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Abstract
The present study aims to develop an original solid-like shell element for large deformation analysis of hyperelastic shell
structures in the context of isogeometric analysis (IGA). The presentedmodel includes a new variable to describe the thickness
change of the shell and allows for the application of unmodified three-dimensional constitutive laws defined in curvilinear
coordinate systems and the analysis of variable thickness shells. In this way, the thickness locking affecting standard solid-
shell-like models is cured by enhancing the thickness strain by exploiting a hierarchical approach, allowing linear transversal
strains. Furthermore, a patch-wise reduced integration scheme is adopted for computational efficiency reasons and to annihilate
shear and membrane locking. In addition, the Mixed-Integration Point (MIP) format is extended to hyperelastic materials
to improve the convergence behaviour, hence the efficiency, in Newton iterations. Using benchmark problems, it is shown
that the proposed model is reliable and resolves locking issues that were present in the previously published isogeometric
solid-shell formulations.

Keywords Large deformations · Isogeometric analysis · Solid-shells · Large Strains · MIP Newton · Hyperelastic materials

1 Introduction

Computationalmodels for structural analysis are omnipresent
in nowadays engineering disciplines. For slender structures,
like cars, ships, or airplanes, shell models using the Finite
ElementMethod (FEM) are often used. The geometric design
of these structures is typically done using computer-aided
design (CAD) software tools, enabling the geometric rep-
resentation of curves and surfaces using spline techniques.
Bridging CAD with FEM by using the geometric construc-
tions of CAD inside FEM, Isogeometric Analysis (IGA) [1]
aims to seamlessly integrate these two essential aspects of
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the design process. In addition, IGA provides a patch-wise
globally smooth basis, allowing for higher-order formula-
tions such as rotation-free Kirchhoff–Love (KL) shells [2].

Since the advent of IGA, many contributions have been
made to the field of isogeometric shell analysis. For thin
shells, the rotation-free isogeometric Kirchhoff–Love shell
applying the higher-order continuity of the basis function
was developed [2] with extensions for plasticity [3], hyper-
elasticity [4, 5], peridynamics [6–8], composites [9–12],
stiffener embedding [13, 14] and with applications in fluid–
structure interaction [15], crash simulations [16], biological
tissues [17–19] andmanymore. In addition, investigations on
numerical integration to alleviate locking phenomena have
been performed [20, 21] using reduced patch-wise integra-
tion procedures [22, 23]. For moderately thick shells, the
Reissner-Mindlin formulation [24–33] has been developed,
also with extensions for plasticity [33], hyperelasticity [4],
peridynamics [34], composites [35–37] et cetera. Lastly,
the hierarchical shell [38] is a shell concept intelligently
modifying the director vector by adding parameters to the
formulations to switch between thin, moderately thick, and
thick shell formulations. Recent developments for this shell
formulation include [39]. Similar to isogeometric shell ele-
ments, isogeometric beam elements [40] also benefit from
the higher-order continuity of the basis.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-024-02452-w&domain=pdf


Computational Mechanics

Besides the aforementioned shell elements, the isogeo-
metric solid-shell element [41, 42] is based on the work
of Sze and co-authors [43], where shear-deformable shell
theories are modelled by using a single element in the
through-thickness direction. Solid-shell elements in general
use the 3D continuum strain measure and 3D constitutive
model, which would be particularly useful for the treat-
ment of hyperelastic materials, employing only translational
degrees of freedom [44–46] and without the need for addi-
tional rules to update internal rotations. Themodel is basedon
a Total Lagrangian formulation adopting a Green-Lagrange
strain measure with a linearization of the strains and a pre-
integration along the thickness direction and a modified
generalized constitutive matrix. Due to efficiency reasons,
in the context of Lagrangian FEMs, solid-shell elements
are often based on a linear displacement interpolation that
exhibits shear locking as well as trapezoidal and thick-
ness locking. The first two are cured in [43] by utilizing
the Assumed Natural Strains method but other approaches
are also possible [47]. Thickness locking, typical of solid-
like elements, does not vanish with mesh size [47] without
changing the constitutive laws as in [43] or enhancing the
transversal strain measure.

In the context of IGA shear and membrane locking are
cured by properly established patch-wise reduced integration
rule which has been extended to large deformation problems
in [41]. The concept of patch-wise reduced integration has
been also applied in other shellmodels [21] aswell as to avoid
overconstraining in patch coupling problems of Kirchhoff–
Love shells [20]. Although the solid shell element is almost
locking-free, the thickness locking cannot be eliminated by
increasing the interpolation order or by mesh refinement,
as observed by [42, 47] changing the constitutive laws. In
this respect for the classical linear strain–stress relation cor-
responding to the St. Venant–Kirchhoff-like materials, the
pre-integration along the thickness direction and a modi-
fied generalized constitutive matrix can effectively be used
to eliminate thickness locking [43]. Since the isogeometric
solid-shell formulation does not requireC1 continuity across
patches—contrary to isogeometric Kirchhoff–Love shells—
complex geometries with connections between patches are
modelled easily [41]. Moreover, when applying the patch
coupling method proposed in [48] in the case of non-
matchingmeshes the penalty energy term is simply quadratic,
as it affects displacements only and thus it is particularly ben-
eficial in nonlinear analysis [20]. Additionally, solid-shell
models have been successfully applied in Koiter analyses
for post-buckling analyses [49–52], showing notable advan-
tages concerning the reduction of locking phenomena not
caused by interpolation [42, 53, 54]. In addition, isogeo-
metric solid-shell models have been widely investigated in
[41, 55–59] and have been extended to composites in [60]
for which is particularly interesting the case of FGM [61]

where the proposed quasi-3D model could be conveniently
replaced with this efficient solid-shell model. Further exten-
sions to hyperelasticity, peridynamics, and plasticity have not
yet been developed for IGA and require enhancements like
those proposed in the present paper.

In general, the performances of the nonlinear numerical
models not only depend on the accuracy of the mechan-
ical model but are often affected by the performances of
the numerical procedure used for solving the problem. Usu-
ally, the performance of displacement-based formulations
deteriorates drastically when the slenderness of the struc-
ture increases [62]. On the contrary, formulations based on
both stress and displacement fieldsmakeNewton-based algo-
rithms insensitive to this effect, independently from the FEM
formulation. In addition, especially in the context of IGA,
the construction of Mixed models is not trivial nor cost-
less. To enhance convergence of non-linear solid-shells [41],
Kirchhoff–Love shells [21] and isogeometric beams [40] the
so-called Mixed Integration Point (MIP) method, proposed
in [54, 63], has been applied. This method relaxes constitu-
tive equations at each integration point such that the stress in
every integration point becomes a locally-independent vari-
able during the Newton iterations, speeding up the iterative
solution process [21, 64, 65] preserving the accuracy and the
discrete operator format of the displacement FEM model.
As was found in the previous works on the MIP [20, 21,
54], the formulation enables larger step sizes and results in
fewer iterations required to obtain the same accuracy for the
equilibrium path-following.

To these authors’ knowledge, no solid-shell-like models
for hyperelastic materials have been formulated in the con-
text of IGA yet so, in this work a seven-parameter (7p) model
inspired by the hierarchical concept [38, 66] is developed. In
particular, a quadratic displacement field along the actual nor-
mal direction is introduced so the resulting linear transversal
strain component resolves the thickness locking. Similar to
the 6pmodel [41], the proposed 7pmodel takes benefits from
the rotation-free formulation using the full 3D description
which simplifies the application of the non-linear consti-
tutive laws. Moreover, the MIP formulation is extended to
non-linear elastic materials, accelerating and improving the
robustness of the Newton solution process adopted in this
work bymaking its performances independent of the slender-
ness of the structure and by the magnitude of the constitutive
parameters, even near incompressibility. The formulation of
a trivial (non-hierarchical) 3D solid-like with quadratic dis-
placement would be possible but at a higher computational
cost as it would require nine parameters per control point. In
this respect, our model is, evidently, much more efficient. In
addition, the proposed model employs a reduced integration
rule based on the target space S p

r , as in [41], which will be
proven to be effective in the hyperelastic 7p model as well.
The combination of the enhancement given by the seventh
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parameter, the extension to constitutive models and the use
of MIP and reduced integration makes the proposed model
well-performing in the analysis of shells undergoing large
deformations and large membrane stretches for which the
linear constitutive relations are invalid.

The outline of this paper is as follows. Section2 provides
preliminaries for the solid-shell formulation presented in this
work. That is, notations and basics of spline surfaces are
presented, as well as generic kinematics for shell elements.
In Sect. 3 the solid-shell formulation from [41] is pre-
sented, along with the 7p model. Thereafter, Sect. 4 presents
the methodology for constitutive modelling of hyperelastic
materials for solid shells and Sect. 5 presents a framework
for non-linear analysis with hyperelastic 7p solid-shells ele-
ments, including the Mixed Integration Point (MIP) method.
Section6 provides relevant benchmark results for the pre-
sented solid-shell formulation and Sect. 7 provides the
conclusions and future work following from this contribu-
tion.

2 Preliminaries

In this section, the kinematic relations for the isogeometric
solid shell are presented. Firstly, Sect. 2.1 provides prelimi-
naries from spline surfaces that are used for the isogeometric
element formulations. Secondly, Sect. 2.2 presents general
shell kinematics, providing strain definitions given deforma-
tions provided in curvilinear coordinate systems.

2.1 Preliminaries for spline surfaces

Shell elements are, by definition, related to surface geome-
tries. Given a surface s(ξ) with parametric coordinates ξ =
(ξ, η), the covariant basis vector ai , i ∈ {1, 2} is defined as:

ai = ∂s
∂ξ i

, (1)

where ξ i denotes the i th parametric coordinate. Furthermore,
the contravariant basis of the surface, denoted by ai is defined
by

ai = {ai j }−1a j , (2)

where Einstein’s summation convention is used and where
{ai j }−1 denotes the inverse of the metric tensor, which is
defined by ai j = ai · a j . In computer-aided design, the
surface s(ξ) is commonly described by B-splines or related
basis functions. Firstly, we consider a B-spline curve c(ξ) is
defined by

u(ξ) =
n∑

i=1

N p
i (ξ)Pi = N(ξ)P. (3)

Here Pi , i = 1 · · · n are the control points and N p
i (ξ) are the

set of B-Spline basis functions, which are piecewise polyno-
mial functions of order p. The latter are defined by a set
of non-decreasing real numbers � = [ξ1, ξ2, ..., ξn+p+1]
known as knot vector. More details on the B-Spline paramet
rization can be found in [67]. B-spline basis functions are
calculated recursively by using the formula

N p
i (ξ) = ξ − ξi

ξi+p − ξi
N p−1
i (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
N p−1
i+1 (ξ),

(4)

for p ≥ 1, starting from piecewise constant functions (p =
0) defined as

N 0
i (ξ) =

{
1, if ξi ≤ ξ < ξi+1

0, otherwise.
. (5)

B-Spline basis functions have attractive properties: they
satisfy the partition of unity that makes them suitable for
discretization methods, they have a compact support, and
they are non-zero and non-negative within the knot inter-
val [ξi , ξi+p+1]. The regularity r between two parametric
or physical elements is described by the multiplicity of the
associated knot in �. The regularity is given by r = p − s
where p and s are the order used for the basis functions and
the multiplicity of the knot ξi respectively.

Since B-splines are piece-wise polynomial functions they
are not able to represent circular arcs and conic sections
exactly. For this reason, NURBS have been introduced
extending the B-spline concept to represent these objects
exactly. NURBS are obtained by a projective transformation
of B-splines extending Eq. (3) by using as shape functions

Rp
i (ξ) = N p

i (ξ)wi∑n
k=1 N

p
k (ξ)wk

, (6)

where wi are the so-called weights. It is worth noting that all
properties of B-Splines are maintained and, in particular, B-
Splines are retrieved when all the weights are equal. Similar
to the definition of a B-spline surface (see Eq. (3), a surface
s(ξ) can be defined by

u(ξ, η) =
n∑

i=1

m∑

j=1

N p,q
i j (ξ, η)Pi j = N(ξ, η)P, with

⎧
⎨

⎩
N p,q
i j (ξ, η) = Rp

i (ξ)Mq
j (η)wi j∑n,m

k,e=1 R
p
k (ξ)Mq

e (η)wke
NURBS

N p,q
i j (ξ, η) = Rp

i (ξ)Mq
j (η) B-splines

, (7)
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where � = [ξ1, ξ2...ξn+p+1] and H = [η1, η2...ηm+q+1]
are two knot vectors, Rp

i and Mq
j are the one-dimensional

B-spline basis functions over these knot vectors, Pi j defines
a set of n × m control points and wi j are the corresponding
weights. The tensor product of the knot vectors � and H
defines a mesh of quadrilateral isogeometric elements.

In this paper we only deal with NURBS with maximum
regularity, that is r = p−1. For this reason, in the following
sections, the label quadratic is used to denote NURBS with
p = 2 and r = 1, while cubic means p = 3 and r = 2.

2.2 Shell kinematics

Using a Total Lagrangian formulation, material points in a
current (deformed) configuration x(ξ, η, ζ ) are related to the
material points in a reference configuration X(ξ, η, ζ ) by a
displacement d(ξ, η, ζ ), see Fig. 1

x(ξ, η, ζ ) = X(ξ, η, ζ ) + d(ξ, η, ζ ). (8)

Here,x,X andd are vectors in a three-dimensional coordinate
system, depending on three parametric coordinates.

Similar to Eqs. (1) and (2), the covariant basis vectors in
the undeformed and deformed configuration can be obtained
from the corresponding partial derivatives of the position
vectors X and x with respect to their parameterizations,
respectively

Gi = X,i , gi = x,i = Gi + d,i with i = 1, 2, 3,

(9)

where (),i denotes the partial derivative with respect to i th
parametric coordinate. The contravariant basis vectors are
obtained in a similar way to Eq. (2) but then for three dimen-
sions. Themotion ofmaterial points from the initial reference
configuration to the current configuration is described by the
deformation gradient F : x → X:

F = ∂x
∂X

= gi ⊗ Gi . (10)

where the Einstein summation convention is used. Using the
deformation gradient in Eq. (10) and the metric tensor coef-
ficients gi j and Gi j , the coefficients of the Green-Lagrange
strain tensor E = Ei j Gi ⊗ G j can be expressed as

Ei j = 1

2

(
X,i ·d, j +d,i ·X, j +d,i ·d, j

)
with i, j = 1, 2, 3 ,

(11)

where again (),i denotes the partial derivative with respect to
i th parametric coordinate and (·) is the inner-product between
vectors.Note that at this point,we have notmade any assump-
tion on the kinematics, thus the form of X and d.

3 Isogeometric solid-shell model

For different shell models, different assumptions are made
to define the position vectors x, X, and d. For example, the
Kirchhoff–Love shell model [2] defines the position vector
as a surface position plus a contribution in the normal direc-
tion. In this section, we first recall the basic kinematics of the
standard 6p solid-shell model and then we enhance the kine-
matics and derive the 7p model, being the main contribution
of this paper.

3.1 The 6 parameter (6p) isogeometric solid-shell
model

For the solid shell, [41, 43], a linear through-the-thickness
interpolation is used to define the position vector is expressed
as

X(ξ, η, ζ ) = X0(ξ) + ζ
2

h
Xn(ξ), (12)

where ξ = (ξ, η) are the in-plane coordinates, ζ is the
through-thickness coordinate, h is the shell thickness such
that ζ = h/2 and ζ = −h/2 identify the top and the
bottom surface of the shell respectively. Furthermore, the
mid-surface and the normal vector, are respectively defined
by

X0 = 1

2
(X(ξ, η, h/2) + X(ξ, η,−h/2)) ,

Xn = 1

2
(X(ξ, η, h/2) − X(ξ, η,−h/2)) . (13)

Similarly, the displacement field d = d0(ξ) + ζ 2
hdn(ξ) is

described as a combination of the displacements

d0 = 1

2
(d(ξ, η, h/2) + d(ξ, η,−h/2)) ,

dn = 1

2
(d(ξ, η, h/2) − d(ξ, η,−h/2)) . (14)

Note that in Eq. (14) the symbols d(ξ, η, ζ ) with ζ ∈
[−h/2,+h/2] are unknowns of the model. The shell geom-
etry and displacement field are conveniently described, as in
other shell models, in terms of the mid-surface and, in this
case, a field describing its normal vector. The same convec-
tive coordinates ξ , ζ are used to express the discrete model’s
interpolation. Now, using Eqs. (13) and (14), the components
of the Green-Lagrange in Eq. (11) strain tensor can be found
for the solid-shell.

In the isogeometric concept,X andd are defined by splines
on an element as follows:

X(ξ , ζ ) = Nd(ξ , ζ )Xe, d(ξ , ζ ) = Nd(ξ , ζ )de, (15)
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Fig. 1 Undeformed and deformed shell geometry

meaning that de = (d0e,dne) and Xe = (X0e,Xne) are the
element control points for, respectively, the geometry and the
(unknown) displacements. Furthermore, the matrix Nd(ξ)

contains the basis functions with a contribution for the in-
plane part N(ξ) and the out-of-plane part ζ 2

hN(ξ):

Nd(ξ , ζ ) ≡ [
N(ξ), ζ 2

hN(ξ).
]

(16)

.
This model has been proven to be effective also in the

context of nonlinear analysis of composite shells too aimed
to eliminate thickness locking by means of a modified gen-
eralized constitutive matrix [60].

Strain components

Adopting a Voigt notation, the Green-Lagrange covari-
ant strain tensor in Eq. (11) can be written as E =
[E11, E22, 2E12, E33, 2E23, 2E13]T , using Eq. (15) these
strains become

E =
(
L[ξ ] + 1

2
Q[ξ ,de]

)
de, (17)

where L[ξ ] ≡ Q[ξ ,Xe] with

Q[ξ ,de] ≡

⎡

⎢⎢⎢⎢⎢⎢⎣

dTe Nd ,
T
1 Nd ,1

dTe Nd ,
T
2 Nd ,2

dTe (Nd ,
T
1 Nd ,2 +Nd ,

T
2 Nd ,1 )

dTe Nd ,
T
3 Nd ,3

dTe (Nd ,
T
3 Nd ,2 +Nd ,

T
2 Nd ,3 )

dTe (Nd ,
T
1 Nd ,3 +Nd ,

T
3 Nd ,1 )

⎤

⎥⎥⎥⎥⎥⎥⎦
. (18)

Linearizing the strain tensor from Eq. (17) with respect to ζ

results in

E ≈
⎡

⎣
e(ξ) + ζ χ(ξ)

E33(ξ)

γ (ξ)

⎤

⎦ , (19)

where

e(ξ, η) ≡
⎡

⎣
E11(ξ, η, 0)
E22(ξ, η, 0)
2E12(ξ, η, 0)

⎤

⎦ , χ(ξ, η) ≡
⎡

⎣
E11,ζ (ξ, η, 0)
E22,ζ (ξ, η, 0)
2E12,ζ (ξ, η, 0)

⎤

⎦ ,

γ [ξ, η] ≡
[
2E23(ξ, η, 0)
2E13(ξ, η, 0)

]
. (20)

Using these expressions, the generalized covariant strains
at the mid-surface (i.e. ζ = 0) are found as ε6p(ξ) ≡[
e, E33,χ , γ

]T . For the sake of notation, the parametric
coordinates ξ are omitted unless needed.

Remark Curvature thickness locking, as it is already indi-
cated in the name, plays only a role for three-dimensional
shell elements with load-induced thickness changes applied
to curved structures. For the 6p solid-shell, the through-
thickness strain E33 is constant but the in-plane strains have
a linear distribution through-thickness. Due to the fact that
the constitutive law couples E33 with the in-plane strains, the
difference between the constant and linear through-thickness
distribution of E33 and the in-plane strains, respectively,
causes thickness locking.As surfacemesh refinements do not
influence the through-thickness precision, thickness locking
is not avoided by refining meshes [47].
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3.2 The 7 parameter (7p) isogeometric solid-shell
model

The previously presented 6p shell model allows for a con-
stant change in thickness direction during the motion. In the
context of linear constitutive laws, an effective 6p free from
thickness locking is obtained by changing the material law
[43]. A decisive advantage of higher-order shell models with
at least 7p degrees of freedom per node is the application of
complete three-dimensional constitutive laws. Thus, every
kinematic variable is linked with its corresponding stress
resultant through the material law making curing the cur-
vature thickness locking automatically. In this 7p model, the
through-thickness strain is modified by introducing an extra
linear through-thickness function, following the approach
proposed by [38, 47]. We start by defining the 7th-parameter
per node in order to obtain a quadratic transversal displace-
ment in the actual configuration (see Fig. 2 for a schematic
overview):

x7p = X0 + d0 + ζ
2

h
(Xn + dn) + ζ 2w(Xn + dn). (21)

Using this definition, the displacement can be written as:

d7p = d0 + ζ
2

h
dn + ζ 2w(Xn + dn). (22)

Here, we omit the superscript 7p as the 7-parameter model
will be the only one considered in the rest of this work. The
derivative of the displacements with respect to ζ is

d7p,3 = 2

h
dn + 2ζw(Xn + dn). (23)

UsingEq. (11), the formulation of the transversal linear strain
is

E7p
33 = 4

h2
XT
n dn + 2

h2
dTn dn + 2ζw(Xn + dn)T (Xn + dn).(24)

Here, the last term of Eq. (23) gives the last contribution of
Eq. (24).Moreover,with this hierarchical enhancement of the
displacement field, linear terms arise also in the out-of-plane
shear strains

2E7p
α3 = XT

0,αdn + XT
n d0,α + dTn d0,α

+ dT0,αdn + ζ
(
XT
n,αdn + XT

n dn,α + dTn dn,α + dTn,αdn

+2w
(
(X0,α + d0,α)T (Xn + dn)

+(Xn + dn)T (X0,α + d0,α)
))

.(25)

Then by introducing the interpolationw = Nww, the term
C = 2ζw(Xn + dn)T (Xn + dn) from Eq. (24) becomes

CN = 2ζNwwe(Xne + dne)TNTN(Xne + dne). (26)

As a consequence, the first and second variations of this term
become

δC = 2ζxTn xnδw + 4ζwxTn δdn

δC̃ = 4ζ δwxTn ḋn + 4ζ δdTn xnẇ + 4ζ δdTn ḋnw.
(27)

Evidently, this additional term implies only a small increase
in computational costs in terms of element evaluations and
storage. To completely describe the computational model the
new strain hierarchical term is added to Eq. (19):

Fig. 2 Seven parameter solid-shell kinematics
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E ≈
⎡

⎣
e(ξ) + ζ χ(ξ)

E33(ξ) + ζ Ē33(ξ)

γ (ξ)

⎤

⎦ , (28)

where Ē33 = 2w(Xn + dn)T (Xn + dn). Finally the gen-
eralized covariant strain for the 7p model is ε(ξ) ≡[
e, E33,χ , γ , Ē33

]T
.

For the problems considered in the present paper, the linear
terms in (25) are dropped out. It should be noted that that the
linear terms independent fromw have been discarded also in
previous works [41, 43]. Moreover, it should be stressed that
the curvature thickness locking also arises in the linear anal-
ysis of curved shells and initially flat shells undergoing large
displacements. In Sect. 6.4, a numerical example showing
the effectiveness of the proposed cure is given.

Stress conjugate components

Given the 7-parameter kinematic model, the generalized
stress components are automatically given by assuring the
invariance of the internal work. By collecting the contravari-
ant stress components of the stress tensor S = Si j Gi ⊗ G j ,
inVoight notation beingS ≡ [S11, S22, S12, S33, S23, S13]T ,
the work conjugate variables with ε are obtained by

W int =
∫

V
STEdV =

∫

	

(
N T e + MTχ

+s33E33 + T T γ + s̄33 Ē33

)
=

∫

	

σ T εd	,

(29)

where

∫

	

(...) d	 =
∫ ξi+1

ξi

∫ ηi+1

ηi

(...) det(J[ξ, η, 0])dξdη, (30)

withJ the JacobianmatrixJ[ξ, η, ζ ] = [G1, G2, G3]T . The
generalized contravariant stressesσ ≡ [

N , s33,M,T , s̄33
]T

in Eq. (29) are defined using

N ≡
∫ h/2

−h/2
σ pdζ M ≡

∫ h/2

−h/2
ζσ pdζ

s33 ≡
∫ h/2

−h/2
S33dζ T ≡

∫ h/2

−h/2
τdζ

s̄33 ≡
∫ h/2

−h/2
ζ S̄33dζ

, (31)

with

σ p =
⎡

⎣
S11

S22

S12

⎤

⎦ τ =
[
S13

S23

]
. (32)

Note that in the above, the stress/strain components Si j and
Ei j are written in contravariant/covariant frames and bar (·̄)
is used for the new 7p model components.

3.3 Variational formulation

The internal work in the solid-shell is given by Eq. (29).
Taking the variation of this formulation, we obtain its con-
tribution the virtual work equation, also known as the weak
formulation, where

δW int =
∫

	

δσ T ε + σ T δεd	 . (33)

Here, δε and δσ are the variations of the strain and stress
tensors, respectively. Following [4], the first variation of the
stress and strain fields are linked by

δσ = Dεδε (34)

where the subscript ε means nonlinear dependence on the
deformation tensor and where

Dε =

⎡

⎢⎢⎢⎢⎣

A0 D0 A1 B0 D1

D0 R0 D1 C0 R1

AT
1 DT

1 A2 B1 D2

BT
0 CT

0 BT
1 CT C1

DT
1 R1 DT

2 CT
1 R2

⎤

⎥⎥⎥⎥⎦
. (35)

Here, the submatrices are defined by:

A0αβ =
∫ h/2

−h/2
C

αβdz, A1αβ =
∫ h/2

−h/2
C

αβ zdz A2αβ

=
∫ h/2

−h/2
C

αβ z2dz

R0 =
∫ h/2

−h/2
C
3333dz, R1

=
∫ h/2

−h/2
C
3333zdz, R2 =

∫ h/2

−h/2
C
3333z2dz

B0αβγ =
∫ h/2

−h/2
C

αβγ 3dz, B1αβγ

=
∫ h/2

−h/2
C

αβγ 3zdz

C0γ =
∫ h/2

−h/2
C
33γ 3dz, C1γ =

∫ h/2

−h/2
C
33γ 3zdz,

CTαβ =
∫ h/2

−h/2
C

α3β3zdz

D0αβ =
∫ h/2

−h/2
C

αβ33dz, D1αβ

=
∫ h/2

−h/2
C

αβ33zdz, C2 =
∫ h/2

−h/2
C
i j33z2dz

(36)
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Here, the fourth-order tensor C = C
i jklGi ⊗G j ⊗Gk ⊗Gl

denotes the tangent material tensor. In the following section,
the hyperelastic formulations of the stress and tangent mate-
rial tensors will be provided, given a strain energy density
function .

4 Constitutive modeling

Constitutive models for hyperelastic materials are generally
defined by the deformation tensor C = FTF = Ci j Gi ⊗G j

Si jel = ∂el

∂Ei j
= 2

∂el

∂Ci j
, (37)

whereel(C) is a proper strain energy function describing an
isotropic hyperelastic material. In the following, we present a
consistent and general derivation based on the 3D continuum
to the solid-shell model. As a consequence, a unified imple-
mentation for Kirchhoff–Love [4] and solid-shell is possible
by using the same material laws computer library. These
implementations are employed to get the results presented
in the present paper.

Given the deformation tensor C, the components of the
Green-Lagrange strain tensor (11) can be defined as

Ei j = 1

2
(Ci j − Gi j ). (38)

Given the coefficients Ei j from Eq. (11), the deformation
tensor can be found

Ci j = 2Ei j + Gi j . (39)

Such that any assumption in the strain measure leads to a
coherent deformation tensor C. Following the variation of
the stress tensor from Eq. (34), the tangent material tensor C
is found as

C
i jkl = ∂2el

∂Ei j∂Ekl
= 4

∂2el

∂Ci jCkl
. (40)

This representation is particularly convenient in this con-
text of the analysis (IGA) where the model is intrinsically
described in terms of curvilinear coordinates. Firstly, from
Eq. (28) the strain tensor can be written as a linear function
in terms of ζ :

[Ei j ] =
⎡

⎣
e1 e3/2 γ 2/2
e3/2 e2 γ 1/2
γ 2/2 γ 1/2 E33

⎤

⎦ + ζ

⎡

⎣
χ1 χ3/2 0

χ3/2 χ2 0
0 0 Ē33

⎤

⎦ . (41)

Similarly, themetric tensor can bewritten as a linear function
in terms of ζ too. Recall that,

G,α = X0,α + ζXn,α, α = 1..2

G,3 = Xn .
(42)

Then, the linear expansion of the undeformed metric coeffi-
cients can be evaluated as follows

Gαβ = (X0,α

+ ζXn,α)T (X0,β + ζXn,β)

= XT
0,αX0,β

+ ζXT
0,αXn,β + ζXT

n,αX0,β

Gα3 = (X0,α + ζXn,α)TXn

= XT
0,αXn + ζXT

n,αXn

G33 = XT
n Xn

, (43)

from which it follows that:

[Gi j ] =
⎡

⎣
XT
0,1X0,1 XT

0,1X0,2 XT
0,1Xn

XT
0,2X0,1 XT

0,2X0,2 XT
0,2Xn

XT
n X0,1 XT

n X0,2 XT
n Xn

⎤

⎦

+ζ

⎡

⎣
2XT

0,1Xn,1 XT
0,1Xn,2 + XT

n,1X0,2 XT
n,1Xn

XT
0,2Xn,1 + XT

n,2X0,1 2XT
0,2Xn,2 XT

n,2Xn

XT
n Xn,1 XT

n Xn,2 0

⎤

⎦ .

(44)

Using Eq. (39), this eventually leads to an expression
of the deformation tensor C. In the following, we describe
the procedure to obtain the stress and tangent material ten-
sor coefficients, Si j andCi jkl , respectively, for compressible
materials.

For compressiblematerials, the stress andmaterial tangent
tensors are simply found by evaluating Eqs. (37) and (40)
using a strain energy density function of the form

(C) = iso(C) + vol(J ), (45)

with iso and vol being the isochoric and volumetric parts
of the strain energy density function, respectively [68–70].

Compressible neo-Hookeanmaterial

The strain energy density function for the neo-Hookean (nH)
material is (see [4])

nH
iso (C) = μ

2

(
J− 2

3 I1 − 3
)

. (46)

Then, the derivatives of  with respect to the components
Ci j of the deformation tensor are

∂nH
iso

∂Ci j
= μ

2
J− 2

3

(
∂ I1
∂Ci j

− 1

3
C̄i j I1

)
(47)

= μ

2
J− 2

3

(
Gi j − 1

3
C̄i j I1

)
(48)
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∂2nH
iso

∂Ci j∂Ckl
= μ

2
J− 2

3

(
−1

3
C̄kl

(
∂ I1
∂Ci j

− 1

3
C̄i j I1

)

−1

3

(
∂C̄i j

∂Ckl
I1 + C̄i j ∂ I1

∂Ckl

))
(49)

= 1

9

μ

2
J− 2

3

(
I1

(
C̄i j C̄kl + 3

2

(
C̄ik C̄ jl + C̄il C̄ jk

))

−3
(
Gi j C̄kl + C̄i j Gkl

))
. (50)

Here, we used the first invariant I1 = tr(C) = Ci jGi j

with its derivative ∂ I1/∂Ci j = Gi j . Furthermore, we recall

that J =
√ |gi j |

|Gi j | with gi j = gi · g j i, j = 1, ..., 3 the metric
tensor of the deformed configuration and Gi j its counter-
part in the reference configuration. The notation | · | denotes
the determinant of the coefficient matrices of the metric ten-
sors. The derivative of J is ∂ J k/∂Ci j = k J kC̄i j/2 with C̄i j

being the inverse of Ci j as in [4], alternatively computed
by C̄i j = GikCklGl j , and its derivative is ∂C̄i j/∂Ckl =
−1/2(C̄ikC̄ jl + C̄il C̄ jk).

Compressible Mooney–Rivlin material

The strain energy density function is

MR
iso (C) = c1

2

(
J− 2

3 I1 − 3
)

+ c2
2

(
J− 4

3 I2 − 3
)

. (51)

Then, the derivatives of  with respect to the components
Ci j of the deformation tensor are

∂MR
iso

∂Ci j
= c1

2
J− 2

3

(
∂ I1
∂Ci j

− 1

3
C̄i j I1

)

+ c2
2
J− 4

3

(
∂ I2
∂Ci j

− 2

3
C̄i j I2

)
(52)

= c1
2
J− 2

3

(
Gi j − 1

3
C̄i j I1

)

+ c2
2
J− 4

3

(
∂ I2
∂Ci j

− 2

3
I2arC

i j
)

(53)

∂2MR
iso

∂Ci j ∂Ckl
= c1

2
J− 2

3

(
−1

3
C̄kl

(
∂ I1
∂Ci j

− 1

3
C̄i j I1

)

−1

3

(
∂C̄i j

∂Ckl
I1 + C̄i j ∂ I1

∂Ckl

))
(54)

+ c2
2
J− 4

3

(
−2

3
C̄kl

(
∂ I2
∂Ci j

− 2

3
C̄i j I2

)

+ ∂2 I2
∂Ci j ∂Ckl

− 2

3

(
∂ I2
∂Ckl

C̄i j + ∂C̄i j

∂Ckl

))
(55)

= 1

9

c1
2
J− 2

3

(
I1

(
C̄i j C̄kl + 3

2

(
C̄ik C̄ jl + C̄il C̄ jk

))

−3
(
Gi j C̄kl + C̄i j Gkl

))
(56)

+ 1

9

c2
2
J− 4

3

(
4I2C̄

i j C̄kl + 3I2C̄
ik C̄ jl + 3I2C̄

il C̄ jk

−6
∂ I2
∂Ci j

C̄kl − 6
∂ I2
∂Ckl

C̄i j + 9
∂2 I2

∂Ci jCkl

)
, (57)

where the second invariant is I2 = 1/2(tr(C)2 − tr(C2))

and its derivatives are ∂ I2/∂Ci j = I1Gi j − Ci j [71] and
∂2 I2/∂Ci j∂Ckl = 1/2(GikG jl + GilG jl − 2Gi jGkl).

Volumetric strain energy density

For the volumetric strain energy density, vol we use [70]

vol = Kβ−2 (
β log J + J−β − 1

)
, (58)

with K = 2μ(1 + ν)/(3 − 6ν), such that

∂vol

∂Ci j
= 1

2
Kβ−1 (

1 − J−β
)
C̄i j (59)

∂2vol

∂Ci j∂Ckl
= 1

2
Kβ−1

(
1

2
β J−β C̄i j C̄kl + (

1 − J−β
) ∂C̄i j

∂Ckl

)
,

(60)

such that for β = −2, a common value, we get

vol = 1

4
K

(
−2 log J + J 2 − 1

)
(61)

∂vol

∂Ci j
= 1

4
K

(
1 − J 2

)
C̄i j (62)

∂2vol

∂Ci j∂Ckl
= 1

4
K

(
J 2C̄i j C̄kl +

(
J 2 − 1

) ∂C̄i j

∂Ckl

)
. (63)

5 Nonlinear analysis framework

In this section, we provide the non-linear analysis framework
for the solid-shell element in large strains, starting from the
internal virtual work equation and its variation in Eqs. (29)
and (33). For more details, we refer to [41, 63].

The variational formulation of the problem is obtained
from the equilibrium of internal and external virtual work,

δW(u, δu) = δW int − δWext = 0, (64)

where δW is the total virtual work in the system, δW int is the
internal virtual work given by Eq. (33) and δWext is defined
by

δWext = λ

∫

	

f δu (65)

123



Computational Mechanics

Fig. 3 Flowchart of the nonlinear solver employed. Parameters β0, λmax are set at the beginning of the analysis depending on the test, and β,
eventually, could be updated within the analysis

here, λ is a magnification factor and f is a load acting on the
structure. Using Eq. (64), the interpolation assumed it gives

r(d, λ) ≡ s(d) − λ f = 0, with

{
sT δd ≡ δW int

f T δd ≡ δWext
(66)

Here, r : RN+1 → R
N is the discrete residual vector, is the

internal force vector, and f the reference load vector. Note
that Eq. (66) represents a system of N equations with N + 1
unknowns, represented by the displacements d and the load
multiplier λ on so-called equilibrium paths. To trace such
paths, Arc-length methods can be employed, with the most
commonly known as the Riks and Crisfieldmethods [72, 73],
starting from a known initial configuration d0 corresponding
to λ = 0. Arc-length methods typically solve a Newton iter-
ation on each step to find a solution interval represented by
�d and �λ, requiring the tangential stiffness matrix which
is obtained from linearizing Eq. (66).

Given Eq. (33), variations of the strain and stress tensors ε

and σ , respectively δε and δσ are required. The first variation
of the strain in matrix form is given, using Eqs. (17) and (18)
and the first of Eq. (27) by the following:

Fig. 4 Tensile test. Geometry

δε = B(de)δde, (67)

such that the elemental contribution to the internal force vec-
tor is obtained by introducing the interpolations in (64)

δW int
e [u] =

∫

	e

(
δεT σ el

)
d	e = δdTe se[de]. (68)

Following [41], the second variation of the strain tensor is
given by
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Table 1 Tensile test

Model ν = 0.45 ν = 0.49 ν = 0.499

Present—SS 113 104 97

KL [4] 122 113 110

Cumulative iteration numbers of the present solid-shell (SS) model and
the hyperelastic Kirchhoff–Love (KL) shell model from [4] for the uni-
axial tensile test

δε̃ = Q(de, d̃e)δde = Q(de, δde)d̃e, (69)

where Eq. (18) and the second of Eq. (27) should be intro-
duced and where its k-th component can be evaluated,
introducing the symmetric matrix �k(de), as

δε̃k = d̃
T
e �k(de)δde, (70)

where δd and d̃ are the discrete vectors corresponding to
generic variations δu and ũ of the configuration field u. From
Eq. (33), it can be seen that the term σ T δε̃ needs to be eval-
uated. Hence, from (37)

σ (de) = σ el =
∫ h

2

− h
2

[S11el , S22el , S12el , S33el , zS11el , zS22el , zS12el ,

S13el , S13el , zS33el ]T dz, (71)

it follows that

σ T
elδε̃ ≡

∑

k

σkelδε̃k = d̃
T
e G(de, σ el)δde, (72)

with

G(de, σ el) =
∑

k

σelk�k(de). (73)

Using Eqs. (34) and (33), the linearization of (68) can be
written as

∫

	e

(
δεTDε ε̃ + δε̃T σ el

)
d	e = δdTe Ke(de)d̃e, (74)

Finally, by introducingEqs. (67) and (72) the tangent stiffness
matrix calculated as

Ke(de) ≡
∫

	e

(
B(de)TDεB(de) + G(de, σ el)

)
d	e. (75)

The discrete operators involved in the evaluation of the inter-
nal force vector and stiffness matrix are defined by means
of the strain variations. To avoid locking, the patch-wise
reduced integrations proposed in [21] are used to evaluate
the integrals in Eqs. (68) and (75).

Fig. 5 Results for the uniaxial tension test. The tests are performed for different values of Poisson’s ratio ν. The markers denote the results of the
Kirchhoff–Love (KL) shell formulation and the lines denote the results of the solid-shell (SS) formulation
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Fig. 6 Initial geometry of the inflation of a balloon benchmark. The
geometry is one-eighth part of a sphere with radius R = 10 and this
part is modelled with 4 × 4 cubic elements

5.1 The iterative schemewithmixed integration
points

In [21] it was found that the patch-wise reduced integration
rule provides an accurate and efficient discrete approxima-
tion.Besides fromobtaining the discrete operators, efficiency
can also be gained from a reduction in the number of itera-
tions performed in the non-linear solution procedures. From
[54, 62], it is known that Newton procedures generally
converge slowly for slender elastic structures under large dis-

placements when a purely displacement-based formulation
is used, referred to as locking of the Newton method by [41]
since the method’s performance decreases with increasing
slenderness. As discussed in this work, this iterative behavior
is caused by the stresses when obtained by constitutive laws
σ g(de) in the tangent stiffness matrixKe(σ g(de),de) which
are constrained to satisfy (introducing an overconstraint) the
constitutive equations at each iteration loop.

A remedy to solve the problem of poor convergence of
Newton’s method for slender structures is called the Mixed
Integration Point method and was proposed in [63] and
extended and tested in [21, 41, 74, 75]. The idea behind the
MIP is to relax the constitutive equations at the level of each
iteration point during iterations. In the case of hyperelastic
materials, the formulation is not evident as in the case of lin-
earmaterials. For a formal derivation and a deep discussion in
this context, a recent paper [76] can be referred to for details.
In particular, the stresses at each integration point σ g are
introduced as independent variables to relax the constitutive
e relations as in the standardMIP format, which however can
be condensed out at the element level without any additional
cost.

The stresses in the MIP are an extrapolation of the previ-
ous equilibrium points, like displacements, and are updated
during the iterations with the following correction term [76]

σ̇ g = DgB
j
gḋe + σ elg − σ g (76)

Fig. 7 Results for the inflated balloon benchmark

123



Computational Mechanics

Fig. 8 Different deformations of the inflated balloon, for λ = 510.221,
λ = 29233.871 and λ = 41537.189

Fig. 9 Geometry of the cantilever square plate. The plate is clamped
on the bottom-left side and free on the other sides. A line-load in out-
of-plane direction is added on the top-right side. The plate is modelled
using 3 × 3 cubic elements

Fig. 10 Load–displacement curve for the cantilever plate with the load
factor λ on the vertical axis and the vertical displacement of the mid-
point of the loaded edge wA on the horizontal axis

which results from equating the internal force contribution
with the displacement formulation, as is the philosophy of
the MIP and then assuring the same accuracy and matrix
sparsity.

To simplify the implementation to the reader a flowchart
is depicted in Fig. 3.

It can be observed that the FEM framework for non-
linear analysis with MIP is closely related to the classical
displacement-based procedures.

6 Results

This section presents several numerical tests using differ-
ent compressible and nearly-incompressible materials. All
benchmark problems are compared and validated against the
compressible Kirchhoff–Love (KL) shell model from [4].
Firstly the present formulation is evaluated on the uniax-
ial tensile test and the inflation of a balloon. These tests
serve the purpose of checking with originally analytical solu-
tions with respect to the evaluation of the stretches and
thickness changes by the comparison with the KL model
of [4]. Thereafter, a benchmark of the bending of a plate is
used to validate the present model for bending-dominated
against thickness locking. The last test, which represents the
pinching of a cylinder, shows the difference with respect
to the KL shell model due to the presence of out-of-plane
shear and transverse normal stresses. In all comparisons, the
Kirchhoff–Love shell is integrated with a S30 [21] reduced
integration rule, while for the present model the S41 reduced
integration is employed [41].

6.1 Uniaxial tensile test

Asafirst exampleFig. 4,we simulate a simple uniaxial tensile
test, the reference solution is compared in [4] with the analyt-
ical one so that the comparison between the KL shell model
and the present one ismeaningful. The unit squaremembrane
of thickness h = 0.01 is subjected to uniaxial unit ten-
sile loading and different constitutive models are employed.
Are considered simply supported boundary conditions in
transversal direction while in plane is simply restrained the
rigid body motion. The domain is modelled using a sin-
gle cubic solid-shell element with the neo-Hookean (nH,
Eq. (46)) model having material parameter μ = 1.5 106.
In all cases given different values for the Poisson ratios
ν = {0.45, 0.49, 0.499} are considered. The actual thickness
h∗ can be evaluated using the formula h∗ = λ33h.
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Fig. 11 Cantilever plate.
Deformed shapes of the
cantilever plate for the a
solid-shell model and b the KL
model

Fig. 12 Cantilever plate. Contravariant stress components S11 (left) and covariant strains E33 + ζ Ē33 (right) for the inward case at λ = 0.667

In Fig. 5, the results are provided for different values of the
Poisson ratios, in particular, are shown the thickness change
factors λ33 against the load amplifier λ and, as usual, the
load–displacement (uA − λ) curves.

As can be seen from these results, a perfect agreement
with the Kirchhoff–Love shell model can be observed for
all values. In particular, the cumulative iteration numbers
of the present model and the Kirchhoff–Love shell model
are presented in table 1 for different values of the Poisson
ratios. As seen in this table, the number of iterations is not
influenced by the material’s compressibility, as well as for
the Kirchhoff–Love shell. The small deviations in iteration
numbers are due to the variability of the step size of the arch-
length method here implemented.

6.2 Inflation of a balloon

In this benchmark problem, the inflation of a balloon is mod-
elled. The geometry of the balloon is simplified by a sphere

with initial radius R = 10 of which 1/8th section is mod-
elled using 4x4 cubic elements, as highlighted in Fig. 6. The
balloon is subjected to an internal unit pressure acting in
the normal direction. Since the balloon is represented by a
perfect sphere, this benchmark represents a bi-axial mem-
brane stress state, of which an analytical solution is given in
[70] and has been already compared with the KL model in
[4] making the comparison with this model meaningful. For
this test, we consider a nearly incompressible neo-Hookean
material as well as a nearly incompressible Mooney–Rivlin
material. The near incompressibility is applied as in the pre-
vious case by choosing K = K (ν) and ν = 0.499659. As
material property we chooseμ = 4.225 ·105, c1 = 0.4375μ,
and c2 = 0.0625μ, (thus c1/c1 =7) as reported in [4].

The load–displacement and pressure-membrane stretch
curves are provided in Fig. 7 for the present solid-shell model
and the KL shell model as proposed in [4]. As can be seen
from these results, the proposed solid-shell model performs
well in comparison with the results obtained with the KL
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Fig. 13 The initial geometry of the cylinder for the pinched cylinder
benchmark. The cylinder has radius R = 9, length L = 30, and a
line-load q = ±2 is applied on the top and the bottom of the cylinder.
The sign of the line-load is changed to create inward or outward dis-
placements. The geometry is modelled by a quarter, as indicated, with
symmetry conditions on both sides and with 8 elements in the radial
direction and 16 in the longitudinal direction

shell model. Finally, Fig. 8 shows the one-eighth analyzed
portion deformed shape for different load levels for the case
of nearly-incompressible Neo-Hookean material.

6.3 Cantilever plate

To assess the proposedmodel in a bending-dominated bench-
mark, a cantilever plate subjected to a uniformly distributed
load at the free end is studied, see Fig. 9. The plate has unit-
thickness as proposed by [77] and material parameter μ = 2
for compressible neo-Hookean (nH) material with ν = 0.49
for the solid-shell model and an incompressible nH model
for the KL shell model. In [43], the plate is modelled using 4
quadratic C0 elements in the longitudinal direction whereas
in the present benchmark we use 3x3 and 4x4 cubic elements
for the solid-shell model and 24x24 cubic elements for the
KL shell model as very fine reference mesh. The solution
obtained by employing the 6pmodel is included for compari-
son. Thismodel, as can be seen fromFig. 10, does not provide
accurate results. It is worth noting that, in contrast to classi-
cal locking effects, the severe thickness locking observed is
unsolvable by mesh refinement [47].

Figures10 and 11 show the load–displacement curves of
the cantilever plate. As can be seen in these figures, there is
a good correspondence between the KL shell model and the
solid-shell model for a nearly compressible model. Only a
small deviation in the tail of the curve is observed in the case
of the mesh 3x3, because of the coarse mesh for the solid-
shell model and a perfect match with the 6x6 one. This is
as expected because, for both models, thickness locking has
been correctly resolved.

Fig. 14 Load–displacement curves for the pinched cylinder for both the inward and outward loading case. The vertical axis represents the load
magnitude λ and the horizontal axis represents the vertical deflection of the mid-point of the top boundary of the domain, wA
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Fig. 15 Deformed geometry of the pinched cylinder subject to an inward load

Fig. 16 Deformed geometry of the pinched cylinder subject to an out-
ward load

The smoothness of the stress and strain fields in Fig. 12
demonstrates that locking is resolved accurately. In fact, the
locking effects are usually shown by stress field oscillations
[78].

6.4 Pinching of a cylinder

The last benchmark of this work involves the pinching of a
cylinder. This bending-dominated problem was proposed by
[79] and also modelled in [4]. The cylinder has radius R = 9,
length L = 30, and thickness t = 0.2 and is modelled using
a fully symmetric model (i.e. 1/4th of the cylinder) with line-
loads on the top and bottom as shown in Fig. 13, to simplify
reproducibility of the results. The geometry is represented
by 8 × 16 cubic elements in respectively radial and longi-
tudinal directions. We analyze the load case of both inward
and outward-directed loads, and we use a compressible neo-
Hookean material is used, defined by the following strain

energy function:

el = μ

2
(tr(C) − 3) − μ ln(

√
det(C)) + �

4
(det(C)

−1 − 2 ln(
√
det(C))) (77)

with μ = 60 and � = 240 as the Lamé constants.
In Fig. 14, the load–displacement diagrams of the pinched

cylinder are presented, with the inward-facing loads on the
left and the outward-facing loads on the right. The results
are again compared to a Kirchhoff–Love shell formulation
derived from [4]. Furthermore, Figs. 15 and 16 show the
deformed shapes of the pinched cylinder with inward and
outward-facing loads, respectively. In these plots, only the
computed part of the cylinder is plotted with contour plots.
From the results of the pinched cylinder in comparison with
the KL shell model, we can see that the models compare very
well.

Also for this benchmark, see Fig. 17 the stress and strain
fields are smooth. This demonstrates the adequate efficiency
of the proposed model in removing the thickness locking.

To show the difference in the behavior of the solid-shell
model and the KL shell model, the pinched cylinder bench-
mark is slightly modified. The geometry is kept the same, but
in addition to the previous symmetric boundary conditions,
the points B and B ′ in Fig. 13 are fixed. The results of this
test, for inward load case only, are given in Fig. 18 in terms
of load–displacement curves. The deformed geometries are
given in Fig. 19, evidently showing a different solution as
in Fig. 15 without the added fixed points. Given the results
from Fig. 18, it can be seen that the differences in the load–
displacement curves of the solid-shell and KL shell models
are more evident. Indeed, fixing the additional points of the
cylinder reveals the differences between the twomodels with
respect to capturing shear deformation effects and transverse
normal stresses, which are captured more accurately in the
proposed 7p solid-shell model.
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Fig. 17 Pinching of a cylinder. Contravariant stress components S11 (left) and covariant strains E33 + ζ Ē33 (right) for the inward case at λ = 0.667

Fig. 18 Load–displacement curve of the pinched cylinder subject to
an inward load, with points B and B ′ (see Fig. 13) constrained. The
vertical axis represents the load magnitude λ and the horizontal axis
represents the vertical deflection of the mid-point of the top boundary
of the domain, wA

7 Conclusions

The present paper presents an effective hierarchic seven-
parameter solid-shell model for hyperelastic materials under
large strains. This hierarchic extension adds an extra param-
eter for the transversal displacement field on each control
point which eliminates the thickness locking observed in the
six-parameter model. The model presented in this paper ben-
efits, also, from the reduced integration rule which has never
been experimented with in this context as well as the Mixed
Integration Point strategy, which has been extended for
fully non-linear constitutive laws. Via numerous benchmark
examples, the model has been examined against an existing
hyperelastic Kirchhoff–Love shell formulation. From these
benchmark examples, it can be concluded that the present
model works as expected for compressible and nearly incom-
pressible materials. Furthermore, in the last benchmark of
the pinching of a cylinder, we compared the present model
against the Kirchhoff–Love shell model, providing slightly
different results since the present model takes shear defor-
mations into account. In the derivations of the presented
formulations, linear shear components have been neglected
for the purpose of a simplifiedmodel which only involves the
linear normal strain enhancement. As an extension, future

Fig. 19 Deformed geometry of
the pinched cylinder subject to
an inward load, with points B
and B ′ (see Fig. 13) constrained
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work includes the application of shells with thickness vari-
ability for challenging applications.
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