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Abstract
This paper presents an approach to evaluate the failure of arbitrarily inclined interfaces using FE models with structured
spatial discretization, providing accurate prediction of crack propagation along paths known a priori that are not constrained
to the element boundaries. The combination of algorithms for the generation of structured discretization of representative
polycrystalline microstructures with novel cohesive element formulations allow modelling the failure of complex topologies
along rasterised boundaries, with noticeably higher computational efficiency and comparable accuracy. Two formulations of
raster cohesive elements are presented, adopting either elastic-brittle or Tvergaard–Hutchinson traction separation laws. The
formulations proposed are first validated comparing the failure of the interface within bi-crystal structures discretised using
hexahedral elements either within a structured mesh (i.e. with rasterised boundaries) or an unstructured mesh (i.e. with planar
boundary). Subsequently, the effectiveness of the formulations is demonstrated comparing the inter-granular crack propagation
within complex polycrystalline microstructures. The behaviour of the novel cohesive element formulation in structured
meshes consisting of regular hexahedral elements is in excellent agreement with the deformation and failure of classic
cohesive element formulations placed along the planar boundaries of unstructured meshes consisting of tetrahedral elements.
The higher computational cost of the raster cohesive elements is more than compensated by the increase in computational
efficiency of structured meshes when compared to unstructured meshes, leading to a reduction of the simulation time of up
to over 200 times for the simulations presented in the paper, thus allowing the simulation of large domains.

Keywords Inter-granular crack propagation · Raster discretization · Structured mesh · Cohesive element formulation ·
Traction separation law

1 Introduction

Modelling the failure of materials due to brittle crack prop-
agation is a common aim in structural mechanics that still
presents significant numerical challenges [1].

Oneof thefirst developed, and arguably simplest approaches
to simulate the initiation and propagation of cracks within a
solid structure is the combination of element erosion tech-
niques and the classic Finite Element Method (FEM). As the
crude removal of elements that reach certain failure criteria
leads to non-physical loss of mass in the model, several mod-
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ifications of the method have been presented to account for
the correct energy dissipation [2].

Despite the corrections, however, the tridimensionality of
the removed elements creates a void in the model, blunting
the crack tip and limiting the accuracy of the approach. Sev-
eral methods have been developed to introduce sharp (i.e.
2D) discontinuities in tridimensional models along arbitrary
directions, either as modifications of the classic FEM (e.g.
XFEM [3]), as well as meshless methods (e.g. SPH [4],
RKPM [5]), all proving effective to reproduce failure due
to crack propagation along arbitrary paths.

However, for problems in which the potential crack paths
are known a-priori, (e.g. grain boundaries of some brit-
tle polycrystalline microstructures, interfaces in composite
materials) the classic FEM approach is still arguably the
most commonly used method owing to its combination of
robustness and computational efficiency [6].Within the FEM
method, the fracture process along potential crack paths
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known a-priori is described by a cohesive zone model
(CZM) with a phenomenological traction-separation law
(TSL) governing the interface behaviour [7]. The most com-
mon implementation of the CZM approach is the use of
cohesive elements, with crack opening represented as dis-
placement jumps within the finite element.

The original implementation of the cohesive element
method is the so-called intrinsic approach, which imposes
an initially elastic response followed by a stiffness reduction
(i.e. softening) [8, 9]. A well-known limitation of the intrin-
sic approach is the introduction of an artificial compliance
in the model, due to the initial elastic slope of the TSL. The
effect can be limited by increasing the initial stiffness of the
cohesive element, which comes at the cost of a reduction in
the stable time step for the simulation [10].

An alternative implementation, pioneered by Camacho
and Ortiz [11] and Ortiz and Pandolfi [12] is based on the
insertion of cohesive elements during the simulation when
certain bulk criteria are satisfied. This so-called extrinsic
approach effectively imposes an initially rigid TSL, thus
avoiding artificial compliance issues prior to fracture. How-
ever, the insertion of cohesive elements on-the-fly presents
its challenges due to the complexity of the required mesh
topology modifications (i.e. node splitting and redefinition
of element connectivity) [13].

Both cohesive element approaches require the potential
crack paths to lie along element boundaries, introducing con-
straints on the spatial discretisation that prevent the use of
computationally efficient structured meshes. The flexibility
afforded by a mesh of tetrahedral elements limits the pres-
ence of small and/or distorted elements in the discretisation
of complex geometries, however the linear (i.e. four nodes)
formulation exhibits locking behaviour under certain load-
ing conditions, causing significant loss of accuracy [14].
Several approaches have been developed to prevent lock-
ing in tetrahedral elements (e.g increasing the order of the
polynomial shape functions), generally leading to a signif-
icant increase in the computational cost of the simulation.
Conversely, hexahedral elements guarantee high accuracy
and low computational cost, but introduce significant com-
plexity to the discretization of irregular domains. There are
several algorithms that allow the discretization of arbitrary
geometries into hexahedral elements (e.g. Hypermesh [15],
CUBIT [16]), but they still require a degree of user effort
to mesh highly irregular shapes, which makes them unsuit-
able for automated modelling of complex geometries such
as polycrystalline microstructures. Additionally, the use of
unstructured hexahedral meshes is still susceptible to the
presence of distorted elements,which affects the overall com-
putational cost and accuracy of the simulation. In general, for
complex structures with many potential crack paths—like
the polycrystalline microstructures prone to inter-granular
crack propagation presented in this paper—highly irregular

geometries can lead to a trade off between the quality of the
elements and the computational cost of the simulation, mak-
ing the accurate modelling of the failure of even relatively
small domains unfeasible.

Structured meshes consisting of hexahedral elements, on
the other hand, offer the ideal combination of high accu-
racy and low computational cost, and are often used for large
models and/or complex simulations [17, 18]. For heteroge-
neous structures, however, the numerical advantages come
at the expense of an approximate discretisation of bound-
aries, which hinder the use of the classic formulation of the
CZM approach, as the element boundaries do not lay on the
possible crack paths.

The presence of voxellated boundaries is also common
in microscopy imaging of heterogeneous domains such as
polycrystalline microstructures, due to the limits of imaging
resolution. The correction of voxellated boundaries—caused
by the pixel-based nature of digital images—into a smooth
conformal surface mesh is a frequent issue in the elaboration
of images [19].

The development of interface formulations which can
accurately predict the behaviour of voxellated boundaries is
key to exploiting the high computational efficiency of regu-
lar hexahedral elements to simulate crack propagation within
topologically complex structures, and possibly to reduce the
need for elaborate processing of digital images into confor-
mal meshes. A reduction in computational cost, compared
to models discretised with unstructured meshes, facilitates
the use of raster polycrystalline RVEs in multiscale simu-
lation frameworks. Such multiscale frameworks allow for
completion of large parametric studies for the statistical
homogenisation of the results at the microscale [20].

This paper presents a novel approach to the modelling of
the failure of voxellated structures by implementing cohesive
laws capable of reproducing inter-granular crack propaga-
tion along the grain boundaries of a polycrystalline structure.
First a method for the generation of statistically representa-
tive models of polycrystalline microstructures is presented,
highlighting its ability to evaluate and store the orientation
of each grain boundary in the domain before discretising the
geometry into a rasterised hexahedral mesh. Then the adap-
tation of the CZM formulation to raster interfaces, based
on the transformation of the stress state in the cohesive ele-
ments along the voxellated boundary into shear and normal
stress components along the original planar interface, is pre-
sented. The adaptation of two cohesive laws (elastic-brittle
and Tvergaard–Hutchinson) is illustrated in detail, and the
novel formulations are validated against the corresponding
TSL for planar interfaces, proving the ability of the method
presented to combine robust and computationally efficient
structured hexahedral meshes with accurate prediction of
crack propagation along arbitrarily oriented planar bound-
aries.
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2 Generation of FEmodels

Preparation of the FEMmodels presented in this paper relies
on the combination of an algorithm for the generation of
representative polycrystalline microstructures and a raster
discretisation approach that can create a structured mesh of
the microstructure and insert cohesive elements along the
raster boundary. The information on the original inclination
of the planar interface is stored in each of the newly inserted
zero-thickness elements in the form of the normal unit vector
components in the global coordinate system. This is used by
the material model to transform the stress and deformation
state from the local element coordinate system into that of
the original interface plane.

2.1 Microstructure generation

The geometries presented in this paper are created using the
VorTeX package [21] to generate representative models of
polycrystalline microstructures. The algorithms are based
on the Laguerre–Voronoi tessellation technique to divide the
entire three-dimensional space into polyhedral cells. Specif-
ically, given an arbitrary set of nuclei, the cells consist of the
points closer, in termsof power distance, to the corresponding
nucleus than to any other nuclei in the domain. Analytically,
the Laguerre–Voronoi tessellation can be expressed as

{RPi } = {x ∈ �3 : pow(x, (Pi, ωi )) ≤ pow(x, (Pj, ω j ))}
∀ j = 1, 2, ..., N : j �= i (1)

where Pj is the position of the j-th nucleus, {RPi } the locus
of points forming the cell associated to the nucleus Pi, x is
the position of a generic point in the three-dimensional space
�3, and ω indicates the weight of each nucleus.

The power distance between a generic point x and a
nucleus Pi is defined as the difference between Eulerian dis-
tance (||Pi − x||) and the weight of the nucleus ωi :

pow(x, (Pi, ωi )) = ||Pi − x||2 − ωi (2)

The use of power distance instead of the classic Eule-
rian distance offers enhanced control over the cell size
distribution, thus providing the capability to increase the
representativeness of the models generated. The complex-
ity of the formulation due to the introduction of the concept
of weight of a nucleus, and the level of representativeness
achievable are discussed in detail in [22].

As a direct consequence of Eq. (1), each cell generated
with Laguerre–Voronoi tessellation is a polyhedral domain
bounded by planar polygonal faces, and univocally defined as
the convex hull of its vertices. The planar faces also define the
boundary between cells, allowing the shape and orientation
of the interfaces along which failure can propagate to be

easily identified, as canbe seen in the example polycrystalline
geometry presented in Fig. 1a.

The orientation of each interface in the domain, which is
key to the novel raster cohesive element approach presented
herein, is calculated from the coordinates of the vertices. The
information is then used to assign the correct properties to
the cohesive elements introduced along the grain boundaries
of the raster mesh, as presented in the next section.

2.2 Raster discretisation

The discretisation of the domain is performed by superim-
posing a regular three-dimensional grid on the tessellation
geometry. To increase the computational efficiency of the
discretisation algorithm, a two-step method has been imple-
mented: first a fast screening of the position of the centre of
each hexahedral element against the bounding box of each
cell is performed, followed by a more accurate assessment
of the position of each element with respect to the actual
boundaries of each cell.

The use of bounding boxes for each cell, defined by the
minimum and maximum coordinates of the cell vertices
along global directions x , y, and z allows the fast identifica-
tion of the subset of cells potentially containing the element.
In case multiple cells are identified for a single element, the
actual convex hull containing the centre of the element is
calculated. Finally, all the elements whose centres fall into
the same cell are grouped into a part.

The two-step rasterisation method allows the discretisa-
tion of complex geometries into a structured hexahedralmesh
with minimal computational cost, providing FEMmodels of
polycrystalline topologies of the type presented in Fig. 1b.

To model the grain boundaries, zero-thickness cohesive
elements are added between neighbouring bulk elements
belonging to different parts, as shown in Fig. 1c. The voxel-
lation of the interfaces obscures the actual slope of the
boundaries, which is fundamental to correctly calculating
the stress state in the cohesive elements. The information
is gathered from the tessellation by extracting the list of
faces shared by neighbouring grains. The slope of each grain
boundary—expressed in terms of the components of the nor-
mal unit vector—is then calculated and stored as an interface
property. By assigning each element to the corresponding
boundary, the cohesive law algorithm has access to the slope
components required to correctly evaluate the stress state
in the raster element. The approach developed requires the
definition of the cohesive properties for each interface, thus
providing full control to the user on the strength and tough-
ness of the boundaries.

The formulation and implementation of the two cohesive
materialmodels implemented is presented in the next section,
followed by the validation of the approach against analytical
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Fig. 1 Visualisation of a statistical model of polycrystalline microstructure, b rasterised discretisation, and c cohesive elements along the grain
boundaries

calculations and numerical models with planar interfaces in
Sect. 4.

3 Raster cohesive elements formulation

The formulation of the raster cohesive elements is based on
the rotation of the stress tensors evaluated on the raster inter-
faces during the numerical simulation, onto the normal and
tangential directions of the original inclined interface.

To track the transformation of the stress components from
the raster elements to the original inclined interface, three
coordinates systems are defined: element local [ξηζ ], global
[xyz], and planar local [123], as graphically represented in
Fig. 2.

The element local coordinates are defined consistently
with LS-Dyna convention: the first two coordinates (ξ and η)
are in the plane of the cohesive element, and the third coor-
dinate (ζ ) is normal to it. The global coordinate system, is
instead consistent for the wholemodel. Its axes are parallel to
the axes of the element local coordinate system but indepen-
dent of the orientation of the single cohesive element. Finally,
the planar local coordinate system is defined per each inter-
face, with the first two directions (1 and 2) lying on the plane
of the interface, and the third direction (3) perpendicular to it.

The rotation of stresses (or jump) from element local to
global coordinates is relatively straightforward, as it is per-
formed by rotating the axis by multiples of π/2 to align all
quantities in the [xyz] directions. The rotation from global
to planar local coordinates, instead, is based on the direc-
tion cosines of the planar interface stored during the raster
discretisation of the domain. Naming Nx , Ny , and Nz the
direction cosines of a generic interface with respect to the
global directions x , y, and z, respectively, the rotation matrix
N can be expressed as:

N =
⎡
⎣
Ny Nz Nx

Nz Nx Ny

Nx Ny Nz

⎤
⎦ (3)

Finally, to account for the difference in area between the
raster elements and the actual planar interface, each raster
cohesive element carries only normal force, so that three
perpendicular elements are required to fully decompose the
forces on a general planar interface. The appropriate cosine
director is then used to scale the area from global [xyz] to
the planar local [123] coordinate systems, as expressed in
Eq. (7) (for elastic brittle formulation), and Eq. (13) (for the
TH formulation), therefore ensuring analytical equivalence
between the planar and raster forces.

The approach is used to adapt the two cohesive ele-
ment formulations presented in this paper: Elastic-Brittle
and Tvergaard–Hutchinson cohesive models. Nonetheless,
the methodology can be extended to other cohesive element
formulations using the transformations presented.

The elastic-brittle cohesive element formulation is one of
the simplest models to implement, as it imposes a linear elas-
tic deformation until the sudden and complete failure of the
element when either the normal or shear stress reach a user
defined threshold value.

The Tvergaard–Hutchinson (hereafter referred to as TH)
cohesive law, instead, has a more complex formulation con-
sisting of three regimes: linear elastic, plateau, and softening.
The transition between regimes is governed by the separation
parameter λ, evaluated from the element deformation along
the normal and shear directions.

3.1 Elastic-Brittle cohesive formulation

The elastic-brittle cohesive law is based on MAT_184 of
the LS-Dyna material library, a simple cohesive model with
perfectly elastic behaviour and sudden failure based on user-
defined maximum normal fn and tangential ft strength.

The elastic behaviour is described by the relationship
between force f and the jump δ in the cohesive element;

⎧⎨
⎩

f1
f2
f3

⎫⎬
⎭ =

⎡
⎣
E 0 0
0 E 0
0 0 E

⎤
⎦

⎧⎨
⎩

δ1
δ2
δ3

⎫⎬
⎭ , (4)
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Fig. 2 Coordinate systems defined to track the stress rotation from raster to inclined interfaces

where E is the stiffness of the cohesive element, and the
directions [123] are expressed in the planar local coordinate
system.

The failure condition is determined by the tangential or
normal stress reaching the respectivemaximum strength, and
can be written as;

{√
f 21 + f 22 = ft

f3 = fn
. (5)

To adapt the elastic cohesive formulation to a raster dis-
cretisation, the three values of jump (δξ , δη, and δζ ) are first
multiplied by the stiffness to evaluate the local stresses. As
the stiffness is imposed to be equal in both tangential and
normal directions, the output stress used to evaluate the defor-
mation of the element at the following time step is simply the
stress in the direction ζ . To avoid the occurrence of vibrations
in the element due to the lack of shear stiffness, a damping
term is added to the in-plane stress components, so that the
updated stress state in the cohesive element state becomes;

f cξ = Eβδ̇ξ

f cη = Eβδ̇η

f cζ = Eδζ

, (6)

where β is a user-defined damping factor, and δ̇ the rate of
deformation.

The failure condition is evaluated in parallel to the cal-
culation of the updated stress at the next timestep. This is
achieved by first rotating the stress into global coordinates
using the direction of the element normal stored during the
discretisation process, and then transforming into the stress
state that would be experienced by the planar interface, using
the relationship defined in Eq. (7). The transformation from
xyz to 123 coordinate systems combines the rotation matrix
defined in Eq. (3), with the scaling of areas using the direc-
tion cosine to assure analytical equivalence between planar
and raster stress.

Fig. 3 Flowchart of the raster formulation of elastic-brittle cohesive
law

⎧⎨
⎩

f1
f2
f3

⎫⎬
⎭ =

⎡
⎣
Ny Nz Nx

Nz Nx Ny

Nx Ny Nz

⎤
⎦

⎧⎨
⎩

Nx fx
Ny fy
Nz fz

⎫⎬
⎭ . (7)

The stress state in the local inclined coordinate system is then
used to evaluate the failure condition according to Eq. (5),
with the failed elements either deleted or imposed to have
zero stress, according to user preference.

The algorithm is summarised in the flowchart in Fig. 3,
showing the calculation of the updated stress (right branch)
and evaluation of the failure condition (left branch).
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Fig. 4 Graphical representation of the TH cohesive traction law
described by Eq. (9)

3.2 Tvergaard Hutchinson cohesive formulation

The simplistic elastic-brittle formulation presented in the
previous section has the advantage of requiring very few
parameters and a low computational cost both in its clas-
sical form and in the raster formulation. However, the abrupt
failure of the elements significantly affects the accuracy of
the simulation, as the energy released by the failure of an ele-
ment might trigger the unphysical failure of other elements
within the structure. To avoid the occurrence of this type
of numerical artefact, a more complex formulation has been
adapted to a raster formulation, the Tvergaards-Hutchinson
cohesive model [23].

The TH formulation is based on the definition of a
dimensionless separation measure λ, which averages the
contribution of tangential (δ1, δ2) and normal (δ3) jumps
weighted by the user-defined length scales in the tangential
(δct ) and normal (δcn) directions,

λ =
√(

δ1

δct

)2

+
(

δ2

δct

)2

+
( 〈δ3〉

δcn

)2

(8)

where the Macaulay bracket operator 〈·〉 excludes the neg-
ative contribution of δ3, therefore preventing unphysical
interpenetration along the normal direction of the local planar
coordinate system.

The traction across the cohesive element t(λ) can be
divided into three regimes, determined by the value of λ.
The tri-linear stress-deformation law, depicted in Fig. 4, can
be described analytically as;

t(λ) =
{σM

λ
λ1

λ ≤ λ1

σM λ1 ≤ λ ≤ λ2

σM
1−λ
1−λ2

λ2 ≤ λ ≤ 1
. (9)

where σm is the maximum stress in the cohesive element,
and λ1 and λ2 are user defined boundary values between the
three regimes.

The first regime (λ ≤ λ1) is analogous to the one defined
in the elastic cohesive element presented in the previous sec-
tion, with the stress growing linearly with the strain in the
element. In the second regime (λ1 ≤ λ ≤ λ2) the traction
plateaus as the cohesive element deforms, whilst in the third
regime (λ2 ≤ λ ≤ 1) the cohesive elements softens as the
deformation increases until the complete (and irreversible)
failure of the element when the traction is zero.

Finally, the traction is used to define the stress in the ele-
ment as a function of the jump and the critical deformation
in the tangential (δct ) and normal (δcn) directions;

⎧⎨
⎩

f1
f2
f3

⎫⎬
⎭ =

⎡
⎢⎢⎢⎣

t(λ)
λ

δcn

δc
2

t

0 0

0 t(λ)
λ

δcn

δc
2

t

0

0 0 t(λ)
λ

1
δcn

⎤
⎥⎥⎥⎦

⎧⎨
⎩

δ1
δ2
δ3

⎫⎬
⎭ . (10)

The adaptation of the TH cohesive formulation to the
raster discretisation is more complex than the one imple-
mented for the elastic formulation presented in the previous
section, as the normal stress in the element local coordinates
cannot be evaluated directly from the jump in the element
local coordinate system.

First the deformation tensor is transformed using the rota-
tion matrix N, analogously to the elastic formulation;

⎧⎨
⎩

δ1
δ2
δ3

⎫⎬
⎭ =

⎡
⎣
Ny Nz Nx

Nz Nx Ny

Nx Ny Nz

⎤
⎦

⎧⎨
⎩

δx
δy
δz

⎫⎬
⎭ . (11)

The separation measure λ, the traction across the cohesive
element t(λ), and the stress components in the planar local
coordinate system are then calculated using Eqs. (8)–(10),
respectively.

Since the failure is modelled as the gradual reduction of
the stiffness, which can happen at different rates along the
tangential and normal direction with respect to the inclined
plane, the transformation of the stress tensor from the [123]
to [ξηζ ] coordinate system is required to correctly calculate
the stress in the raster element. The transformation of the
stress is performed using the rotation matrixR, calculated as
the adjugate of N used to rotate the strain components from
the [xyz] to [123] coordinate system;

R =
⎡
⎣
Nx Nz − N 2

y Nx Ny − N 2
z NyNz − N 2

x
Nx Ny − N 2

z NyNz − N 2
x Nx Nz − N 2

y
NyNz − N 2

x Nx Nz − N 2
y Nx Ny − N 2

z

⎤
⎦ . (12)

Consistent with the overall approach that allows raster
cohesive elements to carry only normal stress (thus requir-
ing three perpendicular raster elements to fully describe the
response of an arbitrarily inclined planar interface), the com-
ponent of the stress in the direction ζ is calculated using Rζ ,

123



Computational Mechanics

Fig. 5 Flowchart of the raster formulation of TH cohesive law

defined as a subset of the rotation matrix introduced in Eq.
(12). Specifically,Rζ transforms the components of the stress
in the [123] coordinate system into the component in the ζ

direction. The first two rows of the matrix are equal to zero,
and the last row is equal to the corresponding row in R (i.e.
first row if ζ is parallel to x , second row if ζ is parallel to
y and third row if ζ is parallel to z). Additionally, a damp-
ing term is added to each component to reduce any possible
vibration due to the lack of shear stiffness and the numeri-
cal error deriving from the rotation of the stress components.
Thus we have,

⎧⎨
⎩

fξ
fη
fζ

⎫⎬
⎭ = 1

Nz

Rζ

|N |

⎧⎨
⎩

f1
f2
f3

⎫⎬
⎭ +

⎧⎨
⎩

Etβδ̇ξ

Etβδ̇η

0

⎫⎬
⎭ , (13)

where β is a user-defined damping factor, δ̇ the rate of defor-
mation, and Et the in-plane stiffness.

The algorithm to adapt the TH cohesive formulation to the
raster approach is graphically described in the flowchart in
Fig. 5.

4 Validation

To validate the presented cohesive law formulations, the
deformation and failure of structures discretisedwhilst main-
taining planarity of the interfaces is compared against the
corresponding rasterised models.

First, a direct measure of the accuracy of both raster cohe-
sive law formulations presented in this paper is provided by
comparing the deformation and failure of bi-crystal models
with a single arbitrarily inclined interface. Then, the scala-
bility of the approach is proven by comparing the behaviour
of FEMmodels of polycrystalline structures discretised with
unstructured tetrahedral mesh against those using a struc-
tured raster discretisation.

4.1 Bi-crystal models

In this section three bi-crystal models are presented, con-
sisting of a rectangular prism split by a single, arbitrarily
inclined, planar interface.The simplicity of the chosen shapes
enables easy discretisation of the geometries with struc-
tured meshes consisting of hexahedral elements, whilst still
preserving the planarity of the interface. Themodels are com-
pared against the raster discretisation of the same geometry,
as presented in Fig. 6.

The direction cosines of the planar interfaces for each
model are reported, alongside the orientation of the mod-
els with respect to the global [xyz] coordinate system. By
analysing the response of models with longitudinal axes
along three perpendicular directions, the validity of the full
rotational matrices is verified.

The use of a structured mesh for both models minimises
the possible influence of the element formulation over the
final behaviour of the structure, as it avoids the use of tetrahe-
dral or pentahedral elements (which can hinder the accuracy
due to well-known integration issues), and limits distortion
of the elements.

An isotropic elastic material model is assigned to the bulk
elements (with Young’s modulus E = 400 GPa), and a
linearly increasing (tensile or compressive) displacement is
applied to the two small external faces of the domain until
the complete failure of the interface.

4.1.1 Elastic brittle

Tovalidate the elastic-brittle cohesive law for raster elements,
the three models presented in Fig. 6 are subjected to both
tensile and compressive uniaxial loading conditions. In the
models with a planar interface, the standard elastic-brittle
material (known as MAT_184 in the commercial software
LS-Dyna) is assigned to the cohesive elements, whilst the
formulation described in Sect. 3.1 is imposed upon the cohe-
sive elements in the rasterised models. The critical values of
failure strength in mode I ( fn) and mode II ( ft ) are both set
equal to 1.0 GPa.

For the sake of conciseness, only the results of the simu-
lations of Model 1 are presented in Fig. 7, showing excellent
agreement between the model with planar interface and its
rasterised counterpart. The results for Model 2 and 3 show
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Fig. 6 Bi-crystal models used to compare the response of planar vs raster interfaces under tension and compression along the three principal axes.
Uniaxial loads are applied along x for model 1, y for model 2, and z for model 3. Direction cosines [Nx NyNz] of the planar interface are provided
for each case

Table 1 MSPE between the bulk response of models with planar and
raster elastic-brittle interfaces

Tension (%) Compression (%)

Model 1 0.0220 0.0083

Model 2 0.2384 0.0004

Model 3 0.1006 0.0032

a similar level of agreement, and are therefore not shown
in the paper for sake of brevity. The maximum discrepancy
between the planar and raster models is consistently within
1% for all components of stress. The mean square percent-
age error (MSPE) between the bulk response of models with
planar and raster interfaces, summarised in Table 1, is within
0.25%, thus confirming the excellent agreement observed in
the qualitative curve comparison.

Four components of the stress are compared: the stress in
the bulk of the domain, the two shear components of the stress
along the direction of the short edges of the domain (always
assumed positive), and the component of stress normal to
the planar interface, proving that the implemented cohesive
law accurately reproduces the failure, both in tension and
compression, of a planar boundary using a structured mesh
with raster interface. The comparison shows also the ability

of the raster cohesive formulation to reproduce both mode I
and mode II failure mechanisms, as the failure of the model
under tension is due to f3 = fn , whilst the failure of the

interface under compression is due to
√

f 21 + f 22 = ft .
Finally, even in the simple bi-crystal models presented

it is possible to observe an already mentioned limitation of
the simplistic elastic-brittle approach. The abrupt failure of
the interface and consequent sudden release of energy in the
system lead to the propagation of unphysical vibrations, as
observed in the post-fracture behaviour of the bulk stress
in models with raster and planar interface alike. The imple-
mentation of the more complex TH cohesive law limits this
phenomenon, introducing a more physically based descrip-
tion of inter-granular crack propagation mechanisms.

4.1.2 Tvergaard–Hutchinson

An analogous validation process has been performed to val-
idate the raster implementation of the TH formulation. The
TH material model (defined as MAT_185 in LS-Dyna) is
assigned to the cohesive elements in the models with planar
interface presented in Fig. 6, whilst the raster formulation
of TH cohesive law described in Sect. 3.2 is used for the
interface elements of the rasterised models.
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Fig. 7 Comparison of the stress components in the bulk and in the interface for Model 1 under uniaxial tension (a) and compression (b)

Fig. 8 Comparison of the stress components in the bulk and in the interface for a Model 1, b Model 2, and c Model 3 under uniaxial tension,
alongside d the evolution of λ in all three models

123



Computational Mechanics

Thebulkmaterial is stillmodelled as isotropic elastic (with
Young’s modulus E = 400 GPa), and the interfaces have the
same maximum strength as for the elastic-brittle validation
(i.e. σM = 1.0 GPa). The critical deformation in the normal
(δcn) and tangential (δ

c
t ) direction are set equal to 20μm, and

the limits of the linear elastic (λ1) and plateau (λ2) regimes
presented in Fig. 4 are imposed to be equal to 0.001 and 0.1,
respectively, which is equivalent to a value of energy release
rate of approximately GIc ≈ 11k Jm−2. The properties are
not representative of any specific material, as they were cho-
sen to highlight the consistency of all three regimes of the
CZM formulation. However they are not entirely unphysical;
the energy release rate is consistent with that of relatively
brittle flavours of Titanium alloys [24].

The comparison of the behaviour of the models under uni-
axial tensile loading conditions is presented in Fig. 8. The
results, visualised in terms of stress along the loading direc-
tion measured in the bulk of the model, shear components
of the cohesive elements stress along the edges of the pla-
nar interface, and component of the cohesive elements stress
normal to the planar interface for the three models presented
in Fig. 6, show excellent agreement for all the stress compo-
nents. Furthermore the evolution of the separation parameter
λ extracted from the rasterised models is practically iden-
tical to the one measured from the models discretised with
planar interface. The only difference between the models is
a systematic discrepancy in terms of opening gap, which is
proportional to the direction cosines, due to the difference
in surface areas between the raster and the planar surfaces.
For relatively brittle materials the effect of the approxima-
tion is negligible, but it might affect the accuracy of the
simulation of the behaviour of very ductile interfaces (e.g.
deformable adhesives). The modification of the element for-
mulation to increase the accuracy of the calculation of δ for
tough materials requires the implementation of a novel ele-
ment formulation combinedwith the novel CZMpresented in
this paper. The development and implementation of the novel
cohesive element formulationwill be the topic of futurework.

Finally, it is important to highlight the absence of unphys-
ical vibrations in the bulk elements after failure, proving that
the TH cohesive formulation overcomes the limitation shown
by the simplistic elastic-brittle cohesive formulation.

4.2 Polycrystallinemodels

To verify the capability to model the behaviour of multiple
interfaces, a polycrystalline structure, consisting of 21 grains,
has been generated using the approach described in Sect. 2.1.
The structure is discretised with an unstructured tetrahedral
mesh, which allows for preservation of the planarity of the
grain boundaries; and with a structured hexahedral mesh, as
presented in Fig. 9.

Fig. 9 Unstructured (left) and structured (right) discretisation of the
polycrystalline structure consisting of 21 grains

A fully anisotropic elastic material model is imposed
upon the bulk elements, with different crystallographic ori-
entations assigned to each grain. The aim is to prove the
compatibility of the raster formulation with more complex
constitutive models than the simple isotropic elastic relation
used for the bi-crystal verificationmodels. Thematerial prop-
erties of alumina, as measured by Hovis [25], are used in the
simulations presented in this paper.

In the model discretised with an unstructured mesh, tra-
ditional cohesive elements are inserted along the planar
interfaces between grains, whilst the raster formulation is
adopted for the interfaces of the model consisting of hexahe-
dral elements. The same properties applied to the cohesive
elements in the bi-crystal models are adopted, with maxi-
mumstrength of 1.0GPa for both formulations and toughness
GIc ≈ 11Jm−2 for the TH formulation.

The models are subjected to uniform tensile stress by
imposing linearly increasing displacement to the top and bot-
tom faces of the models.

First the elastic-brittle TSL (presented in Sect. 3.1) is
assigned to the cohesive elements. The comparison of the
normal stress contour ahead of failure presented in Fig. 10,
shows the ability of the raster approach to reproduce the stress
state of the equivalent planar interface even within a com-
plex model with multiple interconnected interfaces, whilst
avoiding the occurrence of unphysical high values of stress
concentrations due to the presence of distorted elements that
can be observed in the unstructured model. Additionally, the
combination of high computational efficiency of the struc-
tured mesh and absence of small or distorted elements leads
to a reduction of run-time required for the simulation of
several orders of magnitude. Specifically, the simulations
presented in Fig. 10 were performed using 16 SMP on a
machine equipped with 2 8-core/16-thread processors (Xeon
E5-2640 at 2.60 GHz) and 64 GB of RAM, and it took 92s
for the rasterised model to reach the complete failure of the
structure, several times faster than the same simulation using
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Fig. 10 Comparison of the normal stress contour plot on the interfaces
of the polycrystalline models with unstructured (left) and structured
(right) meshes

the model with planar grain boundaries, which took more
than 6h on the same machine.

The same polycrystalline models presented in Fig. 9 are
also used to validate the raster formulation of Tvergaard–
Hutchinson TSL (described in Sect. 3.2). The same bulk
material properties and loading conditions used for the
elastic-brittle validation are applied to the model, whilst the
standard and raster TH cohesive elements are inserted along
the grain boundaries of the models.

As for the elastic-brittle models, the raster formulation is
able to reproduce the deformation and failure of the structure,
as shown in Fig. 11. The curves, representing the nominal
stress evaluated as the total force measured on the top and
bottom faces of the model over the initial cross sectional
area, show good agreement between the planar and raster
interface approach. The slight difference (less than 5% at any
strain) observed in the evolution of the curves is comparable
to the mismatch between the stress evaluated from the top
and bottom faces of the same model, and considered to be
due to the anisotropic nature of the grains combined with
stress localisations introduced by the irregular discretisation
of the unstructured mesh.

Also for the TH formulation, the use of the rasterised
model leads to a significant reduction of the duration of the
simulation. Specifically, the model consisting of planar inter-
faces ran for more than 30h until the complete failure of the
model, whilst the equivalent rasterised model took just over
3h to reach the same condition.

5 Micromechanical models

To prove the scalability and the computational efficiency of
the cohesive element formulations presented in this paper,
micromechanical simulations have been setup to model the

Fig. 11 Comparison of the nominal stress evaluated from the total
forces measured on the bottom and top faces of the raster and planar
models

Fig. 12 Raster discretisation of the bulk (left) and the grain boundaries
(right) of the synthetic microstructure

initiation and propagation of inter-granular failure within rel-
atively large polycrystalline microstructures.

A synthetic microstructure of 0.2 mm per side is gener-
ated, consisting of 754 grains and with a realistic distribution
of grain sizes (6µm < d < 50µm), as illustrated in Fig. 12.

The structure is discretised using the raster approach
described inSect. 2.2, producing a structuredmesh consisting
of 512k bulk elements and over 185k zero-thickness cohe-
sive elements. The grains are modelled as anisotropic elastic
crystals, and either the elastic-brittle or the TH cohesive
formulations are assigned to the interfaces. Realistic mate-
rial properties are used to model the single crystals and the
grain boundaries based on the properties of a relatively brit-
tle flavour of zirconium [26]. Specifically the full anisotropic
compliance tensor C reported in Eq. (14) is assigned to the
single crystals alongside randomly oriented crystallographic
texture.

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

152.4 65.5 66.6 0.0 0.0 0.0
152.4 66.6 0.0 0.0 0.0

173.8 0.0 0.0 0.0
24.6 0.0 0.0

sym 24.6 0.0
43.5

⎤
⎥⎥⎥⎥⎥⎥⎦
GPa. (14)
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Fig. 13 Evolution of inter-granular failure within a polycrystalline microstructure with interface modelled with either the elastic-brittle (top) or the
TH (bottom) cohesive element formulation

Critical failure stress of 200MPa is assigned to the grain
boundaries for both elastic-brittle and TH cohesive formu-
lations. Critical deformations (δcn) and (δ

c
t ) are both equal to

1μm and the elastic behaviour limit (λ1) equal to 0.001 for the
triangular (i.e. λ1 = λ2) TH cohesive formulation, which is
equivalent to a value of energy release rate Gc ≈ 0.1k J/m2

which is consistent with directly measured values for brittle
grain boundaries [27].

Displacement controlled uniaxial loading conditions are
applied to the top and bottom faces of the models at a rate
of 0.1mm/ms until the complete failure of the structure. The
outcome of the simulations is reported graphically in Fig. 13.
The top row shows the evolution of failed interfacesmodelled
using the elastic-brittle cohesive formulation, whilst the bot-
tom row shows the failure of the same microstructure with
grain boundaries modelled using the TH cohesive formula-
tion.

The behaviour of the large models is consistent with what
was observed for the polycrystalline validation presented in
Sect. 4.2, with interface failure initiating at the boundary
between grains with highest crystallographic mismatch and
propagating along grain boundaries until the complete failure
of the structure. The simulations also show the advantage of
the TH cohesive formulation which provides a more realistic
inter-granular crack pattern, with the relatively slow initial
growth of a first crack causing the volume around the crack
to relax (often referred to as crack shadowing). The corre-
sponding stress increase in the not-relaxed volume of the
RVE leads, in turn, to the initiation of a second crack. The
two cracks evolve separately along grain boundaries with a
limited amount of branching until the complete failure of the
domain split into three fragments. The simulated behaviour

is markedly different from the failure observed in almost all
grain boundaries modelled with the elastic-brittle cohesive
elements, avoiding any abrupt, unphysical releases of energy
upon deletion of elements.

The numerical results highlight the already mentioned
limitations of the elastic-brittle formulation, with the abrupt
loss of strength in cohesive elements triggering the failure
of neighbour elements until unphysical complete failure of
nearly all the grain boundaries.

The computational efficiency of the cohesive element for-
mulations scales well to large models, with the simulations
taking over 3h and almost 28h for the elastic-brittle and
the TH cohesive formulation respectively, using 16 SMP
on a machine equipped with 2 8-core/16-thread processors
(Xeon E5-2640 at 2.60 GHz) and 64 GB of RAM. The rela-
tively small simulation times for such large models prove the
high computational efficiency of the two configurations. It is
important to highlight that the complete failure of the model
with elastic-brittle cohesive elements occurs shortly after the
initiation of the first crack, whilst the onset of the first crack
for the TH formulation occurs after 19h of simulation as the
crack growth is significantly slower allowing for the stress
redistribution within the model as the crack pattern evolves.

6 Conclusions

The paper presents the formulation and implementation of
a cohesive model approach capable of reproducing the fail-
ure of arbitrarily inclined interfaces using structured meshes
consisting of highly regular hexahedral elements.
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The approach presented relies on the newly implemented
capability of the algorithm VorTeX (developed by the
authors) to impose a raster discretisation of complex poly-
crystalline structures, maintaining the information on the
grain boundary inclination in the three-dimensional space.
By linking the actual orientation of the grain boundary
normal with the cohesive elements inserted in the raster
discretisation, the novel formulation presented is able to
reproduce the behaviour of cohesive elements inserted on
the actual inclined interface.

The approach developed is applied to two cohesive
models: elastic-brittle and Tvergaard–Hutchinson material
models.

The independence of the stiffness value from the defor-
mation state in the elastic-brittle formulation allows the
decoupling of the calculation of the stress state in the element
and the verification of failure conditions, thus increasing
the computational efficiency by avoiding stress transforma-
tion from local to global coordinate system. However, the
relatively simplistic nature of the elastic-brittle formulation
leads to abrupt energy release in the system at failure, which
can trigger unphysical failure of neighbouring elements and
affect the accuracy of the simulation.

The TH cohesive model overcomes this limitation by
introducing 3 stiffness regimes linked to the deformation
state. The adaptation of the TH model for raster mesh appli-
cation does not allow for a decoupling of the evaluation of
the stress state and the failure condition, as it requires the
transformation of the stress state from local to global coor-
dinates. However, the increase in computational cost for the
single cohesive element is more than compensated by the
increase in computational efficiency due to use of a highly
regular structured mesh. For example, simulation to failure
of the same polycrystalline microstructure takes less than
2min with the raster approach versus 6h for the unstructured
model. This significant increase in computational efficiency
for raster models is primarily due to the absence of any small
or distorted elements in structured meshes.

In addition to a reduction in simulation run-time, the use
of raster cohesive elements permits the full automation of
the meshing process as presented in [20], therefore virtually
eliminating time-consuming and labour-intensive discretisa-
tion of complex structures.

The validations presented in the paper show excellent
agreement between the raster and standard formulations,
both in the one-to-one comparison of the elements and
in the behaviour of complex structures, proving the raster
approach developed to be an effective alternative to the
standard cohesive elements for polycrystalline structures, or
more generalised domains incorporating irregular and inter-
secting interfaces.

Finally, the failure of large polycrystalline structures is
modelled using the two cohesive element formulations pre-

sented in this paper, proving the scalability of the presented
algorithms to largemodels and their ability to reproduce real-
istic inter-granular failure patterns.
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