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Abstract
A computational homogenization framework is presented to study the dynamics of locally resonant acoustic metamaterial
structures. Modelling the resonant units at the microscale as representative volume elements and building on well-established
scale transition relations, the framework brings as amain novelty a reduced-ordermacroscopic homogenized continuumwhose
governing equations involve no additional variables to describe the microscale dynamics unlike micromorphic homogenized
continua obtained by alternative computational homogenization approaches. This model-order reduction is obtained by
formulating the governing equations of the micro- and macroscale problems in the frequency domain, introducing a finite-
element discretization of the two problems and performing an exact dynamic condensation of all the degrees of freedom at the
microscale. An appropriate inverse Fourier transform approach is implemented on the frequency-domain equations to capture
transient dynamics as well; notably, the implementation involves the Exponential Window Method, here applied for the first
time to calculate the time-domain response of undamped locally resonant acoustic metamaterial structures. The framework
may handle arbitrary geometries of micro- and macro-structures, any transient excitations and any boundary conditions on
the macroscopic domain.

Keywords Locally resonant acoustic metamaterial · Computational homogenization · Dynamic condensation · Model-order
reduction

List of Symbols
(3)CM Macroscopic homogenized

3rd order elastic material tensor
(4)CM Macroscopic homogenized

4th order elastic material tensor
(4)Cα 4th order elastic material tensor of

the αth RVE constituent
̂Dpi j 2nd order tensors within ̂D

˜

p

B Giuseppe Failla
giuseppe.failla@unirc.it

Andrea Francesco Russillo
andreaf.russillo@unirc.it

Varvara G. Kouznetsova
V.G.Kouznetsova@tue.nl

Marc G. D. Geers
M.G.D.Geers@tue.nl

1 Department of Civil, Environmental, Energy and Materials
Engineering (DICEAM), University of Reggio Calabria, Via
R. Zehender, 89124 Reggio Calabria, Italy

2 TU Eindhoven, Eindhoven, The Netherlands

D
˜

Dynamic stiffness tensor matrix
of the RVE

̂D
˜

Transformeddynamic stiffness ten-
sor matrix of the RVE

̂D
˜

p Schur complement of ̂D
˜

pp
̂D
˜

pp,
̂D
˜

p f ,
̂D
˜

f p,
̂D
˜

f f Blocks of the transformeddynamic

stiffness tensor matrix ̂D
˜

of the
RVE

D
˜

M Dynamic stiffness tensor matrix
of the macroscopic homogenized
continuum

D
˜

[kk]
M ,D

˜

[ku]
M ,D

˜

[uk]
M ,D

˜

[uu]
M Blocks of the dynamic stiffness

tensor matrix D
˜

M of the macro-
scopic homogenized continuum

E Young’s modulus
ek Standard Cartesian basis
f p1 , f p2 , f p3 Nodal force vectors associatedwith

the prescribed nodes in the fre-
quency domain

f
˜

Columnmatrix of the nodal forces
of the RVE

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-024-02453-9&domain=pdf
http://orcid.org/0000-0003-4244-231X


Computational Mechanics

f
˜

Columnmatrix of the nodal forces
of theRVE in the frequencydomain

fM̃ Columnmatrix of the nodal forces
at the macroscale in the frequency
domain

f p̃ Columnmatrix of the nodal forces
associatedwith theprescribednodes
of theRVE in the frequencydomain

f r̃ Columnmatrix of the nodal forces
associated with the retained nodes
of theRVE in the frequencydomain

I Second order unit tensor
K
˜

Stiffness tensor matrix of the RVE
K
˜

qs
p Condensed static stiffness tensor

matrix of the RVE
̂K
˜

pp,
̂K
˜

p f ,
̂K
˜

f p,
̂K
˜

f f Blocks of the transformed stiff-
ness tensor matrix of the RVE

lk Typical size of the kth constituent
of the heterogeneities

l j Typical size of the j th constituent
of the matrix

nhet Number ofmicrostructural phases
constituting the heterogeneities

nmat Number ofmicrostructural phases
constituting the host matrix

N Number of nodes at themacroscale
N
˜

Column matrix of FE shape func-
tions at the microscale

N
˜

M Column matrix of FE shape func-
tions at the macroscale

M
˜

Mass tensor matrix of the RVE
̂M
˜

pp,
̂M
˜

p f ,
̂M
˜

f p,
̂M
˜

f f Blocks of the transformed mass
tensor matrix of the RVE

n Outward unit normal vector to the
boundary of the macroscale solid

p Linear momentum vector at the
microscale

pM Linear momentum vector at the
macroscale

pα Linear momentum vector of the
αth constituent of the RVE

p Linear momentum vector at the
microscale in the frequencydomain

pM Linear momentum vector at the
macroscale in the frequencydomain

q Inertia force vector at themicroscale
in the frequency domain

qM Inertia force vector at themacroscale
in the frequency domain

T
˜

Transformation matrix
t Time
ttot Final time instant of the numerical

simulation

�t Time step
T Period of the excitation
t Traction vector along the bound-

ary of the RVE
t Traction vector along the bound-

ary of the RVE in the frequency
domain

tM Traction vector along the bound-
ary of the macroscale solid

tM Traction vector along the bound-
ary of the macroscale solid in the
frequency domain

uM,b Prescribeddisplacementfield time
function at the macroscale

uM,bx Prescribeddisplacementfield time
function at the macroscale along
the x-direction

uM,by Prescribeddisplacementfield time
function at the macroscale along
the y-direction

u Displacement field vector within
the RVE

uM Displacement field vector at the
macroscale

uα Displacement field vector within
the αth constituent of the RVE

u Displacement field vector within
the RVE in the frequency domain

u
˜

Column matrix of the nodal dis-
placements of the RVE

u
˜

Column matrix of the nodal dis-
placements of the RVE in the
frequency domain

uM Displacement field vector at the
macroscale in the frequencydomain

u
˜

M Column matrix of the nodal dis-
placements at the macroscale

u
˜

M Column matrix of the nodal dis-
placements at the macroscale in
the frequency domain

u
˜

[k]
M Column matrix of the prescribed

nodal displacements at themacroscale
in the frequency domain

u
˜

[u]
M Column matrix of the unknown

nodal displacements at themacroscale
in the frequency domain

uT̃ , u
˜

B , u
˜

L ,u
˜

R Column matrices of the displace-
ments of the nodes along the top,
bottom, left and right edges of the
RVE in the frequency domain

up1 , up2 , up3 , up4 Displacement vectors of the ver-
tex nodes of the RVE in the fre-
quency domain

123



Computational Mechanics
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ε Linear infinitesimal strain tensor at themicroscale
εα Linear infinitesimal strain tensor of the αth con-
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ν Poisson’s ratio
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(2)ρM Macroscopic homogenized 2nd order dynamic
density mass tensor

(3)ρM Macroscopic homogenized 3rd order dynamic
density mass tensor

σ Cauchy stress tensor at the microscale
σα Cauchy stress tensor of the αth constituent of the
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σ Cauchy stress tensor at the microscale in the fre-

quency domain
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̂� Domain occupied by the RVE
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div Divergence operator in the the microscale coor-

dinate system
divM Divergence operator in themacroscale coordinate

system
F Fourier transform
F−1 Inverse Fourier transform
∇s Symmetric gradient operator in the microscale

coordinate system
∇s
M Symmetric gradient operator in the macroscale

coordinate system

1 Introduction

Locally resonant acousticmetamaterials (LRAMs) are emerg-
ing as a remarkably versatile concept in the field of metama-
terials. The term LRAM refers to an artificially-structured
material, typically a heterogeneous elastic medium con-
sisting of a matrix with embedded resonant inclusions or
substructures, which may be tailored to obtain exotic proper-
ties such as near zero transmissibility [1], enhanced energy
absorption [2], negative dynamic mass density and/or bulk
modulus [3–7], super anisotropy, zero rigidity [7], etc. These
properties make LRAMs ideal candidates for band-stop
filtering of low-frequency elastic waves [1, 5–9], seismic
protection of civil structures [10, 11], super lenses with a
resolution beyond the Rayleigh limit [12, 13] and guided
wave propagation.
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Developing accurate and computationally efficient meth-
ods to study the dynamics ofLRAMs is the subject of ongoing
research. Direct numerical simulations (DNS) based on the
finite-element (FE) method may become extremely demand-
ing from a computational point of view because of the large
difference of scales that can be involved. Seeking for alter-
natives to DNS, phenomenological approaches and various
homogenization techniques were developed in the literature.

Phenomenological models are usually formulated at the
macroscale, with additionalmacroscopic kinematic variables
accounting for the internal dynamics at the microscale. Start-
ing from the seminal work by Mindlin [14], several studies
proposed phenomenological models especially tailored for
LRAMmedia [15] and LRAM beam lattices [16, 17], focus-
ing on wave dispersion analyses [15–17].

Homogenization techniques for LRAMS were developed
based on different concepts. For example, some studies pro-
posed asymptotic techniques, which consist in expanding
and computing relevant local (or microscopic) fields and
in constructing macroscopic fields and effective constitu-
tive properties by appropriate volume averages over a unit
cell. In this context, wave dispersion was analyzed in LRAM
media [18, 19] and inLRAMbeam lattices assembledby rect-
angular framed unit cells [20, 21]. Further homogenization
techniques obtained effective equivalent media for LRAMs
building on the pioneering volume averaging technique by
Willis [22]. Examples in this respect are the averaging tech-
niques proposed by Nemat-Nasser and coworkers [23, 24]
and by Pernas-Salomón and Shmuel [25] for wave disper-
sion analysis in LRAMmedia [23, 24] and in Euler-Bernoulli
beams with spring-mass resonators [25]. Alternative averag-
ing techniques delivering effective medium properties for
LRAM media were proposed by Torrent et al. [26] and
by Zhou and Hu [27] based on the scattering properties of
the resonators and by Chen et al. [28]; again, these stud-
ies focused on wave dispersion analysis of LRAMs [26–28].
In this context, various dynamic homogenization techniques
targeting the computation of the band structure of periodic
composites are also noteworthy [29–32].

Although phenomenological approaches and homoge-
nization techniques were successful in studying LRAMs,
especially for wave dispersion analysis, alternative numer-
ical approaches are of great importance for a more general
description of LRAMs capable of capturing the transient
response, considering finite macroscopic domains with arbi-
trary boundary conditions, as well as complexmicrostructure
geometries. To this aim, in the past few years a considerable
research effort turned to the development of the so-called
computational homogenization approaches, i.e., approaches
that involve, in a broad sense, the formulation of two nested
boundary value problems at the macroscale and at the
microscale [33–36]. Upon introducing an enriched descrip-
tion of the micro–macro kinematics, where the microscopic

displacement within a representative volume element (RVE)
may exhibit large spatial fluctuations relative to the macro-
scopic displacement as a result of transient microstructural
behaviour, downscaling and upscaling relations dictating
the coupling between the two scales were derived; while
downscaling relations involve periodic kinematic boundary
conditions on theRVE, upscaling relations consist essentially
in an extended Hill-Mandel macrohomogeneity condition
[33–36]. The distinctive feature of this approach is that
a coupling of the macroscopic stress to the microscopic
momentumwas found, as a result of the transient microstruc-
tural behavior [33–36]. The approach was combined with
FE techniques, allowing complex microstructure topologies
to be incorporated within finite macrostructure geometries,
considering arbitrary transient excitations and sophisticated
boundary conditions. Specifically, homogenized constitutive
relations for themacroscopic stresswere obtained in ref. [35],
depending on additional kinematic degrees of freedom rep-
resenting the internal dynamics of the microstructure, which
enrich the macroscopic continuum with micro-inertia effects
in a micromorphic sense. Indeed, the additional degrees of
freedom are generalized coordinates associated with local
resonance modes of a Craig-Bampton representation of the
internal dynamics of the RVE. The approach in ref. [35] did
not require a solution of the microscale problem at each
time step as, it is the case, in ref. [33, 34]. The study in
ref. [36] proposed a similar approach but especially tai-
lored to LRAM beams and shells. Consistent variational
formulations of computational homogenization approaches
were presented by de Souza Neto et al. [37] and Blanco
et al. [38]. Again in the context of a variational frame-
work, a computational approach was proposed by Roca et al.
[39], which involves reformulating theHill-Mandel principle
in a constrained variational form with Lagrange multipli-
ers associated with kinematic restrictions on the RVE and
representing, respectively, the homogenized macroscopic
D’Alembert force density and stress. The Lagrange multi-
pliers were obtained by solving the FE equations governing
the dynamics of the RVE, upon representing the microstruc-
tural response as the sum of a quasistatic solution and an
inertial solution under some assumptions on the effects of
macroscopic strains and displacements on the inertial micro-
scopic response and microscopic reactive stress. Macroscale
equations were obtained with additional kinematic degrees
of freedom given as generalized coordinates associated with
local resonance modes of the RVE. The approach pro-
posed in ref. [39] was also applied to develop a topological
optimization procedure [40]. Further computational homog-
enization approaches were also developed [41–43], with
focus on frequency-domain and wave dispersion analyses.
Specifically, the study in ref. [42] introduced a generalized
homogenization operator based on a family of weighted
projection functions, to be constructed using Floquet-Bloch
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eigenvectors obtained in the desired frequency regime. Using
a generalized Hill-Mandel relation, a micromorphic con-
tinuum was derived assuming linear elasticity and material
periodicity. Assuming a high-order spatial-temporal gradi-
ent expansion with respect to the macroscale displacements
as ansatz for the full-scale displacements, the global prob-
lem was localized to a problem on a single unit cell and
reverted to a series of recursive local unit cell problems
solved by a FE method. Recently, a computational homog-
enization approach focusing on transient dynamics was
proposed by Zhi et al. [44]; the approach involves only a sin-
gle boundary value problem with coupled macroscopic and
microscopic degrees of freedom, avoiding the two concur-
rent finite element simulations and information interchange
that are necessary in some classical computational homog-
enization approaches [33, 34, 45]. Indeed, solving a single
boundary value problem at the macroscale instead of two
concurrent ones at the macroscale and the microscale is a rel-
evant feature of the computational homogenization approach
developed in ref. [44] as well as in ref. [35, 36, 39], which
deliver veritable effective continua enriched with additional
variables describing the microscale dynamics.

Given the existing interest in computational homogeniza-
tion approaches that may efficiently deal with the dynamic
response of LRAM structures, this paper builds on the frame-
work presented in ref. [35] introducing two main novelties:

1. The formulation of a reduced-order macroscopic homog-
enized continuum for LRAMstructures, whose governing
equations do not involve additional variables describing
the microscale dynamics. This is a considerable novelty
and advantage over micromorphic homogenized continua
obtained by alternative computational homogenization
approaches [35, 36, 39, 44], which is particularly relevant
for the design of engineering applications using LRAM
structures. In particular, the model-order reduction is
obtained assuming the well-established scale transition
relations in ref. [35], formulating the governing equations
of the micro- and macroscale problems in the frequency
domain, introducing a FE discretization of the two prob-
lems and performing an exact dynamic condensation of
all the degrees of freedom at the microscale.

2. The introduction of a pertinent inverse Fourier transform
approach, based on the Exponential Window Method
(EWM) [46], to calculate the transient response of
the reduced-order macroscopic homogenized continuum.
The EWM is a numerical technique especially suitable for
undamped (or lightly damped) systems and, to the best of
the authors’ knowledge, this paper is the first to demon-
strate its suitability for calculating the dynamic response
of undamped LRAM structures. Notably, it allows to
obtain results in the time domain, next to the frequency
domain.

The proposed computational homogenization framework is
readily implementable in a FE code andmay handle arbitrary
geometries of the micro- and macro-structures, any transient
excitations and any arbitrary boundary conditions.

The paper is organized as follows. Section2 outlines the
fundamental scale transition relations of the computational
homogenization framework. Section3 describes the exact
dynamic condensation at the microscale and derives the
equations governing reduced-order macroscopic homoge-
nized continuum without additional variables describing the
microscale dynamics. The implementation of the compu-
tational homogenization framework in frequency and time
domains is discussed in Sect. 4. Finally, a numerical exam-
ple demonstrating the method is presented in Sect. 5.

The following notation is used throughout the paper. The
standard Cartesian basis vectors are ek , with k = 1, 2, 3.
Unless otherwise stated, scalars and vectors are denoted
as a (or A) and a, respectively; second, third and fourth
order Cartesian tensors as A (or (2)•), (3)• and (4)•; column
matrices consisting of scalars as a

˜

(or A
˜

), column matri-
ces consisting of vectors as a

˜

and matrices consisting of
second-order tensors as A

˜

, that in general may be com-
posed of subcolumns or submatrices. The tensor operations
are denoted as follows: conjugate of a second order tensor
AC = A jiei ⊗ e j , dot product A · b = Ai j b jei , double con-
traction A : B = Ai j B ji and (4)A : B = Ai jhk Bkhei ⊗ e j ,
dyadic product a ⊗ b = aib jei ⊗ e j (Einstein notation is
used here for all tensor operations). Further, a · b = aibi .

2 Scale transition relations

The multiscale problem governing the dynamics of LRAMs
is built within the classical first order homogenization frame-
work [35]. The relation governing the transition from the
macroscale to the microscale (downscaling) is built on the
basis of a suitable first order approximation of the micro-
scopic kinematics at a given point. The relation governing
the transition from the microscale to the macroscale (upscal-
ing) is based on the Hill-Mandel principle. Full balance of
linear momentum is accounted for at both scales.

The first order homogenization framework is formulated
by assuming a relaxed principle of separation of scales.
In particular, denoting with nhet and nmat the number of
microstructural phases constituting the heterogeneities and
the host matrix, respectively, the following inequalities are
assumed:

l j << λmat
j , j = 1, ..., nmat

lk ≤ λhetk , k = 1, ..., nhet
(1)
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where λmat
j and λhetk are, respectively, the shortest charac-

teristic wavelengths in the j th and kth constituents of the
matrix and the heterogeneities for a given excitation, while
l j and lk denote their typical sizes. Eq. (1) means that, for a
given excitation, the sizes of the microstructural constituents
of the matrix are much smaller than the shortest character-
istic wavelength associated to the matrix (long wavelength
approximation), while the sizes of the microstructural con-
stituents of the heterogeneities can be of the same order of
the shortest characteristic wavelengths associated to the het-
erogeneities.

Consider at the macroscale a solid occupying a closed
domain ̂�M = �M ∪ ∂�M, ∂�M being its boundary, sub-
jected to external boundary tractions tM and neglecting the
external body forces. The dynamics at the macroscale is gov-
erned by the following set of differential equations:

{

divM σM − ṗM = 0

εM = ∇s
MuM

(2)

σM being the Cauchy stress tensor, pM the linear momentum
vector, uM the displacement field vector and εM the linear
infinitesimal strain tensor at the macroscale, ∇s

M denotes
the symmetric gradient operator and the superimposed “ ˙ ”
denotes the time derivative.As for constitutive behavior at the
macroscale, no constitutive (closure) relations are assumed
for σM and pM; they will be obtained from the microscale
problem, as explained in the following.

Assuming that each field varies harmonically in time,
e.g., σM = σM(ω)eiωt , Eq. (2) can be written as follows
in the frequency domain (for conciseness, ω-dependence of
the symbols will be omitted in the equations of this paper
whenever is possible):

{

divM σM − qM = 0

εM = ∇s
MuM

(3)

with qM(ω) = iωpM(ω). The application of the principle of
virtual work to Eq. (3) leads to the weak formulation

∫

�M

σM : δεMdVM

+
∫

�M

qM · δuMdVM =
∫

∂�M

tM · δuMdSM (4)

being tM(ω) = σM(ω)·n with n the outward unit normal
vector to the boundary ∂�M.

To each material point xM of the macroscopic domain�M

a microscale domain ̂� = � ∪ ∂� is associated, selected to
capture the local microstructural effects at the given material
point of the macroscopic domain and known as a represen-
tative volume element (RVE). The RVE identifies physical

and geometrical properties of themicrostructure [47] and, for
periodic LRAMs, it coincides with the unit cell, consistently
with the Bloch theorem stating that the elastic wave propa-
gation properties of a periodic medium are fully described
from its single unit cell. A typical example of an RVE is
given in Fig. 1. The dynamics of the RVE is governed by the
following elastodynamics problem:

{

div σ − ṗ = 0

ε = ∇su
(5)

In the frequency domain, Eq. (5) takes the form

{

div σ − q = 0

ε = ∇su
(6)

having defined q(ω) = iωp(ω). The corresponding weak
formulation of equilibrium resulting from the principle of
virtual work is
∫

�

σ : δεdV +
∫

�

q · δudV =
∫

∂�

t · δudS (7)

At the microscale, the constitutive relations of the clas-
sical elastodynamics are supposed to hold, i.e., for each
microstructural component it holds:

σα = (4)Cα : εα (8)

and furthermore

pα = ραu̇α (9)

where (4)Cα and ρα are the elastic material tensor and mass
density of the αth RVE constituent. Next, the focus is on the
scale transition relations.

The kinematics of the RVE associated to a material point
of the macroscopic domain is represented by the following
downscaling relation:

u(x) = uM + (∇MuM)C · (x − xR) + w(x) (10)

u(x, ω) being the displacement field within the RVE and
w(x, ω) the microfluctuation field, which represents the fine
scale variations due to the microstructure heterogeneities; xR
is the position vector of a reference point.

The upscaling relations can be determined by making use
of the Hill-Mandel principle, which equates the macroscale
virtual work density at a material point to the volume aver-
aged virtual work of the RVE and, in turn, to the virtual work
of the external boundary tractions on the RVE

σM : δ(∇MuM) + qM · δuM = 1

V

∫

∂�

t · δudS (11)
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where Eq. (7) is taken into account. From Eq. (11) the fol-
lowing upscaling relations can be derived [35]:

qM = 1

V

∫

∂�

t dS (12)

σM = 1

V

∫

∂�

t ⊗ �x dS (13)

with �x = x − xR. The Hill-Mandel principle was used
in several computational homogenization approaches to
allow the upscaling transition from the microscale to the
macroscale and also holds if no inertia forces are present,
as typically the case for static computational homogeniza-
tion (e.g., see [47, 48]). Here, it enables an energy-consistent
derivation of the macroscopic stress–strain constitutive law
and macroscopic inertia terms from the corresponding ones
at the microscale via Eqs. (12)-(13), as detailed next.

3 Reduced-order macroscopic homogenized
continuum

This section contains the core novelties of this study. The first
step is a standard FE discretization of Eq. (6) governing the
dynamics of the RVE. Upon introducing the FE discretiza-
tion, an exact dynamic condensation of the RVE degrees of
freedom is performed in the frequency domain. The dynamic
condensation method is well established in classical contin-
uum mechanics [49–51]; here, for the first time to the best of
authors’ knowledge, it is applied for model order reduction
of a macroscopic homogenized continuum. Remarkably, as a
result of the dynamic condensation, a reduced-order macro-
scopic homogenized continuum is formulated, the governing
equations ofwhich involve no additional variables describing
the microscale dynamics.

3.1 Dynamic condensation at themicroscale

The RVE governing equations (5) can be discretized by
means of the FE method, which leads to

M
˜

· ü
˜

+ K
˜

· u
˜

= f
˜

(14)

Assumingharmonically varying solutions, Eq. (14) yields the
equilibrium equation of the RVE in the frequency domain

D
˜

· u
˜

= (K
˜

− ω2M
˜

) · u
˜

= f
˜

(15)

where D
˜

(ω) denotes the dynamic stiffness tensor matrix of
the RVE. Assuming a 2-dimensional (2D) RVE for illustra-
tion purposes, the displacement columnmatrix can be conve-
niently partitioned (seeFig. 1) asu

˜

(ω) = [

u
˜

T
T u

˜

T
B u

˜

T
L u

˜

T
R uTp1

uTp2u
T
p3 uTp4 u

˜

T
i

]T
, where the subscripts ‘T ’, ‘B’, ‘L’, ‘R’

Fig. 1 A representative unit cell (RVE) with nodal displacements at the
boundary (bar denotes nodal displacements in frequency domain)

denote the displacements of the nodes along the top, bottom,
left and right boundary of the RVE, the subscripts ‘pk’ and
‘i’ denote the displacements of the kth vertex and internal
nodes, respectively. Following ref. [35], it is assumed that
the microfluctuations are periodic. Under this assumption,
the downscaling relations in Eq. (10) lead to the following
identities:

uT̃ = u
˜

B + 1
˜

· up3 − 1
˜

· up1

u
˜

R = u
˜

L + 1
˜

· up2 − 1
˜

· up1

up4 = up3 + up2 − up1

(16)

where 1
˜

= [

I . . . I
]T
, I being a second order unit tensor.

Equation (16) can be written in the form of a linear trans-
formation acting on the nodal displacements of the RVE (see
Fig. 1)

u
˜

= T
˜

· ur̃ (17)

being ur̃ (ω) the column matrix collecting the displace-
ments of the retained nodes, i.e., the displacements of the

unconstrained nodes ur̃ (ω) =
[

u
˜

T
p u
˜

T
f

]T
, which can be par-

titioned in the column matrix of prescribed displacements

u
˜

p(ω) = [

uTp1 uTp2 uTp3
]T

and in the column matrix of free

displacements u
˜

f (ω) = [

u
˜

T
B u

˜

T
L u

˜

T
i

]

. Therefore, by making
use of the transformation in Eq. (17), the displacements of

the dependent nodes ud̃(ω) = [

u
˜

T
T u

˜

T
R uTp4

]T
are eliminated

and Eq. (15) becomes

̂D
˜

· ur̃ = f r̃ ; ̂D
˜

= T
˜

T · D
˜

· T
˜

; f r̃ = T
˜

T · f
˜

(18)

Note that the column matrix of the nodal forces associated
with retained nodes f r̃ (ω) and the column matrix of the
external (reaction) nodal forces f p̃(ω) associated with the
prescribed nodes are related by
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f r̃ = T
˜

T · f
˜

=
[

f p̃
0
˜

]

(19)

Next, Eq. (18) can be partitioned with respect to the column
matrix of prescribed displacements u

˜

p(ω) and the column
matrix of free displacementsu

˜

f (ω)within the columnmatrix
of retained displacements ur̃ (ω)

[

̂D
˜

pp
̂D
˜

p f
̂D
˜

f p
̂D
˜

f f

]

·
[

u
˜

p

u
˜

f

]

=
[

f p̃
0
˜

]

(20)

Performing the exact dynamic condensation of the free dis-
placements yields

̂D
˜

p · u
˜

p = f p̃ (21)

where ̂D
˜

p(ω) is the Schur complement of the block ̂D
˜

f f (ω)

of the matrix ̂D
˜

(ω)

̂D
˜

p = ̂D
˜

pp − ̂D
˜

p f · ̂D
˜

−1
f f · ̂D

˜

f p (22)

Eq. (21) can be further partitioned with respect to each pre-
scribed node of the RVE

⎡

⎣

̂Dp11
̂Dp12

̂Dp13
̂Dp21

̂Dp22
̂Dp23

̂Dp31
̂Dp32

̂Dp33

⎤

⎦ ·
⎡

⎣

up1
up2
up3

⎤

⎦ =
⎡

⎣

f p1
f p2
f p3

⎤

⎦ (23)

It is noticed that the downscaling relation (10) for the nodal
displacements upi (ω) at the vertices of the RVE reads [35]

upi = uM + (∇MuM)C · �xpi , i = 1, 2, 3 (24)

being �xpi = xpi − xR, i.e., the microfluctuations in the
prescribed nodes are equal to zero in agreement with ref.
[35].

3.2 Governing equations at themacroscale

The upscaling relations, Eqs. (12)-(13), allow to recover the
inertial force qM(ω) and Cauchy stress tensor σM(ω) in the
frequency domain at themacroscale from the RVE governing
equations, Eq. (6). Likewise, the discretization of Eqs. (12)-
(13) enables to recover these quantities from the discretized
RVE governing equation, Eq. (21). In particular, let δu(x, ω)

be the virtual displacement represented by the following
isoparametric expansion:

δu(x) = N
˜

T(x)δu
˜

(25)

where N
˜

(x) is the column matrix of the FE shape functions
and δu

˜

(ω) the column matrix of virtual displacements of the

RVE nodes. Substituting Eq. (25) in the r.h.s of Eq. (11) leads
to

1

V

∫

∂�

t · δudS = 1

V

∫

∂�

δu
˜

T · N
˜

(x)tdS

= 1

V
δu
˜

T · f
˜

= 1

V
δu
˜

T
r · T

˜

T · f
˜

= 1

V

(

f
˜

T
p · δu

˜

p

)

(26)

Substituting Eq. (24) in Eq. (26) gives

1

V

∫

∂�

t · δudV = 1

V

3
∑

i=1

(

f pi · δuM
)

+ 1

V

3
∑

i=1

(

f pi ⊗ �xpi
) : δ(∇MuM) (27)

Substituting Eq. (27) in Eq. (11) leads to the discrete upscal-
ing relations

qM = 1

V

3
∑

i=1

f pi (28)

σM = 1

V

3
∑

i=1

f pi ⊗ �xpi (29)

Making use of Eq. (24) and substituting Eq. (23) in Eqs. (28)-
(29) yield

qM = 1

V

3
∑

i=1

f pi = 1

V

3
∑

i, j=1

̂Dpi j · uM

+ 1

V

3
∑

i, j=1

(

̂Dpi j ⊗ �xp j

) : ∇MuM

= (2)ρM · uM + (3)ρM : ∇MuM (30)

σM = 1

V

3
∑

i=1

f pi ⊗ �xpi = 1

V

3
∑

i, j=1

(

�xpi ⊗ ̂Dpi j

)LC · uM

+ 1

V

3
∑

i, j=1

(

�xpi ⊗ ̂Dpi j ⊗ �xp j

)LC : ∇MuM

= (3)CM · uM + (4)CM : ∇MuM (31)

where “(·)LC”denotes the left conjugate of a highorder tensor
ALC
j ihk = Ai jhk . In Eq. (28), the 2nd and 3rd order dynamic

density mass tensors are respectively defined as

(2)ρM = 1

V

3
∑

i, j=1

̂Dpi j (32)

(3)ρM = 1

V

3
∑

i, j=1

̂Dpi j ⊗ �xp j (33)
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Likewise, in Eq. (29), the 3rd and 4th order elastic tensors are
defined, respectively, as

(3)CM = 1

V

3
∑

i, j=1

(

�xpi ⊗ ̂Dpi j

)LC
(34)

(4)CM = 1

V

3
∑

i, j=1

(

�xpi ⊗ ̂Dpi j ⊗ �xp j

)LC
(35)

A few comments on Eq. (23) and Eq. (28) are of interest. If
ω = 0, D

˜

= K
˜

, u
˜

= u
˜

, f
˜

= f
˜

, and the matrix ̂D
˜

p in Eq. (23)

reverts to the condensed static stiffness matrix K
˜

qs
p (= Kqs

in ref. [35]). Bearing in mind the downscaling relations (24),
the following relation is obtained in static conditions:

3
∑

j=1

Kqs
pi j · up j =

3
∑

j=1

Kqs
pi j · uM

+
3

∑

j=1

Kqs
pi j · (∇MuM)C · �xp j = fpi ,

i = 1, 2, 3 (36)

In Eq. (36), the term
∑3

j=1K
qs
pi j · uM = 0 as it describes a

rigid body motion of the RVE while, in general, the second
term

∑3
j=1K

qs
pi j · (∇MuM)C · �xp j �= 0 and, as a result, the

nodal forces fpi �= 0. However,
∑3

i=1 fpi = 0 because of
equilibrium; therefore, qM = 0 in Eq. (28) consistently with
the fact that no inertia forces arise at the macroscale for a
static response of the RVE; on the other hand,

∑3
i=1 fpi ⊗

�xpi �= 0 implies σM �= 0 (see Eq. (29) in the frequency
domain). If ω �= 0, the nodal forces fpi �= 0 as well as the
sum of the nodal forces

∑3
i=1 fpi �= 0 because of the balance

with the inertia forces in the RVE; therefore, qM �= 0 in
Eq. (28) meaning that inertia forces arise at the macroscale
for a dynamic response of the RVE.

4 Numerical implementation in the
frequency and time domains

The numerical solution of the elastodynamics problem
Eq. (3) is built by means of the FE method. The time domain
solution is retrieved from the frequency response taking full
advantage of the EWM [46]; to the best of authors’ knowl-
edge, here the EWM is applied for the first time to calculate
the transient response of a 2D solid within the context of a
computational homogenization framework.

4.1 Frequency domain response

The displacement field vector at the macroscale uM is repre-
sented through the following isoparametric expansion:

uM(x) = N
˜

T
M(x)u

˜

M (37)

whereby u
˜

M(ω) is the column matrix collecting all the nodal
displacements of the discretizedmodel at the macroscale and
N
˜

M(x) is the column matrix of the FE shape functions. The
application of the standard Galerkin method to the weak for-
mulation inEq. (4),with account for theEqs. (32)-(35), yields

[∫

�M

(

B
˜

· (3)CM N
˜

T
M + B

˜

· (4)CM · B
˜

T
)

dVM

+
∫

�M

(

N
˜

M
(2)ρM N

˜

T
M + N

˜

M
(3)ρM · B

˜

T
)

dVM

]

· u
˜

M

=
∫

∂�M

N
˜

MtMdSM

(38)

where B
˜

is the discretized strain operator. Equation (38) can
be conveniently recast in matrix form as follows:

D
˜

M · u
˜

M = fM̃ (39)

where D
˜

M(ω) is the dynamic stiffness tensor matrix of the
macroscopic homogenized continuum. Solving Eq. (39) in
terms of u

˜

M(ω) for a given frequency ω gives the frequency
response function corresponding to a load fM̃(ω). The fre-
quency response function allows to recover the time domain
solution through the inverse Fourier transform as detailed in
the following Section.

4.2 Time domain response

A time-dependent load f
˜

M(t) can be represented in the fre-
quency domain by its Fourier transform fM̃(ω) = F [f

˜

M(t)].
The frequency response under this load follows from the solu-
tion of Eq. (39) as

u
˜

M(ω) = D
˜

−1
M (ω) · F [

f
˜

M(t)
]

(40)

The dynamic response in the time domain is then recon-
structed by computing the inverse Fourier transform of
Eq. (40)

u
˜

M(t) = F−1
[

D
˜

−1
M (ω) · F [

f
˜

M(t)
]

]

(41)

At this stage, it is worth to note that the Fourier transform
F [f

˜

M(t)] in Eq. (40) is a complex function of frequency
including amplitude and phase information of the excitation,
as indeedF [f

˜

M(t)] = Re
(

F [f
˜

M(t)])+ i Im
(

F [f
˜

M(t)]) =
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ρeiθ , being ρ =
√

Re
(

F [f
˜

M(t)])2 + Im
(

F [f
˜

M(t)])2 the

amplitude and θ = arctan
(

Im
(

F [f
˜

M(t)]) /Re
(

F [f
˜

M(t)]))
the phase. This means that, correspondingly, both amplitude
and phase information are included in the response given by
Eq. (40), allowing a complete reconstruction of the response
in the time domain as well from Eq. (41).

For displacement boundary conditions, the columnmatrix
collecting the nodal displacements u

˜

M(ω) is partitioned in

two column matrices of prescribed displacements u
˜

[k]
M (ω)

along the macroscopic domain boundary and unknown dis-
placements u

˜

[u]
M (ω), therefore Eq. (39) reads

[

D
˜

[kk]
M D

˜

[ku]
M

D
˜

[uk]
M D

˜

[uu]
M

]

·
[

u
˜

[k]
M

u
˜

[u]
M

]

=
[

fM̃
0
˜

]

(42)

Consequently, the columnmatrix of unknown displacements
u
˜

[u]
M (ω) is readily given as

u
˜

[u]
M = −D

˜

[uu]−1

M · D
˜

[uk]
M · u

˜

[k]
M (43)

Upon defining the column matrix of the prescribed displace-
ments in the time domain u

˜

[k]
M (t), the corresponding column

matrix of unknowndisplacements can be obtained as follows:

u
˜

[u]
M (ω) = −D

˜

[uu]−1

M (ω) · D
˜

[uk]
M (ω) · F

[

u
˜

[k]
M (t)

]

(44)

Finally, the inverse Fourier transform yields the column
matrix of unknown displacements in the time domain

u
˜

[u]
M (t) = F−1

[

−D
˜

[uu]−1

M (ω) · D
˜

[uk]
M (ω) · F

[

u
˜

[k]
M (t)

]]

(45)

As for numerical implementation, in this study the Fourier
transformF [f

˜

M(t)] in Eq. (40) and the inverse Fourier trans-
form in Eq. (41) are calculated by the EWM [46], which is
specifically suitable for undamped (or lightly damped) sys-
tems. TheEWMapplies for arbitrary excitations and captures
the typical time offset of the dynamic response at differ-
ent points of the system as elastic waves propagate through
the system, as shown in ref. [46]. For completeness, some
details on the implementation of the EWMare reported in the
Appendix. Similar comments hold for the Fourier transform

F
[

u
˜

[k]
M (t)

]

in Eq. (44) and the inverse Fourier transform in

Eq. (45) and therefore not repeated here for brevity.

4.3 Internal dynamics of the RVE

If the dynamics of the RVE is to be studied in addition to
the macroscale problem, the following steps can be adopted
within the computational homogenization framework.

Once the displacement vector uM(t) of a material point
at the macroscale is known, the column matrix of displace-
ments u

˜

(t) of the underlying RVE can be easily retrieved by
the prescribed displacements at the microscale by means of
Eq. (24) rewritten as follows:

upi (t) = uM(t) + (∇MuM)C(t) · �xpi , i = 1, 2, 3 (46)

whereby u
˜

p(t) = [

uTp1 uTp2 uTp3
]T

is the column matrix col-
lecting the prescribed displacements. The column matrix of
the free displacements u

˜

f (ω) can be obtained from Eq. (20)
as

u
˜

f (ω) = −̂D
˜

−1
f f (ω) · ̂D

˜

f p(ω) · F [

u
˜

p(t)
]

(47)

Making use of Eq. (17), the column matrix u
˜

(ω) collecting
the displacements of the RVE in the frequency domain is
given as

u
˜

= T
˜

·
[

I

−̂D
˜

−1
f f · ̂D

˜

f p

]

·
[

u
˜

p
u
˜

f

]

(48)

The internal dynamics of the RVE in the time domain can be
finally retrieved by means of the inverse Fourier transform

u
˜

(t) = F−1

[

T
˜

·
[

I

−̂D
˜

−1
f f (ω) · ̂D

˜

f p(ω)

]

·
[

u
˜

p(ω)

u
˜

f (ω)

]]

(49)

4.4 Remarks

Now, a few remarks are in order.

Remark 1 The proposed computational homogenization
framework is a multiscale technique involving the deriva-
tion of the local macroscopic constitutive behavior from
the underlying microstructure, via construction and solu-
tion of a microscale boundary value problem defined on
a RVE identifying physical and geometrical properties of
the microstructure. That is, the local macroscopic constitu-
tive behavior is neither assumed a priori nor obtained from
asymptotic convergence of the microscopic one. Therefore,
the proposed framework differs from any classical mathe-
matical homogenization where the microscopic structural
behavior asymptotically converges to the material behavior
at the macroscopic material point.

Irrespectively of the size of the RVE, the proposed frame-
work is meaningful and provides accurate results as long
as the relaxed principle of separation of scales is fulfilled,
i.e., as long as the sizes of the microstructural constituents
(matrix and heterogeneities) are within the ranges expressed
by Eq. (1), for a given excitation. As explained in previous
work by some of the authors [33], the relaxed principle of
separation of scales is especially suitable for the frequency
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range of excitation at which LRAMs exhibit exotic properties
and, consistently with the assumption that the characteristic
wavelengths associated to the heterogeneities can be com-
parable to the sizes of the microstructural constituents of the
heterogeneities (see Eq. (1)), inertia effects at the microscale
cannot be neglected in Eq. (5) and shall be reflected in the
local macroscopic response. Indeed, coupling of the macro-
scopic stress to the microscopic inertia forces is inherent in
Eq. (13) (see also corresponding Eqs. (17)-(19) in ref. [35]).

The question may arise on whether inertia terms at the
microscale will always play a role if, for a fixed frequency of
the excitation, the size of the RVE is progressively reduced.
Since, in this case, the characteristic wavelengths are fixed
while the sizes of themicrostructural constituents reducewith
the size of the RVE, it is evident that, for a certain reduced
size of the RVE, the long wavelength approximation will
hold for both host matrix and heterogeneities, i.e., the sizes
of the microstructural constituents of both host matrix and
heterogeneities will be very small compared to the associ-
ated characteristic wavelengths. At this stage, the responses
of all the microstructural constituents will be quasistatic,
inertia effects at themicroscalewill be negligible and the pro-
posed framework will automatically revert to a quasistatic
computational homogenization, i.e., a homogenizationwhere
inertia effects at the microscale are neglected. In this respect,
the proposed framework mirrors the computational homoge-
nization approach developed in ref. [33], whichwas shown to
provide the same results of the classical quasistatic homoge-
nization if, for a constant size of the macroscale domain and
the frequency of the excitation, the size of the RVE is reduced
until the long wavelength approximation holds for all the
microstructural constituents of both host matrix and hetero-
geneities.However, it is important to remark that, in this case,
inertia forces will be negligible because the response is qua-
sistatic and not because the size of the RVE is “very small”.
This means that, even for that very small size of the RVE,
high-frequency excitations with characteristic wavelengths
comparable to the sizes of the microstructural constituents of
the heterogeneities will cause inertia effects at themicroscale
that, again, cannot be neglected and shall be reflected in the
macroscopic response.

Recognize that, in the proposed framework, the upscaling
of inertia effects at the microscale is obtained via the Hill-
Mandel principle (11), which delivers Eq. (13) coupling the
macroscopic stress to the microscopic inertia forces.

Remark 2 The proposed computational homogenization
framework enables a remarkable model order reduction,
since the equations governing the macroscopic homogenized
continuum involve only the degrees of freedom associated
with the macroscale displacement field and no additional
degrees of freedom or additional variables describing the
internal dynamics of the RVE. This is not the case, instead,

for other macroscopic homogenized continua obtained by
alternative homogenization approaches [35, 36, 39, 44].
Therefore, N being the number of nodes at the macroscale,
the FE model of the macroscopic homogenized continuum
involves only 2N or 3N degrees of freedom depending on
whether the LRAM structure is 2- or 3-dimensional.

Moreover, the internal dynamics of the RVE can readily
be reconstructed from the macroscale response, in either the
frequency domain using Eq. (48) or the time domain using
Eq. (49). That is, a full description of themicroscale response
is possible, although no related additional degrees of free-
dom/variables are involved in the solution of the macroscale
problem.

Remark 3 The proposed dynamic condensation of the inter-
nal degrees of freedom of the RVE removes the need to
approximate the internal dynamics of the RVE by means
of dynamic substructuring techniques as, e.g., the Craig-
Bampton method [35]. Consequently, the solution is not
affected by modal truncation errors inherent to the numeri-
cal implementation of this technique and, within the relaxed
principle of separation of scales (1), is accurate to the
extent provided by the FE method. Note that removing the
need to approximate the internal dynamics of the RVE by
a finite number of modes makes the proposed computa-
tional homogenization framework especially suitable for
those applications where, depending on the loading con-
ditions, it is not straightforward to predict which modes
contribute to the internal dynamics of the RVE.

Remark 4 A dynamic condensation approach in the fre-
quency domain could be applied, in principle, to alternative
computational homogenization approaches in the litera-
ture, e.g., the approach proposed in ref. [35]. In this case,
the dynamic condensation would remove the additional
degrees of freedom describing the internal dynamics of the
RVE according to the Craig-Bampton technique from the
microscale system of equations, written in the frequency
domain. Moreover, the EWM could also be applied to cal-
culate the response in the time domain. As pointed in the
previous Remark #3, however, the dynamic condensation
approach proposed in this study is of particular interest as
it does not require any modal truncation to represent the
internal dynamics of the RVE.

Remark 5 A dynamic condensation of the internal degrees of
freedom of the RVE was proposed by some of the authors in
ref. [34]. It was implemented in the time domain to solve the
microscale problem in the context of a computational homog-
enization approach requiring the concurrent solutions, at
each time step, of two nested boundary value problems at
the microscale and the macroscale. Differently, the pro-
posed dynamic condensation approach in the frequency
domain leads to formulating and solving only the boundary
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Fig. 2 2-dimensional LRAM structure consisting of 40 × 10 unit
cells under two different loading conditions at the left edge: harmonic
excitation in compression induced by prescribed displacement fields
uM,bx (t) = uM,b(t) and uM,by (t) = 0 (no contraction is possible

in y-direction), with time function uM,b(t) shown in Fig. 2a; tran-
sient shear load induced by prescribed uniform y-displacement field
uM,by (t) = uM,b(t) (x-displacements are free), with time function
uM,b(t) shown in Fig. 2b

value problem of the reduced-order macroscopic homoge-
nized continuum without additional variables describing the
microscale dynamics, and its solution in the time domain is
made particularly efficient by adopting the EWM.

Remark 6 Provided that the relaxed principle of separation
of scales (1) holds, the proposed computational homogeniza-
tion framework applies for any geometry at the microscale
and any geometry at the macroscale. Any transient excita-
tion can be considered in the time domain. Further, any
time-dependent boundary conditions can be considered at
both transient and steady states. Transient excitations in the
time domain and time-dependent boundary conditions can
be handled by the inverse Fourier transform approach in
conjunction with the EWM, as devised in Sect. 4.2.

Remark 7 The proposed computational homogenization
framework can handle spatial damping in different ways.
A possible approach involves redefining the constitutive
laws of the microstructural phases in the RVE and deriv-
ing the corresponding macroscopic constitutive behavior
by the Hill-Mandel principle. Assuming, for example, a
Kelvin-Voigt viscoelastic behavior for the microstructural
phases, this approach would lead to rewriting the 3rd and
4th order frequency-dependent elastic tensors (34)-(35) at
the macroscale as frequency-dependent complex stiffness
tensors. For this approach to be applicable, however, an

accurate mathematical model of the actual damping mech-
anism within the microstructural constituent materials is
necessary. An alternative approach is to introduce propor-
tional damping in the FE discretized equations governing
the microscale dynamics, on a purely numerical basis.
For instance, a damping matrix proportional to the mass
matrix can be introduced in Eq. (14) for the RVE. For
both approaches, the main implementation steps of the pro-
posed framework would mirror those for the undamped case
developed in Sect.4, i.e., the governing equations should be
formulated, first, in the frequency domain, while the transient
response could be obtained by the inverse Fourier transform.
In particular, in presence of damping, the Fourier transform
and the inverse Fourier transform could be calculated by
standard techniques and not by the EWM, which is espe-
cially devised for undamped (or lightly damped) systems.
That is, the inclusion of spatial damping would not require
substantial modifications in the main implementation steps
of the proposed framework and, on the other hand, no special
novelties will be introduced in the formulation to calculate
the transient response, as standard Fourier transform tech-
niques could be implemented. It is important to remark that,
in contrast, standard Fourier transform techniques cannot
be applied to calculate the transient response of undamped
systems (see ref. [46]) and this issue motivates the use of the
EWM introduced in Sect.4.2.
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Fig. 3 Considered LRAMunit cell in Fig. 2: (a) composition and geom-
etry of the unit cell, (b) FE mesh of the unit cell

Table 1 Material properties for the unit cell constituents of the LRAM
in Fig. 2

Lead Silicone rubber Epoxy

E (GPa) 40.82 1.175 × 10−4 4.35

ν 0.369 0.468 0.367

ρ (kg/m3) 11600 1300 1180

5 Numerical application

To assess the effectiveness of the proposed computational
homogenization framework, consider aLRAMstructure con-
sisting of a 2-dimensional array of 40 × 10 contiguous unit
cells as shown in Fig. 2.

Each unit cell consists of an epoxy matrix with an
embedded lead inclusion coated with silicone rubber; one
microstructural phase constitutes the host matrix (nmat = 1
in Eq. (1)) and two microstructural phases constitute the het-
erogeneities (nhet = 2 in Eq. (1)). Material composition and
the geometry of each unit cell of the LRAM are illustrated in
Fig. 3a, while the material properties of each constituent are
reported in Table 1. Data are taken from ref. [35].

As for the boundary conditions of the LRAM structure in
Fig. 2, the right edge is clamped, top and bottom edges are
free, the left edge is subjected to prescribed time-dependent
displacements to be detailed in Sects. 5.1 and 5.2.

The proposed computational homogenization framework
is implemented considering a macroscale computational
domain of 40 × 10 4-node plane strain FEs and 451 nodes,
totalling 902 = 2×451 degrees of freedom. TheRVE,whose
geometry coincides with that of the unit cell, is discretized
by 524 FEs as shown in Fig. 3b; the associated degrees of
freedom, however, are removed by the dynamic condensation
introduced in Sect. 3.1 and, as a result, the reduced-order FE
model of the macroscopic homogenized continuum features
only 902 degrees of freedom of the macroscale computa-

Fig. 4 Dispersion curves of the infinite LRAM consisting of unit cells
shown in Fig. 3 calculated along the irreducible Brillouin zone (inset).
The excitation frequencies considered in Sect. 5.1 are highlighted in red

tional domain. The model is implemented in an in-house
Matlab code.

For comparison in the time domain, two alternative solu-
tions are built. The first solution is the direct numerical
simulation (DNS) solution obtained from a fully resolved
FE model, implemented in Abaqus employing 4-node plane
strain elements (CPE4).Considering192416FEs and193318
nodes, the full FE model includes 386636 = 2 × 193318
degrees of freedom. The time integration scheme called
“Hilber-Hughes-Taylor operator” is used to calculate the time
response inAbaqus. The second solution is a quasistatic com-
putational homogenization solution built as explained in ref.
[35], i.e., by omitting the mass contribution in the following
equilibrium equations of the RVE and solving for the free
degrees of freedom using a static condensation procedure:

[

̂K
˜

pp
̂K
˜

p f
̂K
˜

f p
̂K
˜

f f

]

·
[

u
˜

p

u
˜

f

]

+
[

̂M
˜

pp
̂M
˜

p f
̂M
˜

f p
̂M
˜

f f

]

·
[

ü
˜

p

ü
˜

f

]

=
[

f p̃
0
˜

]

(50)

InEq. (50), “u
˜

p” and “u
˜

f ” denote prescribed and free degrees
of freedom, superscripts “p” and “ f ” denote the related
blocks of the stiffness and mass matrices ̂K

˜

and ̂M
˜

; further,
“f p̃” denotes the forces acting on the prescribed nodes, “0

˜

”
is a column matrix (whose length is equal to the number
of free nodes) where every entry is a zero vector. To con-
struct the quasistatic solution, themacroscale andmicroscale
computational domains mirror those used in the proposed
computational homogenization framework, i.e., 40 × 10 4-
node plane strain FEs, 451 nodes and 902 = 2×451 degrees
of freedom at the macroscale, 524 FEs to discretize the RVE
as shown in Fig. 3b. Themodel is implemented in an in-house
Matlab code and the time response is obtained solving the
system of equations of the macroscopic homogenized con-
tinuum by a generalized α-method (Newmark algorithm).
The proposed computational homogenization framework,
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Fig. 5 Time response of the LRAM in Fig. 2: (a) horizontal displacement along the line at y = 0.105m for t = 4π/ω = 2/ f , (b) horizontal
displacement at the point xM,1 = (0.21, 0.105) m for t ∈ [0, 4π/ω] and excitation frequencies (i) f = 200 Hz, (ii) f = 450 Hz, (iii) f = 800 Hz,
(iv) f = 1200 Hz

the DNS solution and the quasistatic solution are built on
a HP Zbook 15v G5 Workstation (Intel i5-9300H 2.40 GHz
CPU with 8GB of memory).

Figure 4 shows the dispersion curves of the infinite LRAM
corresponding to the finite LRAM in Fig. 2 calculated along
the irreducible Brillouin zone, using the FEmodel inAbaqus.
Two stopbands can be clearly identified.

5.1 Harmonic load

Assume that the LRAM in Fig. 2 is subjected to prescribed
displacement fields uM,bx (t) = uM,b(t) and uM,by (t) = 0 at

the left edge as shown in Fig. 2a, being uM,b(t) a harmonic
function uM,b(t) = 1× 10−5(1− cos(ωt)) (m). That is, the
horizontal displacements of the left edge induce a harmonic
excitation in compression while no contraction of the left
edge is possible in the vertical direction.

Figure 5 shows the time response of the LRAM for sev-
eral excitation frequencies ω (indicated in the dispersion
graph for completeness, see Fig. 4), as computed by the pro-
posed computational homogenization framework, including
the DNS solution and the quasistatic solution for compar-
ison. For both the DNS and the quasistatic solution, the
simulation is carried out until ttot = 2T , being T = 2π/ω
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Fig. 6 Deformed shape (scale
magnified for visualization
purposes) of the LRAM in
Fig. 2 at t = 4π/ω = 2/ f with:
(a) f = 200 Hz, (b)
f = 450 Hz, (c) f = 800 Hz,
(d) f = 1200 Hz; contour map
with black continuous mesh
denotes the displacement
magnitude (proposed
framework), red dots (outline of
the unit cells from DNS)
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Fig. 7 Local deformed shape of the LRAM unit cell in Fig. 2 at four
time instants: (i) t = T /4, (ii) t = T /2, (iii) t = 3T /4, (iv) t = T
with T = 2/ f and f = 450 Hz; (a) response of the RVE in the point

xM,2 = (0.2205, 0.1155)m obtained by the proposed framework, (b)
response of the unit cell at x2 = (0.2205, 0.1155)m from the DNS.
Contour map denotes the total displacement magnitude

the period of the excitation, while the time step is always
selected as �t = ttot/800 for all excitation frequencies.
Specifically, Fig. 5 shows the displacement of the LRAM
at different locations, as detailed in the following: (a) along
the line at half height, i.e., at y = 0.105m (indicated in
Fig. 2 by a red line), at time t = 2T = 4π/ω, i.e., two
times the period T of the excitation; (b) at the point xM,1 =
(0.21, 0.105)mof themacroscopic homogenized continuum
and at the corresponding point x1 = (0.21, 0.105)m in the
DNS model for t spanning two times the period T of the
excitation. The perfect agreement between the DNS solu-
tion and that obtained by the proposed framework again
confirms its accuracy. Moreover, it is noticed that the qua-
sistatic solution is not able to correctly capture the dynamic
response of the LRAM, especially for higher frequency exci-
tations.

Furthermore, Fig. 6 shows the deformed configurations of
the LRAM at time t = 2T computed by the proposed com-
putational homogenization framework and the DNS results
for excitations with different frequencies. The displacements
along the whole LRAM are in perfect agreement, confirming
again the accuracy of the proposed method.

An additional insight into the dynamics of the LRAM
can be offered by the time response of the RVE underly-
ing a given material point. Indeed, employing the procedure
described in Sect. 4.3, the internal dynamics of the RVE can
be obtained efficiently from the time response in each point
of the macroscopic homogenized continuum. For example,
Fig. 7 shows the time response of the RVE in the point
xM,2 = (0.2205, 0.1155)m shown in Fig. 2 for an exci-
tation frequency f = 450Hz at time instants t = T /4,
T = T /2, t = 3T /4 and t = T . Specifically, Fig. 7
shows the dynamical response computed by the proposed
computational homogenization framework and the dynam-
ical response of the unit cell with its centroid at the point
x2 = (0.2205, 0.1155)m in the DNS model. The two solu-
tions are in excellent agreement, confirming the accuracy
of the proposed framework and its capability of capturing
the internal dynamics of the RVE, without any additional
degrees of freedom in the macroscopic homogenized contin-
uum. Further, it is worth remarking that the two solutions in
Fig. 7 agree verywell even if themeshes are slightly different,
these small differences being due to the automatic meshing
of the DNS model in Abaqus.
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Fig. 8 Time response of the LRAM in Fig. 2: (a) vertical displacement along the line at y = 0.105m for t = 0.0021438 s, (b) vertical displacement
at the point xM,1 = (0.21, 0.105) m for t ∈ [0, 0.0025] s

Fig. 9 Deformed shape (scale
magnified for visualization
purposes) of the LRAM in
Fig. 2 at t = 0.0021438 s for a
prescribed shear
y-displacement varying
according to the law shown in
Fig. 2b; contour map with black
continuous mesh denotes the
displacement magnitude
(proposed framework), red dots
(outline of the unit cells from
DNS)

5.2 Transient load

Next, assume that the LRAM in Fig. 2 is subjected to pre-
scribed uniform y-displacement field uM,by (t) = uM,b(t) at
the left edge as shown in Fig. 2b, where uM,b(t) is a transient
function given by:

uM,b(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

1 × 10−5

6.25 × 10−4

)

t (m) 0 s ≤ t ≤ 6.25 × 10−4 s

2 × 10−5 −
(

1 × 10−5

6.25 × 10−4

)

t (m) 6.25 × 10−4 s ≤ t ≤ 1.25 × 10−3 s

0 t > 1.25 × 10−3 s

(51)

That is, the vertical displacements of the left edge induce
a transient shear load while the horizontal displacements of
the left edge are free. This loading condition is of particu-
lar interest to highlight a main advantage of the proposed
computational homogenization framework and, specifically,
the fact that it does not require approximating the internal

dynamics of the RVE by a finite number of modes, the selec-
tion of which would not be immediate, in this case, as a result
of shear effects and transient nature of the load. Moreover,
this loading condition is useful to demonstrate that the inverse
Fourier transform approach in conjunction with the EWM is

capable of handling arbitrary time-dependent boundary con-
ditions (see Remark #6 in Sect. 4.4).

Fig. 8 shows the time response of the LRAM, as computed
by the proposed computational homogenization framework,
along with the DNS solution and the quasistatic solution. In
this case, to build both the DNS and the quasistatic solution
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Fig. 10 Local deformed shape of the LRAM in Fig. 2 at four time
instants: (i) t = T /4, (ii) t = T /2, (iii) t = 3T /4, (iv) t = T
for T = 2.5 × 10−5 s; (a) response of the RVE in the point xM,2 =

(0.2205, 0.1155)m obtained by proposed framework, (b) response of
the unit cell with its centroid at the point x2 = (0.2205, 0.1155)m from
the DNS. Contour map denotes the total displacement magnitude

the simulation is carried out until ttot = 2.5 × 10−3 s (see
Fig. 2b), while the time step is again�t = ttot/800. In partic-
ular, Fig. 8 shows the displacement of the LRAM: (a) along
the line at half height, i.e., at y = 0.105m (indicated in Fig. 2
by a red line) at time t = 0.0021438 s, i.e., the time instant at
which the response attains the maximum at the point xM,1 =
(0.21, 0.105) m; (b) at the point xM,1 = (0.21, 0.105) m.
Again, the perfect agreement between the DNS solution and
that obtained by the proposed framework confirms its accu-
racy. Moreover, it is evident that the quasistatic solution is
completely unable to capture the correct dynamic response.

Figure 9 shows the deformed configuration of the LRAM
at time t = 0.0021438 s. Again, the DNS results and those
computed by the proposed computational homogenization
framework are in excellent agreement.

Further, the time response of the RVE in the point
xM,2 = (0.2205, 0.1155)m is calculated by the proposed
computational homogenization framework and compared
with that of the unit cell having its centroid at the point
x2 = (0.2205, 0.1155) m in the DNS model. The two solu-
tions, shown in Fig. 10 at four time instants, are in a perfect
agreement, substantiating once again the accuracy of the pro-
posed framework.

Table 2 Wall-clock time (in minutes) for the dynamic analysis of the
LRAM in Fig. 2 calculated by the DNS and the proposed framework

DNS (Abaqus) Proposed framework

247.62 3.54

Finally, Table 2 reports the wall-clock times associated
with the executionof the timedomain analyses under the tran-
sient shear load (results in Figs. 8-9-10), bymeans of theDNS
and the proposed computational homogenization framework.
The proposed framework offers a remarkable speed-up of
about 70× compared to the DNS execution time. Notice that
computational savings are similar for the time domain analy-
ses under the harmonic excitation in compression, for all the
excitation frequencies considered in Sect. 5.1.

6 Conclusions

This paper presented a reduced-order computational homog-
enization framework for LRAMstructures. Themain novelty
is the formulation of a macroscopic homogenized con-
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tinuum whose governing equations involve no additional
variables describing the microscale dynamics that, in con-
trast, are typically required in micromorphic homogenized
continua obtained by alternative computational homoge-
nization approaches. Specifically, this relevant model-order
reduction is obtained formulating the governing equations
of the micro- and macroscale problems in the frequency
domain, as derived from well-established scale transition
relations, introducing a FE discretization of the microscale
and macroscale problems and performing an exact dynamic
condensation of all the degrees of freedom at the microscale.
A further relevant novelty is the introduction of an appro-
priate inverse Fourier transform of the frequency-domain
equations, in conjunction with the EWM, which allows to
analyze transient dynamics as well. Under the assumption
that the relaxed principle of separation of scales holds,
arbitrary geometries of micro- and macro-structures, any
transient excitations and any boundary conditions can be
readily handled. Accuracy and computational advantages of
the proposed reduced-order homogenized model have been
demonstrated for a typical 2-dimensional LRAM structure.
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Appendix A Brief note on the exponential
windowmethod

In absence of damping, care should be paid to the calcu-
lation of the Fourier transform in Eq. (40) and the inverse
Fourier transform in Eq. (41). In particular, computing the
time response (41) requires the application of the Exponen-
tial Window Method [46], consisting in the following steps:

– Computation of the Fourier transform of the external load
on the line ω̃ = ω − iη in the complex plane, where η

is a coefficient to be chosen suitably large for the imple-
mentation of the method.

fM̃(ω̃) = F
[

e−ηt f
˜

M(t)
]

(A1)

– Computation of the frequency response (40) on the line
ω̃ = ω − iη in the complex plane

u
˜

M(ω̃) = D
˜

−1
M (ω̃) · fM̃(ω̃) (A2)

– Calculation of the inverse Fourier transform as

u
˜

M(t) = eηtF−1
[

D
˜

−1
M (ω̃) · F [

f
˜

M(t)
]

]

(A3)

In the numerical applications of this study, the parameter η

has been chosen equal to 1200 and results do not change as
the value of this parameter increases.
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