitable for accurately
approximating the response of the friction nonlinear system
in this second example.

The computational efficiency is investigated by varying
the rank, and the computational efficiencies are presented in
Table 2. The results confirm that PGD-shooting is up to 12.56
times faster than C-shooting. Compared with the previous

Table 2 Computational efficiency of PGD-shooting compared to theC-
Shooting in the cantilever beam with contact nonlinearity. (CPU time
of C-Shooting is 23.24 s)

Rank Contribution of last mode CPU time (s) Speed-up

5 1.0167e−03 1.85 12.56

10 8.6717e−06 3.71 6.26

15 1.4534e−06 5.12 4.54

20 9.0610e−08 6.84 3.40

contact nonlinearity, it can be seen that the computation time
of C-shooting in this example is approximately 6 times faster.
This is because dry friction has relatively weak nonlinearity
compared to the contact, leading to fast er convergence with
fewer iterations. The proposed PGD-shooting also inherited
this property, and the CPU time can depend on the type of
nonlinearity.

4.3 Cracked structure

The third example is 3D clamped structure with a crack, as
shown in Fig. 16. The boundary condition of the example
structure is the fixed end at x=0m. Total 480 hexahedral ele-
ments with 873 nodes are used, and total DOF (N ) is 2556.
The length L , widthw, and height h are 2m, 0.1m, and 0.3m,
respectively. The crack is located at a distance of 0.2 m away
from the fixed boundary surface and has a depth of 0.2 m (2/3
of the height h). An external force fext = Acos(2π f t) with
amplitude A = 100N and excitation frequency f = 30Hz
is acting on the right-upper end of the structure.

In this example, a nonlinear contact is caused by the
opening and closing phenomenon at the cracked areas. The
penetration depth delta is shown in Fig. 16 and can be rep-
resented as

δi = uir − uil (37)

where the superscript i denotes the index number of a pair
of contact nodes; uir and uil are the positions of the right
and left part of the cantilever beam at the contact nodes.
Elastic normal contact force is computed by Eq. (31) when
contact occurs if δi < 0. The contact parameters kcnt =
1.0 × 108 N/m and the Hertz contact exponent n = 1 are
applied.

The contribution of last mode and cumulative energy
is depicted in Fig. 17 to check the convergence of PGD-
shooting. The obtained results show that as the number of
PGD modes increases, the last mode contribution decreases
and the cumulative energy converges at the early enrichment
step. The PGD-shooting can approximate the response with
the six modes when the tolerance εtol,e = 10−4 is applied.
Although DOFs in this example are larger than that of the
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Fig. 16 Cantilever structure
with a crack

Fig. 17 Evolution of last mode contribution and cumulative energy
versus the number of PGD modes in the clamped structure with cracks

first and second cantilevered beam examples, the number of
modes to satisfy the target tolerance is less than 10.

Figure18 represents a comparison of the time response
and phase diagram of eachmethod. The x-direction displace-
ment and velocity at the red node in the crack area in Fig. 16
are selected as QOI. Six modes under the tolerance εtol,e =
10−4 are considered for PGD-shooting, and the LNM-
shooting uses the same number of modes obtained from the
eigenvalue problem. The nonlinear response obtained from
C-shooting and PGD-shooting methods are well-matched
to each other. However, LNM-shooting shows a somehow
larger difference from both C-shooting and PGD-shooting in
Fig. 18, which means that the selected 6 linear normal modes
are not suitable for accurately approximating the steady-state
solution nonlinear behavior due to crack nonlinearity. In the
phase diagram, the crack is closed when a penetration depth
is negative, and the crack is opened when they are positive.

Fig. 18 Comparison of time response (left) and phase diagram (right) in x-direction at a reference point in the cantilever structure with cracks
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Fig. 19 Comparison of the first
four mode shapes between each
method(C-shooting,
PGD-shooting, LNM-shooting)
in the clamped structure with
cracks

The LNM-shooting curve does not follow the reference C-
shooting solution and PGD-shooting solutions, especially
when the crack is opened, viz., right-hand side half of the
phase diagram in Fig. 18.

Figure19 depicts the first four mode shapes used by
each method to analyze the reason for the difference in the
resulting responses. Moreover, Fig. 20 presents the MAC,
which enables an evaluation of the similarity between modes
derived from C-shooting method and those obtained through
PGD-shooting method. The root mean square error of eigen-
values is 1.3607e−9. The dominant modes in LNM-Shooting
are bending along the y-axis and the torsion, from which
it is difficult to approximate the opening and closing phe-
nomena at the crack. However, the PGD-shooting modes
sufficiently express the opening and closing nonlinear behav-
iors, the same as in case of C-shooting modes. This example
can effectively show that proposed PGD-shooting can find
modal characteristics which correctly capture the local non-
linear characteristics in the vicinity of crack.

Figure21 shows the relative errors of LNM-shooting and
PGD-shooting. The relative error of PGD-shooting using 5
modes is less than 10−3. Also, with 20 modes, the over-
all relative errors are less than 10−4. However, even though
20 LNMs are used, it is observed that the relative errors of
LNM-Shooting hardly dropped below 10−2. This confirms

that linear normal modes are insufficient to reflect complex
nonlinear behavior. However, the proposed PGD accurately
estimates the solution of C-shooting method by sequentially
finding the dominant nonlinear behavior due to crack.

Finally, the computational cost is investigated by compar-
ing the CPU times of PGD-shooting and C-shooting, and the
results are listed in Table 3. The CPU time of PGD-shooting
using 5 modes is about 30.76 times faster than that of C-
shooting. The last mode contribution of the 15th mode is
approximately of the order 10−8. Even in this case, the speed-
up of PGD-shooting is more than about 10 times faster than
that of C-shooting. In this example, total DOF (N = 2556)
is increased about six times compared to the first and second
example (N = 400). Thus, the dimension of PGD-shooting
is reduced from to m = 6 under the tolerance εtol,e = 10−4,
which leads to significant acceleration in the computational
efficiency compared to C-shooting.

5 Conclusion

In this paper, the PGD-based shooting method is proposed
to capture the dominant nonlinear behavior as well as reduce
computational efforts compared to the conventional shooting
method in calculation of steady-state response of a nonlinear
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Fig. 20 The modal assurance criterion (MAC) computed by the iden-
tified modes obtained from the C-shooting and PGD-shooting methods
in the third example

system.This approach approximates the steady-state solution
as a low-rank sum of tensor products of spatial and tempo-
ral components. The solution is then sought by successive
fixed-point iterations of separated spatial and temporal sub-
problems, then the enrichment step is applied when the PGD
approximation satisfies the target tolerance.

The performance of the proposed method is verified
through three examples including cantilever beamswith con-
tact and friction interfaces; and a cracked 3D structure. To
evaluate the convergence of the proposed framework,we ana-
lyzed the contribution of last mode and cumulative energy
of modes. In all examples, it is observed that the proposed
framework rapidly converges using less than 10 modes. This
indicates that nonlinear characteristics can be captured using
less than 10 modes, which are very small compared to the
total DOF (first and second example: 400, third example:
2556) of the three examples.

Moreover, to assess the accuracy of the PGD approx-
imation, the procedure encompassed the extraction and
subsequent comparison of dominant modes. This task was
executed through the application of singular value decom-
position (SVD) on the response acquired via the utilization
of the C-shooting method. Following this step, the compu-
tation of the relative error associated with the response was
conducted, followed by a comprehensive analysis of the cal-
culated values. The subspace obtained by SVD confirms that
PGD can find the dominant behavior without prior compu-
tation or knowledge of the nonlinear characteristics, such
as contact, friction, and crack. However, linear modes do
not correlate well with this nonlinear behavior, and the cor-
responding relative error decreases slowly as the number
of modes increases. Specifically, focusing on the nonlin-
ear behavior of cracks in the third example, when using 20

Fig. 21 Relative errors of LNM-shooting and PGD-shooting according
to the number of modes: x-direction displacement at the reference point
in the cantilever structure with cracks

Table 3 Computational efficiency of PGD-shooting compared to theC-
Shooting in the cantilever beam with contact nonlinearity. (CPU time
of C-Shooting is 3441.0 s)

Rank Contribution of last mode CPU time (s) Speed-up

5 1.0257e−04 111.85 30.76

10 3.2401e−07 225.01 15.29

15 5.5042e−08 317.04 10.85

20 1.3050e−08 374.89 9.18

modes, the error in approximating with linear normal modes
is around 10−1, whereas the error drops significantly to 10−8

with the PGD modes. This huge difference emphasizes the
higher accuracy of the PGD method compared to the linear
normal mode method.

As a result of CPU time comparison to identify the effi-
ciency, the proposed framework, which involves solving
separated spatial and temporal problems with rank m below
10, significantly reduced the computational cost compared to
C-shooting. The latter deals with the full equation, resulting
in total DOF greater than 40 times the rank m. Therefore,
although the proposed method requires complex implemen-
tation due to decoupled equations, it can be used effectively
without any prior knowledge about nonlinearity of the system
of interest.
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