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Abstract
This paper presents an extension of the authors’ previously developed interface coupling technique for 2D problems to 3D
problems. The method combines the strengths of the Discrete Element Method (DEM), known for its adeptness in capturing
discontinuities and non-linearities at the microscale, and the Boundary Element Method (BEM), known for its efficiency
in modelling wave propagation within infinite domains. The 3D formulation is based on spherical discrete elements and
bilinear quadrilateral boundary elements. The innovative coupling methodology overcomes a critical limitation by enabling
the representation of discontinuities within infinite domains, a pivotal development for large-scale dynamic problems. The
paper systematically addresses challenges, with a focus on interface compatibility, showcasing the method’s accuracy through
benchmark validation on a finite rod and infinite spherical cavity. Finally, a model of a column embedded into the ground
illustrates the versatility of the approach in handling complex scenarios with multiple domains. This innovative coupling
approach represents a significant leap in the integration of DEM and BEM for 3D problems and opens avenues for tackling
complex and realistic problems in various scientific and engineering domains.

Keywords Interface coupling · Concurrent multi-scale coupling · Boundary element method (BEM) · Discrete element
method (DEM) · Staggered time integration · Dynamic wave propagation · Infinite domain

1 Introduction

The study of wave propagation in elastic bodies has several
applications in engineering [1]. Due to the complex geome-
tries and loading conditions involved in real-life simulations,
numerical methods are commonly employed [2, 3]. Among
the numerical methods utilised in this field, the Discrete Ele-
mentMethod (DEM) and theBEMare particularly suitable to
this research. These methods have been used to solve several
simulations such as excavations [4, 5], blasting processes
[6–8], tunnelling [9–11], rock cutting [12], slope stability
analysis [13, 14], earthquakes [15, 16], ballistic impacts [17],

B Guilherme Barros
guilherme.coelhogomesbarros@uon.edu.au

1 Centre for Geotechnical Science and Engineering, The
University of Newcastle, University Drive, Callaghan, NSW
2308, Australia

2 Institute of Computing, Fluminense Federal University, Rua
Passo da Patria 156, Niterói 24210-240, Brazil

3 Institute of Fundamental Technological Research, Polish
Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw,
Poland

soil-structure interaction [18, 19], and foundation design [20,
21].

The DEM is a well-known technique that can represent
complex material behaviours and easily accommodate dis-
continuities and geometrical non-linearities [22]. The DEM
discretises problems as assemblies of particles that interact
through contact forces, making it appropriate for simulating
granular materials [23]. The extension to cohesive mate-
rials, such as rock and concrete, was later introduced by
incorporating new contact laws [24]. Nevertheless, DEM
simulations face great difficulty modelling infinite domains
[25]. Non-reflecting viscous boundaries [26] and the cou-
pling with the Infinite Element Method (IEM) [27] are
potential workarounds. However, these techniques cannot
capture the wave propagation outside the computational
domain.

In turn, the BEM is a numerical method that can accu-
rately and efficiently simulate infinite domains [28]. Derived
from continuum mechanics, the BEM employs fundamental
solutions that satisfy the radiation condition. Its unique fea-
ture eliminates domain integrals [29], resulting in a lower
order of discretisation within the limits of elasticity. The
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BEM can simulate wave propagation towards infinity in
elastodynamics [30, 31] and solve a broader spectrum of
problems using the Convolution Quadrature Method (CQM)
[32], including viscoelasticity and poroelasticity. However,
including physical or geometrical non-linearities in the
method can cause significant computational costs and dif-
ficulties.

Combining different methods is a common practice to
create comprehensive numerical models because no single
method can capture all the physical phenomena required to
simulate real-life problems efficiently [33]. For example,
researchers have coupled the DEM with the Finite Ele-
ment Method (FEM) to expand their modelling capabilities
and increase efficiency. One of the earliest studies in this
regard was conducted by Oñate and Rojek [34], who com-
bined DEM with a continuum-based method by defining
contact laws between DEM particles and finite elements.
Later, Azevedo and Lemos [35] introduced an interface cou-
pling between FEM and DEM. However, spurious wave
reflections on the interface led [36] to propose an over-
lapping domain coupling, extending the work of Xiao and
Belytschko [37]. At the same time, [38] developed a sim-
ilar approach called the Arlequin coupling. More recently,
efficient FEM-DEM frameworks have been developed [39–
43].

The BEM has been combined with the FEM to expand
modelling capabilities or increase performance [44]. Ini-
tially, the BEM-FEM coupling was developed for static
applications [45, 46]. It was only after the work of Estorff
and Prabucki [47] that dynamic problems started being
considered within this framework. Later, the computa-
tional efficiency of this method was improved by trun-
cating the time series [48]. An alternative approach to
couple the BEM with the FEM was proposed by Moser
et al. [19], which uses Duhamel integrals to obtain a
dynamic stiffness matrix. Another interesting development
in the coupling between these two methods is using non-
conforming discretisations, which gives more modelling
flexibility and facilitates accommodating a single time step
for both methods [49]. Using staggered and iterative cou-
pling schemes brought evenmoreflexibility to the conception
of the model regarding the time and spatial discretisation
[50].

The BEM-DEM coupling was initially developed for
quasi-static problems [51–57], but it cannot analyse wave
propagation in the BEM infinite domain. Mirzayee et al.
[58] used the coupled BEM-DEM for seismic analysis of
dam reservoirs using the BEM formulation in the frequency
domain. Malinowski et al. [59] attempted to couple the
BEM and the DEM in the time domain, but their model
relies on an overlapping FEM layer. An alternative approach
uses the BEM to represent a particle, taking into account
the deformability of the particle [60]. Barros et al. [61]

successfully performed BEM-DEM coupling in the time
domain for 1D wave propagation by rearranging the equa-
tions of the time integration scheme of the DEM to write
a dynamic stiffness equilibrium equation. Later, Barros et
al. [62] extended this formulation to 2D problems. Their
formulation is based on conforming discretisations, i.e., the
centre of the particles coincides with the BEM nodes, which
generates particles outside the desired domain, disrupting
the stiffness across the model. This is addressed by penalis-
ing the interaction between stiffnesses outside the domain.
Another difficulty discussed by the authors is writing equilib-
riumequations betweenDEMpoint loads andBEMtractions.
To write equilibrium, they suggested using Duhamel inte-
grals to derive a stiffness matrix for the BEM, similar to the
work of Moser et al. [19]. Both works Barros et al. [61, 62]
use a monolithic time integration and report the difficulty
of finding a time step size that grants numerical stability
for both methods. In addition, the conforming discretisation
renders a very fine BEM mesh, making it computation-
ally expensive. To address these drawbacks, Barros et al.
[63] developed a non-conforming staggeredBEM-DEMcou-
pling. Several approaches were examined in their work, and
the Neumann–Dirichlet staggered approach is indicated as
the most stable.

The current work extends the non-conforming Neumann–
Dirichlet staggered approach previously developed by the
authors for 2D [63] to 3D. To the authors’ knowledge, it
is the first time that coupling of the BEM and DEM is
proposed and validated for 3D problems. The BEM formula-
tion becomes more complex due to the stronger singularities
in the integrands [45, 64, e.g.]. Additionally, in the DEM,
the number of degrees of freedom per particle increases
from three to six, including three translations and three rota-
tions. This results in more complex relative motions between
interacting particles. Furthermore, the number of unknowns
increases in both methods, leading to higher computational
costs. In the coupling process, describing the motion of par-
ticles along the interface according to the motion of the
boundary elements becomesmore challenging, especially for
3D models where the BEM time-step requirements become
more restrictive. The paper is structured as follows. Sec-
tion2 outlines the DEM and BEM formulations used in
this coupled scheme. Section3 describes how these for-
mulations can be combined to provide a coupled model.
Section4 presents two benchmark examples used to validate
the proposed method, and an application model is analysed
to demonstrate the capabilities of the proposed approach.
Finally, Sect. 5 summarises the paper, highlights its key
findings, and poses challenges for future research in the
field.
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2 Numerical framework

2.1 DEM formulation

The DEM deals with discrete particles whose movement is
governed by Newton’s law of motion

mp üp = f p (t) , (1)

J pω̇p = Mp (t) . (2)

where mp andJ p are the mass and inertia tensor of particle
p, while üp and ω̇p are its linear and angular accelerations,
respectively. The force and moment acting on particle p, f p
and Mp, are decomposed into externally applied and inter-
nal components, which depend on the contact with other
particles. This decomposition can be written as

f p (t) = f ext,p (t) +
∑

q∈Ip

f cont,pq (t) , (3)

Mp (t) = Mext,p (t) +
∑

q∈Ip

Mcont,pq (t) , (4)

where f ext,p and Mext,p represent the external force and
moment applied to particle prespectively. On the other hand,
f cont,pq and Mcont,pq are the forces and moments arising
from the contact between particles pand q. These contact
forces and moments apply to each particle qin the set Ip of
particles in contact with p. The contact force is calculated as

f (i)
cont,pq = f (i)

n,pqn
(i)
pq + f (i)

s,pq s
(i)
pq , (5)

where f (i)
n,pq and f (i)

s,pq are the normal and shear contact forces

in the normal and tangential directions, n(i)
pq and s(i)pq , shown

in Fig. 1a. The normal direction is the direction that connects
the centre of the two interacting particles. The shear direction
lies in the plane defined by the normal direction and depends
on the relativemovement of the two contacting particles [65].

In the explicit DEM, the contact forces are calculated
incrementally as a function of the relative displacements
between particles as

f (i)
n,pq = f (i−1)

n,pq + kn,pq�δ(i)
n,pq , (6)

f (i)
s,pq = f (i−1)

s,pq + ks,pq�δ(i)
s,pq . (7)

where kn,pq and ks,pq are the normal and shear stiffnesses

of the contact (see Fig. 1b), and �δ
(i)
n,pq and �δ

(i)
s,pq are the

increments in the normal and tangential relative displace-
ments respectively [62]. The stiffnesses are determined based
on the micro-mechanical Young’s moduli Ẽ p and Ẽq , micro-
mechanical Poisson’s ratios ν̃p and ν̃q and radii rp and rq as
[65]

kn,pq = 4
Ẽ prp Ẽqrq

Ẽ prp + Ẽqrq
, (8)

ks,pq = 4
Ẽ prp ν̃p Ẽqrq ν̃q

Ẽ prp ν̃p + Ẽqrq ν̃q
. (9)

Equations (1) and (2) are numerically solved using the
“leapfrog” method, which is a second-order symplectic time
integration scheme [65–67, e.g.]. In the DEM domain, time
is discretised into a series of time steps so that t (i+1) =
t (i) + �t (i)DE. Here, i ∈ N refers to the number of steps, and

�t (i)DE is the size of the i-th time step. All other variables

are similarly discretised in time, e.g., up
(
t (i)

) = u(i)
p . As

per the “leapfrog” method, the translational velocities and
displacements of particle pare updated as

ü(i)
p = f (i)

p

m p
, (10)

u̇

(
i+ 1

2

)

p = u̇

(
i− 1

2

)

p + ü(i)
p �t (i)DE , (11)

u(i+1)
p = u(i)

p + u̇

(
i+ 1

2

)

p �t (i)DE . (12)

In the case of spherical particles, the integration to obtain
actual rotations is unnecessary because the relative tangential
displacement, �δ

(i)
s,pq , can be calculated directly from the

relative motion at the contact [65]. Moreover, The explicit
time integrationmethodused is conditionally stable,meaning
that the time step size should not exceed the critical time step,
i.e., �t (i)DE ≤ �tDE,cr, which depends on the local stiffnesses
and masses [68, 69].

2.2 BEM formulation

The BEM is a formulation derived from continuum mechan-
ics theorems. One possible way to derive it is from Betti’s
reciprocal theorem, as described by Dominguez [31]. This
theorem establishes a correspondence between the real and
virtual systems and observes reciprocity between them. The
real system is the domain � ⊂ R

3 with tractions applied at
the Neumann boundary �N and displacements prescribed at
the Dirichlet boundary �D, being �N ∪ �D = � = ∂�, as
shown in Fig. 2. The virtual system, in turn, constitutes an
infinite domainwhere a point load (Dirac delta) is applied at a
specific point and time onto an infinite domain. The response
of the infinite medium at the field point y, namely displace-
ments u∗ : R3 −→ R

3 and tractions t∗ : R3 −→ R
3, under

the point load applied at the source point x, are called fun-
damental solutions. Aside from y and x, the fundamental
solutions are also a function of the elapsed time t after the
load application.

The domain integrals in the reciprocal theorem vanish by
utilising the properties of integration of a Dirac delta. This
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Fig. 1 Contact model in the
DEM: a normal and shear
direction of two interacting
particles and b
force–displacement relation of
the contact law

Fig. 2 Sketch of a continuum body � with Neumann boundary �N in
blue and Dirichlet boundary �D in cyan

leads to the following Boundary Integral Equation (BIE) that
needs to be solved,

Cu =
∫

�

U∗ � t dx −
∫

�

T∗ � u dx, (13)

where the symbol � represents a convolution integral [31].
For 3D problems, C is a 3 × 3 matrix containing jump
terms that arise from the Dirac delta integration properties.
u : � −→ R

3 and t : � −→ R
3 are the displacement

and traction vector fields, respectively. U∗ and T∗ are 3× 3
matrices containing the fundamental solutions of displace-
ments and tractions for point loads applied to each direction,

respectively, i.e., U∗ =
[
u∗
x , u

∗
y, u

∗
z

]
and T∗ =

[
t∗x , t∗y, t∗z

]
.

Note that the BIE in Eq. (13) is still exact, thus impossi-
ble to solve for most geometries and boundary conditions.
Therefore, the numerical solution via the BEM introduces
a discretisation of the displacement and traction fields over
the boundary �. The boundary � is discretised into Ne ele-
ments and NBE nodes. Within each element, the coordinates
are interpolated in the parametric space ξ = (ξ, η) as

x (ξ, η) =
ne∑

n

φn (ξ, η) xn , (14)

y (ξ, η) =
ne∑

n

φn (ξ, η) yn , (15)

z (ξ, η) =
ne∑

n

φn (ξ, η) zn , (16)

where the element e has ne nodes and φn are the shape
functions of the element. In this work, bilinear quadrilateral
elements are used, which have the following shape functions:

φ1 = 1

4
(1 − ξ) (1 − η) , (17)

φ2 = 1

4
(1 + ξ) (1 − η) , (18)

φ3 = 1

4
(1 + ξ) (1 + η) , (19)

φ4 = 1

4
(1 − ξ) (1 + η) . (20)

The shape functions ultimately map the parametric space to a
subset of the analysis space, i.e., x (ξ) : [−1, 1]2 ⊂ R

2 −→
� ⊂ R

3. In matrix form, the interpolation reads

x (ξ) = �e (ξ) xe, (21)

where xe contains all three coordinates of all element nodes.
The shape functions can be extended to the entire R2 eval-
uating zero everywhere outside the element. Therefore, the
interpolation of all elements can be assembled inmatrix form
as

x (ξ) = � (ξ) xBE. (22)

In thiswork, the elements used are isoparametric,meaning
displacement and geometry are interpolated using the same
shape functions. Additionally, the BEM requires the discreti-
sation of tractions over the boundary, which in this work is
assumed to be the same as the discretisation for geometry
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and displacements. Therefore, the interpolated fields can be
written as

u (ξ , t) = � (ξ) uBE (t) ∀x ∈ � , (23)

t (ξ , t) = � (ξ) tBE (t) ∀x ∈ � , (24)

where uBE and tBE contain the nodal values of displacements
and the tractions. Thus their size is 3NBE, i.e., the number of
Degrees of Freedom (DOFs) per node times the number of
nodes in the boundary discretisation. Note that the interpo-
lated fields are functions of the parametric value ξ instead of
the source point x as in the BIE in Eq. (13). That allows for
writing the boundary integrals in Eq. (13) in the parametric
space such that

Cu = G � tBE − H � uBE, (25)

with

G ( y, t) =
Ne∑

e

∫

�e
U∗ ( y, ξ , t) � (ξ) |J (ξ)| dξ , (26)

H ( y, t) =
Ne∑

e

∫

�e
T∗ (y, ξ , t) � (ξ) |J (ξ)| dξ , (27)

where J is the Jacobian matrix of the transformation to the
parametric space.

To solve Eq. (25), one can use a time-marching time dis-
cretisationmethod, such as the one proposed byMansur [70].
However, this method requires the fundamental solutions in
the time domain, which are only available for a limited num-
ber of cases. Fortunately, the CQM provides an alternative
solution that only necessitates the fundamental solution to
be available in the Laplace domain. This allows for solving
a broader range of problems with the BEM, including vis-
coelasticity and poroelasticity.

The CQM approximates the convolution integral in Eq.
(25) utilising weighted summations. This results in a time-
stepping numerical solution. Applying the CQM to Eq. (25)
allows one to write [32, 71]

Cu( j+1) =
j+1∑

k=0

G( j+1−k) t(k)BE −
j+1∑

k=0

H( j+1−k)u(k)
BE. (28)

Equation (28) allows the calculation of displacements at any
internal point once the displacements and tractions of the
boundary � are known. To calculate the values of displace-
ment and traction at the boundary, it is necessary to take the
limit as this point tends to each of the boundary nodes. This
process is known as collocation [45]. By doing so, one may
find

j+1∑

k=0

H( j+1−k)
BE u(k)

BE =
j+1∑

k=0

G( j+1−k)
BE t(k)BE. (29)

The choice of the time step �tBE is crucial to ensure the
numerical stability of the method. While a too-large time
step leads to significant numerical damping, a too-small one
requires the computation of large numbers that may overflow
the floating point precision [32]. Therefore, the time step
must be within a range, i.e., �tBE ∈ [

α�tBE,cr, β�tBE,cr
]
,

where 0 < α < 1 and β > 1 are real numbers. [50] suggest
thatα = 0.7 andβ = 1.2, but these valuesmight be problem-
dependent. They also state that the critical time step �tBE,cr

can be estimated by

�tBE,cr = Le

cs
, (30)

where Le is the minimum element length, and cs is the shear
wave velocity of the material.

The BEM formulation relies on tractions whereas the
DEM is based on forces. In order to couple the two methods,
the forces acting from the discrete elements need to be trans-
formed into tractions. The equilibrium between forces and
tractions can be derived using the Principle of Virtual Work
(pvw) such that

(δuBE)T f BE =
∫

�

(δu)T t dx, (31)

where δu = �δuBE means the virtual displacement field
interpolated by means of virtual nodal displacements δuBE
in the same way that the real displacement field is interpo-
lated. Substituting the interpolation of the traction and virtual
displacement fields one gets

(δuBE)T f BE = (δuBE)T

[ Ne∑

e

∫

�e
� (ξ)T � (ξ) dξ

]
tBE.

(32)

Therefore, the BEM nodal forces become

f BE = MtBE, (33)

where

M =
Ne∑

e

∫

�e
� (ξ)T � (ξ) dξ . (34)

Using Eq. (33) it is possible to derive an equation relating
nodal forces to nodal displacements. In order to do so, one
has to isolate all known tractions and displacements from the
unknowns in Eq. (29) to write
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H (0)
BEu

( j+1)
BE +

j∑

k=0

H( j+1−k)
BE u(k)

BE

= G(0)
BE t

( j+1)
BE +

j∑

k=0

G( j+1−k)
BE t(k)BE. (35)

Then one can isolate the unknown tractions and substitute on
Eq. (33) to write

f ( j+1)
BE + h( j+1)

BE = KBEu
( j+1)
BE , (36)

where KBE is the dynamic stiffness matrix of the BEM given
by

KBE = M
(
G(0)

BE

)−1
H(0)

BE (37)

and h( j+1)
BE is an inertial force vector that depends on the

history of the analysis defined as

h( j+1)
BE = M

(
G(0)

BE

)−1

⎡

⎣
j∑

k=0

G( j+1−k)
BE t(k)BE − H( j+1−k)

BE u(k)
BE

⎤

⎦ . (38)

Note that all matrices in Eq. (37) are precomputed before
time-domain analysis. On the other hand, Eq. (38) contains
precomputedmatrices and known vectors fromprevious time
steps.

3 Coupling

In the following, the efficient multi-scale staggered coupling
strategy developed by the authors for 2D problems [63] is
extended to 3D. It should be noted that, for 3D models, the
BEM time-step requirements become more restrictive, mak-
ing using the most stable coupling scheme compulsory.

The first step to implementing the staggered coupling is
to define the compatibility of displacements at the interface.
To do so, the interface displacement uI is defined as an inde-
pendent variable. From there, the displacements of the BEM
nodes and DEM particles incident at the interface are deter-
mined as dependent variables. For convenience, the interface
displacements are chosen to be coincident with the BEM dis-
placements, i.e.,

u( j)
BE = u( j)

I . (39)

Regarding the DEM, particle p displacement depends on the
element e in which the particle lies. Since, in the 3D formula-
tion, the shape functions are defined in the parametric space,

one needs to solve a minimisation problem to encounter the
parametric tuple ξ p = (

ξp, ηp
)
corresponding to the parti-

cle’s reference position for each particle p with coordinates
x p, i.e.,

min
ξ,η

(
x p − � (ξ, η) xBE

)2
,

s.t. − 1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1. (40)

This is similar to the node-to-element contact used in FEM
contact mechanics [72]. Therefore, the dependent displace-
ment can be written as

u(i)
p = �e

(
ξ p

)
u(i)
I . (41)

Fig. 3a shows the deformation of a boundary element as
one of its nodes moves. In Fig. 3b it can be seen how the
shape functions determine the motion of the particles lying
on this boundary element. Although the figure shows a regu-
lar arrangement, the position and radius of the particles at the
interface can vary freely, provided that their centre lies on the
boundary element and there is no gap between the discrete
elements. The displacement of all particles at the interface
can be written together in vector form as

u(i)
DE =

(
u(i)
0 , . . . , u(i)

P

)
. (42)

By assembling the compatibility relation for all particles, it
follows

u(i)
DE = Tu(i)

I . (43)

where T is a matrix that contains the values of the shape
functions of the BEM elements evaluated at the position of
each particle.

With Eqs. (39) and (43), the contributions of each method
to the interface can be derived. The forces exerted from the
BEM into the interface f IBE are derived straightforwardly
using the reciprocity theorem as

(
u( j)
I

)T
f ( j)
IBE =

(
u( j)
BE

)T
f ( j)
BE, (44)

which, substituting Eq. (39) gives

f ( j)
IBE = f ( j)

BE. (45)

On the other hand, the forces at the interface arising from the
DEM, f IDE, can be derived from the reciprocity theorem as

(
u(i)
I

)T
f (i)
IDE =

(
u(i)
DE

)T
f (i)
DE, (46)
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Fig. 3 Sketch of a a boundary
element and b discrete elements
matching the shape of the
boundary element at the
interface

Fig. 4 Neumann–Dirichlet staggered coupling scheme. Empty and filled dots represent estimated and final values respectively

Fig. 5 BEM-DEM coupled model of a finite rod subjected to a Heasi-
side load at the free end

and substituting Eq. (43) gives

f (i)
IDE = T T f (i)

DE. (47)

The staggered coupling technique separates the bound-
ary conditions at the interface. A schematic representation
of the coupling scheme is represented in Fig. 4. In the
Neumann–Dirichlet approach, a Neumann boundary con-
dition is applied to the BEM, while a Dirichlet boundary
condition is applied to the DEM. This means that the forces
exerted by DEM particles on the interface are applied to the
BEM. The calculated BEM displacements are then imposed
on the interface and subsequently on the particles. However,
the forces acting on the BEM and the DEM are known at
different time instants. Typically, the DEM will take several
steps within each BEM step. Therefore, the forces acting on
the BEM are derived taking into account the impulses of the
DEM force over each time step [73]. Then it is possible to
determine the BEM displacements, and the DEM displace-
ments are determined through time interpolation.
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Fig. 6 Analytical and numerical displacement at free-end using: a Dave = 50 cm, b Dave = 20 cm, and c Dave = 10 cm
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Fig. 7 Absolute translational velocity at: a t = 0.08ms, b t = 0.38ms, c t = 0.61ms, d t = 0.99ms, e t = 1.36ms, f t = 1.89ms, g t = 2.27ms,
and h t = 2.65ms. See online version for video
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Fig. 8 BEM-DEM model for spherical cavity problem

In Fig. 4, there are seven distinct steps. Step 1 involves
calculating the total force acting on each particle. This is done
by considering both the external forces and contact forces that
depend on the known position u(i)

DE, as defined in Eqs. (6) and
(7). For the sake of simplicity, it is assumed that the BEMand
the DEM are synchronised at the beginning of the diagram,
with the same displacement. Step 2 consists of incrementing
the impulse using the calculated force as

I (i+1)
I = I (i)

I + T T f (i)
DE�t (i)DE. (48)

In step 3, the force at the next BEM step can be extrapolated
assuming the last known DEM force to stay constant until
this time, i.e.,

f ( j+1)
IBE = I (i+1)

I + T T f (i)
DE

(
t ( j+1) − t (i+1)

)

�tBE
. (49)

Step 4 is simply the determination of the BEMdisplacements
at t ( j+1) through

u( j+1)
BE = K−1

BE

(
f ( j+1)
BE + f ( j+1)

IBE

)
. (50)

Then, in step 5, the displacement of the interface at t (i+1),
the next DEM instant, can be interpolated via

uI
(
t (i+1)

)
= u( j)

BE +
(
u( j+1)
BE − u( j)

BE

) t (i+1) − t ( j)

t ( j+1) − t ( j)
, (51)

which allows for the determination of the DEM displace-
ments through Eq. (43). Then i is incremented. This process
is repeated until the DEM advances further then the BEM,
i.e., t (i+1) > t ( j+1). When this happens, steps 6 and 7 need
to occur before step 3. Step 6 consists of removing the excess
impulse to determine the final BEM force at j + 1. This is
done by using Eq. (49). Note that since t (i+1) > t ( j+1), the
second term on the numerator becomes a subtraction. Then
the accumulative impulse is reset, but to allow the new cycle
to startwith different positions for theBEMand theDEM, the
excess impulse needs to be considered as the initial impulse
value as

I (i+1)
I = T T f (i)

DE

(
t (i+1) − t ( j+1)

)
. (52)

Fig. 9 Spherical cavity displacements comparison between coupled BEM-DEM and pure BEM

123



Computational Mechanics

Finally, step 7 consists of solving the final BEM at j + 1
through Eq. (50) and incrementing j . Note that in Fig. 4, the
black dots indicate final calculations, while the empty dots
indicate estimates that will change in the next time step.

The current work assumes that particles at the interface
have the freedom to rotate. A recent study by the authors
found that the coupling of rotations had a negligible effect on
the outcome in 2D analyses. This discovery is consistent with
previous researchonFEM-DEMcoupling, demonstrating the
possibility of free rotations in both 2D and 3D simulations
[36, 38, 74]. Based on these findings, we can extrapolate that
uncoupled rotations will also be effective in 3D BEM-DEM
simulations. Additionally, it is assumed that the particles at
the interface exhibit linear and elastic behaviour, while par-
ticles located deeper in the DEM region are allowed to have
nonlinear behaviour.

It is crucial to understand how the size of particles relates
to the length of boundary elements when making discretisa-
tion choices in the coupled BEM-DEM. Suppose the size
of the particles is significantly larger than the length of
the boundary elements. In that case, a single particle can
cover multiple elements, causing a displacement field utterly
incompatible with the motion of the particle. On the other
hand, if the size of the particles is much smaller than the
length of the boundary elements, multiple particles may lie
on each boundary element. This presents no compatibility
issue, but the difference in the time step between themethods
would lead to instabilities in the Neumann–Dirichlet stag-
gered approach.

In more typical scenarios, selecting the appropriate dis-
cretisation scale is crucial for balancing computational
efficiency and accuracy. This is especially important in real-
world applications where discretisation decisions heavily
influence the accuracy of the simulation. A systematic proce-
dure is recommended in defining the coupled model. Firstly,
the particle size should be defined to represent the desired
phenomena within the DEM region. Secondly, an appropri-
ate time step is estimated for the particle assembly based
on particle and contact properties. Thirdly, the BEM time
step is defined, typically ten times larger than the DEM time
step. Lastly, the boundary element length is determined via
Eq. (30). This systematic procedure ensures a harmonised
coupling between BEM and DEM while maintaining com-
putational efficiency.

4 Results

4.1 Finite rod under Heaviside load

This problem is a classical benchmark in studying elastic
wave propagation since it has an analytical solution. This
benchmark is used to validate the coupling of BEMandDEM

for 3D applications. The dimensions of the rod under consid-
eration are a length of 2L = 6m (each domain is 3m long)
and a square cross-section of 1×1m, i.e. h = w = 1m. The
rod is subjected to Heaviside load P (t) = P0H (t) whose
magnitude is P0 = 16 kN. The rod is made out of a material
with the following macroscopic parameters: Young’s modu-
lus of E = 160GPa, Poisson’s ratio of ν = 0.0, and mass
density of ρ = 7850kg/m3.

The fixed half of the rod is modelled with the BEM, while
the loaded half is modelledwith theDEM, as shown in Fig. 5.
In order to study the sensibility of the coupled model to the
diameter of the particle, three different average particle diam-
eters are selected: Dave ∈ {10, 20, 50 cm}. In addition, due
to the randomness of generating the initial particle assembly,
three assemblies are generated for each average diameter.
This allows for a stochastic analysis of the influence of the
particle assembly. Each particle assembly is generated with a
uniform particle size distribution varying from 75 to 125% of
the average diameter, i.e. D ∈ [0.75Dave, 1.25Dave].Orthog-
onal regular assemblies, with all particles having the same
diameter, are also considered. They serve as a reference as
their microscopic Young’s moduli Ẽ can be derived analyt-
ically. To render a null macroscopic value, the microscopic
Poisson’s ratios were kept as ν̃ = 1.0. GrainLearning [75]
calibrated themicroscopic Young’s modulus of irregular par-
ticle assemblies to match the analytical solution closely. A
single calibration was performed for each assembly. The
results reported in the sequel were obtained by averaging
the parameter values for each particle size distribution.

In all simulations, the BEM discretisation consisted of
square elements with a side length of 50cm. This totalled 58
nodes and 56 elements. The time step size used in the BEM
is �tBE = 2.0 × 10−5 s. The time step for the DEM is auto-
matically adjusted by YADE [65]. Observed values ranged
from 1.5×10−6 s to 7.9 × 10−6s depending on particle size.
Figures6a–c show the results for average particle size of 50,
20, and 10cm. The solid lines represent the average predic-
tions obtained with irregular assemblies. The shaded areas
around the solid lines indicate the range of numerical predic-
tions. The dotted lines represent the predictions obtainedwith
the regular assemblies. The dashed lines depict the analyti-
cal solutions. The blue colour corresponds to the end-node
displacement, and the red colour corresponds to the mid-
node displacement. As the average particle size decreases,
the numerical predictions approach the analytical results,
reducing their dispersions. Apart from the convergence, a
slight decay can be observed throughout the model. This is a
consequence of minor wave reflections that can be observed
at the interface (see supplementary video in the online ver-
sion). Although the effect of wave reflections is minor, it
increases over time in finite models as the primary wave
crosses the interface multiple times. This leads to a decay. In
addition, an irregular particle assembly makes it difficult for
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Fig. 10 Absolute translational velocity at: a t = 0.11ms, b t = 0.44ms, and c t = 0.59ms

the DEM to model plane waves due to imperfections. These
imperfections, albeit small, amplify as the simulation pro-
ceeds because no damping is considered. This contributes to
the wave reflection as well causing an increased decay. This
decay can be seen, for instance in the mid-point displace-
ment in Fig. 6c. Although the reflections seem to be greater
compared to the 2D scenario [63, cf.], it is important to note
that these reflections remain modest and do not influence the
quality of the results.

Figure7 displays a time series of the absolute translational
velocities of the DEM particles and the BEM elements with
Dave = 10 cm. In Fig. 7a, the velocities caused by applied
forces propagate in the initial stage of wave propagation. As
the wave traverses the DEM domain, in Fig. 7b, the imper-
fections of the particle assembly lead to an irregular velocity
profile. In Fig. 7c, the wave approaches the interface while
high local velocities can still be observed. The wavefront can
be seen in the BEM domain in Fig. 7d, where the velocity
profile appears uniform, and no significant wave reflections
occur. The wave approaches the supported face in Fig. 7e
from where it will reflect back. In Fig. 7f, the wave trav-
els towards the interface after reflection and enters the BEM
domain. In Fig. 7g, the wave crosses the interface again with
no significant reflection and moves towards the loaded end
of the rod. In Fig. 7h, the wave reaches back to the loaded
end, and the velocities decrease close to zero along the rod
at the moment of maximum displacement.

4.2 Spherical cavity in infinite space under uniform
pressure

This problem is awell-established benchmark for wave prop-
agation. It is used herein to further validate the 3D coupled
BEM-DEM approach. Unlike the previous example, this
problem occurs in an infinite domain. Moreover, while the
previous example could be simulated in one dimension, this
one demands a detailed 3D space depiction.

The example involves a spherical cavity in an infinite
domain where an internal pressure is applied. The cavity
has a radius of r = 5.38m, and the surrounding medium
has a Young’s modulus of E = 62GPa, a Poisson’s ratio
of ν = 0.25, and a mass density of ρ = 2670kg/m3.
The internal pressure is applied as a Heaviside function
p (t) = p0H (t) with a magnitude of p0 = 1 kPa.

TheDEMmodels the region between the cavity and a cube
with a side length of 15m. From this point on, the media is
represented by the BEM. The coupled model is shown in
Fig. 8. For better visualisation, only half of the BEM mesh
and one-quarter of theDEMparticle assemblywith the cavity
where the pressure is applied is shown.

The coupled analysis is carried out with DEM assemblies
whose average diameter is Dave = 25 cm and vary uniformly
within 25% of this value. Three different assemblies are con-
sidered to account for the variability of the particle assembly.
This results in around 220,000 particles. The time-step of the
DEM is automatically defined by YADE over the simulation
with values close to 2.18 × 10−3 ms. In the BEM, the time-
step is 0.15ms, and the element size is 1m × 1m rendering
1,350 bilinear quadrilateral boundary elements.
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Fig. 11 Absolute translational velocity of particles and BEM internal points along the plane z = 0 at: a, b t = 0.59ms, c, d t = 1.22ms, and e, f
t = 1.96ms. See online version of video
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The displacements of three points are analysed: Point A
(5.38, 0, 0), at the cavity; Point B (7.5, 0, 0), at the interface;
and Point C (10, 0, 0), in the interior of the infinite domain.
In Fig. 9, the displacements of these points are shown in
blue, red, and green, respectively. The solid lines represent
the average across all assemblies, while the shaded regions
indicate the range of the observed values. The dashed lines
depict the numerical predictions of the pure BEM.

The wave introduced by the internal pressure within the
DEM propagates towards the interface with the BEM region.
The analysis of particle velocity over amodel section through
the plane z = 0, as illustrated in Fig. 10, provides insight
into the wave propagation mechanism. To investigate the
wave propagation within the BEM domain, velocities are
computed at internal points along the same plane z = 0.
Figure11 depicts the wave approach towards the interface
and its transition into the BEM region. The velocities of
each particle are shown alongside the coarse-grained velocity
field (Appendix A). Although small wave reflections can be
observed, they do not significantly affect the overall quality
of the results. It can be seen that after crossing the interface
the primary wave propagates into the infinite domain.

4.3 Cylindrical column embedded in infinite
half-space

In this example, a cylindrical column is partially embedded
in an infinite half-space and is subjected to a horizontal load
on its top. The column is made out of a material with Young’s
modulus of Ec = 30GPa, Poisson’s ratio of νc = 0.2, and
mass density of ρc = 2400 kg/m3. The infinite half-space,
in turn, is made out of a different material whose Young’s
modulus is Es = 265MPa, Poisson’s ratio is νs = 0.17,
and mass density is ρs = 1800 kg/m3. The load is suddenly
applied as a Heaviside function, i.e., P (t) = P0H (t), at the
top of the column. Its magnitude is P0 = 100 kN, and it is
distributed over the top area of the column.

A sketch of the model is shown in Fig. 12. The cylindrical
column is modelled as a finite BEM domain. The surround-
ing region of the half-space is modelled using the DEM,
while the remaining region is modelled as an infinite BEM
domain. To better understand the embedment size, a section
of the model across the plane of z = 0 is shown in Fig. 13.
TheDEMdomain is a rectangular prism 7mby 7m and 3.5m
deep, except for the space occupied by the column. The col-
umn is embedded 2m into the DEM domain. The region in
cyan across the plane z = 0 indicates where internal point
results are calculated to provide an insight into how the wave
propagates within the BEM domain.

The sizes of the particles in the DEM domain are uni-
formly distributed between 15cm and 25cm. The assembly
consists of 28,945 particles. The DEM time-step is automat-
ically defined by YADE, revolving around 2.55 × 10−2ms.

Fig. 12 BEM-DEMcoupledmodel for the cylindrical column in a half-
space

Fig. 13 Cross-section of the BEM-DEM coupled model for the cylin-
drical column in a half-space

The column is discretised using 544 bilinear quadrilateral
boundary elements of size 25cm× 25cm. For modelling the
column, a time-step of 0.1ms is used. The surrounding soil
is also modelled with the BEM, and the boundary mesh con-
tains 1100 elements of size 70cm × 70cm. A time-step of
2ms is used for this infinite region.

The horizontal displacement of the top of the column is
shown in Fig. 14. The wave propagation is shown in Fig. 15.
In Fig. 15a, it can be seen how the wave transitions from the
column into the half-space. Figure15b shows themoment the
wave reaches the interface between the DEM domain and the
BEM infinite half-space. A few milliseconds later, most of
the wave travels within the BEM domain, which is depicted
in Fig. 15c. In 15d, the wave dissipates as it travels towards
infinity. The same instants are depicted in Fig. 16, where a
section across the plane z = 0 is shown. The depicted veloc-
ity is a coarse-grained approximated continuum field derived
from the particles’ velocity. The Coarse-graining homogeni-
sation is described in Appendix A. In Figs. 11a, c, and d,
it can be seen a small region within the column where the
velocity is close to zero. The centre of this region represents
the centre of rotation of the column.
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Fig. 14 Horizontal
displacement at the top of the
column

Fig. 15 Absolute translational velocity at: a t = 13ms, b t = 21ms, c t = 28ms, d t = 36ms, e t = 44ms, and f t = 54ms. See online version
of video
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Fig. 16 Absolute translational velocity of particles and BEM internal points along the plane z = 0 at: a t = 13ms, b t = 21ms, c t = 28ms, d
t = 36ms, e t = 44ms, and f t = 54ms. See online version of video

5 Conclusions

The present paper introduces a new framework for coupling
the BEM and the DEM in the dynamic analysis of 3D prob-
lems. This is achieved by extending a previously developed
2D coupling strategy of the DEM and the BEM. The pro-
posed approach combines the strengths of bothmethods, such
as the representation of non-linearities and infinite domains.
The extension from 2D to 3D modelling demonstrates the
versatility and scalability of the coupled model, providing a
comprehensive framework for real-life simulations.

The key findings of this research underscore the suitabil-
ity of the coupled BEM-DEM model in capturing 3D wave

propagation. As per the results, there is a seamless transi-
tion between the DEM and BEM domains, highlighting the
adaptability of the framework across different dimensions.
Another finding is that the assumption of free rotations at
the interface, previously used in 2D, worked well in the 3D
simulations. Despite the increased significance of spurious
wave reflections in three dimensions, their impact remains
negligible to the overall analysis. Moreover, introducing a
staggered time-integration scheme is essential for 3D sim-
ulations, addressing restrictive time-step requirements for
stable, accurate and efficient modelling.

Despite the slight increase in wave reflections at the inter-
face compared to 2D, itmust be emphasised that the impact of
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these reflections on the simulation outcomes remains mini-
mal, underscoring the robustness of the proposed method.
Future work will include the study of domain coupling
approaches recently proposed in the context of FEM-DEM
coupling tominimisewave reflections at the interface. Simul-
taneously, the incorporation of viscosity into the simulations
is planned to enhance their fidelity.Another significant aspect
of the future work involves addressing the challenge of
calibrating microscopic damping parameters to align with
macroscopic dynamic behaviour. Additionally, amore robust
alternative is available to control the angular velocities of
particles at the interface. The approach used in coupling 2D
BEM-DEM can be extended to 3D. The components of the
spin tensor, which is the unsymmetrical part of the veloc-
ity gradient tensor obtained from the BEM solution, can be
used to constrain the angular velocities of the particles at the
interface.
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Appendix

A Coarse-graining

Coarse-graining is a homogenisation technique that allows
for establishing micro-to-macro relationships [76]. For this
homogenisation to work, specific laws of physics must be
obeyed, such as mass and momentum conservation. There-
fore, the density field is defined as

ρ (x) =
Np∑

p=0

W (
x − x p

)
mp, (53)

whereW is a spatial smoothing kernel obeying the following
conditions:

• it is normalised:
∫
Rd W (x) dx = 1;

• it is non-negative: W (x) ≥ 0 ∀x ∈ R
d; and

• it has compact support: ∃c ∈ R : W (x) = 0 ∀x :
‖x‖2 > c.

Commonly used spatial smoothing kernels include the cut-
off Gaussian and the Lucy polynomial [77]. In this study, the
Lucy polynomial is used, and it is defined as:

W (x) =
⎧
⎨

⎩
CL

(
−3

( ‖x‖2
c

)4 + 8
( ‖x‖2

c

)3 − 6
( ‖x‖2

c

)2)
if ‖x‖2 < c,

0 otherwise,

(54)

where CL is a factor appropriately adjusted to meet the
normalisation condition. Amomentumfield q can be approx-
imated by Coarse-graining (CG) analogously to the density
field, i.e.,

q (x) =
Np∑

p=0

W (
x − x p

)
mp u̇p. (55)

Hence, a velocity field can be defined as u̇ (x) = q (x)/ρ (x).
A displacement field whose time derivative corresponds to
the derived velocity field can be written as

u (x) =
∑Np

p=0 W
(
x − x p

)
mpup

∑Np
p=0 W

(
x − x p

)
mp

. (56)
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