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Abstract
We present and analyze computationally Geometric MultiGrid (GMG) preconditioning techniques for Generalized Minimal
RESidual (GMRES) iterations to space-time finite element methods (STFEMs) for a coupled hyperbolic–parabolic system
modeling, for instance, flow in deformable porous media. By using a discontinuous temporal test basis, a time marching
scheme is obtained. Higher order approximations that offer the potential to inherit most of the rich structure of solutions to
the continuous problem on computationally feasible grids increase the block partitioning dimension of the algebraic systems,
comprised of generalized saddle point blocks. Our V-cycle GMG preconditioner uses a local Vanka-type smoother. Its action
is defined in an exact mathematical way. Due to nonlocal coupling mechanisms of 348 unknowns, the smoother is applied
on patches of elements. This ensures damping of higher order error frequencies. By numerical experiments of increasing
complexity, the efficiency of the solver for STFEMs of different polynomial order is illustrated and confirmed. Its parallel
scalability is analyzed. Beyond this study of classical performance engineering, the solver’s energy efficiency is investigated
as an additional and emerging dimension in the design and tuning of algorithms on the hardware.

Keywords Poroelasticity · Dynamic Biot model · Space-time finite element approximation · Geometric multigrid method ·
Vanka-type smoother · Computational efficiency · Energy consumption

1 Introduction

1.1 Mathematical model

We present and investigate numerically a geometric multi-
grid preconditioning technique, based on a local Vanka-type
smoother, for solving by GMRES iterations the linear sys-
tems that arise from space-time finite element discretizations
of the coupled hyperbolic–parabolic system of dynamic
poroelasticity

ρ∂2t u − ∇ · (Cε(u)) + α∇p = ρ f , in � × (0, T ] ,

(1.1a)

c0∂t p + α∇ · ∂tu − ∇ · (K∇ p) = g , in � × (0, T ] ,

(1.1b)

u(0) = u0 , ∂tu(0) = u1 ,

B Mathias Anselmann
anselmann@hsu-hh.de

1 Faculty of Mechanical and Civil Engineering, Helmut
Schmidt University, Holstenhofweg 85, 22043 Hamburg,
Germany

p(0) = p0 , in � × {0} , (1.1c)

u = uD , on �D
u × (0, T ] , (1.1d)

− (Cε(u) − α pE)n = tN , on �N
u × (0, T ] , (1.1e)

p = pD , on �D
p × (0, T ] , (1.1f)

− K∇ p · n = pN , on �N
p × (0, T ] . (1.1g)

In (1.1), � ⊂ R
d , with d ∈ {2, 3}, is an open bounded Lips-

chitz domain with outer unit normal vector n to the boundary
∂� and T > 0 is the final time point. We let ∂� = �D

u ∪�N
u

and ∂� = �D
p ∪ �N

p with (open) portions �D
u and �D

p of
non-zeromeasure. Important applications of themodel (1.1),
that is studied as a prototype system, arise in poroelasticity;
cf. [66] and [16–18]. In poroelasticity, Eq. (1.1) are referred
to as the dynamic Biot model. The system (1.1) is used to
describe flowof a slightly compressible viscous fluid through
a deformable porous matrix. The small deformations of the
matrix are described by the Navier equations of linear elas-
ticity, and the diffusive fluid flow is described by Duhamel’s
equation. The unknowns are the effective solid phase dis-
placement u and the effective fluid pressure p. The quantity
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ε(u) := (∇u+ (∇u)�)/2 denotes the symmetrized gradient
or strain tensor and E ∈ R

d,d is the identity matrix. Fur-
ther, ρ is the effective mass density, C is Gassmann’s fourth
order effective elasticity tensor, α is Biot’s pressure-storage
coupling tensor, c0 is the specific storage coefficient and K
is the permeability field. For brevity, the positive quantities
ρ > 0, α > 0 and c0 > 0 as well as the tensors C and K are
assumed to be constant in space and time. The tensors C and
K are assumed to be symmetric and positive definite,

∃k0 > 0 ∀ξ = ξ� ∈ R
d,d :

d∑

i, j,k,l=1

ξi jCi jklξkl ≥ k0

d∑

j,k=1

|ξ jk |2 , (1.2a)

∃k1 > 0 ∀ξ ∈ R
d :

d∑

i, j,=1

ξi Ki jξ j ≥ k1

d∑

i=1

|ξi |2 . (1.2b)

Well-posedness of (1.1) is ensured; cf., e.g. [43, 64, 67].
This can be shown by different mathematical techniques,
by semigroup methods [43, Thm. 2.2], Rothe’s method and
compactness arguments [67, Thm. 4.18 and Cor. 4.33] and
Picard’s theorem [64, Thm. 6.2.1]. In these works, boundary
conditions different to the ones in (1.1d) to (1.1g) are partly
used. System (1.1) is studied as a prototype poromechanical
model. In order to enhance physical realism, generalizations
of the model (1.1) have been developed and investigated in,
e.g. [19, 23, 58].Wenote that the system (1.1) is also formally
equivalent to the classical coupled thermoelasticity system
which describes the flow of heat through an elastic structure;
cf. [22, 43, 52].

1.2 Space-time finite element andmultigrid
techniques

The coupled hyperbolic–parabolic structure of the system
(1.1) of partial differential equations adds a facet of complex-
ity onto its numerical simulation. A natural and promising
approach for the numerical approximation of coupled sys-
tems is obtained by STFEMs that are based on an uniform
treatment of the space and time discretization by variational
techniques. STFEMs enable the discretization of even com-
plex coupling terms that involve combinations of temporal
and spatial derivatives as in (1.1b). Moreover, STFEMs offer
the natural construction of higher order schemes that achieve
accurate results on computationally feasible grids with a
minimum of numerical costs. Time discretizations of higher
regularity can be designed by combining variational and
collocation techniques; cf., e.g. [6]. Finally, space-time adap-
tivity based on a-posteriori error control by duality concepts

and multi-rate in time approaches become feasible; cf., e.g.
[9, 10, 21, 70].

STFEMs have been constructed in differentways. Holistic
space-time methods on completely unstructured space-times
meshes have been proposed and analyzed; cf., e.g. [51,
69] and the references therein. They aim at exploiting
efficiently the enormous compute power of modern mas-
sively parallel high performance architectures. Time-parallel
time-integrations methods like PARAREAL [32] are closely
related to these methods. A further class of STFEMs is based
on time-marching schemes that are constructed by the choice
of a discontinuous temporal test basis, usage of a tensor
product space-time mesh and discretization of the resulting
problems in the spatial variables; cf., e.g. [1, 3, 40, 41] and
the references therein. Suchmethods offer high flexibility for
the finite element discretization of the temporal and spatial
variables. The existing technology of iterative linear solver
can be reused or adapted to the resulting linear systems that
are built from blocks mimicing lower order time discretiza-
tions; cf. (4.6) and (4.7). Combinations of either approaches
also exist. Therein, tensor product space-time meshes are
used, but all time steps are assembled in a global system
matrix and computed fully coupled without any sequential
progressing; cf., e.g. [27, 33]. Within the classes of schemes,
theirmembers can differ by the application of continuous and
discontinuous finite element techniques. For second-order
hyperbolic problems further approaches are addressed in [12,
29, 74].

STFEMs lead to large linear systems of equations. Their
solution demands for highly efficient and robust iterative
solvers, in particular if three space variables are involved.
Different Algebraic Multigrid (AMG) and GMG methods
have been considered and investigated for the solution of
STFEMalgebraic systems, either in holistic or timemarching
form. Also, multigrid methods have been used as precon-
ditioners for Krylov subspace iterations, like GMRES, to
enhance their robustness. For the application of multigrid
techniques in the STFEM context we refer, for instance, to
[3, 27, 31, 33, 39, 40, 42, 51, 59, 63, 70–73]. In [33, 59], block
Jacobi smoothing factors and two-grid convergence factors
for arbitrary order discontinuous Galerkin time discretiza-
tions of a holistic approach are investigated for parabolic
problems by using exponential local Fourier mode analysis.
Instead of an adaptive coarsening as proposed in [33, 39],
a space-time multigrid method, using an adaptive smooth-
ing strategy in combination with standard coarsening in both
temporal and spatial domains, was proposed and investi-
gated by local Fourier analysis for the heat equation in [31].
Therein, the multigrid method is robust for both first-order
Euler and second-order Crank-Nicolson temporal discretiza-
tion schemes. In general, GMG techniques are widely used
and employed in many variants. Flow and saddle point prob-
lems are prominent applications; cf. [28, 47, 77]. Massively
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Fig. 1 Space-time mesh for a piecewise linear (k = 1) discontinuous
Galerkin time discretization and a Lagrange basis w.r.t. the k+1Gauss–
Radau quadrature points of In

parallel implementations of GMGmethods onmodern archi-
tectures show excellent scalability properties and their high
efficiency has been recognized in [34, 35, 54]. Analyses of
GMG methods (cf., e.g. [28, 38, 55]) have been done in par-
ticular for linear systems in saddle point form, arising from
mixed discretizations of the Stokes problem.

In this work, we use discontinuous Galerkin time dis-
cretization [75] with arbitrary polynomial order k ∈ N (for
short dG(k)), recasted as a timemarching scheme. Time inter-
polation on each subinterval In = (tn−1, tn] of the time mesh
Mτ := {I1, . . . , IN }, is done in terms of a Lagrangian basis
with respect to the Gauss–Radau quadrature points of In ;
cf. Fig. 1. For the space discretization, inf-sup stable pairs of
finite element spaces are applied. Alternative approaches are
presented, for instance, in [37, 48]. Dirichlet boundary con-
ditions are implemented in weak form. Two discrete systems
differing by the treatment of the term ∇ · ∂tu in (1.1b) are
proposed. Well-posedness of the discrete problems is proved
for arbitrary polynomial order in space and time. On each
subinterval In , this discretization leads to a linear system of
equations with a (k + 1) × (k + 1) block matrix (cf. (4.6)),
where each of the blocks Aab, for a, b = 1, . . . , k + 1,
exhibits the structure

Aa,b =
(

A B�
−B C

)
(1.3)

with suitably defined submatrices A, B and C in (1.3) and
A itself being of the form in (1.3) again. We note that Aa,b

has a generalized saddle point form and is positive stable
under certain conditions; cf. [14]. The block structure (1.3)
of dG(k) time discretizations imposes an facet of complexity
on the iterative solution of the systems. For the solver we
propose and analyze numerically GMRES iterations that are
preconditioned by a V-cycle GMG method. To the best of
our knowledge, theoretical analyses of GMG methods for
SFFEM block partitioned systems are still missing in the
literature.

GMG methods exploit different mesh levels of the under-
lying problem in order to reduce different frequencies of the

error by employing a relatively cheap smoother on each grid
level. Different iterative methods have been proposed in the
literature as smoothing procedure; cf. [28] and the references
therein. They range from low-cost methods like Richardson,
Jacobi, and SOR applied to the normal equation of the linear
system to collective smoothers, that are based on the solution
of small local problems. Here, we use aVanka-type smoother
[47, 55, 80] of the family of collective methods. Numerical
computations have shown that an elementwise application of
the Vanka smoother fails to reduce the high frequencies of
the error on the multigrid levels. The reason for this comes
through interelement couplings of spatial degrees of freedom
of the scalar variable p in (1.1). As a remedy, we propose
the application of the Vanka-type smoother on cell patches
that are linked to the grid nodes and built from four neigh-
bored cells in two dimensions and eight neighbored elements
in three dimensions, with appropriate adaptations for grid
nodes close to or on the domain’s boundary. Further, an aver-
aging of the patchwise upates and relaxation strategy in the
smoothing steps are employed. Then an efficient damping of
frequencies in the error on themultigrid hierarchy is obtained.
This Vanka-type smoother is presented in an mathematically
exact way and its performance properties are investigated by
numerical experiments of increasing complexity. Our numer-
ical experiments confirm that GMRES iterations that are
preconditioned by the proposed GMG method converge at
a desired rate that is (nearly) independent of the mesh sizes
in space and time; cf. also [3, 4].

1.3 Energy efficiency

In the past, performance engineering and hardware engi-
neering for large scale simulations of physical phenomena
have been eclipsed by the longing for ever more per-
formance where faster seemed to be the only paradigm.
”Classical” performance engineering has been applied to
enhance, firstly, the efficiency of the current method on
the target hardware or to find numerical alternatives that
might better fit to the hardware in use and/or, secondly, to
develop other numericalmethods can be found to improve the
numerical efficiency. Tuning both simultaneously is called
hardware-oriented numerics in the literature; cf. [78, 79].
Since recently, a growing awareness of energy consump-
tion in computational science, particularly, in extreme scale
computing with a view to exascale computing has raised;
cf., e.g. [62]. It has been observed that as a consequence
of decades of performance-centric hardware development
there is a huge gap between pure performance and energy
efficiency. An analysis of our algorithm’s parallel scaling
and energy consumption properties by performance models
exceeds the scope of this work and would overburden it.
However, since energy consumption of application codes on
the available hardware is of growing awareness and a key
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for future improvements, we study the energy consumption
and parallel scaling properties of our algorithm and its imple-
mentation by three-dimensional numerical experiments. The
development of a proper model that quantifies performance
and energy efficiency in some appropriate metric and can be
used for a code optimization still deserves research and is
left as a work for the future.

1.4 Outline of the work

This work is organized as follows. In Sect. 2we introduce our
notation. In Sect. 3 the space-time finite element approxima-
tion of arbitrary order of (1.1) is derived and well-posedness
of the fully discrete problem is proved. Our GMRES–GMG
solver is introduced in Sect. 4. In Sect. 5 our performed
numerical computations for analyzing the performance prop-
erties of the overall approach are presented. In Sect. 6 we end
with a summary and conclusions. In the appendix, supple-
mentary results are summarized.

2 Basic notation

In this work, standard notation is used. We denote by H1(�)

the Sobolev space of L2(�) functions with first-order weak
derivatives in L2(�). Further, H−1(�) is the dual space of
H1
0 (�), with the standardmodification if the Dirichlet condi-

tion is prescribed on a part�D ⊂ � of the boundary ∂� only;
cf. (1.1). The latter is not explicitly borne out by the notation
of H−1(�). It is always clear from the context. For vector-
valued functions we write those spaces bold. By 〈·, ·〉S we
denote the L2(S) inner product for a domain S. For S = �,
we simply write 〈·, ·〉. For the norms of the Sobolev spaces
the notation is

‖ · ‖ := ‖ · ‖L2 , ‖ · ‖1 := ‖ · ‖H1 .

For short, we put

Q := L2(�) and V :=
(
H1(�)

)d
.

For a Banach space B, we let L2(0, T ; B) be the Bochner
space of B-valued functions, equipped with its natural norm.
For a subinterval J ⊆ [0, T ], we will use the notation
L2(J ; B) for the corresponding Bochner space. In what fol-
lows, the constant c is generic and indepedent of the size of
the space and time meshes.

For the time discretization, we decompose the time inter-
val I := (0, T ] into N subintervals In = (tn−1, tn], n =
1, . . . , N , where 0 = t0 < t1 < · · · < tN−1 < tN = T
such that I = ⋃N

n=1 In . We put τ := maxn=1,...,N τn with
τn = tn − tn−1. Further, the setMτ := {I1, . . . , IN } of time

intervals is called the time mesh. For a Banach space B and
any k ∈ N0, we let

Pk(In; B) :=
{
wτ : In → B,

wτ (t) =
k∑

j=0

W j t j ∀t ∈ In, W j ∈ B ∀ j

}
.

(2.1)

For k ∈ N0 we define the space of piecewise polynomial
functions in time with values in B by

Y k
τ (B) := {

wτ : I → B | wτ |In ∈ Pk(In; B)

∀In ∈ Mτ , wτ (0) ∈ B} ⊂ L2(I ; B). (2.2)

For any function w : I → B that is piecewise sufficiently
smooth with respect to the time mesh Mτ , for instance for
w ∈ Y k

τ (B), we define the right-hand sided and left-hand
sided limit at a mesh point tn by

w+(tn) := lim
t→tn+0

w(t), for n < N , and

w−(tn) := lim
t→tn−0

w(t), for n > 0. (2.3)

For the integration in time of a discontinuous Galerkin
approach it is natural to use the right-sided (k + 1)-point
Gauss–Radau quadrature formula. On the subinterval In , it
reads as

Qn(w) := τn

2

k+1∑

μ=1

ω̂GR
μ w(tGRn,μ) ≈

∫

In
w(t) dt, (2.4)

where tGRn,μ = Tn(t̂GRμ ), for μ = 1, . . . , k + 1, are the Gauss–
Radau quadrature points on In and ω̂GR

μ the corresponding
weights. Here, Tn(t̂) := (tn−1 + tn)/2+ (τn/2)t̂ is the affine
transformation from Î = [−1, 1] to In and t̂GRμ are theGauss–

Radau quadrature points on Î . Formula (2.4) is exact for all
polynomials w ∈ P2k(In;R). In particular, there holds that
tGRn,k+1 = tn .

For the space discretization, let {Tl}Ll=0 be the decomposi-
tion on every multigrid level of � into (open) quadrilaterals
or hexahedrals, with Tl = {Ki | i = 1, . . . , N el

l }, for
l = 0, . . . , L . These element types are chosen for our imple-
mentation (cf. Sect. 5) that is based on the deal.II library
[7]. The finest partition is Th = TL . We assume that all
the partitions {Tl}Ll=0 are quasi-uniform with characteristic
mesh size hl and hl = γ hl−1, γ ∈ (0, 1) and h0 = O(1).
On the actual mesh level, the finite element spaces used for
approximating the unknowns u and p of (1.1) are of the form
(l ∈ {0, . . . , L})
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V l
hl := {vh ∈ V ∩ C(�)d :

vh |K ∈ V (K ) for all K ∈ Tl} , (2.5a)

Ql,cont
hl

:= {qh ∈ Q ∩ C(�) :
qh |K ∈ Q(K ) for all K ∈ Tl} , (2.5b)

Ql,disc
hl

:= {qh ∈ Q : qh |K ∈ Q(K ) for all K ∈ Tl} .

(2.5c)

By an abuse of notation, we skip the index l of the mesh level
when it is clear from the context and put

V h := V l
h

Qh := Ql
h with Ql

h ∈ {Ql,cont
h , Ql,disc

h }. (2.6)

For the local spacesV (K ) and Q(K )weemploymapped ver-
sions of the pairsQd

r /Qr−1 andQd
r /P

disc
r−1, for r ≥ 2. The pair

Q
d
r /Qr−1 with a (globally) continuous approximation of the

scalar variable p in Ql,cont
h is the well-known Taylor–Hood

family of finite element spaces. The pairQd
r /P

disc
r−1 comprises

a discontinuous approximation of p in the broken polynomial
space Ql,disc

h . For the Navier–Stokes equations, the multigrid
method has shown to work best for higher-order finite ele-
ment spaces with discontinuous discrete pressure; cf. [46]
and [3]. For a further discussion of mapped and unmapped
versions of the pairQd

r /P
disc
r−1 we refer to [44, Subsec. 3.6.4].

For an analysis of stability properties of (spatial) discretiza-
tions for the quasi-static Biot system we refer to, e.g. [61].
Both choices of the local finite element spaces, Qd

r /Qr−1

and Q
d
r /P

disc
r−1, satisfy under some restrictions (cf. [82]) the

inf–sup stability condition,

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

b(vh, qh)

‖vh‖1 ‖qh‖ ≥ β > 0, (2.7)

for some constant β independent of h; cf. [44, 57]. In [8, 56]
optimal interpolation error estimates for mapped finite ele-
ments on quadrilaterals and hexahedra are studied. It turned
out that the optimality is given for special families of trian-
gulations. In two and three dimensions, families of meshes,
which are obtained by a regular uniform refinement of an
initial coarse grid, are among these special families. Such
a regular refinement that is natural for the construction of
the multigrid hierarchy is used in our computations. Thus,
for v ∈ Hr+1(�) and q ∈ Hr (�) there exist approxima-
tions ihv ∈ V h and jhq ∈ Qh such that, with some generic
constant c > 0 independent of h,

‖v − ihv‖ + h‖∇(v − ihv)‖ ≤ chr+1, (2.8a)

‖q − jhq‖ ≤ chr . (2.8b)

3 Space-time finite element approximation

For the discretization we rewrite (1.1) as a first-order in time
system by introducing the new variable v := ∂tu. Then, we
recover (1.1a) and (1.1b) as

∂tu − v = 0, (3.1a)

ρ∂tv − ∇ · (Cε(u)) + α∇p = ρ f , (3.1b)

c0∂t p + α∇ · v − ∇ · (K∇p) = g (3.1c)

along with the initial and boundary conditions (1.1c) to
(1.1g). For the approximation of (3.1) we use a monolithic
approach to capture efficiently the dynamics of (3.1) and
avoid additional consistency errors. An iterative coupling
scheme for (3.1) is proposed, for instance, in [19].We employ
discontinuous Galerkin methods (cf. [75]) for the discretiza-
tion of the time variable and inf-sup stable pairs of finite
elements (cf. Sect. 2) for the approximation of the space
variables in (3.1). The derivation of the discrete scheme, pre-
sented below in Problem B.1, is standard and not explicitly
presented here. It follows the lines of [11], where continu-
ous in time Galerkin methods are applied to (1.1), and [3,
4, 41, 42], where discontinuous in time Galerkin methods
are used to discretize the Navier–Stokes system. In contrast
to [11], Dirichlet boundary conditions are implemented here
by Nitsche’s method [15, 30, 60]. This yields a strong link
between two different families of inf-stable finite element
pairs for the space discretization. The main reason for using
Nitsche’s method here comes through our more general soft-
ware framework. Nitsche’s method captures problems on
evolving domains solved on fixed computational background
grids (cf. [5]).Wenote thatNitsche’smethod does not perturb
the convergence behavior of the space-time discretization; cf.
Sect. 5.

For the discrete scheme we need further notation. On the
multigrid level l with decomposition Tl , for wh,χh ∈ V h
and qh, ψh ∈ Qh we define

Aγ (wh,χh) := 〈Cε(wh), ε(χh)〉
− 〈Cε(wh)n,χh〉�D

u
+ aγ (wh,χh) , (3.2a)

C(χh, qh) := −α〈∇ · χh, qh〉 + α〈χh · n, qh〉�D
u

, (3.2b)

Bγ (qh, ψh) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈K∇qh,∇ψh〉
−〈K∇qh · n, ψh〉�D

p
+ bγ (qh, ψh) ,

for Qh = Ql,cont
h ,∑

K∈Tl
〈K∇qh,∇ψh〉K

−
∑

F∈Fh

(〈{{K∇qh}} · n, {{ψh}}〉F
+〈{{qh}}, {{K∇ψh}} · n〉F

)

+
∑

F∈Fh

γ

hF
〈{{qh}}, {{ψh}}〉F ,

for Qh = Ql,disc
h ,

(3.2c)
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where, for w ∈ H1/2(�D
u ) and q ∈ H1/2(�D

p ),

aγ (w,χh) := −〈w,Cε(χh)n〉�D
u

+ γa

hF
〈w,χh〉�D

u
, (3.3a)

bγ (q, ψh) := −〈q, K∇ψh · n〉�D
p

+ γb

hF
〈q, ψh〉�D

p
. (3.3b)

The second of the options in (3.2c) amounts to a symmetric
interior penalty discontinuous Galerkin discretization of the
scalar variable p; cf., e.g. [26, Sec. 4.2]. As usual, the average
{{·}} and jump {{·}} of a function w ∈ L2(�) on an interior
face F between two elements K+ and K−, such that F =
∂K+ ∩ ∂K−, are

{{w}} := 1

2
(w+ + w−) and {{w}} := w+ − w−.

For boundary faces F ⊂ ∂K ∩ ∂�, we set {{w}} := w|K
and {{w}} := w|K . The set of all faces (interior and bound-
ary faces) on the multigrid level Tl is denoted by Fh . In the
second of the options in (3.2c), the parameter γ of the last
term has to be chosen sufficiently large, such that discrete
coercivity on Qh of Bγ is preserved. The local length hF

is chosen as hF = {{hF }} := 1
2 (|K+|d + |K−|d) with Haus-

dorff measure |·|d ; cf. [26, p. 125]. For boundary faces we set
hF := |K |d . In (3.3), the quantities γa and γb are the algo-
rithmic parameters of the stabilization terms in the Nitsche
formulation. To ensure well-posedness of the discrete sys-
tems the parameters γa and γb have to be chosen sufficiently
large; cf. Appendix A. Based on our numerical experiments
we choose the algorithmic parameter γ , γa and γb in (3.2c)
and (3.3) as

γa = 5 · 104 · r · (r + 1) and

γ = γb = 1

2
· r · (r − 1) ,

where r is the polynomial degree of the finite element space
(2.5a) for the displacement variable.

Finally, for given f ∈ H−1(�), uD ∈ H1/2(�D
u ),

tN ∈ H−1/2(�N
u ) and g ∈ H−1(�), pD ∈ H1/2(�D

p ),

pN ∈ H−1/2(�N
p ) for Qh = Ql,cont

h , and properly fitted

assumptions about the data for Qh = Ql,disc
h , we put

Fγ (χh) := 〈 f , χh〉 − 〈tN ,χh〉�N
u

+ aγ (uD,χh) , (3.4a)

Gγ (ψh) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈g, ψh〉 − α〈vD · n, ψh〉�D
u−〈pN , ψh〉�N

p
+ bγ (pD, ψh) ,

for Qh = Ql,cont
h ,

〈g, ψh〉 −
∑

F∈FD,u
h

α〈vD · n, ψh〉F

−
∑

F∈FD,p
h

〈pD, {{K∇ψh}} · n〉F

+
∑

F∈FD,p
h

γ

h
〈pD, {{ψh}}〉F

−
∑

F⊂FN ,p
h

〈pN , {{ψh}}〉F ,

for Qh = Ql,disc
h .

(3.4b)

In the second of the options in (3.4b), we denote by FD,p
h ⊂

Fh andFN ,p
h ⊂ Fh the set of all element faces on the bound-

ary parts �D
p and �N

p , respectively; cf. (1.1). The second of
the terms on the right-hand side of (3.4b), with vD = ∂tuD ,
is added to ensure consistency of the form (3.2b) in the fully
discrete formulation (3.5c) of (1.1b), i.e., that the discrete
equation (3.5c) is satisfied by the continuous solution to (1.1).

We use a temporal test basis that is supported on the
subintervals In ; cf., e.g. [3, 41]. Then, a time marching
process is obtained. In that, we assume that the trajecto-
ries uτ,h , vτ,h and pτ,h have been computed before for all
t ∈ [0, tn−1], starting with approximations uτ,h(t0) := u0,h ,
vτ,h(t0) := u1,h and pτ,h(t0) := p0,h of the initial values u0,
v0 and p0,h . Then, we consider solving the following local
problem on In .

Problem 3.1 (Numerically integrated In-problem) For given
un−1
h := uτ,h(tn−1) ∈ V h, vn−1

h := vτ,h(tn−1) ∈ V h, and
pn−1
h := pτ,h(tn−1) ∈ Qh with uτ,h(t0) := u0,h, vτ,h(t0) :=

u1,h and pτ,h(t0) := p0,h, find (uτ,h, vτ,h, pτ,h) ∈ Pk

(In; V h) × Pk(In; V h) × Pk(In; Qh) such that

Qn
(〈∂tuτ,h,φτ,h〉 − 〈vτ,h,φτ,h〉

)

+ 〈u+
τ,h(tn−1),φ

+
τ,h(tn−1)〉 = 〈un−1

h ,φ+
τ,h(tn−1)〉 ,

(3.5a)

Qn

(
〈ρ∂tvτ,h,χ τ,h〉 + Aγ (uτ,h,χ τ,h) + C(χ τ,h, pτ,h)

)

+ 〈ρv+
τ,h(tn−1),χ

+
τ,h(tn−1)〉

= Qn

(
Fγ (χ τ,h)

)
+ 〈ρvn−1

h , χ+
τ,h(tn−1)〉 ,

(3.5b)

Qn

(
〈c0∂t pτ,h, ψτ,h〉 − C(vτ,h, ψτ,h) + Bγ (pτ,h, ψτ,h)

)

+ 〈c0 p+
τ,h(tn−1), ψ

+
τ,h(tn−1)〉

= Qn

(
Gγ (ψτ,h)

)
+ 〈c0 pn−1

h , ψ+
τ,h(tn−1)〉

(3.5c)

for all (φτ,h,χ τ,h, ψτ,h) ∈ Pk(In; V h) × Pk(In; V h) ×
Pk(In; Qh).

The trajectories definedbyProblem3.1, forn = 1, . . . , N ,
satisfy that uτ,h, vτ,h ∈ Y k

τ (V h) and pτ,h ∈ Y k
τ (Qh). The

quadrature formulas on the left hand-side of (3.5) can be
rewritten by time integrals since the Gauss–Radau formula
(2.4) is exact for all polynomials w ∈ P2k(In;R). Well-
posedness of Problem 3.1 is ensured.

Lemma 3.2 (Existence and uniqueness of solutions to Prob-
lem 3.1) Problem 3.1 admits a unique solution.

Proof We prove Lem. 3.2 for Qh = Ql,cont
h only, thus

assuming the first of the options in (3.2c) and (3.4b).
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For Qh = Ql,disc
h , the proof can be done similarly by

using, in addition, standard techniques of error analysis
for discontinuous Galerkin methods; cf., e.g. [26, Sec. 4].
Since Problem (3.5) is finite-dimensional, it suffices to
prove uniqueness of the solution. Existence of the solu-
tion then follows directly from its uniqueness. Let now
(u(1)

τ,h, v
(1)
τ,h, p

(1)
τ,h) ∈ Pk(In; V h) × Pk(In; V h) × Pk(In; Qh)

and (u(2)
τ,h, v

(2)
τ,h, p

(2)
τ,h) ∈ Pk(In; V h)×Pk(In; V h)×Pk(In; Qh)

denote two triples of solutions to (3.5a). Their differences
(uτ,h, vτ,h, pτ,h) = (u(1)

τ,h, v
(1)
τ,h, p

(1)
τ,h) − (u(2)

τ,h, v
(2)
τ,h, p

(2)
τ,h)

then satisfy the equations

Qn
(〈∂tuτ,h,φτ,h〉 − 〈vτ,h,φτ,h〉

)

+ 〈u+
τ,h(tn−1),φ

+
τ,h(tn−1)〉 = 0 , (3.6a)

Qn

(
〈ρ∂tvτ,h,χ τ,h〉 + Aγ (uτ,h,χ τ,h) + C(χ τ,h, pτ,h)

)

+ 〈ρv+
τ,h(tn−1),χ

+
τ,h(tn−1)〉 = 0 , (3.6b)

Qn

(
〈c0∂t pτ,h, ψτ,h〉 − C(vτ,h, ψτ,h) + Bγ (pτ,h, ψτ,h)

)

+ 〈c0 p+
τ,h(tn−1), ψ

+
τ,h(tn−1)〉 = 0 (3.6c)

for all (φτ,h,χ τ,h, ψτ,h) ∈ Pk(In; V h) × Pk(In; V h) ×
Pk(In; Qh). We let Aγ : V h �→ V h be the discrete oper-
ator that is defined, for wh ∈ V h and all φh ∈ V h , by

〈Aγ wh,φh〉 = Aγ (wh,φh). (3.7)

In (3.6) we choose φτ,h = Aγ uτ,h , χ τ,h = vτ,h and ψτ,h =
pτ,h . Adding the resulting equations yields that

Qn
(〈∂tuτ,h, Aγ uτ,h〉 + 〈ρ∂tvτ,h, vτ,h〉
+ 〈c0∂t pτ,h, pτ,h〉 + Bγ (pτ,h, pτ,h)

)

+ 〈u+
τ,h(tn−1), Aγ u

+
τ,h(tn−1)〉

+ 〈ρv+
τ,h(tn−1), v

+
τ,h(tn−1)〉

+ 〈c0 p+
τ,h(tn−1), p

+
τ,h(tn−1)〉 = 0.

(3.8)

Recalling the exactness of the Gauss–Radau formula (2.4)
for w ∈ P2k(In;R), Eq. (3.8) yields that

1

2

∫ tn

tn−1

d

dt

(〈Aγ uτ,h, uτ,h〉 + 〈ρvτ,h, vτ,h〉

+ 〈c0 pτ,h, pτ,h〉
)
dt + Qn

(
Bγ (pτ,h, pτ,h)

)

+ 〈u+
τ,h(tn−1), Aγ u

+
τ,h(tn−1)〉

+ 〈ρv+
τ,h(tn−1), v

+
τ,h(tn−1)〉

+ 〈c0 p+
τ,h(tn−1), p

+
τ,h(tn−1)〉 = 0.

Using (3.7), this shows that

Aγ (uτ,h(tn), uτ,h(tn)) + 〈ρvτ,h(tn), vτ,h(tn)〉
+〈c0 pτ,h(tn), pτ,h(tn)〉 + 2Qn

(
Bγ (pτ,h, pτ,h)

)

+Aγ (u+
τ,h(tn−1), u

+
τ,h(tn−1))

+〈ρv+
τ,h(tn−1), v

+
τ,h(tn−1)〉

+〈c0 p+
τ,h(tn−1), p

+
τ,h(tn−1)〉 = 0. (3.9)

From (3.9) alongwith the discrete coercivity properties (A.3)
of Aγ and (A.5) of Bγ we directly deduce that

uτ,h(tn) = u+
τ,h(tn−1) = 0,

vτ,h(tn) = v+
τ,h(tn−1) = 0,

pτ,h(tn) = p+
τ,h(tn−1) = 0, (3.10)

as well as

pτ,h
(
tGRn,μ

) = 0, for μ = 1, . . . , k + 1. (3.11)

In (3.11) we recall that tGRn,k+1 = tn . Relation (3.11) implies
that pτ,h ≡ 0 on In . For k = 0, the uniqueness of uτ,h and
vτ,h is already proved by (3.10).

From now, let k ≥ 1. To prove that uτ,h ≡ 0 and vτ,h ≡ 0,
by (3.10) it is sufficient to show that uτ,h(tGn,μ) = 0 and
vτ,h(tGn,μ) = 0, for μ = 1, . . . , k, where tGn,μ, for μ =
1, . . . , k, are the nodes of the k-point Gauss quadrature for-
mula on In that is exact for all polynomials in P2k−1(In;R).
This is done now. Recalling (3.10), we conclude from (3.6a)
by a suitable choice of test functions that

∂tuτ,h(t
GR
n,μ) = vτ,h(t

GR
n,μ), for μ = 1, . . . , k. (3.12)

Next, choosing χτ,h = vτ,h in (3.6b) and recalling (3.12)
imply that

Qn

(
〈ρ∂tvτ,h, vτ,h〉 + Aγ (uτ,h, ∂tuτ,h)

)
= 0 (3.13)

By the exactness of the Gauss–Radau formula (2.4) for all
w ∈ P2k(In;R) we have from (3.13) that

∫ tn

tn−1

〈ρ∂tvτ,h, vτ,h〉 dt

+1

2

∫ tn

tn−1

d

dt
Aγ (uτ,h, uτ,h) dt = 0. (3.14)

The second of the terms in (3.14) vanishes by (3.10). The
stability result of [49, Lem. 2.1] then implies that

vτ,h(t
G
n,μ) = 0, for μ = 1, . . . , k. (3.15)

From (3.15) along with (3.10) we then deduce that vτ,h ≡ 0
on In . Choosing the test function φτ,h = uτh in (3.6), using
vτ,h ≡ 0 and applying the stability result [49, Lem. 2.1], it
follows that

uτ,h(t
G
n,μ) = 0, for μ = 1, . . . , k. (3.16)
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From (3.16) along with (3.10) we then have that uτ,h ≡ 0
on In . Thus uniqueness of solutions to (3.5) and, thereby,
well-posedness of Problem 3.1 is thus ensured.

In Appendix B an alternative formulation for the system
(3.6) is still presented. It is based on using the time derivative
∂tuτ,h of the primal variable uτ,h instead of the auxiliary
variable vτ,h in (3.5c). In this case, an additional surface
integral has to be included; cf. Eq. (B.1c).

4 Algebraic solver by geometric multigrid
preconditioned GMRES iterations

On the algebraic level, the variational problem (3.5) leads
to linear systems of equations with complex block struc-
ture, in particular if higher order (piecewise) polynomial
degrees k for the approximation of the temporal variable
are involved. This demands for a robust and efficient linear
solver, in particular in the three-dimensional case � ⊂ R

3.
For solving (3.5) we consider using flexible GMRES iter-
ations [65] that are preconditioned by a V-cycle geometric
multigrid method (GMG) based on a local Vanka smoother.
In [4], the GMG preconditioned GMRES solver is further
embedded in a Newton iteration for solving space-time finite
element discretizations of the Navier–Stokes system. Thus,
nonlinear extensions of the prototype model (1.1) become
feasible as well by our approach. For non-smooth nonlinear-
ities, fixed point iterations, like the L-scheme [50], can be
used instead of Newton’s method.

To derive the algebraic formof (3.5), the discrete functions
uτ,h , vτ,h and pτ,h are represented in a Lagrangian basis
{χn,m}k+1

m=1 ⊂ Pk(In;R) with respect to the (k + 1) Gauss–
Radau quadrature points of In , such that

uτ,h |In (x, t) =
k+1∑

m=1

un,m(x)χn,m(t) , (4.1a)

vτ,h |In (x, t) =
k+1∑

m=1

vn,m(x)χn,m(t) , (4.1b)

pτ,h |In (x, t) =
k+1∑

m=1

pn,m(x)χn,m(t) . (4.1c)

The resulting coefficient functions (un,m, vn,m, pn,m) ∈
V h ×V h ×Qh , form = 1, . . . , k+1, are developed in terms
of the finite element basis of V h and Qh , respectively. Let-
ting V h = span{ψ1, . . . ,ψ R} and Qh = span{ξ1, . . . , ξS},
we get that

un,m(x) =
R∑

r=1

u(r)
n,mψr (x), (4.2a)

vn,m(x) =
R∑

r=1

v(r)
n,mψr (x), (4.2b)

pn,m(x) =
S∑

s=1

p(s)
n,m ξs(x). (4.2c)

For the coefficients of the expansions in (4.2a) we define the
subvectors

Un,m = (
u(1)
n,m , . . . , u(R)

n,m

)�
, V n,m = (

v(1)
n,m , . . . , v(R)

n,m

)�
, (4.3a)

Pn,m = (
p(1)
n,m , . . . , p(S)

n,m

)�
, for m = 1, . . . , k + 1 , (4.3b)

of the degrees of freedom for all Gauss–Radau quadrature
points and the global solution vector on In by

X�
n = (

(V n,1)
�, (Un,1)

�, (Pn,1)
�, . . . ,

(V n,k+1)
�, (Un,k+1)

�, (Pn,k+1)
�)

. (4.4)

We note that Xn comprises the (spatial) degrees of free-
dom for all (k + 1) Gauss–Radau nodes, representing the
Lagrange interpolation points in time, of the subinterval In .
The approximations at these time points will be computed
simultaneously. Substituting (4.1) and (4.2a) into (3.5) and
choosing in (3.5) the test basis {χn,mψr , χn,mψr , χn,mξs},
for m = 1, . . . , k + 1, r = 1, . . . , R and s = 1, . . . , S,
built from the trial basis in (4.1) and (4.2a), we obtain the
following algebraic system.

Problem 4.1 (Algebraic In-problem) For the vector Xn,
defined in (4.4) along with (4.3), of the coefficients of the
expansions (4.2a) solve

AnXn = Fn, (4.5)

where the matrix An exhibits the (k + 1) × (k + 1) block
structure

An = (
Aa,b

)k+1
a,b=1 (4.6)

with block submatrices Aa,b, for a, b = 1, . . . , k+1, defined
by

Aa,b =
⎛

⎜⎝
−M0,V h

a,b M1,V h
a,b 0

M1,V h
a,b Sa,b + N A

a,b C�
a,b

0 −Ca,b M1,Qh
a,b + Ba,b + N B

a,b

⎞

⎟⎠ .

(4.7)
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For the choice Ql
h = Ql,cont

h in (2.6), the explicit represen-
tation of the submatrices in (4.7) reads as

(
M1,V h

a,b

)
i, j := Qn

(〈ρ∂tχn,bψ j , χn,aψ i 〉
)

+ 〈ρχn,b(t
+
n−1)ψ j , χn,a(t

+
n−1)ψ i 〉,

(
M0,V h

a,b

)
i, j := Qn

(〈ρχn,bψ j , χn,aψ i 〉
)
,

(
Sa,b

)
i, j := Qn

(〈Cε(χn,bψ j ), ε(χn,aψ i )〉
+ 〈Cε(χn,bψ j )n, χn,aψ i 〉�D

u

)
,

(
N A

a,b

)
i, j := Qn

(
aγ (χn,bψ i , χn,aψ i )

)

as well as

(
Ca,b

)
r , j := Qn

( − α〈∇ · (χn,bψ j ), χn,aξr 〉
+ α〈χn,bψ j · n, χn,aξr 〉�D

u

)
,

(
M1,Qh

a,b

)
r ,s := Qn

(〈c0∂tχn,bξs, χn,aξr 〉
)

+ 〈c0χn,b(t
+
n−1)ξs, χn,a(t

+
n−1)ξr 〉

)

and

(
Ba,b

)
r ,s := Qn

(〈K∇(χn,bξs),∇(χn,aξr )〉
− 〈K∇(χn,bξ s) · n, χn,aξr 〉�D

p

)
,

(
N B

a,b

)
r ,s := Qn

(
bγ (χn,bξs, χn,aξr )

)
,

with aγ (·, ·) and bγ (·, ·) being defined in (3.3), for i, j =
1, . . . , R and r , s = 1, . . . , S. The vector Fn in (4.5) is
defined similarly, according to (3.5) along with (3.4). Its def-
inition is skipped here for brevity. We note that (3.1a) is still
multiplied by ρ > 0 for the definition of the first row in (4.7).
Multiplying the first block row in (4.7) by (−1) and recalling
the symmetry of M1,V h

a,b , for a, b = 1, . . . k, the upper left
2 × 2 block subsystem in (4.7) itself admits the structure of
the matrix (1.3). This might be exploited in future theorecti-
cal analyses of the solver or an improvement of the GMRES
iterations (cf. [14, 36]), but is beyond the scope of the current
work. For the family of finite element pairswith Ql

h = Ql,disc
h

in (2.6), the definition of Ba,b has to be adjusted to the second
of the options in (3.2c). Further, the contribution N B

a,b has to
be omitted.

Increasing values of the piecewise polynomial degree in
time k enhance the complexity of the block structure of the
system matrix An in (4.6) along with (4.7). They impose an
additional facet of challenge on the construction of efficient
block preconditioners for (4.5). We solve the linear system
(4.5) for the unknown Xn on the subinterval In by flexible
GMRES iterations [65] that are preconditioned by a V-cycle
geometric multigrid (GMG) algorithm [76]. The ingredients
of the GMRES–GMG approach are summarized in Alg. 4.1.

Algorithm 4.1: GMRES–GMG Solver
• Left preconditioning of each GMRES iteration by a single

V-cycle GMG iteration.
• Prolongation to grids by interpolation and application of the

transpose operator for restriction.
• Jmax pre- and post-smoothing steps on each grid level {Tl } for

l = 1, . . . , L .
• Application of a (parallel) direct solver on the coarsest mesh

partition T0.

In our computational studies of Sect. 5, the standard choice
is Jmax = 4 and the parallel direct solver is SuperLU_DIST
[53]. For the restriction and prolongation operators the deal.II
classesMultiGrid and MGTransferPrebuilt are used. For the
deal.II finite element library we refer to [7]. For details of
the parallel implementation by the message passing inter-
face (MPI) protocol of our GMG approach we also refer
to [3].

The choice of the smoothing operator in the GMGmethod
is extremely diverse; cf., e.g. [28, 47] for a further discussion.
We use a collective smoother of Vanka type that is based
on the solution of small local problems. Compared to the
Navier–Stokes system [3], the dynamic Biot problem (1.1)
requires adaptations in the construction of the local Vanka
smoother. In inf-sup stable discretizations of the Navier–
Stokes equations by the Q

d
r /P

disc
r−1, r ≥ 2, family of finite

element spaces no coupling between the pressure degrees of
freedom is involved due to the discontinuous approximation
of the pressure variable. This feature leads to excellent per-
formance properties of the Vanka smoother [3]. In contrast
to this, the discretization (3.5c) of (1.1b) by P

disc
r−1, r ≥ 2,

elements involves a coupling between degrees of freedom
of the scalar variable p due to the presence of the face inte-
grals over the average and jump in the second of the options
in (3.2c) for the definition of the bilinear form Bγ . This
coupling reduces the smoothing properties of elementwise
Vanka operator. For the Qr−1, r ≥ 2, family of elements
for the scalar variable p, leading to the first of the options
in (3.2c), the coupling of degrees of freedom of p by its
continuous in space approximation and the loss of smooth-
ing properties arise likewise. As a remedy, for both families
of inf-sup stable approximation in (3.5) the local Vanka
smoother is computed on overlapping patches of adjacent
elements. In addition, an averaging of the patchwise updates
is done after the Vanka smoother has been applied on all of
them.

To construct the patchwise Vanka, we let on the mesh
partition Tl , for l = 1, . . . , L , of the multigrid hierarchy the
linear system, to be solved, be represented by

Aldl = bl , for l = 1, . . . , L. (4.8)
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To each grid node ξml , form = 1 , . . . , Ml , whereMl denotes
the total number of grid nodes on the mesh partition Tl , we
built a patch of adjacent elements such that

Pm
l :=

⋃
{K ∈ Tl | ξml ∈ K }, for m = 1, . . . , Ml . (4.9)

In two space dimensions Pm
l is built from four elements,

if ξml /∈ ∂�. In three space dimensions, Pm
l has eight ele-

ments, if ξml /∈ ∂�. If ξml ∈ ∂�, patches of less elements
are obtained. On Tl , let Zl denote the index set of all global
degrees of freedom with cardinality Cl ,

Cl := card(Zl).

Let Zl(Pm
l ) denote the subset of Zl all global degrees of

freedom linked to the patch Pm
l , i.e. degrees of freedom of

uτ,h , vτ,h and pτ,h for the (k + 1) Gauss–Radau time points
of In . The cardinality of Zl(Pm

l ) is denoted by Cm
l ,

Cm
l := card(Zl(P

l
m)), for m = 1, . . . , Ml .

Further, we denote the index set of all local degrees of free-
dom on Pm

l by Ẑl(Pl
m) := {0, . . . ,Cm

l −1}. For the notation,
we note that the set Ẑl(Pl

m) depends on the cardinality of the
patch Pm

l . For a given patch Pm
l and a local degree of freedom

with number μ̂ ∈ Ẑl(Pl
m) let the mapping

dof : Tl × Ẑl(P
l
m) → Zl ,

μ = dof(Pm
l , μ̂) ∈ Zl(P

m
l ), (4.10)

yield the uniquely defined global number μ ∈ Zl . Finally,
we put R = dim V h and S = dim Qh .

We are now in a position to define the local Vanka operator
for the patch Pm

l in an exact mathematical way; cf., e.g. [3,
40, 45, 80].

Definition 4.2 (Patchwise Vanka smoother) For a patch Pm
l ,

for m ∈ {1, . . . , Ml}, let the Pm
l -local restriction operator

RK : R(k+1)·(2R+S) → R
Cm
l be defined by

(RPm
l
d)[μ̂] = d[dof(Pm

l , μ̂)],
for μ̂ ∈ Ẑl(P

m
l ), (4.11)

and, for the systemmatrix A of (4.8), the patch systemmatrix
APm

l
∈ R

Cm
l ,Cm

l by

APm
l

[ν̂][μ̂] := Al [dof(Pm
l , ν̂)][dof(Pm

l , μ̂)],
for ν̂, μ̂ ∈ Ẑl(P

m
l ). (4.12)

The local Vanka operator SPm
l

: R(k+1) · (2R+S) → R
Cl
m is

defined by

SPm
l

(d) = RPm
l
d + ω A−1

Pm
l
RPm

l
(bl − Ald), (4.13)

with some underrelaxation factor ω > 0.

In the numerical experiments of Sect. 5 we choose ω =
0.7. The Pm

l -local restriction operator (4.11) assigns to a
global defect vector d ∈ R

(k+1)·(2R+S) the local block vec-
tor RK d ∈ R

Cm
l that contains all components of d that

are associated with all degrees of freedom (for all (k + 1)
Gauss–Radau points of In) belonging to the patch Pm

l . For
the computation of the inverse (APm

l
)−1 in (4.13) we use

LAPACK routines. The application of the smoother for (4.8)
on the mesh partition Tl is summarized in Algorithm 4.2.

Algorithm 4.2: Smoothing steps for (4.8) on mesh par-
tition Tl .
1 Initialize solution d of (4.8) with 0;
2 for j = 1, . . . , Jmax do
3 for (μ = 0; μ < Cl; μ++) do
4 p[μ] = 0;
5 z[μ] = 0.0;
6 end
7 foreach patch Pm

l on Tl do
8 y = SPm

l
(d);

9 for (μ̂ = 0, μ̂ < Cm
l ; μ̂++) do

10 z[dof(Pm
l , μ̂)]+=(EPm

l
y)[dof(Pm

l , μ̂)];
11 p[dof(Pm

l , μ̂)]++ ;
12 end
13 end
14 for (μ = 0; μ < Cl; μ++) do
15 d[μ] = z[μ]/p[μ];
16 end
17 end

In line 1 of Alg. 4.2 the defect and solution vector is pre-
initialized with 0. In line 4 the loop over all Jmax smoothing
steps starts. In line 4 and 5 the counter vector p for the num-
ber of updates of the degrees of freedom and the auxiliary
vector z are initialized with 0. In line 7 the loop over all
patches Pm

l , for m = 1, . . . , M , starts. In line 8 the local
Vanka smoother is applied on patch Pm

l to the current iterate
d of the defect vector and the image is stored in the local
patch vector y. In line 10 the local vector y is assigned to
an auxiliary global vector z by the Pm

l -dependent extension
operator EPm

l
: RCm

l → R
(k+1)·(2R+S),

(EPm
l
y)[μ] =

{
y[μ̂], if ∃μ̂ ∈ Ẑl(Pm

l ) : μ = dof(K , μ̂),

0, if μ /∈ Zl(Pm
l ).

In line 11 the components of the counter p are incremented
for the (global) indices associated with the degrees of free-
dom of the patch Pm

l processed in the loop. Finally, in line
15 the arithmetic mean of the local (patchwise) updates z is
assigned to the update of the global defect vector d.

Regarding the performance of Alg. 4.2 and the overall
GMRES–GMG approach we note the following.
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Remark 4.3 • Averaging of the patchwise updates imple-
mented in line 10 and 15 of Alg. 4.2, that is used instead
of overwriting successively the (global) degrees of free-
dom within the patch loop starting in line 7, is essential
and ensures the convergence and efficiency of the local
Vanka smoother and, thereby, the desired performance
of the overall GMRES–GMG linear solver. Without the
averaging operation we encountered convergence prob-
lems of the GMRES–GMG solver for the experiments of
Sect. 5.

• Likewise, the application of the Vanka smoother on the
patches (4.9), instead of using an elementwise Vanka
smoother on the element K , ensures its smoothing prop-
erties. The latter would lead to systems (4.13) of smaller
dimension, however fails to smoothen errors. This is
expected to be due coupling of the degrees of freedom
of the scalar variable p in the spatial discretizations used
here.

5 Numerical studies

In this section we study numerically the proposed space-
time finite element and GMRES–GMG solver approach with
respect to its computational and energy efficiency. Firstly,
we demonstrate the accuracy of solutions in terms of conver-
gence rates for a prescribed solution. Secondly, we analyze
the convergence of the discretization for goal quantities of
physical interest and the robustness of the GMRES–GMG
solver in a two-dimensional test setting that is of interest
in practice, for instance, in geomechanics for elucidating
suburface flow dynamics or in biomedical engineering for
ultrasonic studies of bone or other calcified tissues to diag-
nose a variety of skeletal disorders. Finally, the investigations
are extended to a challenging three-dimensional test case.
Here a soft material with application in brain poromechanics
[25] is used. The parallel scaling properties of our imple-
mentation are also investigated. Beyond these studies of
classical performance engineering, the energy efficiency of
the approach is considered further.

The implementation of the numerical scheme and the
GMRES–GMG solver was done in an in-house high-
performance frontend solver for the deal.II library [7].
For details of the parallel implementation of the geometric
multigrid solver we refer to [3]. In all numerical experiments,
the stopping criterion for theGMRES iterations is an absolute
residual smaller than1e-8.The computationswere performed
on a Linux cluster with 571 nodes, each of themwith 2 CPUs
and 36 cores per CPU. The CPUs are Intel Xeon Platinum
8360Y with a base frequency of 2.4 GHz, a maximum turbo
frequency of 3.5 GHz and a level 3 cache of 54 MB. Each
node has 252 GB of main memory.

5.1 Accuracy of the discretization: experimental
order of convergence

We study (1.1) for � = (0, 1)2 and I = (1, 2] and the
prescribed solution

u(x, t) = φ(x, t)E2

and p(x, t) = φ(x, t)

with φ(x, t) = sin(ω1t
2) sin(ω2x1) sin(ω2x2) (5.1)

and ω1 = ω2 = π . We put ρ = 1.0, α = 0.9, c0 = 0.01
and K = E2 with the identity E2 ∈ R

2,2. For the fourth
order elasticity tensor C , isotropic material properties with
Young’smodulus E = 100 andPoisson’s ratio ν = 0.35, cor-
responding to the Lamé parameters λ = 86.4 and μ = 37.0,
are chosen. For an experiment with larger values of λ and μ

we refer to Table 10 in the appendix. In our experiments, the
norm of L∞(I ; L2) is approximated by computing the func-
tion’s maximum value in the Gauss quadrature nodes tn,m of
In , i.e.,

‖w‖L∞(I ;L2) ≈ max{‖w|In (tn,m)‖ | m = 1, . . . , M,

n = 1, . . . , N }, with M = 100.

We study the space-time convergence behavior of the
scheme (3.5). For this, the domain � is decomposed into
a sequence of successively refined meshes of quadrilateral
finite elements. The spatial and temporal mesh sizes are
halved in each of the refinement steps. The step sizes of
the coarsest space and time mesh are h0 = 1/(2

√
2) and

τ0 = 0.1. We choose the polynomial degree k = 2 and
r = 3, such that discrete solutions uτ,h, vτ ∈ Y 2

τ (V h),
pτ,h ∈ Y 2

τ (Qh) with local spaces Q
2
3/P

disc
2 are obtained,

as well as k = 3 and r = 4 with uτ,h, vτ ∈ Y 3
τ (V h) and

pτ,h ∈ Y 3
τ (Qh) and local spaces Q2

4/P
disc
3 ; cf. (2.2), (2.5)

and (2.6). The calculated errors and corresponding experi-
mental orders of convergence are summarized in Tables 1
and 2, respectively. The error is measured in the quantities
associated with the energy of the system (1.1); cf. [43, p. 15]
and [11]. Tables 1 and 2 nicely confirm the optimal rates
of convergence with respect to the polynomial degrees in
space and time of the overall approach. A notable differ-
ence in the convergence behavior between the pairsQ2

r /P
disc
r−1

and Q
2
r /Qr−1 of local spaces for the discretization of the

spatial variables is not observed. For completeness, we sum-
marize in Appendix C the convergence results obtained for
the pair Q2

r /Qr−1 of spaces of the Taylor–Hood family. A
minor superiority of the pairQ2

r /P
disc
r−1 over the pairQ

2
r /Qr−1

is only seen in the approximation of the scalar variable p.
The coincidence of the convergence results also holds for the
application of Problem B.1 instead of Problem 3.1. The two
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Table 1 L2(L2) and L∞(L2) errors and experimental orders of convergence (EOC) for (5.1) with temporal polynomial degree k = 2 and spatial
degree r = 3 for local spaces Q2

r /P
disc
r−1

τ h ‖∇(u − uτ,h)‖L2(L2) EOC ‖v − vτ,h‖L2(L2) EOC ‖p − pτ,h‖L2(L2) EOC

τ0/20 h0/20 1.2544218392e−02 – 3.4897282317e−02 – 2.4070118274e−03 –

τ0/21 h0/21 1.5227995262e−03 3.04 3.9246006564e−03 3.15 2.8841669021e−04 3.06

τ0/22 h0/22 1.8904870171e−04 3.01 4.8175203148e−04 3.03 3.5986044195e−05 3.00

τ0/23 h0/23 2.3544020929e−05 3.01 5.9913957453e−05 3.01 4.4985485037e−06 3.00

τ0/24 h0/24 2.9374127099e−06 3.00 7.4788750858e−06 3.00 5.6221925444e−07 3.00

τ h ‖∇(u − uτ,h)‖L∞(L2) EOC ‖v − vτ,h‖L∞(L2) EOC ‖p − pτ,h‖L∞(L2) EOC

τ0/20 h0/20 8.1391652440e−02 – 1.6415428887e−01 – 1.0828068294e−02 –

τ0/21 h0/21 1.1474006637e−02 2.83 2.8042308570e−02 2.55 1.7292127803e−03 2.65

τ0/22 h0/22 1.5142126866e−03 2.92 3.6968566445e−03 2.92 2.3686467755e−04 2.87

τ0/23 h0/23 1.9337108028e−04 2.97 4.6572185327e−04 2.99 3.0596110688e−05 2.95

τ0/24 h0/24 2.4392244385e−05 2.99 5.8210228994e−05 3.00 3.8749300434e−06 2.98

Table 2 L2(L2) and L∞(L2) errors and experimental orders of convergence (EOC) with temporal polynomial degree k = 3 and spatial degree
r = 4 for local spaces Q2

r /P
disc
r−1

τ h ‖∇(u − uτ,h)‖L2(L2) EOC ‖v − vτ,h‖L2(L2) EOC ‖p − pτ,h‖L2(L2) EOC

τ0/20 h0/20 2.3958455291e−03 – 1.7185653242e−02 – 7.0604463908e−04 –

τ0/21 h0/21 1.0529085600e−04 4.51 5.4558622568e−04 4.98 3.4799927094e−05 4.34

τ0/22 h0/22 5.9749777345e−06 4.14 1.9143193313e−05 4.83 1.2074793168e−06 4.85

τ0/23 h0/23 3.6858164230e−07 4.02 9.6894400389e−07 4.30 6.1656313807e−08 4.29

τ0/24 h0/24 2.2976498320e−08 4.00 5.6982903695e−08 4.09 3.6688337244e−09 4.07

τ h ‖∇(u − uτ,h)‖L∞(L2) EOC ‖v − vτ,h‖L∞(L2) EOC ‖p − pτ,h‖L∞(L2) EOC

τ0/20 h0/20 1.3014842843e−02 – 1.1587851244e−01 – 4.9827180852e−03 –

τ0/21 h0/21 8.7944275936e−04 3.89 4.1645282584e−03 4.80 2.6180886102e−04 4.25

τ0/22 h0/22 5.6086043381e−05 3.97 2.0121085807e−04 4.37 9.4019466765e−06 4.80

τ0/23 h0/23 3.5171465193e−06 4.00 1.1873567590e−05 4.08 5.0100645993e−07 4.23

τ0/24 h0/24 2.1959929657e−07 4.00 7.3034599295e−07 4.02 3.0246305328e−08 4.05

discrete problems differ from each other by the discretization
of the term α∇ · ∂tu in (1.1b).

Next, we show numerically that the time discretization is
even superconvergent of order 2k + 1 in the discrete time
nodes tn , for n = 1, . . . , N . For this, we introduce the time
mesh dependent norm

‖w‖l∞(L2) := max{‖w(tn)‖ | n = 1, . . . , N }. (5.2)

We prescribe the solution

u(x, t) =
(−2(x − 1)2x2(y − 1)y(2y − 1) sin(ω1t)

2(x − 1)x(2x − 1)(y − 1)2y2 sin(ω1t)

)
,

p(x, t) = −2(x − 1)2x2(y − 1)y(2y − 1) sin(ω2t) (5.3)

with ω1 = 40 ·π and ω2 = 10 ·π . We put ρ = 1.0, α = 0.9,
c0 = 0.01 and K = E2 with the identity E2 ∈ R

2,2. For the
elasticity tensorC, isotropicmaterial propertieswithYoung’s
modulus E = 100 and Poisson’s ratio ν = 0.35 are used.
For the local spaces we choose the pair Q2

5/Q4 such that,
for any t ∈ [0, T ], the solution (5.3) belongs to the discrete
spaces V h and Qh , respectively, and its spatial approxima-
tion is exact. This simplification is done here since we aim to
study the convergence of the temporal discretization only. In
the experiment, we choose k = 2 such that discrete solutions
uτ,h, vτ ∈ Y 2

τ (V h) and pτ,h ∈ X2
τ (Qh) are obtained.We use

a spatial mesh that consists of 16 cells with h = 1/(2
√
2)

and set τ0 = 0.02. The calculated errors and correspond-
ing experimental orders of convergence are summarized in
Table 3. Superconvergence of order 2k + 1 in the discrete
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Table 3 L2(L2) and l∞(L2)

errors and experimental orders
of convergence (EOC) for (5.3)
with temporal polynomial
degree k = 2 and spatial degree
r = 5 for local spacesQ2

r /Qr−1,
showing superconvergence of
order 2k + 1 in the discrete time
nodes tn , i.e., w.r.t. the norm
‖ · ‖l∞(L2) defined in (5.2)

τ ‖∇(u − uτ,h)‖L2(L2) EOC ‖v − vτ,h‖L2(L2) EOC ‖p − pτ,h‖L2(L2) EOC

τ0/20 3.3600958819e−03 – 5.2037881317e−02 – 8.5492528946e−05 –

τ0/21 3.9552579243e−04 3.09 6.6291344116e−03 2.97 4.8852611508e−06 4.13

τ0/22 4.8913600397e−05 3.02 8.3404665964e−04 2.99 1.7945937694e−07 4.77

τ0/23 6.1123116212e−06 3.00 1.0446618892e−04 3.00 1.0554654134e−08 4.09

τ0/24 7.6411713541e−07 3.00 1.3065222159e−05 3.00 1.1603768561e−09 3.19

τ0/25 9.5518196224e−08 3.00 1.6333729266e−06 3.00 1.4370494853e−10 3.01

τ0/26 1.1939894351e−08 3.00 2.0417851944e−07 3.00 1.7952564965e−11 3.00

τ ‖∇(u − uτ,h)‖l∞(L2) EOC ‖v − vτ,h‖l∞(L2) EOC ‖p − pτ,h‖l∞(L2) EOC

τ0/20 2.1302171198e−03 – 1.3451755096e−02 – 1.9152238265e−04 –

τ0/21 1.1003144753e−04 4.28 6.9871664304e−04 4.27 1.0401014806e−05 4.20

τ0/22 3.6416424630e−06 4.92 2.3145015656e−05 4.92 3.5819518738e−07 4.86

τ0/23 1.1784707720e−07 4.95 7.3594357548e−07 4.97 1.1336271728e−08 4.98

τ0/24 3.6966657143e−09 4.99 2.3096831287e−08 4.99 3.5849645590e−10 4.98

τ0/25 1.1560104141e−10 5.00 7.2294482894e−10 5.00 1.1225015472e−11 5.00

τ0/26 3.5626018095e−12 5.02 2.2323871214e−11 5.02 3.4673336542e−13 5.02

time nodes is clearly observed in the second of the arrays in
Table 3.

5.2 Computational efficiency: accuracy of goal
quantities and convergence of the GMRES–GMG
solver in a 2d test case

For a two-dimensional test problem we study the potential
of the proposed approach to compute reliably and effi-
ciently goal quantities of physical interest.We also document
the performance properties of the GMRES-GMG solver of
Sect. 4 for the applied space-time finite element methods.
Even though the test setting is still of academic nature, it is
related to problems of practical interest in civil engineering
(subsurface dynamics) or biomedical engineering (cf. [81]).
In the numerical investigations a stiff material is assumed
whereas in Sect. 5.3 a softer material will be studied. This is
done for the sake of considering also a range of materials.

Beyond the boundary conditions (1.1d) and (1.1e), we
also apply (homogeneous) directional (or componentwise)
boundary conditions for u on some part�d

u ⊂ ∂�. The direc-
tional boundary conditions read as

u · n = 0 and (σ (u)n) · t i = 0,

for i = 1, . . . , d − 1, on �d
u × (0, T ], (5.4)

for the stress tensor σ (u) = Cε(u) and the unit basis vectors
t i , for i = 1, . . . , d − 1, of the tangent space at x ∈ �d

u . In
the definition of Aγ in (3.2a) and (3.3a), the conditions (5.4)
still need to be implemented properly. By the second of the
conditions in (5.4) we get for the second of the terms on the
right-hand of (3.2a) that

〈Cε(uτ,h)n,χ τ,h〉�l
u

= 〈Cε(uτ,h)n · n, n · χ τ,h〉�d
u
. (5.5)

For the boundary part �d
u we then put, similarly to (3.3a),

adγ (w,χh) := −〈w · n,Cε(χh)n · n〉�d
u

+γa h
−1〈w · n,χh · n〉�d

u
,

while leaving aγ unmodified for the part �D
u where Dirich-

let boundary conditions are prescribed for u. In its entirety,
we thus have that aγ (·, ·) := aD

γ (·, ·) + adγ (·, ·) with aD
γ (·, ·)

being defined by the right-hand side of (3.3a). By the argu-
ments of Appendix A, the coercivity of the resulting form
Aγ is still ensured.

For our experiments, we consider the rectangular domain
� = (0, 0.5) × (0, 1) ⊂ R

2 with boundary segments
�d
u = {0} × (0, 1)

⋃ {0.5} × (0, 1) and �N
u = (0, 0.5) ×

{0} ⋃
(0, 0.5)×{1}. On the lower and upper part �N

u of the
boundary we impose in the boundary condition (1.1e) the
traction force

tN =
(

0
s(t) · 16x · (x − 0.5) · sin(8π t)

)

with s(t) :=
{
0.5 − 0.5 cos(4π t2), for t < 0.5,

1, else,
(5.6)

which amounts to applying a simultaneous compression or
decompression force at the upper and lower boundary. For
the scalar variable p we prescribe a homogeneous Dirich-
let boundary condition (1.1f) on the lower and upper part
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Fig. 2 Goal quantity Gu of (5.7) for a sequence of successively refined meshes (left) and different polynomial orders of the STFEM on a fixed
mesh (right)

�N
p = (0, 0.5) × {0} ⋃

(0, 0.5) × {1} of ∂� and a homo-
geneous Neumann boundary condition (1.1g) else. We put
ρ = 1.0, α = 0.9, c0 = 0.01 and K = E2 with the identity
E2 ∈ R

2,2. For the elasticity tensor C , isotropic material
properties with Young’s modulus E = 20000 and Poisson’s
ratio ν = 0.3; cf. [81]. The final simulation time is T = 4.5.
As goal quantities of this problem, we measure the magni-
tude of the displacement variable in normal direction as well
as the pressure on a cross section plane �m , given by

Gu =
∫

�m

u · n do,

Gp =
∫

�m

p do, for �m := (0, 0.5) × {0.25}. (5.7)

We set the step sizes of the coarsest space-time mesh to h0 =
0.125 and τ0 = 0.2. Further mesh levels are obtained by
a successive refinement by a factor of two such that hi =
h0 · 2−i and τi = τ0 · 2−1 for i ∈ N.

In Fig. 2 and Table 4 we illustrate the space-time con-
vergence of the goal quantities and their maximum and
minimum value in the final part t ∈ [3.5, 4.5] of the sim-
ulation time t ∈ [0, 4.5]. Various polynomial orders of the
discretization in space and time are used. For brevity, only
Gu is visualized in Fig. 2. Convergence of the goal quantity is
clearly observed even though the differences are not strong
in this two dimensional test case. In particular, in Table 4
we observe a dominating temporal discretization error and
the gain in accuracy by higher order time discretization. Fur-
thermore, in Table 5 we summarize the average number of
GMRES iterations per time step needed to solve the resulting

linear systemof equations. Since theGMGmethodwith a sin-
gleV-cyle is used as preconditioner and not as a system solver
itself, the average number of GMRES iterations and the wall
clock time are considered to be a reasonable measure for the
performance of the GMRES–GMG solver. The robustness of
the GMRES–GMG solver with respect to the refinement of
the space-timemesh and the polynomial degrees in space and
time is confirmed. In Table 6 we compare the contribution
of asssembling and solving to the wall clock time. Further,
the impact of the number of pre- and post-smoothing steps
Jmax in Alg. 4.2 on the performance of the GMRES–GMG
solver is analyzed. The results show increasing wall clock
time for higher numbers of smoothing steps. The relatively
high computational costs of theGMRES–GMG suggests fur-
ther performance tuning of the smoother. Nevertheless, the
robustness of the GMG preconditioned GMRES iterations in
Table 5 underline their potential as efficient black box solver
for higher order STFEMs with complex block structures. In
our numerical experiments, including the three-dimensional
case (cf. Sect. 5.3) and further tests not documented here, we
found that choosing Jmax = 4 or Jmax = 5 usually leads to a
robust performance.

5.3 Computational efficiency: accuracy of goal
quantities and convergence of the GMRES–GMG
solver in a 3d test case

In this section we extend the numerical studies of the previ-
ous section to three space dimensions. For the geometry, we
consider the pipe socket that is visualized in Fig. 3a. The pipe
has a diameter of d = 2 and consists in the x1 − x3 plane of
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Table 4 Maximum and
minmum of the goal quantities
(5.7) in the subinterval
t ∈ [3.5, 4.5] of the simulation
time t ∈ [0, 4.5] for different
space-time mesh refinements
and approximation orders

min{Gu(t) | t ∈ [3.5, 4.5]}
dG(1) dG(2) dG(3)

h τ Q
2
2/P

disc
1 Q

2
3/P

disc
2 Q

2
3/P

disc
2 Q

2
3/P

disc
2 Q

2
4/P

disc
3

h0 τ0 − 3.3423e−5 − 3.3422e−5 − 4.2889e−5 − 3.0480e−5 − 3.0480e−5

h1 τ1 − 3.5801e−5 − 3.5801e−5 − 3.0650e−5 − 3.1611e−5 − 3.1611e−5

h2 τ2 − 3.0231e−5 − 3.0231e−5 − 3.1566e−5 − 3.1715e−5 − 3.1715e−5

h3 τ3 − 3.1797e−5 − 3.1797e−5 − 3.1653e−5 − 3.1730e−5 − 3.1731e−5

h4 τ4 − 3.1807e−5 − 3.1807e−5 − 3.1807e−5 − 3.1821e−5 − 3.1823e−5

h5 τ5 − 3.1803e−5 − 3.1805e−5 − 3.1811e−5 – –

max{Gu(t) | t ∈ [3.5, 4.5]}
dG(1) dG(2) dG(3)

h τ Q
2
2/P

disc
1 Q

2
3/P

disc
2 Q

2
3/P

disc
2 Q

2
3/P

disc
2 Q

2
4/P

disc
3

h0 τ0 − 3.8341e−5 − 3.8341e−5 4.4140e−5 − 3.3208e−5 − 3.3208e−5

h1 τ1 − 3.3593e−5 − 3.3593e−5 − 3.3484e−5 − 3.1293e−5 − 3.1293e−5

h2 τ2 − 3.3275e−5 − 3.3275e−5 − 3.1296e−5 − 3.1293e−5 − 3.1293e−5

h3 τ3 − 3.1797e−5 − 3.1797e−5 − 3.1653e−5 − 3.1730e−5 − 3.1731e−5

h4 τ4 − 3.1808e−5 − 3.1807e−5 − 3.1808e−5 − 3.1808e−5 − 3.1807e−5

h5 τ5 − 3.1803e−5 − 3.1806e−5 − 3.1838e−5 – –

min{Gp(t) | t ∈ [3.5, 4.5]}
dG(1) dG(2) dG(3)

h τ Q
2
2/P

disc
1 Q

2
3/P

disc
2 Q

2
3/P

disc
2 Q

2
3/P

disc
2 Q

2
4/P

disc
3

h0 τ0 − 3.5401e−4 − 3.5298e−4 .4.9249e−4 − 3.6870e−4 − 3.6874e−4

h1 τ1 − 3.7277e−4 − 3.7255e−4 − 2.5756e−4 − 2.6282e−4 − 2.6285e−4

h2 τ2 − 2.5150e−4 − 2.5153e−4 − 2.6345e−4 − 2.6518e−4 − 2.6518e−4

h3 τ3 − 2.7118e−4 − 2.7189e−4 − 2.6918e−4 − 2.6876e−4 − 2.6887e−4

h4 τ4 − 2.6860e−4 − 2.6911e−4 − 2.6878e−4 − 2.6916e−4 − 2.6931e−4

h5 τ5 − 2.6816e−4 − 2.6918e−4 − 2.6995e−4 – –

max{Gp(t) | t ∈ [3.5, 4.5]}
dG(1) dG(2) dG(3)

h τ Q
2
2/P

disc
1 Q

2
3/P

disc
2 Q

2
3/P

disc
2 Q

2
3/P

disc
2 Q

2
4/P

disc
3

h0 τ0 − 3.7565e−4 − 3.7451e−4 − 4.9426e−4 − 4.1165e−4 − 4.1166e−4

h1 τ1 − 3.5279e−4 − 3.5271e−4 − 2.9835e−4 − 2.9124e−4 − 2.9128e−4

h2 τ2 − 2.9851e−4 − 2.9828e−4 − 2.7066e−4 − 2.7177e−4 − 2.7174e−4

h3 τ3 − 2.7164e−4 − 2.7195e−4 − 2.6866e−4 − 2.6875e−4 − 2.6887e−4

h4 τ4 − 2.6844e−4 − 2.6911e−4 − 2.6872e−4 − 2.6931e−4 − 2.6935e−4

h5 τ5 − 2.6817e−4 − 2.6918e−4 − 2.7036e−4 – –

three parts: a quarter annulus with L0 = π
2 , an upper part,

with L1 = L0 and a lower part with L2 = L0
2 . In contrast

to Sect.. 5.2, a soft material of brain poromechanics is now
chosen; cf. [25]. We put ρ = 103 [kg/m3], α = 0.49 [–],
c0 = 10−6 [m2/N] and K = k0E3, with k0 = 1.0 [m2/Pa]
and the identity matrix E3 ∈ R

3,3. For the elasticity ten-
sor C , isotropic material properties with the Lamé parameter
λ = 505 [Pa] and μ = 216 [Pa], corresponding to Young’s
modulus E = 583.3 [Pa] and Poisson’s ratio ν = 0.35 [–],

are used. The geometry is supposed to mimic brain tissue
or some section of an artery with neglecting the blood flow
inside. On the curved surface area the directional boundary
conditions (5.4) are prescribed. At the top and right outlet of
the pipe socket a homogeneous Dirichlet condition for the
pressure variable is used. For the displacement variable the
traction force of (1.1e) is defined at the top (x1 = L1) outlet
by
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Table 5 Average number of performed GMG preconditioned GMRES iterations per time step

dG(1) dG(2) dG(3)

h τ Q
2
2/P

disc
1 Q

2
3/P

disc
2 Q

2
3/P

disc
2 Q

2
3/P

disc
2 Q

2
4/P

disc
3

(a) Average number of GMRES iterations per time step
for different space-time polynomial degrees and mesh
refinement levels

h0 τ0 2.00 2.57 2.35 2.00 2.17

h1 τ1 1.98 2.71 2.69 2.51 1.98

h2 τ2 1.97 1.98 1.85 1.97 1.97

h3 τ3 1.95 1.96 1.96 1.96 1.94

h4 τ4 1.83 1.84 1.93 1.93 1.66

h5 τ5 1.03 1.38 1.53 – –

h \ τ τ2 τ3 τ4 τ5

(b) Average number of GMRES iterations for Q2
3/P

disc
2 and dG(2)

h2 1.85 1.83 1.79 1.77

h3 1.80 1.96 1.71 1.69

h4 1.80 1.78 1.93 1.61

h5 1.80 1.75 1.60 1.53

Table 6 Wall clock Time (WT)
accumulated over all time steps
and Percentage (P) of total wall
clock time for Q3/P2 space and
dG(2) time discretization on
mesh (h4, τ4) for different
numbers of patchwise Vanka
smoothing steps Jmax; cf.
Alg. 4.2

Jmax = 2 Jmax = 5 Jmax = 8

Operation WT [s] P [%] WT [s] P [%] WT [s] P [%]

Assemble r.h.s. 58.1 2.0 58.3 1.3 58.4 0.99

Assemble matrix 277.0 9.4 276.0 6.1 274.0 4.6

Linear solver 2150.0 73.0 3720.0 83.0 5120.0 87.0

Setup Vanka smoother 352.0 12.0 363.0 8.1 365.0 6.2

Total wall time 2930 4500 5910

tN =
(
s(t) sin(2π t)

(√
x22 + (x3 − 2)2 − 1

)
, 0, 0

)�

with s(t) being defined in (5.6), and at the right (x3 = L2)
outlet by

tN =
(
0, 0, s(t) sin(2π t)

(√
(x1 − 2)2 + x22 − 1

))�
.

Wemeasure the benchmark quantities defined in (5.7) on the
cross section plane �m : (

x − pm
) · nm = 0, with pm =

(
1√
2
, 0, 1√

2

)�
and nm =

(√
3
2 , 0,− 1√

2

)�
; cf. Fig. 3a.

We put I = (0, T ] with T = 7 and set the time step size
of the temporal discretization to τ = 0.02

(re fn−3) , where re fn is
the number of spatial refinement levels of the spatial grid, cf.
Table 7. The spatial polynomial degree is fixed to r = 1 for all
simulations (cf. Sect. 2). The calculated profile for t = T of
themodulus of the vectorial variable u and the scalar variable
p are illustrated in Fig. 3. In Table 7 we summarize charac-
teristic quantities and results of our simulations for various

spatial and temporal resolutions and different temporal poly-
nomial degrees of the STFEMs. In Fig. 4 we visualize the
computed benchmark quantities (5.7) of some of the simu-
lations over the temporal axis. The benchmark quantities on
each refinement level are within the same range for temporal
discretizations with polynomial degree k = 1 and k = 2, but
for k = 1 oscillations on re f4 and re f5 are observed, which
is not the case for k = 2 or k = 1 when using a finer time
step size (re fn = 6). This indicates the superiority of higher
order discretization schemes in the time domain.

Table 7 summarizes the results of our numerical conver-
gence study for the goal quantities. The final row of Table 7
contains the results of the finest simulation that we could run
on our hardware. Table 7 and Fig. 4 show that the solution
(i.e., the goal quantities) is nearly fully converged. The final
column of Table 7 summarizes the convergence statistics of
the proposed GMRES–GMG solver. In terms of the average
number of iterations per time step the solver is (almost) grid
independent. This underlines its capability and robustness for
solving efficiently the complex systems arising from space-
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Fig. 3 Problem setting and profile of the solution at time t = T

time finite element discretizations of the considered coupled
hyperbolic–parabolic system.

5.4 Parallel scaling and energy efficiency

Here, we study briefly the parallel scaling and energy effi-
ciency of our solver. By studying energy consumption, we’d
like to draw attention to this emerging dimension in the
tuning of algorithms. Energy efficiency broadens the clas-
sical hardware-oriented numerics that is applied to enhance
the performance of the current method on the target hard-
ware and/or to find other numerical methods to improve the
numerical efficiency. For the longer term, energy and power
consumption needs to bemapped into a rigorous performance
model. Here, we restrict ourselves to illustrate numerically
the parallel scaling and energy consumption properties of our
implementation that uses Message Passing Interface(MPI)
libraries and multi threading parallelism.

We perform a strong scaling benchmark for the test prob-
lem of Sect. 5.3 with k = 1, r = 3 and ref3 = 3, with
20996620 degrees of freedom in each subinterval In on the
fine levelTL and 45788 onT1. Throughout, we assign 36MPI
processes to each of the nodes used for the computations and
vary the number n of nodes from n = 40 to n = 200. For the
evaluation of the parallel scaling properties, we compute the

Fig. 4 Goal quantities Gu and Gp of (5.7) for different discretizations
(spatial mesh resolution and polynomial degrees)

parallel speedup of the code (cf. [2]) that is approximated by

S = twall(n = nmin)

twall(n)
, (5.8)

where twall(n) denotes thewall time of the simulation of fixed
size on n compute nodes and twall(n = nmin) is the wall time
of the simulation on the minimum number of nodes involved
in the scaling experiment. Secondly, we compute similarly
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the energy ratio by means of

R = E(n)

E(n = nmin)
, (5.9)

where E(n) measures the total energy consumption of the
simulation on n nodes. The energy consumption is deter-
mined by the Linux cluster workload manager slurm [68].
The energy consumption data is collected from hardware
sensors using Intel’s Running Average Power Limit (RAPL)
mechanism. It measures the energy consumption of the pro-
cessor and memory. On our system, the sampling interval
of energy consumption is determined by the value of 30 s.
Figure5 illustrates the results of the performance test. For
n = 160 and n = 200, the parallel scaling properties deteri-
orate. The reason for this is that due to the fixed problem size
of the scaling testwith 20996620degrees of freedom the local
problem size on each of the nodes is reduced for an increas-
ing number of nodes such that the processor load decreases
and communication increases. However, the (global) prob-
lem size is limited by the minimum number n = 40 of nodes
involved in the experiment and the memory (RAM) available
on each of these nodes.

To quantify and evaluate the productivity or resource costs
of the algorithm and its implementation, we use a sim-
ple model for the Productivity P = Output O

Input I ; cf. [24]. In
an economic sense, all outputs should be the desired ones.
Therefore, we use the reciprocal of the wall time twall as
the output O = 1

twall
, such that a decrease in twall repre-

sents an increase of the (abstract) output. As the input I we
use the total energy consumption E of the simulation. We
scale the result by multiplying P with the constant factor
E(nmin)·twall(nmin) such that the computationwith n = nmin

has a productivity of P = 1.0:

P =
1

twall(n)

E(n)
· E(nmin) · twall(nmin) = S

R
, (5.10)

with S and R being defined in (5.8) and (5.9), respectively.
The resulting productivity curve of our computations is pre-
sented in Fig. 6. In our simulations, the one on 120 compute
nodes is the most productive one, that is, the ratio of output
(low wall-time) to input (energy) is best. The quadratic inter-
polation predicts an even slightly increased productivity for
107 nodes (P = 1.09). The characteristic quantities of our
performance study are also summarized in Table 8.

6 Summary and outlook

In this work we presented and analyzed families of space-
time finite element discretizations of the coupled hyperbolic–
parabolic system (1.1) modeling, for instance, poroelasticity.
The time discretization uses the discontinuous Galerkin
method. The space discretization is based on inf-sup stable
pairs of finite element spaces with continuous and discontin-
uous approximation of the scalar variable p. Well-posedness
of the discrete problems is proved. For efficiently solving
the arising algebraic systems with complex block structure
in the case of increasing polynomial degrees of the time dis-
cretization a geometric multigrid preconditioner with a local
Vanka smoother on patches of finite elements is proposed and
studied. The overall approach is evaluated numerically. A
convergence proof for our GMGmethods to dynamic poroe-
lasticity remains as a work for the future. Parallel scaling and
energy consumption is also investigated. Multi-field formu-
lations [12] of (1.1) with an explicit approximation of the
stress tensor σ = Cε and the flux vector q = −K∇ p might
be advantageous for applications of (1.1) in that their pre-
diction are of interest; cf. [12, 29]. The design of tailored
iterative solvers for suitable space-finite element approxima-
tions of such systems becomes even more challenging due
to the increasing complexity of the system’s block structure.
The feasibility of Vanka-type smoothers needs to reconsid-

Table 7 Computed goal
quantities (5.7) for different
temporal and spatial
approximations

re fn k DoFIn Gumin Gumax Gpmin Gpmax n̄GMRES

4 1 2741 516 − 9.93e−5 9.33e−5 -1.32e−4 1.23e−4 8

4 2 4,112,274 − 9.93e−5 9.37e−5 − 1.28e−4 1.23e−4 10

5 1 21,611,020 − 9.47e−5 9.18e−5 − 1.17e−4 1.31e−4 9

5 2 32,416,530 − 9.46e−5 9.18e−5 − 1.16e−4 1.31e−4 10

6 1 171,631,628 − 9.19e−5 9.55e−5 − 1.99e−4 1.36e−4 10

6 2 257,447,442 − 9.19e−5 9.54e−5 − 1.99e−4 1.36e−4 10

Here, re fn is the number of spatial refinements of the initial grid and k is the polynomial degree of the time
discretization (cf. Sect. 2). DoFI n is the total number of degrees of freedom on the fine grid level L of GMG
per subinterval In (i.e. for all k + 1 Gauss–Radau quadrature points on In). The coarse grid level of GMG
is refn = 1 (with (k + 1) · 3350 degrees of freedom). Gumin , Gumax , Gpmin and Gpmax are the minimum and
maximum of the benchmark quantities Gu and Gp on I , n̄GMRES is the average number of GMRES iterations
per time step
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Fig. 5 Results of the strong scaling and energy consumption benchmark

Fig. 6 Piecewise quadratic interpolation of the productivity function
(5.10)

Table 8 Computed quantities of the scaling and performance bench-
mark

n twall (h) E (kWh) S R P

40 10.36 123.11 1.00 1.00 1.00

80 5.66 210.55 1.83 1.71 1.07

120 3.72 316.85 2.79 2.57 1.08

160 3.20 401.49 3.12 3.26 0.96

200 3.66 432.20 2.83 3.51 0.81

ered. Such type of approaches remain as a work for the
future.
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Appendix

A Discrete coercivity

Here, we prove the discrete coercivity of the bilinear form
Aγ defined in (3.2a) along with (3.3a). For this we introduce
the mesh- and parameter-dependent norm

‖vh‖h,γ̃a :=
(
‖ε(vh)‖2 + γ̃a h

−1‖vh‖2�D
u

)1/2
, for vh ∈ V h,

(A.1)

with some parameter γ̃a > 0. Its choice is addressed below.
The norm property of (A.1) is ensured by a variant of Korn’s
inequality; cf. [20, Eq. (1.19)]. We recall the well-known
inverse inequality (cf. [75, p. 28])

‖ε(vh)n‖�D
u

≤ ch−1/2‖ε(vh)‖, for vh ∈ V h . (A.2)

From (3.2a) along with (3.3a), it follows by the positive def-
initeness (1.2a) of C, the inequality of Cauchy–Young with
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a sufficiently small constant δ > 0 and the trace inequality
(A.2) that, for all vh ∈ V h ,

Aγ (vh, vh) = 〈Cε(vh), ε(vh)〉 − 〈Cε(vh)n, vh〉�D
u

− 〈vh,Cε(vh)n〉�D
u

+ γa h
−1〈vh, vh〉�D

u

≥ c‖ε(vh)‖2 − c‖ε(vh)n‖�D
u
‖vh‖�D

u

+ γa h
−1‖vh‖2�D

u

≥ c‖ε(vh)‖2 − cδ h‖ε(vh)n‖2
�D
u

− cδ−1h−1‖vh‖2�D
u

+ γa h
−1‖vh‖2�D

u

≥ c‖ε(vh)‖2 − cδ‖ε(vh)‖2
− cδ−1h−1‖vh‖2�D

u
+ γa h

−1‖vh‖2�D
u

= c
(
‖ε(vh)‖2 + γ̃a h

−1‖vh‖2�D
u

)
,

with some constant γ̃a > 0 for a sufficiently large choice
of the algorithmic parameter γa in (3.3a), such that γ̃a :=
γa − cδ−1 > 0. Thus, there holds for some constant c > 0
that

Aγ (vh, vh) ≥ c‖vh‖h,γ̃a , for all vh ∈ V h . (A.3)

Secondly, we prove the discrete coercivity of the bilinear
form Bγ defined in (3.2c) along with (3.3b). For brevity, we
study the case Qh = Ql,cont

h only, such that Qh ⊂ H1(�) is

satisfied. The case Qh = Ql,disc
h can be captured similarly.

We introduce the mesh- and parameter-dependent norm

‖qh‖h,γ̃b :=
(
‖∇qh‖2 + γ̃b h

−1‖qh‖2�D
p

)1/2
,

for qh ∈ Qh ⊂ H1(�),

with some parameter γ̃b > 0, where Qh = Ql,cont
h ; cf. (2.5).

Further, we recall the well-known inverse inequality

‖∇qh · n‖�D
p

≤ ch−1/2‖∇qh‖, for qh ∈ Qh . (A.4)

From (3.2c) along with (3.3b), it follows by the positive def-
initeness (1.2b) of K , the inequality of Cauchy–Young with
a sufficiently small constant δ > 0 and the trace inequality
(A.4) that, for all qh ∈ Qh ,

Bγ (qh, qh) = 〈K∇qh,∇qh〉 − 〈K∇qh · n, qh〉�D
p

− 〈qh, K∇qh · n〉�D
p

+ γb h
−1〈qh, qh〉�D

p

≥ c‖∇qh)‖2 − c‖∇qh · n‖�D
p
‖qh‖�D

p
+ γb h

−1‖qh‖2�D
p

≥ c‖∇qh‖2 − cδ h‖∇qh · n‖2
�D
p

− cδ−1h−1‖qh‖2�D
p

+ γb h
−1‖qh‖2�D

p

≥ c‖∇qh‖2 − cδ‖∇qh‖2 − cδ−1h−1‖vh‖2�D
p

+ γb h
−1‖qh‖2�D

p

= c
(
‖∇qh‖2 + γ̃b h

−1‖qh‖2�D
p

)
,

with some constant γ̃b > 0 for a sufficiently large choice
of the algorithmic parameter γb in (3.3b), such that γ̃b :=
γa − cδ−1 > 0. Thus, there holds for some constant c > 0
that

Bγ (qh, qh) ≥ c‖qh‖h,γ̃b , for all qh ∈ Qh . (A.5)

B Alternative formulation of the fully
discrete problem

Here, we present an alternative formulation for the fully dis-
crete system to (1.1). The difference to Problem 3.1 comes
through using ∂tuτ,h instead of vτ,h in (3.5c) by means of
(3.1a) and (3.5a), respectively. However, this modification
requires the inclusion of an additional boundary integral in
the resulting equation (B.1c). This non-obvious adaptation
results from the proof of well-posedness of the discrete prob-
lem. The following problem is thus considered.

Problem B.1 (Numerically integrated In-problemwith ∂tuτ,h)
For given un−1

h := uτ,h(tn−1) ∈ V h, v
n−1
h := vτ,h(tn−1) ∈

V h, and pn−1
h := pτ,h(tn−1) ∈ Qh with uτ,h(t0) := u0,h,

vτ,h(t0) := u1,h and pτ,h(t0) := p0,h, find (uτ,h, vτ,h, pτ,h) ∈
Pk(In; V h) × Pk(In; V h) × Pk(In; Qh) such that

Qn
(〈∂tuτ,h,φτ,h〉 − 〈vτ,h,φτ,h〉

)

+ 〈u+
τ,h(tn−1),φ

+
τ,h(tn−1)〉 = 〈un−1

h ,φ+
τ,h(tn−1)〉

(B.1a)

Qn

(
〈ρ∂tvτ,h,χ τ,h〉 + Aγ (uτ,h,χ τ,h)

+ C(χ τ,h, pτ,h)
)

+ 〈ρv+
τ,h(tn−1),χ

+
τ,h(tn−1)〉

= Qn

(
Fγ (χ τ,h)

)
+ 〈ρvn−1

h ,χ+
τ,h(tn−1)〉 , (B.1b)

Qn

(
〈c0∂t pτ,h, ψτ,h〉 − C(∂tuτ,h, ψτ,h) + Bγ (pτ,h, ψτ,h)

)

+ 〈c0 p+
τ,h(tn−1) + α∇ · u+

τ,h(tn−1), ψ
+
τ,h(tn−1)〉

− α〈u+
τ,h(tn−1) · n, ψ+

τ,h(tn−1)〉�D
u

= Qn

(
Gγ (ψτ,h)

)
+ 〈c0 pn−1

h + α∇ · un−1
h , ψ+

τ,h(tn−1)〉
− α〈uD(tn−1) · n, ψ+

τ,h(tn−1)〉�D
u

(B.1c)

for all (φτ,h,χ τ,h, ψτ,h) ∈ Pk(In; V h) × Pk(In; V h) ×
Pk(In; Qh).

Lemma B.2 (Existence and uniqueness of solutions to Prob-
lem B.1) Problem B.1 admits a unique solution.
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Proof The proof follows basically the lines of the proof of
Lem. 3.2 and is kept short. Only differences to Lem. 3.2
are depicted. For the differences (uτ,h, vτ,h, pτ,h) of two
triples satisfying (B.1) and the test functions φτ,h = Aγ uτ,h ,
χ τ,h = vτ,h and ψτ,h = pτ there holds that

1

2

∫ tn

tn−1

d

dt

(
Aγ (uτ,h, uτ,h)

+ 〈ρvτ,h, vτ,h〉 + 〈c0 pτ,h, pτ,h〉
)
dt + Qn

(
Bγ (pτ,h, pτ,h)

)

+ Qn
(
Cγ (vτ,h − ∂tuτ,h, pτ,h)

)

+ α〈∇ · u+
τ,h(tn−1), p

+
τ,h(tn−1)〉

−α〈u+
τ,h(tn−1) · n, p+

τ,h(tn−1)〉�D
u

+ Aγ (u+
τ,h(tn−1), u

+
τ,h(tn−1)) + 〈ρv+

τ,h(tn−1), χ
+
τ,h(tn−1)〉

+ 〈c0 p+
τ,h(tn−1), p

+
τ,h(tn−1)〉 = 0.

(B.2)

Now, let l ∈ {1, . . . , k + 1} be arbitrary but fixed and φτ,h ∈
Pk(In; V h) be chosen as

φτ,h(t) := ξn,l(t)φh with

ξn,l(t) :=

⎛

⎜⎜⎝
k+1∏

i=1
i �=l

(
t − tGRn,i

)

⎞

⎟⎟⎠

⎛

⎜⎜⎝
k+1∏

i=1
i �=l

(
tGRn,l − tGRn,i

)

⎞

⎟⎟⎠

−1

∈ Pk(In;R), φh ∈ V h,

and the Gauss–Radau quadrature nodes tGR
n,μ, for μ =

1, . . . , k + 1; cf. (2.4). By the exactness of the Gauss–Radau
quadrature formula (2.4) for all polynomials in P2k(In;R)

we deduce from (B.1a) that

0 = τn

2

k+1∑

μ=1

ω̂GR
μ (〈∂tuτ,h(t

GR
n,μ),φτ,h(t

GR
n,μ)〉

− 〈vτ,h(t
GR
n,μ),φτ,h(t

GR
n,μ)〉)

+ 〈u+
τ,h(tn−1),φ

+
τ,h(tn−1)〉

= τn

2
ω̂GR
l 〈∂tuτ,h(t

GR
n,l ) − vτ,h(t

GR
n,l ),φh〉

+ 〈u+
τ,h(tn−1), ξ

+
n,l(tn−1)φh〉 .

Thus, we have that (l = 1, . . . , k + 1)

vτ,h(tGRn,l ) − ∂tuτ,h(tGRn,l ) = cn,l u
+
τ,h(tn−1)

with cn,l = 2τ−1
n

(
ω̂GR
l

)−1
ξ+
n,l(tn−1). (B.3)

Substituting (B.3) into the third term on the left-hand side
of (B.2), we get that

Qn
(
Cγ (vτ,h − ∂tuτ,h, pτ,h)

)

=
k+1∑

μ=1

Cγ (u+
τ,h(tn−1), ξ

+
n,μ(tn−1)pτ,h(t

GR
n,μ))

= Cγ (u+
τ,h(tn−1), p

+
τ,h(tn−1))

= −α〈∇ · u+
τ,h(tn−1), p

+
τ,h(tn−1)〉

+ α〈u+
τ,h(tn−1) · n, p+

τ,h(tn−1)〉�D
u

. (B.4)

Combining (B.2) with (B.4) then implies that

Aγ (uτ,h(tn), uτ,h(tn)) + 〈ρvτ,h(tn), vτ,h(tn)〉
+ 〈c0 pτ,h(tn), pτ,h(tn)〉 + 2Qn

(
Bγ (pτ,h, pτ,h)

)

+ Aγ (u+
τ,h(tn−1), u

+
τ,h(tn−1)) + 〈ρv+

τ,h(tn−1), χ
+
τ,h(tn−1)〉

+ 〈c0 p+
τ,h(tn−1), p

+
τ,h(tn−1)〉 = 0.

(B.5)

From (B.5) alongwith the discrete coercivity properties (A.3)
and (A.5) we deduce that

uτ,h(tn) = u+
τ,h(tn−1) = 0,

vτ,h(tn) = v+
τ,h(tn−1) = 0,

pτ,h(tn) = p+
τ,h(tn−1) = 0

as well as

pτ,h
(
tGRn,μ

) = 0, for μ = 1, . . . , k + 1.

The rest then follows as in the proof of Lem. 3.2.

C Additional numerical experiments

Here, we present some additional results of our numerical
experiments. Table 9 shows the results of the convergence
study introduced in Subsec. 5.1 for the solution (5.1) of (1.1).
For the computations of Table 9 the Taylor-Hood pair of finite
element spaces Q2

r /Qr−1, with r = 4, is used instead of the
pairQ2

r /P
disc
r−1 chosen for the results of Table 2. For the pres-

sure approximation marginally smaller errors are observed.
In Table 10 the computed errors of the approximation of (5.1)
for larger values of the Lamé parameters λ and μ in the elas-
ticity tensor C are summarized. No significant increase of the
errors is observed, indicating the independence of the error
constant on the magnitude of C .
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Table 9 L2(L2) and L∞(L2) errors and experimental orders of convergence (EOC) with temporal polynomial degree k = 3 and spatial degree
r = 4 for local spaces Q2

r /Qr−1

τ h ‖∇(u − uτ,h)‖L2(L2) EOC ‖v − vτ,h‖L2(L2) EOC ‖p − pτ,h‖L2(L2) EOC

τ0/20 h0/20 2.3958497242e−03 – 1.7185669625e−02 – 7.6634974254e−04 –

τ0/21 h0/21 1.0529091363e−04 4.51 5.4558642696e−04 4.98 3.8993048591e−05 4.30

τ0/22 h0/22 5.9749805593e−06 4.14 1.9143193940e−05 4.83 1.6140682324e−06 4.59

τ0/23 h0/23 3.6858181764e−07 4.02 9.6894400439e−07 4.30 9.0805047399e−08 4.15

τ0/24 h0/24 2.2976509245e−08 4.00 5.6982904446e−08 4.09 5.5524640600e−09 4.03

τ h ‖∇(u − uτ,h)‖L∞(L2) EOC ‖v − vτ,h‖L∞(L2) EOC ‖p − pτ,h‖L∞(L2) EOC

τ0/20 h0/20 1.3014883491e−02 – 1.1587851233e−01 – 4.9980604461e−03 –

τ0/21 h0/21 8.7944378641e−04 3.89 4.1645287352e−03 4.80 2.6289118267e−04 4.25

τ0/22 h0/22 5.6086076018e−05 3.97 2.0121086363e−04 4.37 9.4136464267e−06 4.80

τ0/23 h0/23 3.5171476997e−06 4.00 1.1873567381e−05 4.08 5.0122396011e−07 4.23

τ0/24 h0/24 2.1959938532e−07 4.00 7.3034502924e−07 4.02 2.8669553969e−08 4.13

Table 10 L2(L2) and L∞(L2) errors and experimental orders of
convergence (EOC) with temporal polynomial degree k = 2 and spa-
tial degree r = 3 for local spaces Q

2
r /P

disc
r−1 for Young’s modulus

E = 10000 and Poisson’s ratio ν = 0.35, corresponding to the Lamé
parameters λ = 8642 and μ = 3704

τ h ‖∇(u − uτ,h)‖L2(L2) EOC ‖v − vτ,h‖L2(L2) EOC ‖p − pτ,h‖L2(L2) EOC

τ0/20 h0/20 1.1835824122e−02 – 2.8040747896e−02 – 2.9610298753e−03 –

τ0/21 h0/21 1.5714797742e−03 2.91 5.7609393975e−03 2.28 3.9787786632e−04 2.90

τ0/22 h0/22 1.8935735637e−04 3.05 5.1606189537e−04 3.48 3.7075698634e−05 3.42

τ0/23 h0/23 2.3548556912e−05 3.01 6.0883693658e−05 3.08 4.5049814701e−06 3.04

τ0/24 h0/24 2.9374871960e−06 3.00 7.5088512252e−06 3.02 5.6225700500e−07 3.00

τ h ‖∇(u − uτ,h)‖L∞(L2) EOC ‖v − vτ,h‖L∞(L2) EOC ‖p − pτ,h‖L∞(L2) EOC

τ0/20 h0/20 6.5064235342e−02 – 1.3580389516e−01 – 1.4838995481e−02 –

τ0/21 h0/21 1.1842822460e−02 2.46 1.8023863764e−02 2.91 2.1492360068e−03 2.79

τ0/22 h0/22 1.5191266076e−03 2.96 3.4010640997e−03 2.41 2.3825320454e−04 3.17

τ0/23 h0/23 1.9340613477e−04 2.97 4.6154471881e−04 2.88 3.0597316621e−05 2.96

τ0/24 h0/24 2.4393096482e−05 2.99 5.8122744877e−05 2.99 3.8749301950e−06 2.98
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