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Abstract
An alternative approach is proposed and applied to solve boundary value problems within the strain gradient elasticity theory.
A mixed variation formulation of the finite element method (FEM) based on the concept of the Galerkin method is used. To
construct finite-dimensional subspaces separate approximations of displacements, deformations, stresses, and their gradients
are implemented by choosing the different sets of piecewise polynomial basis functions, interrelated by the stability condition
of the mixed FEM approximation. This significantly simplifies the pre-requirement for approximating functions to belong
to class C1 and allows one to use the simplest triangular finite elements with a linear approximation of displacements under
uniform or near-uniform triangulation conditions. Global unknowns in a discrete problem are nodal displacements, while the
strains and stresses and their gradients are treated as local unknowns. The conditions of existence, uniqueness, and continuous
dependence of the solution on the problem’s initial data are formulated for discrete equations of mixed FEM. These are
solved by a modified iteration procedure, where the global stiffness matrix for classical elasticity problems is treated as a
preconditioning matrix with fictitious elastic moduli. This avoids the need to form a global stiffness matrix for the problem
of strain gradient elasticity since it is enough to calculate only the residual vector in the current approximation. A set of
modeling plane crack problems is solved. The obtained solutions agree with the results available in the relevant literature.
Good convergence is achieved by refining the mesh for all scale parameters. All three problems under study exhibit specific
qualitative features characterizing strain gradient solutions namely crack stiffness increase with length scale parameter and
cusp-like closure effect.

Keywords Plane crack problem · Strain gradient elasticity theory · Finite element method (FEM) · Mixed variation
formulation · Preconditioning matrix · Length scale parameter

1 Introduction

Gradient elasticity theories, a natural generalization of clas-
sical elasticity, allow accounting for the microstructure of
actual materials. In particular, it is important in problems
where classical elasticity has limitations. These limitations
arise when we encounter size-dependent phenomena (e.g.,
homogenization problems, accounting for surface or inter-

B Lidiia Nazarenko
lidiia.nazarenko@ovgu.de

1 Pisarenko Institute of Problems of Strength, National
Academy of Sciences of Ukraine, Kiev 01014, Ukraine

2 Institute of Mechanics, Otto Von Guericke University
Magdeburg, Universitätsplatz 2, 39016 Magdeburg, Germany

face energies) or discontinuity in the boundary conditions
(edges, corners, or concentrated forces). In such cases, to
capture the size effect or avoid singularity in solution, it is
necessary to consider thematerial’smicrostructure.One such
generalized continuum theory that has received considerable
attention in recent years is the so-called strain gradient elas-
ticity introduced by [1–3].

The key point of practical applications of any gradient the-
ory is the specification of nonclassical elastic parameters. It
is evident that even using the symmetry properties associated
with the reversibility of the deformations and the conjugation
of tangential stresses, the theory requires such a huge num-
ber of experiments for determining the nonclassical moduli
that it will be practically inapplicable. Therefore, the cru-
cial moment of research within any gradient theory shifts to
searching for specific models that would minimize the num-
ber of nonclassical moduli while preserving the possibility
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of explaining the most significant size effects, removing the
singularities and boundary discontinuities. By introducing
certain assumptions for higher-order constitutive relations,
one can reduce the number of material constants of the gra-
dient theories to obtain models with one [4–11], two [3, 6,
12], or three additional scale parameters [6, 12], so that the
identification procedure is simplified.

Most results have dealt with the simplified strain gradient
model [4, 13]. In thismodel, a sixth-rank tensorC6 is taken in
the form C6 � l2C4 ⊗ I2, where C4 is the classical stiffness
tensor, I2 is the unit second-rank tensor, and the character-
istic length l is the only nonclassical parameter describing
scale effects. Additionally, the model has been extensively
used in the last two decades to solve various boundary value
problems (see, e.g., [14–25]), and it will be employed in this
article to solve the boundary problem of strain gradient elas-
ticity theory.

Various authors have adopted thismodel and its variational
counterpart for studying dislocation, disclination, and crack
problems [5, 6, 24, 26–32]. Within the context of Toupin-
Mindlin strain gradient elasticity, analytical studies for plane-
strain crack problemswere carried out by [14, 33].Numerical
studies employing finite and boundary elements (see, e.g.,
[21, 28, 31, 34–37] among other) have been developed to
address problems within the Toupin-Mindlin theory.

In the present work, an alternative mixed variation for-
mulation of FEM is proposed. This approach is based on
the concept of the Galerkin method, and unlike the clas-
sical formulation of FEM in the form of a displacement
method, displacements, strains, stresses, and their gradi-
ents are direct arguments of the variational equations of
the finite-dimensional problem, and are not determined
by further transformation (differentiation) of the problem
solution in displacements. To construct finite-dimensional
subspaces based on such variational formulation of the
problem, separate (formally independent) approximations of
displacements, deformations, stresses, and their gradients are
used by choosing the different sets of piecewise polynomial
basis functions, interconnected by the stability condition of
the mixed approximation [38, 39].

The presentation is organized as follows. In the next
section, we introduce a brief outline of the Toupin-Mindlin
strain gradient elasticity theory, the simplifications within
this theory that are employed in the solution, and discuss
the physical meaning and estimation of the length scale
parameter. Section 3 contains a variational formulation of
the boundary value problem and condition of solvability of
the discrete equation ofmixedFEM, a description of the solu-
tion method, and numerical results. The results are discussed
in the context of the similar ones available in the literature.
The last section presents conclusions.

2 A brief outline of strain gradient elasticity
theory

2.1 Toupin-Mindlin strain gradient elasticity

Within the first strain gradient theory, the strain and strain
gradient energy is defined as follows:

w(E2, E3) � 1

2
E2 : C4 : E2 + E2 : C5

...E3 +
1

2
E3

...C6
...E3,

(1)

where C4, C5, C6 are stifnesses, while E2 and E3 are the
strains and the second gradient of displacement vector u(x):

E2 � sym(u ⊗ ∇), E3 � u ⊗ ∇ ⊗ ∇. (2)

The following notations are utilized hereinafter: scalars,
vectors, second- and higher-rank tensors are denoted by italic
letters (such as e or E), bold minuscules (such as e), bold
majuscules (such as E), and bold blackboard majuscules
(such asE), respectively. The indices indicate the tensor rank
ofE2, E3, C4, C5, andC6. These tensors possess the follow-
ing symmetries:

Ei j � E ji ,

Ei jk � Eik j ,

Ci jkl � Ckli j � C jikl � Ci jlk ,

Ci jklm � C jiklm � Ci jkml ,

Ci jklmn � Clmni jk � Cik jlmn � Ci jklnm . (3)

“∇” is the three-dimensional nabla operator.

∇ ≡ ∂

∂xi
ei , (i � 1, 2, 3), (4)

with the orthonormal base vectors e1, e2, e3. Here, a summa-
tion over repeated indices is implied. “⊗” denotes the dyadic
product, and the displacement gradient is defined as

u ⊗ ∇ ≡ ∂u i
∂x j

ei ⊗ e j � ui , jei ⊗ e j . (5)

The dots denote scalar contractions, where the double and
triple scalar contractions are defined concerning orthonormal
base vectors ei as follows:

ei ⊗ e j : ek ⊗ el � δikδ jl ,

ei ⊗ e j ⊗ em
...ek ⊗ el ⊗ en � δikδ jlδmn . (6)
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The stresses and the double stresses are given by

T2 � ∂w

∂E2
� C4 : E2 + C5

...E3,

T3 � ∂w

∂E3
� C

T
5 : E2 + C6

...E3. (7)

2.2 Simplifiedmodel

The stiffness tensorsC4,C5, andC6in the case of hemitropy
(the absence of improper rotations preserves the existence of
C5,which is the only difference from isotropic strain gradient
elasticity) are characterized by eight independent parameters
and have the following form (cf. [2, 40, 41]).

C4 � [
λδi jδkl + μ

(
δikδ jl + δilδk j

)]
ei ⊗ e j ⊗ ek ⊗ el ,

C5 � [
κ
(
εimkδ jl + εilkδ jm + ε jmkδil + ε jlkδim

)]
ei

⊗ e j ⊗ ek ⊗ el ⊗ em ,

C6 � [c1
(
δ jkδimδnl + δ jkδinδml + δi jδklδmn + δ jlδikδmn

)

+ c2
(
δi jδkmδnl + δ jmδkiδnl + δi jδknδml + δ jnδikδml

)

+ c3
(
δ jmδklδin + δ jlδinδkm + δ jnδimδkl + δ jlδimδnk

)

+ c4
(
δ jnδilδkm + δ jmδknδil

)
+ c5δilδ jkδmn]ei ⊗ e j

⊗ ek ⊗ el ⊗ em ⊗ en , (8)

where δi j is the Kronecker symbol, εimk is the Levi–Civita
permutation symbol, λ and μ are standard Lamé’s coef-
ficients, and κ and c1 − c5 are the higher order material
parameters.

The development of physically simplified models and
reducing the number of material parameters are necessary to
solve the practical problems within the strain gradient elas-
ticity. One of the possibilities is a simplified model of [4]
and [13] adopted here to solve some crack problems. It is
assumed that

κ � 0, c1 � 0, c2 � 0, c3 � λ

2
l2, c4 � μl2, c5 � 0 (9)

where l has the length dimension, and λ and μ are Lamé
parameters.

Positive definiteness of the strain and strain gradient
energy requires the following inequality constraints formate-
rial parameters [3, 42]:

3λ + 2μ > 0, μ > 0, l2 > 0. (10)

In this case, the strain and strain gradient energy can be
written as follows [42]:

w � 1

2
T2 : E2 +

1

2
l2T2 ⊗ ∇ ...E2 ⊗ ∇, (11)

The elastic energy is symmetric concerning the strain and
the stress as well as the strain gradient and the stress gradient

∂w

∂(E2 ⊗ ∇)
� l2T2 ⊗ ∇,

∂w

∂(T2 ⊗ ∇)
� l2E2 ⊗ ∇. (12)

Then, the double stresses are

T3 � l2T2 ⊗ ∇. (13)

The equations of equilibrium take the following form [13]:

(1 − l2∇2)(∇ · T2) � 0. (14)

The boundary conditions for prescribed traction and pre-
scribed double traction in the normal direction on the part of
the boundary Sτ :

ppr �
(
1 − l2∇2 − l2∇ · ∇s

)
(T2 · n)

+ l2T2 : [(∇s · n)n ⊗ n − n ⊗ ∇s],

rnpr � l2T2 : n ⊗ n, (15)

and the kinematic boundary conditions in terms of the pre-
scribed displacement and their normal derivative on the part
of the body surface Su :

upr � u,

Dupr � Du (16)

Here “∇2” denotes Laplacian, Sτ ∪ Su � S, and Du �
(u ⊗ ∇) · n � ∂ui

∂x j
n j ei .

2.3 Identification and estimation of the length scale
parameter

To clarify the physical meaning and to estimate the length
scale parameter in the exploited models within strain gra-
dient elasticity, namely, scaling parameters (parameter l in
Eqs. 9–15), the strategy, which originates from continual-
ization (homogenization) of a discrete microstructure (see,
e.g., [43–47]), is considered. The key idea is to consider
interactions between adjacent particles and links between
next-to-adjacent particles. In this case, the associated con-
tinuous formulation is expected to be multiscale, with the
first scale greater than the distance between the micro-
inhomogeneity and the second reflecting the peculiarity of
nonlocal interactions compared to local interactions. The lat-
ter will play the role of an intermediate scale, for which a
typical length scale parameter is still greater than the dis-
tance between the micro-inhomogeneity but less than that
for the first (i.e., overall) long scale. As a result, it leads
to the derivation of strain gradient constitutive relations and
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potential energy of the strain gradient continuum as a func-
tion of strain and strain gradient (e.g., [45, 48]). It might be
expected that, along with the overall stiffnesses, the length
scale parameters are also dependent on the size of the micro-
inhomogeneity and the distances between them.

3 Finite element implementation of plane
crack problems

The specific feature of solving the variational equations of
the gradient elasticity theory consists of accounting for the
first derivatives from the strain tensor components (second
derivatives from displacements) [37, 49–52 among others].
A precondition for the convergence of finite element method
solutions (FEM) is theproperty of approximating functions to
be continuously differentiable. In other words, approximat-
ing functions must belong to a class of smooth C1 functions
[53, 54]. This leads to significant mathematical and compu-
tational difficulties since the dimension of “local” spaces of
finite elements increases, and their structure becomes essen-
tially complicated [e.g., 54, 55, among others]. For example,
the triangular finite element introduced by Zienkiewicz for
the thin plate bending problem satisfies the condition of con-
tinuity of the normal derivative on the triangle sides just if
the triangle mesh is formed by a system of three equidistant
parallel lines [53, 54].

To take into consideration the condition of continuity of
the first derivatives from displacements, special finite ele-
ments (e.g., Argyris triangle, Bogner-Fox-Schmit rectangle,
Zienkiewicz singular triangle, among others) are used in
which the nodal unknowns are the displacements, their first
and even second derivatives (see, e.g., [37, 49, 54, among oth-
ers]). Using elements of this type significantly increases the
matrix bandwidth and the dimension of the global stiffness
matrix, which complicates the computational process.

In the present work, an alternative approach is developed
in which a mixed variation formulation of FEM concern-
ing displacement–strain–stress, and their gradients is used to
solve the boundary problem of the gradient elasticity theory.

Here, the classical formulation of FEM in displacements
is changed so that displacements, strains, stresses, and their
gradients are the direct arguments of the finite-dimensional
problemand not are determined from the solution of the prob-
lem in displacements. It significantly simplifies the selection
of approximating functions since it is not necessary to use
high-order finite elements having continuous first derivatives
of displacements. The construction of finite-dimensional
spaces is based on the separate approximations of the fields
of displacements, deformations, stresses and their gradients
using a different set of the piecewise polynomial basis func-

tions, interconnected by the stability condition of the mixed
approximation [38, 39].

The original premises for mixed FEM formulations may
be different. One of them is based on the use of the variational
principles of mechanics, according to which the solution of
the boundary problem is reduced to finding a stationary value
of some variational functionalwith respect to the correspond-
ing arguments [56–58]. The second is based on the methods
of the duality theory and on the dual-basic formulation of the
problem under assumption of the duality principle [53, 56,
59]. The more general approach is reached from an abstract
formulation of the boundary value problem using the results
of the theory developed by Brezzi [60].Within this approach,
a mixed formulation of boundary value problem is consid-
ered, regardless of whether it is obtained from the problem
of the saddle point or not.

A characteristic feature of the mixed FEM formulations
of the problems of gradient elasticity theory is that the dis-
placements, deformations, stresses and their gradients are
determined simultaneously in the process of solving a finite-
dimensional problem, in contrast to the classical FEM, in
which they are calculated from the results of the solution
in displacements. The mixed variation FEM formulation is
based on the concept of the Galerkin method, according to
which the equations of the boundary problem are multiplied
by arbitrary continuous functions, which can be interpreted
as variations in displacements, strains-stresses, and their gra-
dients. Integration of the resulting relations over the region
occupied by the body leads to integral identities that include
partial derivatives from displacements of the first order only
[38, 39]. This is a main feature of the formulated variational
equations since the variational formulation in displacements
using the Lagrange equations assumes a twofold differentia-
tion of displacements, and the classical formulation contains
partial derivatives from displacements up to the fourth order.

Using mixed FEM significantly simplifies the selection
of approximating functions while eliminating the request to
employ finite elements of the C1 class. Thus, it is possible
to use the simplest triangular finite elements with a linear
approximation of displacements, provided that uniform or
near-uniform triangulation is utilized. Uniform triangula-
tion in the vicinity of the stress concentrators (crack mouth,
concentrated forces, reinforcements, etc.) provides super-
convergence in calculating deformations and stresses inmesh
nodes [38]. Global unknowns in a discrete problem are nodal
displacements, while the strains and stresses at mesh nodes
are considered as local unknowns due to the use of spe-
cial numerical integration formulas of the interpolation type.
Specifically, such a formulation of FEM, based on a sep-
arate approximation of displacements-strains-stresses, and
their gradients is used in this work.
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In this regard, it is necessary to mention the article of
Amanatidou and Aravas [28], in which three types of equa-
tions of the strain gradient elasticity theory are examined
in detail, alternative mixed variational formulations of FEM
were developed on their basis, and special rectangular finite
elements of the mixed type of the class C0 were constructed.
In these elements, both displacements and their gradients
are used as independent unknowns, and their relationship is
provided in the “integral sense.” A patch test in a mixed for-
mulation is used to justify the correctness of the constructed
finite elements, a necessary condition for the solvability of the
discrete problem [54]. At the same time, this condition is not
sufficient for stability and convergence of the mixed approx-
imation since it is still necessary to ensure the fulfillment of
the stability condition of Brezzi [60], which is a sufficient
condition for a unique solution of the saddle point problem
inwhich the solution continuously depends on the input data.
Otherwise, discretization based on mixed approximation can
be unstable and cause parasitic solution fluctuations.

In the present work, an alternative condition of the
solvability and stability of the mixed approximation is for-
mulated, equivalent to the Brezzi condition (inequality (38)
presented below). This condition is obtained based on the
concretization of the equations of themixedmethod for strain
gradient elasticity problems. Triangular finite elements of
mixed type are constructed, providing the uniqueness of the
solution and stability of the mixed approximation.

A modified iteration procedure with a preconditioning
matrix is implemented to solve the system of discrete equa-
tions of mixed FEM [38]. A global stiffness matrix of the
classical FEM is used as a preconditioning matrix for piece-
wise linear approximation of displacements on triangular
elements with fictitious elastic moduli. The elastic moduli
in this matrix are modified to provide convergence of the
iterative process. It is also possible to use the method of con-
jugate gradients with a preconditioning matrix, which has a
higher convergence rate [61, 62].

In the above methods, there is no need to form a global
stiffness matrix of the mixed FEM, to perform each iteration,
it is enough to calculate only the residual vector in the current
approximation. This significantly simplifies the solution of
the equations of the mixed method and reduces requirements
regarding computer memory.

An alternative to the mixed FEM approach for solving the
strain gradient elasticity theory equations is the hybrid FEM
approach that provides the continuity of the first displace-
ment derivatives [54]. One of such finite elements is a hybrid
finite element constructed based on the Zienkiewicz trian-
gle [63], which guarantees solution convergence with mesh
clustering regardless of the method of partitioning into tri-
angular elements. The results obtained by this approach will
be presented in the next publication of the authors.

3.1 Variational formulation of the boundary value
problems

Let us consider a body occupying the area � with a regular
boundary S. Displacements are defined on the part of the
boundary Su , and surface traction f p is defined on the rest
part Sτ (Sτ∪ Su � S). In addition, the body is subjected
to volume forces Fp. It is assumed that the displacements
satisfy boundary conditions on the part of the body surface,
excluding its rigid motion.

LetW be a set of admissible vector functions for displace-
ments

W �
(
v|v � (

vp
)
, 1 ≤ p ≤ n, vp ∈ H2(�), vp � 0 on Su

)
,

(17)

where H2(�)—space of functions, square-integrable on �

including its first and second derivatives; n denotes either
two- or three-dimensions.

Then, the boundary value problem of linear gradient
elasticity is formulated as a variational equation w.r.t. dis-
placement u ∈ W [52]:

(18)

∫

�

(
T2 (u) : E2 (v) + T3 (u)

...E3 (v)
)
d�

�
∫

�

F · vd� +
∫

Su
f · vdSu , ∀v ∈ W .

An alternative variational formulation of the problem.
According to (2), (8), (9), (12), and (13), let us write down
the boundary value problem of the gradient elasticity theory
by a system of integral identities:

∫

�

E2 : δT2d� �
∫

�

sym(u ⊗ ∇) : δT2d�,

∫

�

T2 : δE2d� �
∫

�

(λI2tr(E2) + 2μE2) : δE2d�,

∫

�

E3
...δT3d� �

∫

�

E2 ⊗ ∇...δT3d�,

∫

�

T3
...δE3d� � l2

∫

�

T2 ⊗ ∇ ... δE3d�,

∫

�

(
T2 : δE2 + T3

... δE3

)
d� �

∫

�

F · δud� +
∫

Su

f · δudSu

(19)

Using the variational formulation of the boundary value
problem in the form of Eqs. (19) makes it possible to weaken
requirements for the smoothness of approximating functions
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since it is enough to consider just continuous piecewise-
polynomial functions to construct an approximate FEM
solution of the problem, which essentially simplifies it.

Remark 3.1 The effective tools for analysis of the condi-
tions of solvability, stability and convergence of approximate
solutions of boundary problems are functional analysis the-
ory and general theory of linear operator equations in Hilbert
spaces. Formulation of variational equations of a mixed
approach using linear operators is, apparently, the most con-
venient for the study of these conditions. It is a reason why
the variational FEM formulation of the boundary value prob-
lem will be presented in a compact and easy-to-use and to
analysis equivalent form utilizing linear operators in Hilbert
spaces.

The set of admissible vector functions for displacements
will be considered as elements of the functional space

U �
(
v|v � (

vp
)
, 1 ≤ p ≤ n, vp ∈ H1(�), vp � 0 on Su

)
,

(20)

where H1(�)—space of functions, square-integrable on �

including its first derivatives. Following Korn’s inequality
[53], the set U is complete concerning the norm associated
with the scalar product

(u, v)U �
∫

�

E2(u) : E2(v)d�, ∀u, v ∈ U . (21)

Therefore, U is a Hilbert space with the norm ||v||U �
(v, v)1/2U , ∀v ∈ U , which is equivalent to the norm of the
space

(
H1(�)

)n
.

The range of permissible values for strainsE2 and stresses
T2 is defined as the set of symmetric tensor functions of the
second rank, all components of which belong to the space
H1(�):

X�
(
G2|G2�

(
Gpq

)
, 1≤p, q≤n, Gpq�Gqp , Gpq ∈ H1(�)

)
.

(22)

As the range of permissible values for the strain gradient
E3 and double stresses T3, a set of third-rank tensor func-
tions, the components of which belong to L2(�), will be
considered:

Z�(
M3|M3�

(
Mrpq

)
, Mrpq�Mrqp , 1≤r , p, q≤n, Mrpq ∈ L2(�)

)
,

(23)

where L2(�) is the space of square-integrable functions on
�.

Let us introduce Hilbert spaces L andH, consisting of the
sets of strains-stresses tensor functions square-integrable on

� and their gradients, respectively. The scalar products are
defined in spaces L and H as follows:

(T2, E2)L �
∫

�

T2 : E2d�, (T3, E3)H �
∫

�

T3
... E3d�.

(24)

Then, the boundary value problem can be formulated in
the operator form as follows. To find displacements u strains
E2 and stresses T2 (u, E2, T2) ∈ U × X × X and stress
gradient E3 and double stresses T3 (E3, T3) ∈ Z × Z such
that

(E2, δT2)L � (Bu, δT2)L , ∀ δT2 ∈ X ,

(T2, δE2)L � (DE2, δE2)L , ∀ δE2 ∈ X ,

(E3, δT3)H � (NE2, δT3)H , ∀ δT3 ∈ Z ,

(T3, δE3)H � l2(NT2, δE3)H , ∀ δE3 ∈ Z ,

(T2, δE2)L + (T3, δE3)H � 〈f , δu〉, ∀ δu ∈ U , (25)

where B is the linear differential operator for the determina-
tion of strains E2

Bu � sym(u ⊗ ∇). (26)

D is the linear self-adjoined positive definite operator asso-
ciated with a symmetric tensor of material elastic moduli

DE2 � C4 : E2. (27)

N is the linear differential operator for calculating strain and
stress gradients

NE2 � E2 ⊗ ∇ or NT2 � T2 ⊗ ∇. (28)

〈·, ·〉 is the linear form, identified with the work of applied
loads to the body on displacements.

Let us set Y to be defined as the value domain of operator
B

Bu : U → Y , ∀u ∈ U , (29)

and Y is considered as a linear subspace of the Hilbert space
L with a scalar product (·, ·)L . Sets X and Z are the definition
and value domains of operator N

NE2 : X → Z , ∀E2 ∈ X . (30)

X and Z are linear subspaces of the Hilbert spaces L and H ,
respectively. Given that δE2 � Bδu, δT2 � DBδu, δE3 �
NBδu, and δT3 � l2NDBδu (see (2), (8), (9), (12), (13),
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(29), and (30)), the variation formulation of the boundary
value problem in displacements follows from (25):

(DBu, Bδu)L + l2(NDBu, NBδu)H � 〈f , δu〉, ∀δu ∈ W .

(31)

For the continuum problems of gradient elasticity theory,
the variational formulation in displacement in (25) and (31)
are equivalent under the condition of u ∈ W . Still, the latter
is more flexible for constructing approximate solutions based
on mixed FEM schemes.

Finite-dimensional problem formulation. Let Uh , Xh , Zh

be finite-dimensional approximating spaces satisfying the
following conditions:

Uh ⊂ U , Xh ⊂ X , Zh ⊂ Z , (32)

where h is the key parameter of the set of finite-dimensional
spaces, which goes to zero in the limit. Then, the finite-
dimensional problem is formulated similarly to (25). To find
(uh , E2h , T2h) ∈ Uh × Xh × Xh and (E3h , T3h) ∈ Zh × Zh

such that

(E2h , δT2h)L � (Buh , δT2h)L , ∀ δT2h ∈ Xh ,

(T2h , δE2h)L � (DE2h , δE2h)L , ∀ δE2h ∈ Xh ,

(E3h , δT3h)H � (NE2h , δT3h)H , δT3h ∈ Zh ,

(T3h , δE3h)H � l2(NT2h , δE3h)H , δE3h ∈ Zh ,

(T2h , δE2h)L + (T3h , δE3h)H � 〈f , δuh〉, δuh ∈ Uh .

(33)

System (33) is a variational formulation for the boundary
value problem of the gradient elasticity theory in the form of
displacement–strain-stress-gradients.

Solvability of a discrete problem solution. To analyze the
properties of (33), it is necessary to establish a correspon-
dence between subspaces Xh ⊂ X and Yh ⊂ Y . Note that Yh
is a value domain of operator B acting on the closed subspace
of Uh , i.e., Yh � BUh . Therefore, Yh is an approximating
subspace for space Y . Both Xh and Yh are finite-dimensional
subspaces of the Hilbert space L, but neither is in general a
subset of the other.

Let us introduce an orthogonal projector operator Ih , cor-
responding to each element from space Yh and its orthogonal
projection in Xh . Operator Ih is associated with the scalar
product (·, ·)L and defined according to equality

(Buh − IhBuh , δT2h)L � 0, ∀δT2h ∈ Xh . (34)

Using the orthogonal projector Ih : Yh → Xh set of Eqs.
(33) can bewritten as a variational equation in displacements:

(35)

(DIhBuh , IhBδuh)L + l2(NDIhBuh , NIhBδuh)H
� 〈f , δuh〉, ∀δuh ∈ Uh .

Let us introduce the linear operator Q using the relation

QN � ND, (36)

whereD—is a linear operator defined as follows. For a homo-
geneous and piecewise homogeneous body, operator D is
identical to operator D. For an inhomogeneous body, variable
elasticity modules are approximated by their mean values
assigned to the centers or nodes of the finite element mesh.
Thus, Q is a self-conjugate positive definite operator acting
on the space Z . By utilizing the operator Q, Eq. (35) will
have the following form:

(37)

(DIhBuh , IhBδuh)L + l2
(
QNIhBuh , NIhBδuh

)
H

� 〈f , δuh〉, ∀δuh ∈ Uh .

Solvability condition. It is assumed that there is such a
positive constantd0 independent ofh, forwhich the following
inequality holds:

d0||Bvh ||L ≤ ||IhBvh ||L , 0 < d0 ≤ 1, ∀vh ∈ Uh . (38)

Remark 3.2 The inequality (38) guarantees the unique exis-
tence of the solution for Eq. (33) at any parameter h, aswell as
the convergence of mixed approximation in the problems of
classical and gradient elasticity theories. Note that inequality
(38) is in fact equivalent to the stability condition of themixed
approximation formulated in [60, 64] for the general case
of elliptic problems of mathematical physics, in which the
solution is reduced to the determination of the saddle point of
the alternating functional. Experience in solving problems of
mixed approximation indicates that ignoring condition (38)
can lead to ill-conditioned discrete problems in which the
solutions have an unstable oscillating character.

Then, it is possible to define the scalar product and the
norm in Uhas

(uh , vh)Uh
� (IhBuh , IhBvh)L
+ (NIhBuh , NIhBvh)H , ∀uh , vh ∈ Uh ,

||vh ||Uh � (vh , vh)
1/2
Uh

, ∀vh ∈ Uh . (39)

It will be shown that the solution of the variational Eq. (37)
and, therefore, the solutionof the equations of themixedFEM
(33) exists and is unique. To this end, consider a symmetric
bilinear form ah(·, ·) : Uh ×Uh → R:

(40)

ah (uh , vh) � (DIhBuh , IhBvh)L
+ l2

(
QNIhBuh , NIhBvh

)
H , ∀uh , vh ∈ Uh .

Since the operator D is self-adjoined and positively
defined, there are two positive constants m0 and M0, such
that
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m0||IhBvh ||2L≤ (DIhBvh , IhBvh)L ≤ M0||IhBvh ||2L , ∀vh ∈ Uh ,
(41)

where

m0 � 2ess. in f
�

μ, M0 � ess. sup
�

(3λ + 2μ), (42)

Moreover, following the definition of operator Q,we have

m0||NIhBvh ||2H ≤ (QNIhBvh , NIhBvh)H
≤ M0||NIhBvh ||2H , ∀vh ∈ Uh . (43)

Accounting for Eqs. (40)–(43), we obtain

(
1 + l2

)
m0||vh ||2Uh

≤ ah(vh , vh)

≤
(
1 + l2

)
M0||vh ||2Uh

, ∀vh ∈ Uh . (44)

Thus, the bilinear form defined by (40) possesses conti-
nuity and ellipticity properties in space Uh × Uh , where the
scalar product and norm are introduced by (39). Therefore,
the solution of the equations of the mixed FEM (33) taking
into account the assumption (36) exists and is unique.

3.2 Solutionmethod

Application of FEM to the solution of the problems of gradi-
ent elasticity theory using mixed variation formulation leads
to a system of linear algebraic equations of significantly
higher order compared to the number of equations in dis-
placements for problems of classical elasticity theory. In
addition, the global matrix of the equation system for the
mixed method is not positively defined and, in general, is
the dense matrix. Such matrix properties practically exclude
using direct methods for solving a system of algebraic equa-
tions (the Gauss method and its various modifications).

Here, the system of algebraic equations of the mixed
method is converted to an equivalent form for nodal displace-
ments. To this end, interpolation quadrature formulas are
used, the weighting points of which coincide with the inter-
polation nodes of the triangular finite element. As a result,
the solution of the system of the mixed method is signifi-
cantly simplified, since there is no need to use computational
algorithms for inverting theGrammatrix tofinddeformations
and stresses from the first and second equations of the system
(33). Thus, the procedure for determiningnodal deformations
and stresses is reduced to calculating those using recurrent
formulas. In this case, the global unknowns in the discrete
problem are the displacements at the mesh nodes since the
node values of strains and stresses are calculated using the

“averaging” procedure over the triangular elements adjacent
to the mesh nodes and the values of strains, stresses and their
derivatives at the centers of the triangles are considered as
local unknowns.

Using the above procedure for the strains and stresses
determination in mesh nodes leads to a positive definiteness
of a symmetric global stiffness matrix. The matrix is sparse,
but the number of its non-zero elements is significant. In this
case, the application of direct methods for solving a system
of equations of the mixed FEM remains problematic from
the point of view of the computational implementation. In
this regard, we have to use the iterative algorithm for solving
equations of the mixed FEM.

To solve system (33), consider the iterative process in the
form of themethod of successive corrections. Let u0h ∈ Uh be
an arbitrary initial approximation to theuhsolution. Then, the
process of successive linear approximations is constructed as
follows:
(
Ek
2h , δT2h

)

L
�

(
Bukh , δT2h

)

L
, ∀δT2h ∈ Xh ,

(
Tk
2h , δE2h

)

L
�

(
DEk

2h , δE2h

)

L
, ∀δE2h ∈ Xh ,

(
E
k
3h , δT3h

)

H
�

(
NEk

2h , δT3h

)

H
, ∀δT3h ∈ Zh ,

(
T
k
3h , δE3h

)

H
� l2

(
NTk

2h , δE3h

)

H
, ∀δE3h ∈ Zh ,

(
D̃B	uk+1h , Bδuh

)

L
�

(
Tk
2h , δE2h

)

L
+

(
T
k
3h , δE3h

)

H

− 〈f , δuh〉, ∀δuh ∈ Uh ;

uk+1h � ukh − ω	uk+1h , (45)

where	uk+1h is the correction term for displacement approx-
imation ukh .

Parameterω > 0 and operator D̃ are introduced to control
the convergence of the iteration process (45). Their choice
depends on the properties of the problem, the approximat-
ing functions, the finite element length h, and the structural
(scale) parameter l, i.e., on their ratio l/h. It is assumed that
D̃ is a linear self-adjoined positively definite operator corre-
sponding to the tensor of fictitious elastic moduli, which are
determined by the relations:

λ̃ � γ λ, μ̃ � γμ, Ẽ � γ E , γ � 1 + C

(
l

h

)2

, (46)

where C is a constant independent of the parameter h.

Remark 3.3 If condition (38) is satisfied, iterative process
(45), (46) converges to the solution of the mixed method
Eqs. (33) at a geometric progression rate at any initial approx-
imation of u0h ∈ Uh.The proof is constructed by reducing the
system of Eqs. (45) to one equation for displacements:
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(
D̃Buk+1h , Bvh

)

L
�

(
D̃Bukh , Bvh

)

L

− ω
{(

DIhBukh , IhBvh
)

L
+ l2

(
NDIhBukh , NIhBvh

)

H
− 〈f , vh〉

}
, ∀vh ∈ Uh . (47)

Then, according to the general results of the analysis of
iterative two-layer schemes, we conclude that taking into
account the inequality ah(vh, vh) > 0 for any vh ∈ Uh, the
value of the parameter ω >0 can be chosen in such a way
as to ensure the convergence of the iterative process [57].
Convergence of the iterative scheme (45), (46) is considered
more detailed in “Appendix”.

3.3 Basic relations of two-dimensional boundary
value problems (plane strain)

The solution of the set of modeling two-dimensional bound-
ary value problems of plate tension with central and edge
cracks was realized under plane strain based on amixed FEM
scheme. It is assumed that a plate occupying a domain in the
(x, y)-plane where the z-axis is normal to this plane. All trac-
tions acts in the plane (x, y) and don’t depend on z. The 2D
displacements are following:

ux (x , y) �� 0, uy(x , y) �� 0, uz(x , y) � 0. (48)

In the plane-strain state, the independent components of
the stress tensors acts in the plane (x, y).

Constitutive relations for isotropic material have form:

σxx � (λ + 2μ)ux , x + λuy, y ,

σyy � (λ + 2μ)uy, y + λux , x ,

σxy � μ
(
ux , y + uy, x

)
, (49)

Equilibrium equations:

(
1 − l22

)(
σxx , x + σxy, y

) � 0,
(
1 − l22

)(
σyx , x + σyy, y

) � 0, (50)

where

∇2(. . . ) � ∂2x (. . . ) + ∂2y (. . . ) (51)

and λ and μ are Lamé parameters and l has the length
dimension.

3.4 Numerical analysis

To approximate the displacement, piecewise linear func-
tions on triangular elements were used, and for interpolation
of the strains and the stresses, a linear combination of

piecewise polynomial approximations and bulb functions
was employed [38]. With such a choice of approximating
functions, the stability and convergence of an approximate
solution to the boundary value problem are provided.

To calculate the scalar product (·, ·)L in (45), interpola-
tion quadrature formulas were utilized, in which weighting
points coincide with the interpolation nodes of the triangu-
lar finite element. As a result, the solution of the system
of equations of the mixed method is significantly simplified
since there is no need to apply computational algorithms for
inverting the Gram matrix to find strains and stresses from
the first and second equations of the system (45), respec-
tively, because the matrix becomes diagonal. In addition,
linear interpolation of strains and stresses within the triangu-
lar element was used to approximate the strain and stress
gradient. Then, the distributions of the derivatives of the
strains and stresses are described using piecewise constant
functions, and therefore, the scalar product (·, ·)H in (45) is
calculated accurately. Thus, the determination of the deriva-
tives from strains and stresses is reduced to their calculation
by the recurrent formulas at each iteration. According to the
accepted approximation, the global unknowns in the discrete
problem are the displacements in the mesh nodes since the
node values of the strains and the stresses are calculated using
the "averaging" procedure over the triangular elements adja-
cent to the mesh nodes. The values of strains, stresses, and
their derivatives in the centers of triangles are considered as
local unknowns.

Remark 3.4 It should be noted that the iterative process (45)
is similar in a certain sense to the computational procedure for
determining continuous stress fields proposed by Loubignac
et al. [65]. However, this analogy is completely formal since
the construction of an approximate solution of the equations
of the gradient elasticity theory is based on the concept of
mixed approximation of the boundary value problem.

Values of the iterative parameter in (45) and (46) were
determined approximately based on a series of preliminary
calculations. The following values were used for the approx-
imating functions:

ω ≈ 1 ÷ 1, 25, γ � 1 + C
l2

	
, C ∼ 1 ÷ 2, (52)

where 	 is the area of a triangle element.
Calculations were realized, considering the symmetry of

the problem using a uniform and nonuniform triangularmesh
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Fig. 1 Uniform (a) and
nonuniform (b) triangular
meshes

Fig. 2 Partition into a triangular mesh in the vicinity of the crack: h �
10−3m. The crack length is segmented into 40 sections

(Fig. 1). For a non-uniform triangular mesh, uniform parti-
tioning was used in the vicinity of the crack tip. Symmetry
conditions were paid due regard by taking normal displace-
ments and tangent stresses equal to zero on the axes of
symmetry.

For verification of the convergence of the FEM solution,
calculations were provided for a uniform rougher mesh with
element length h � 2 × 10–3 m, i.e., the crack length was
segmented into 20 elements, and for finer meshes with h �
10–3 m, i.e., the crack length was segmented into 40 sections
(Fig. 2) andwith h� 5× 10–4 m, i.e., the crack lengthwas cut

Fig. 3 Nonhomogeneous partition into a triangular mesh in the vicinity
of the crack tip: h � 10−4m

into 80 pieces and nonuniformly partitioned into a triangular
mesh in the vicinity of the crack tip: h � 10–4 m (Fig. 3).

The tension of a square plate with a central crack. The
square plate with a crack is shown in Fig. 4. The half-length
of the plate edges isW � 0.2 m, and the crack length is a �
0.04m.Theplate is under uniaxial tensile stressq�100MPa.
Due to symmetry, the problem is solved for a quarter of the
plate under the assumption of the plane strain state. It is
assumed that the plate is made of strain-gradient, isotropic
material with the following properties E � 2.105 MPa and ν

� 0.3 where E is the Young modulus and ν is Poisson’s ratio.
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Fig. 4 The tension of a square plate with a central crack

The normalized scale parameter l/a values are taken: 0.02,
0.05, 0.1, 0.2, 0.4, and 0.6.

The boundary conditions
Static boundary conditions for stresses are natural; they

are taken into account in a discrete problem using the
Lagrange variational equation written in form of the last
Eq. (33). Kinematic boundary conditions for displacements
are determined by the symmetry conditions of the problem:

uy(x , 0) � 0, ux , y(x , 0) � 0, uy, x (x , 0) � 0,

ux (0, y) � 0, uy, x (0, y) � 0, ux , y(0, y) � 0. (53)

Theproblemof a platewith a central crack has beenwidely
studied in the literature (e.g., [6, 14, 31, 37, 49, 50, among
others]). This problem is primarily considered to verify the
proposed mixed FEM to solve the boundary value problems
within the strain gradient elasticity theory.

Figure 5 presents a comparison of the results for the crack-
opening displacement along the crack edge using the uniform
partitions of the crack length: dashed lines are segmented
into 20 elements; solid lines into 40 sections; dotted lines
into 80 pieces and different values of the normalized scale
parameter l/a � 0.1; 0.2; 0.3; 0.4; 0.6. Good convergence of
the approximate FEM solutions is observed by refining the
mesh even for high (unrealistic) values of the scale parameter
l/a. This can be considered as a verification of the mixed
FEM proposed for solving such a problem within the strain
gradient elasticity theory.

Numerical results for the normalized crack-opening dis-
placements u/ucl (ucl is the solution within classical linear
elasticity) as a function of normalized distance from the crack
tip x/a for the uniform partition of the crack length into 80
sections and nonuniform segmentation of the crack edgewith
element length in the vicinity of the crack tip h � 10−3m
are shown in Figs. 6 and 7, respectively. The dashed line
corresponds to the solution within classical linear elasticity
(scale parameter l/a � 0), and solid lines—to the solution
within strain gradient elasticity with scale parameter l/a �

Fig. 5 Variation in crack-openingdisplacement for uniformpartitions of
crack length (dashed lines correspond to partitions into 20 sections; solid
lines correspond to partitions into 40 sections; dotted lines correspond
to partitions into 80 sections) along the crack edge for different values
of the normalized parameter l/a

0.1; 0.2; 0.3; 0.4; 0.6. The diagrams of both figures are visu-
ally identical, which confirms the good convergence of the
approximate solution obtained by the proposed mixed FEM.
Moreover, curves corresponding to the solutions within clas-
sical linear elasticity and strain gradient elasticity with scale
parameter l/a � 0.2; 0.6 are in good agreement with the
results obtained by FEM in [37] and with the results of the
boundary element method presented in [31] (Fig. 9, param-
eter l/a is equivalent to 2g in [31], which means that g �
0.1; 0.3). This is an additional verification of mixed FEM
calculations presented here, especially because the results of
[37] were determined using the Tri18 element belonging to
a class of C1 functions.

Remark 3.5 It is expected that the length scale parameters
are dependent on the size of the micro-inhomogeneity and
the distances between them or micro-structure of material.
At any case, the length scale parameters are significantly
less than the macro scale. Nevertheless, we present results
for unrealistic values of the scale parameter l/a first of all to
demonstrate a good convergence of the approximate FEM
solutions and secondly to compare with results available in
the literature. This can be considered as a validation of the
mixed FEM proposed for solving such a problem within the
strain gradient elasticity theory.

Figures 5, 6, 7 indicate that crack stiffness increases
with the scale parameter, which is in agreement with other
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Fig. 6 Normalized crack-opening displacement as a function of normal-
ized distance from the crack tip for uniform partitioning of the crack
length into 80 elements and different values of the normalized parameter
l/a

results available in the literature (e.g., [14, 31, 37, 50, among
others]). As expected, the behavior of the crack profile is dif-
ferent for classical and strain-gradient solutions. The crack
faces close more smoothly in the case of strain-gradient
elasticity compared to the classical elasticity results. Cusp-
like closure of the crack in strain-gradient solutions occurs
because the asymptotic solution for crack-opening displace-
ment near the crack tip (r → 0, r is the radial distance from
the crack tip) is governed by dominant term r3/2, which has
higher order in comparison with classical elasticity (r1/2).
The cusp-like closure effect has been indicated in experi-
ments by [66] and discussed in many papers (e.g., [14, 31,
33, 37, 50, 67, among others]).

For comparison, normalized crack-opening displacements
μu/(aq) calculated on the basis of mixed FEM (for the
same parameters as in [14] and on the basis of hypersin-
gular integral equations [14] are depicted in Fig. 8. The solid
line corresponds to mixed gradient FEM solution for scale
parameter a/l � 5; small circles indicate results [14]. The
results obtained by mixed FEM and those determined on the
basis of hypersingular integral equations in Gourgiotis and
Georgiadis [14] are visible identical, as shown in Fig. 8, in
spite of rather fundamental differences between the meth-
ods involved and of unrealistic high length scale parameter
(a/l � 5) what significantly complicates mixed FEM calcu-
lations (convergence).

Fig. 7 Normalized crack-opening displacement as a function of nor-
malized distance from the crack tip for nonuniform partition of crack
length and different normalized parameter values l/a. Element length
in the vicinity of the crack tip h � 10–3 m

Fig. 8 Normalized crack-opening displacement μu/(aq) as a function
of normalized distance from the crack tip x/a for scale parameter a/l �
5. Solid line corresponds to mixed gradient FEM solution, small circles
indicate results Gourgiotis and Georgiadis (2009)

Normalized normal strains μεyy/q as a function of nor-
malized distance from the crack tip x/a are shown in Fig. 9.
The solid line corresponds to results obtained by mixed gra-
dient FEM solution for scale parameter a/l � 50, small
circles indicate results [14]. It is observed a good agreement
between the both solutions. It is also seen that the normal
strains take the finite values at the crack-tip x/a � 1, while
the corresponding strains in classical elasticity (dashed line)
exhibit a square root singularity. In Fig. 10 the distribution of
normalized shear strain μεyx/q as a function of normalized
distance from the crack tip x/a for scale parameter a/l � 20
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Fig. 9 Normalized normal strain μεyy/q as a function of normalized
distance from the crack tip x/a. Solid line corresponds tomixed gradient
FEM solution for scale parameter a/l � 50, small circles indicate
results Gourgiotis andGeorgiadis [14], dashed line—classical elasticity
solution

Fig. 10 Normalized shear strain μεyx/q as a function of normalized
distance from the crack tip x/a for scale parameter a/l � 20

is displayed.Contrary to the classical elasticity case, the shear
strains are not zero at the crack-faces.

The tension of a rectangular plate with an edge crack. The
problem for a rectangular plate with a symmetrically placed
edge crack of length a � 0.4 m is shown in Fig. 11. The
half-length of the vertical edges of the plate and the width
are equal to W � 0.2 m. The plate is under uniaxial tensile
stress q � 100 MPa. The material properties and the scale
parameters are the same as in the above problem. Due to
symmetry, the problem is solved for half of the plate under
the assumption of the plane strain state.

The boundary conditions
Kinematic boundary conditions for displacements are:

uy(x , 0) � 0, ux , y(x , 0) � 0, uy, x (x , 0) � 0,

ux (W , 0) � 0. (54)

Fig. 11 The tension of a rectangular plate with an edge crack

Fig. 12 Crack-opening displacements as a function of distance from the
plate edge with the crack for uniform partitioning of the crack length
into 40 sections and different values of the normalized parameter l/a

Figures 12 and 13 demonstrate the crack-opening dis-
placements as a function of distance from the plate edge
with the crack for the uniform partitioning of the crack face
into 40 sections and nonuniform segmentation of the crack
edge with element length in the vicinity of the crack tiph
� 10–3 m, respectively. The dashed line indicates the solu-
tion within classical linear elasticity (scale parameter l � 0)
and solid lines—the solution within strain gradient elasticity
with normalized scale parameter l/a � 0.1; 0.2; 0.3; 0.4; 0.6.
Diagrams of both figures are visually identical, confirming
good convergence of the approximate solutions obtained by
the considered mixed FEM.
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Fig. 13 Crack-opening displacements as a function of distance from
the plate edge with crack for nonuniform partition of the crack length
and different normalized parameter values l/a. Element length in the
vicinity of the crack tiph � 10–3 m

For an additional verification of the obtained solutions,
Fig. 14 presents a comparison of the crack-opening displace-
ment along the crack edge for the uniform partitions of the
crack length: dashed lines are segmented into 20 sections;
solid lines are segmented into 40 sections; dotted lines are
segmented into 80 pieces and for different values of the nor-
malized scale parameter l/a � 0.1; 0.2; 0.3; 0.4; 0.6. Good
convergenceof themixedFEMsolutions is observedby refin-
ing the mesh for all values of parameter l/a.

The same tendencies as for the problem with the central
crack are observed for the plate with an edge crack (Figs. 12,
13, 14): increasing the crack stiffness with the scale parame-
ter value, a cusp-like closure effect. The difference is just in
the value of the crack-opening displacements. As expected,
the opening displacements of the edge crack are higher than
those of the central crack for all values of scale parameters.

The tension of a square plate with two symmetrically
placed edge cracks. The problem for a square plate with two
symmetrically placed edge cracks of length a � 0.04 m is
shown in Fig. 15. The half-length of the plate edges is equal
to W � 0.2 m. The plate is under uniaxial tensile stress q �
100 MPa. The material properties and the scale parameters
are the same as in the above two problems. Due to symmetry,
the problem is solved for the quarter of the plate under the
assumption of the plane strain state.

The boundary conditions

Fig. 14 Variation in crack-opening displacement for uniform partitions
of crack length (dashed lines correspond to partitions into 20 sections;
solid lines correspond to partitions into 40 sections; dotted lines corre-
spond to partitions into 80 sections) along the crack edge for different
values of the normalized parameter l/a

Fig. 15 The tension of a square plate with two symmetrically placed
edge cracks

Kinematic boundary conditions for displacements are:

uy(x , 0) � 0, ux , y(x , 0) � 0, uy, x (x , 0) � 0,

ux (0, y) � 0, uy, x (0, y) � 0, ux , y(0, y) � 0. (55)

Figures 6, 7, 8, 9 and 16 indicate that increasing the crack
stiffness with scale parameter value and the cusp-like closure
effect are common to all three problems of the plate with the
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Fig. 16 Crack-opening displacements of the symmetric edge cracks as
a function of distance from the plate edge with the crack for uniform
partitioning of the crack length into 40 elements and different values of
the normalized parameter l/a

central, edge, and two symmetrical edge cracks. The differ-
ence is just in the value of the crack-opening displacements.
For the plate with two symmetrical edge cracks, the open-
ing displacements are higher in comparison with those of
the central crack and lower in comparison with those of the
single-edge crack for all values of scale parameters.

Figure 17 demonstrates good convergence of the FEM
solutions by refining the mesh for all values of scale parame-
ters l/a and is presented for verification of the FEM solution.
A comparison of the crack-opening displacement of the sym-
metric edge cracks along the crack edge for the uniform
partitions of the crack length is shown: dashed lines—seg-
mented into 20 sections, solid lines—into 40 sections, and
dotted lines—the nonuniform partitions with element length
in the vicinity of the crack tip h � 10−3m and for different
values of the normalized scale parameter l/a � 0.1; 0.2; 0.3;
0.4; 0.6.

4 Conclusions

An alternative approach has been applied to solve the bound-
ary value problem within the gradient elasticity theory in
that a mixed variation formulation of FEM is proposed. This
approach is based on the concept of theGalerkinmethod, and
unlike the classical formulation of FEM in the form of a dis-
placement method, displacements, strains, stresses, and their
gradients are direct arguments of the variational equations
of the finite-dimensional problem, and are not determined

Fig. 17 Variation in the crack-opening displacement of the symmet-
ric edge cracks for uniform and nonuniform partitions of crack length
(dashed lines represent the uniform partition into 20 elements; solid
lines represent the uniform partitioning into 40 sections; dotted lines
represent the nonuniform partition with element length in the vicinity
of the crack tip h � 10−3m) along the crack edge for different values
of the normalized parameter l/a

by further transformation (differentiation) of the problem
solution in displacements. To construct finite-dimensional
subspaces based on such variational formulation of the
problem, separate (formally independent) approximations of
displacements, deformations, stresses, and their gradients are
used by choosing the different sets of piecewise polyno-
mial basis functions, interconnected by the stability condition
of the mixed approximation. Mixed FEM significantly sim-
plifies the pre-requirement for approximating functions to
belong to class C1. Thus, using the simplest triangular finite
elements with a linear approximation of displacements is
possible under the condition that uniform or near-uniform
triangulation is realized. Uniform triangulation in the vicin-
ity of the stress concentrators provides super-convergence
in calculating strains and stresses in mesh nodes. Global
unknowns in a discrete problem are nodal displacements,
while the strains, stresses, and their gradients are considered
as local unknowns.

The conditions of existence, uniqueness, and continuous
dependence of the solution on the initial data of the problem
have been formulated for discrete equations of mixed FEM.
The system of equations of mixed FEM has been solved by a
modified iteration procedure with a preconditioning matrix.
The global stiffness matrix for classical elasticity problems
is considered as a preconditioning matrix with fictitious elas-
tic moduli. Then, there is no need to form a global stiffness
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matrix for the problem of strain gradient elasticity since it
is enough to calculate only the residual vector in the current
approximation. This reduces the memory resource require-
ments of the computer.

A set of modeling plane crack problems has been solved,
namely, the tension of the plate with central, single-edge, and
two (symmetrically placed) edge cracks. The first problem
has been considered in the context of similar results avail-
able in the literature. It indicates good agreement with those
obtained by FEM in Papanicolopulos and Zervos [37], by
the boundary element method in [31] and and by an ana-
lytical/numerical technique based on hypersingular integral
equations in Gourgiotis and Georgiadis [14]. This verifi-
cation of mixed FEM calculations is especially important
because the results of [37] were obtained using the Tri18
element belonging to a class of C1 functions. Furthermore,
good agreement between the results of mixed FEM and
those of Gourgiotis and Georgiadis [14], despite of rather
fundamental differences between the methods involved can
be interpreted as an additional validation of the proposed
approach. To the best author’s knowledge, edge crack prob-
lems are considered within strain gradient elasticity theory
for the first time. Good convergence has been observed by
refining the mesh (finite element length) for all scale param-
eters, even for unrealistically high ones. Moreover, all three
problems demonstrate specific qualitative features charac-
terizing stain gradient solutions, increasing crack stiffness
with length scale parameter and cusp-like closure effect, and
agree with similar theoretical developments in the literature.
Therefore, it should benoted that themixedFEMbasedon the
accepted approximation for displacements, strains, stresses,
and their gradients on triangular elements can be successfully
applied to solving two-dimensional boundary value problems
within the strain gradient elasticity theory.
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Appendix: Convergence of the iterative
scheme

Let us write down the variational Eq. (37) in the operator’s
form:

Auh � fh , fh ∈ U∗
h , (56)

whereU∗
h—space conjugated to spaceUh ; A—a linear sym-

metric coercive operator acting from Uh to U∗
h and defined

by equation:

A : uh ∈ Uh

→ (DIhBuh , IhBvh)L + l2
(
QNIhBuh , NIhBvh

)
H ,

∀vh ∈ Uh .

(57)

To solve Eq. (56) let’s consider iterative process:

uk+1h � ukh − ωK−1
(
Aukh − fh

)
, (58)

where ω is the parameter introduced to control process con-
vergence; K is a linear symmetric coercive operator acting
fromUh toU∗

h , corresponding to the equations of the classi-
cal elasticity theory in displacement:

K : uh ∈ Uh → (DBuh , Bvh)L , ∀vh ∈ Uh . (59)

According to the general results of the convergence
analysis of iterative methods, process of successive approx-
imations (58) converges to the solution of Eq. (56) if the
parameter ω satisfies the condition [61]:

0 < ω < 2/γ , (60)

where γ is the positive constant, defined from inequality:

(Avh , vh) ≤ γ (Kvh , vh), ∀vh ∈ Uh . (61)

Accounting for the properties of the orthogonal projec-
tor Ih , the Cauchy-Bunyakovsky inequality and the “inverse
inequalities” we find:

(Avh , vh) ≤ (DBvh , Bvh)L + C(l/h)2(DIhBvh , IhBvh)L
≤ γ (DBvh , Bvh)L � γ (Kvh , vh), (62)

with

γ � 1 + C(l/h)2. (63)

Here C is a positive constant; h is the step of the finite
element mesh.

123

http://creativecommons.org/licenses/by/4.0/


Computational Mechanics

Given Eq. (63), it follows that for dense partitions we
have l/h � 1 and, therefore, γ � 1, and as a result ω � 1.
In other words, by the mesh refinement, the parameter ω

decreases, and its value can be significantly less than unity,
i.e., the choice of the parameter ω depends significantly on
the mesh size h. The use of the parameter ω � 1 using the
parameter ω may lead to instability and misconvergence of
the computational process.

Let us modify the iterative process (58) in such a way as
to provide stable value of the parameter ω, which slightly
depends on the mesh size h. To this end, the operator K
is transformed using fictitious elastic material moduli λ̃, μ̃,
which are defined within the finite element by the following
relations:

λ̃ � γ λ, μ̃ � γμ. (64)

The iterative process (47) can then bewritten in equivalent
operator form

uk+1h � ukh − ωK̃
−1

(
Aukh − fh

)
, (65)

where K̃ is a linear operator defined analogically as the oper-
ator K, but for fictitious elastic material moduli λ̃, μ̃.

To estimate the upper values of the parameterω inequality
(61) is used:

(Avh , vh) ≤ (
K̃vh , vh

)
, ∀vh ∈ Uh . (66)

On the basis on inequality (66), it is possible to obtain that
the upper estimation of the permissible values of the param-
eter ω does not depend on the mesh step h, and the iterative
process (65) convergences under the following condition:

ω ∈ (0, 2). (67)

The optimal value of the parameter ωopt providing the
maximal convergence rate of the iteration process (65) is
defined by the formula

ωopt � 2/(1 + α), (68)

where α is a positive constant, defined by inequality:

(Avh , vh) ≥ α
(
K̃vh , vh

)
, ∀vh ∈ Uh . (69)

Utilizing stability condition Eq. (38) have:

(Avh , vh) ≥ d20 (Kvh , vh), ∀vh ∈ Uh , (70)

and taking into account the inequality

(
K̃vh , vh

) ≤ γ (Kvh , vh), ∀vh ∈ Uh , (71)

constant α can be determined:

α � d20/γ . (72)

FromEqs. (63), (68), (72), it follows that for fine partitions
the value of the parameter ωopt non-essentially depends on
the mesh size h. The positive constant C in Eq. (63) is choos-
ing to fulfill condition ωopt ≈ 1. Introducing the operator K̃
and choice of the parameter ω with accounting for the above
considerations ensures the stability and convergence of the
iterative process (65).
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