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Abstract
Failure initiation and subsequent crack trajectory in heterogeneous materials, such as functionally graded materials and
bones, are yet insufficiently addressed. The AT1 phase field model (PFM) is investigated herein in a 1D setting, imposing
challenges and opportunities when discretized by h- and p-finite element (FE) methods. We derive explicit PFM solutions to a
heterogeneous bar in tension considering heterogeneous E(x) andGIc(x), necessary for verification of the FE approximations.
GIc(x) corrections accounting for the element size at the damage zone in h-FEMs are suggested to account for the peak
stress underestimation. p-FEMs do not require any such corrections. We also derive and validate penalty coefficient for
heterogeneous domains to enforce damage positivity and irreversibility via penalization. Numerical examples are provided,
demonstrating that p-FEMs exhibit faster convergence rates comparing to classical h-FEMs. The new insights are encouraging
towards p-FEM discretization in a 3D setting to allow an accurate prediction of failure initiation in human bones.

Keywords Crack nucleation · Phase field model · 1D heterogeneous bar

1 Introduction

Man-made functionally graded materials and nature-made
bones are heterogeneous at the macro-scale, and may be
regarded as linear elastic until fracture [1–3]. These sophisti-
cated materials impose major challenges for failure initiation
theorems (termed also crack nucleation) and for subsequent
crack trajectory evolution under a complex stress state. For
example, predicting hip fractures among the elderly based
on clinical CT scans and maximum principal strain crite-
rion is unsatisfactory (may be overestimated by 20%), partly
due to an insufficiently accurate failure theorem [1, 3–5]. To
the best of our knowledge, no verified and validated meth-
ods exist for predicting failure initiation with high accuracy
in such heterogeneous materials, which could assist in the
design of functional graded materials structures and medical
applications.
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In the past 25 years phase field modeling (PFM) had
emerged, based on energy minimization. For simplicity, con-
sider a heterogeneous bar � = {x : 0 ≤ x ≤ L} fixed at the
left end and subjected to a displacement Ut at the right end,
see Fig. 1.

The total potential energy in the barwith no volume forces,
denotedby�, is a sumof strain energy anddissipateddamage
energy [6–8]:

�(u, α) =
∫

�

1

2
a(α)E(x)u′2dx

︸ ︷︷ ︸
elastic energy

+
∫

�

GIc(x)

cw�o
(w(α) + �2oα

′2)dx
︸ ︷︷ ︸

dissipated energy

, α ∈ [0, 1]

(1)

where u(x) is the sought displacement, E(x) is the Young
modulus, GIc(x) is the fracture toughness, and α(x) is the
sought phase field function (α(x) ∈ [0, 1], that represents
damage) being 0 for the undamaged material and 1 for the
broken material. A regularization length �o is introduced
(smearing the crack). The material degradation is manifested
via the degradation function a(α) = (1 − α)2, whereas the
dissipation function is either taken as w(α) = α denoted as
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Fig. 1 1D clamped bar subjected to Ut at its right end

the AT1 PFM, or w(α) = α2 denoted as the AT2 PFM. The
normalization factor cw = 8/3 is used with the AT1 model
and cw = 2 is used with the AT2 to associate the dissipa-
tion energy at fracture initiation with GIc times the bar area.
The u(x) and α(x) that are the minimizers of �(u, α) (as
will be formulated precisely in the sequel) are the sought
solutions. Usually, one is interested in increasing Ut up to
the "fracture displacement" that shifts all strain energy into
dissipation energy at a given xo along the bar (α(xo) = 1).
The AT1 model is more appropriate model for a linear elas-
tic behavior until fracture, thus it is the model adopted in
this manuscript,. For the AT1 model a purely elastic phase
(α = 0) is realised until the stress σ = σe corresponds to the
critical stress σc which is referred here as the peak stress σp.
The AT2 model introduces slight nonlinearity in the stress–
strain relation with α(x) > 0 for any Ut > 0.

Crack propagation in structural heterogeneity (piece-
wise constant properties) was well predicted in many cases:
matrix/inclusions/pores, cement and porous materials (see
Fig. 2b, c) [9–21].Material heterogeneity (continuous chang-
ing properties), has been investigated for example in [22].
Among these papers, AT1model has only been used in [9, 17,
18]. �-convergence for heterogeneous material (an impor-
tant consideration for crack propagation) was demonstrated
in [23] for E(x);GIc(x); σc(x) (critical tensile stress that is
also the ultimate stress for a brittle material) and �o constant
or a bounded function �o(x).�-convergence characterization
is also provided for periodically heterogeneous material in
[24]. In both cases, AT2 model was considered.

Application of PFMs aimed at predicting failure initia-
tion necessitates to abandon the �-convergence requirement
and be regarded as a gradient damage models. Such PFMs
reconsider the regularization parameter as being a mate-
rial parameter determined by GIc, E and σc. Such models
grasp a rich interpretation of physical information includ-
ing pointwise, length-scale, and gradient data (see e.g. [25]).
Failure initiation in heterogeneous structures was shown to
be well predicted by these PFM models in: lightweight con-
crete [9, 11, 26–28] (see Fig. 2a), porous rocks [29] and
fiber-reinforced composites [19, 30]. Preliminary encourag-
ing application of PFM for failure initiation prediction in
material heterogeneity was documented recently for humeri
bones [31, 32] (see Fig. 2d). Among these papers, AT1model
was only used in [9].

To the best of our knowledge, for heterogeneous materials
PFM has not been yet rigorously investigated and efficiently

implemented in a finite element (FE) code for predicting
failure initiation and crack trajectories, nor has it been ver-
ified by analytical solutions to allow a rigorous assessment
of the FE performance. Numerical verification, i.e. quantify-
ing numerical errors separated from modeling ones, was not
investigated for the AT1 model and heterogeneous material.

To fill this gap and to allow a rigorous numerical treatment
we concentrate on a simplified 1D problem, providing herein
explicit solutions for three different E(x) andGIc(x) profiles
(bi-linear, parabolic, bi-exponential) to serve as benchmark
problems for FE solutions. These solutions are derived based
on [33].

When crack nucleation in a homogeneous material is of
interest, �o conceptually does not tend to zero and the ratio
�o/h has to be kept large (h is the element size) so to represent
well the localized solutionα(x). For any �o/h ratio an overes-
timated fracture toughness GIc [34, 35] is implied in the FE
approximation. Hence for the classical h-FE discretization
the mesh size is generally adjusted such that �o > h, in [36]
�o/h = 5, or such that �o � h [37]. For inhomogeneous
materials the appropriate GIc correction is unknown, and
especially so for high-order (also denoted as p-FE) approx-
imations [38].

Furthermore, for the AT1 PFM damage positivity i.e.
α ≥ 0 must be enforced explicitly so healing should be
forbidden through an irreversibility constraint . These con-
straints may be enforced using penalization [37], augmented
Lagrangian approach [39] or Lagrangemultiplier [40]. In this
work the penalization technique [37] is adopted and enhanced
for inhomogeneous materials.

p-FEs (large elements and high polynomial degree) was
proposed for the simulation of bone’s mechanical response
[41], having several advantages over conventional h-FEs:
accurate surface representation, distorted elements do not
pose accuracy deterioration and faster convergence rates
achieved by increasing the polynomial degree of the shape
functions over the same mesh thus controlling numerical
errors easily [38]. Herein a feasibility study is presented
aimed at investigating whether p-FEs advantages carry over
to AT1 PFM for inhomogeneous 1D domains. To this end
we compute explicitly analytical solutions of PFM problems
in a heterogeneous bar and perform numerical studies using
both h- and p-FE implementations. In Sect. 2 we present
the benchmark problem and derive analytical solutions for
different heterogeneity profiles for numerical verification. In
Sect. 3we address the h-FEMand investigate the error related
to the numerical fracture toughnessGFE

Ic and the penalization
enforcing damage positivity and irreversibility. In Sect. 4 we
investigate the performance of p-FEs and demonstrate their
super numerical performance compared to h-FEs.
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Fig. 2 PFM implementation for heterogeneousmaterial in the literature. a and b represent piecewise heterogeneitywhile c and d represent pointwise
heterogeneity

2 Explicit solutions for a heterogeneous bar

The analytical framework in [33] is used herein to compute
explicit analytic solutions to the heterogeneous 1D problem
stated in strong form. Three heterogeneous profiles for the
material properties E(x) = E0×k(x) andGIc(x) = GIc0 ×
k(x) are studied: linear, exponential and parabolic with k(x)
given in (2).

k(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + |x−L/2|
l f

, linear

exp( 2|x−L/2|
l f

) , exponential

1 + (
x−L/2

l f
)2 , parabolic

(2)

l f is the characteristic length of heterogeneity (the smaller
l f the largest E and GIc at the bar ends). E(x) and GIc(x)
are maximum at the bar’s ends and have the same minima,
respectively E0 and GIc0 , at x = L/2 (see Fig. 3).

The solutions u(x) and α(x) are obtained by minimizing
the total potential energy (1) with respect to displacement
and damage fields under the constraint 0 ≤ α ≤ 1. In the
classical variational framework, it is a quasi-static evolution
problem for displacement and damage fields formulated at
the pseudo-time t as a first-order local minimum condition
on the energy functional �. This condition is unilateral so

to ensure damage irreversibility, i.e. αt (x) is non decreasing
function ∀x . In other terms, ut (x) and αt (x) are solutions of1

arg loc min {�(ut , αt ) : ut ∈ U , αt ∈ A}, (3)

where the admissible displacement and damage solutions are
sought in the spaces U and A, respectively, defined by

U =
{
v ∈ H1(� \ S) : v(0) = 0 and v(L) = Ut

}
(4)

with S being the set of points where v is discontinuous. In
our problem,

S = {x ∈ � : αt (x) = 1} (5)

A =
{
β ∈ H1(�) : β ∈ [0, 1] and β̇ ≥ 0

}
(6)

Following the variational approach in [33, 42, 43], the evo-
lution problem is governed by the principles of irreversibility,
local stability and energy balance. Due to the irreversibility
constraint αt > αt−1, the necessary optimality condition to
compute the solutions (ut , αt ) of the constrained minimiza-
tion problem (3) is a variational inequality. These solutions
should be solutions of the first-order evolution problem.

1 loc stands for localminimumand is generally used for PF formulation.
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Fig. 3 Heterogeneous profiles for E(x) and GIc(x) with E0 = 1 and GIc0 = 8/15

First-order evolution problem. Given the initial state (u0,α0)
=(0,0) at the pseudo-time t = 0, find t → (ut ,αt ) ∈ U ×A
such that:

α̇t ≥ 0, irreversibility (7)

D�(ut , αt )(v, β) ≥ 0

∀(v, β) ∈ V × B, first-order stability (8)

D�(ut , αt )(u̇t , α̇t )

= σt (L)u̇t (L), energy balance (9)

where D�(ut , αt )(v, β) is the directional orGâteauxderiva-
tive of � at (ut ,αt ) in the direction (v,β).

The superimposed dot denotes derivative with respect to
pseudo-time t while ′ denotes derivative with respect to space
variable x . In (9) σt (x) denotes the Cauchy stress at pseudo-
time t :

σt (x) = E(x)(1 − αt (x))
2u′

t (x) (10)

The sets of admissible test functions are respectively:

V =
{
v(x) ∈ H1(� \ S) : v(0) = 0 and v(L) = 0

}
(11)

B =
{
β(x) ∈ H1(�) : β(x) ≥ 0

}
(12)

2.1 Explicit solutions (u(x),˛(x))

Exact (analytical) solutions can be derived [33] by realizing
that the stress is constant along the bar i.e.σt (x) → σt . Hence
it is possible to switch the increasing prescribed displacement
Ut to a controlled prescribed stress σt and determine analyti-
cally damage and displacement solutions [33]. We denote by
elastic limit stressσe the stress belowwhichαmax

t (x) = 0 and
denote by peak stress σp the maximum possible stress. We
also denote by σu = 0 the broken bar. For a heterogeneous
bar a representative stress-displacement response is shown in
Fig. 4 that may represent also a snap-back phenomenon: for a

given σt the solutions (ut (x), αt (x)) may be not unique. For
σt = 1 one can observe in Fig. 4 that it can either be associ-
ated to an undamaged bar i.e σt = σe or to a partially damage
bar i.e 0 < αmax

t (x) < 1 within the snap-back portion of the
curve.

For σt > 0 and without considering the snap-back portion
of the curve, three distinct damage phases occur (as opposed
to only two in a homogeneous bar):

• σt ≤ σe, purely elastic phase i.e. αmax
t (x) = 0.

• σe < σt ≤ σp, partially damaged phase i.e. 0 <

αmax
t (x) < 1,

• σt = σu , fully-developed crack phase i.e. αmax
t (x) =

1
def=αu

For the fully-developed crack phase, σt = σu has a con-
ceptual definition, because of the snap-back at σp and stress
decreases to 0 at fracture.

In a homogeneous bar σp = σe, thus a “partially damage
phase” is associated only with a snap-back. Heterogeneity
thus induces a “stress hardening effect” (σp > σe) and at the
same time the smeared crack width (δ < 4�o) is smaller due
to shrinking of damage profile.

Analytical solutions based on [33] for u(x) and α(x) for
the three phases σt = σe, σt = σp and σt = σu serve to
verify finite element (FE) approximations.
PurelyElasticPhase:Forσt ≤ σe the solution for the damage
for the AT1 model is αt (x) = 0, and the exact solutions for
ut (x) are:

for linear profile

ut (x) = σt l f
E0

×
⎧⎪⎨
⎪⎩
log

(
l f +L/2

l f +L/2−x

)
∀ 0 ≤ x ≤ L/2

log(l f − L/2 + x) + log

(
l f +L/2

l2f

)
∀ L/2 ≤ x ≤ L

,

(13)
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Fig. 4 Stress-displacement
response for bi-linear E(x) and
GIc(x) with l f = 0.4 and
�o = 0.2

for exponential profile

ut (x) = σt l f
2E0

×
{
exp(−L/l f )

(
exp(2x/l f ) − 1

) ∀ 0 ≤ x ≤ L/2
2 − exp(−L/l f ) − exp((L − 2x)/l f ) ∀ L/2 ≤ x ≤ L

,

(14)

for parabolic profile

ut (x) = σt l f
E0

(
arctan

(
x − L/2

l f

)

+arctan

(
L

2l f

))
∀ 0 ≤ x ≤ L. (15)

Partially damage phase For σe < σt ≤ σp, solutions αt (x)
are found semi-analytically. Solutions ut (x) are computed
by integrating the constitutive law using the semi-analytical
solutions αt (x) and the change of variable x̃ = x/�o.

ut (xi ) = σt�o

E0

∫ x̃i

0

1

k(x̃)(1 − αt (x̃))2
dx̃ ∀ 0 ≤ xi ≤ L.

(16)

Fully-developed crack phase The case σt = σu corresponds
to a broken bar. The damage solutions are provided in [33]
for the three heterogeneity profiles. αt (x = L/2) = 1, the
discontinuous field

ut (x) =
{
0, 0 ≤ x ≤ L/2
û, L/2 ≤ x ≤ L

(17)

is the displacement solution where û is the displacement at
the end of the broken bar. To compare with FE solutions of
displacement-controlled problem, one needs to find û value
corresponding to a broken bar. It has to be higher than the
maximum allowable displacement in the stress-displacement
curve (see Fig. 4) so û = max

σtvs.Ut
(Ut ) + 0.01 is a chosen.

For the linear and parabolic heterogeneity profiles (Fig. 3a
and c) the (u(x),α(x)) solutions are plotted in Figs. 5 and 6
(L = 2, l f = 0.4, �o = 0.2) for the three phases σt = σe,
σt = σp and σt = σu . The shrinking of crack profile (Figs. 5b
and 6b) with respect to homogeneous case illustrates the
interplay between crack and GIc(x) heterogeneity profile.

Explicit solutions u(x) and α(x) have been derived for all
heterogeneity profiles and tabulated with a 0.0001 precision
in Appendix A. These serve as benchmark problems to verify
the FE approximations.

3 Discretization by h-FEA

In this section the approximationsuh andαh , in a space of low
order piece-wise polynomials (h-FEM), are addressed. The
problem is displacement-controlled and depicted in Fig. 1.

The minimization problem (3), (8) and (7) is casted in the
coupledweak formulation (the associated strong formulation
is given in Appendix B):
Weak formulation. Given the initial state (u0,α0)=(0,0) at
the pseudo-time t = 0, find t → (ut ,αt ) ∈ U × A such
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Fig. 5 Bi-linear E(x),GIc(x) and solutions (u(x),α(x)) at different σt for L = 2, l f = 0.4, �o = 0.2.Dashed blue line corresponds to homogeneous
case i.e l f → ∞. (Color figure online)

Fig. 6 Bi-parabolic E(x), GIc(x) and solutions (u(x),α(x)) at different σt for L = 2, l f = 0.4, and �o = 0.2. Dashed blue line corresponds to
homogeneous case i.e. l f → ∞. (Color figure online)

that ∀(v, β) ∈ V × B:
∫

�

E(x)(1 − αt )
2u′

tv
′dx = 0, Elastic problem (18)

∫
�

E(x)(αt − 1)βut
′2dx

+ 3

8�o

∫
�

GIc(x)
(
β + 2�2oα

′
tβ

′) dx ≥ 0,

Damage problem (19)

The elasticity problem (18) becomes an equality because
displacement is reversible and αt ∈ A satisfies the irre-
versibility constraint.

Two cases may be considered: a) A history-independent
problem, i.e. the phase field does not evolve, so non-
negativity of αt (x)must be enforced (no evolution of αt (x)).
b) A history-dependent problem i.e. the PF αt (x) evolves
starting from the initial state (u0,α0)=(0,0) for Ut = 0.

Remark 1 In both cases a constrained minimization problem
is solved by the FEA. In the former damage positivity is
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enforced because it is not automatically satisfied for the AT1
model. In the latter, damage irreversibility is enforced from
the initial state (u0,α0)=(0,0) for Ut = 0.

We are not interested in the loading history but in comput-
ing a "snapshot" (u(x), α(x)) solution for a given prescribed
displacement Ut , and focus on a fully damaged phase i.e.
αt (x) = αu(x) and Ut = û corresponding to a broken bar.
The constraint α(x) ≥ 0 ∀x ∈ [0, L] (positivity), also called
recovery [37], is enforced by a penalty technique. Penaliza-
tion technique (see [37]) consists of adding to the potential
energy a penalty term that tends to infinity if the recovery
condition is not respected. I.e. we seek to minimize:

�C (u, α) =
∫

�

1

2
(1 − α)2E(x)u′2dx

+
∫

�

3GIc(x)

8�o
(α + �2oα

′2)dx

+ C

2

∫
�

< α >2− dx
︸ ︷︷ ︸

penalty term

(20)

with < y >2−= y2 if y < 0, and 0 otherwise, being the
Macaulaybrackets andC being the penalty constant thatmust
be large enough (� 1) to ensure recovery without causing
ill-conditioning issues. u(x) and α(x) are solutions of

arg loc min {�C (u(x), α(x)) : u(x) ∈ U , α(x) ∈ A} (21)

The penalized problem (21) is equivalent to the original
minimization problem (3) in the limit of C → ∞ and is an
approximation of it as C is finite. Hence, the choice of this
value is important for numerical verification.

The functions uh(x), αh(x) and the test functions vh(x),
βh(x) are approximated by a space of piecewise polynomials
spanned by shape functions 
NT

e (x) = (N1(x) N2(x) · · ·
Np+1(x))e and associated elemental vectors 
ue, 
ve, 
αe and
βe: uhe = 
NT

e (x)
ue, αh
e = 
NT

e (x)
αe, vhe = 
NT
e (x)
ve and

βh
e = 
NT

e (x) 
βe. The subscript "e" denotes shape functions
and vectors at the element level.
FE formulation. Find (uh ,αh) ∈ Uh × Ah such that
∀(vh, βh) ∈ Vh × Bh :

∫
�

E(x)(1 − αh)2uh
′
vh

′
dx = 0, (22)

∫
�

E(x)(αh − 1)βhuh
′2
dx +

∫
�

3GIc(x)

8�o
(βh

+2�2oα
h′

βh′
)dx + C

∫
�

< αh >− βhdx = 0, (23)

with the discretized spaces of finite dimensions, Uh ⊂ U ,
Ah ⊂ A, Vh ⊂ V and Bh ⊂ B.

Fig. 7 Symmetric representation of the selectively refined mesh
through h parameter while hmax = L/10 is fixed

We use the set of nodes {0, h, 2h, ..., (Nel−1)h, L}where
h = Le is the element length and Nel is the number of ele-
ments such as Nel × h = L .

Since the solutions of the broken bar are localized in the
center i.e. x = L/2 (see Figs. 5 and 6) we adopt a mesh with
selective refinement (Fig. 7) in the region where the crack is
expected to appear and α > 0 i.e. [ L−4�o

2 , L+4�o
2 ].

Displacement (22) and damage (23) weak forms are
solved by a weak coupling i.e. "freezing" alternatively uh

and αh . The equation (23) is nonlinear due to the Macaulay
brackets<>− term while (22) is linear. A Newton–Raphson
solver is used for (23) and for (22) without loss of generality.

The staggered solver scheme STG_solver is described in
Appendix C. The numerical integration was performed by a
Gauss quadrature with NGP = 2 points (u(x) and α(x) are
both approximated by linear shape functions).

3.1 Positivity constraint

An optimal penalty coefficient C in (23) corresponds to a
minimum value Copt ensuring α(x) > 0 ∀x ∈ � given a
prescribed tolerance avoiding ill-conditioning. For a homo-
geneous bar a penalty termwas proposed for fully-developed
crack αu(x), i.e. the stress is zero and only the phase field
profile was solved. A lower bound for the penalty coefficient
was determined to satisfy �−convergence and recover the
dissipated fracture energy, i.e. �D(αu(x)) = GIc, with a
user-prescribed tolerance threshold (1− T OLrec) × 100%:

Copt =
9GIc

(
L
�o

− 4
)

64�oT OLrec
(24)

A practical T OLrec = 0.01 was suggested, because a higher
penalty coefficient did not improve the results [37]. Inspect-
ing (24) one notices:

• Copt depends on L/�o. If �o = L/4 the damage profile is
along the entire bar, and no penalization is required, i.e.
Copt = 0.

• Copt is determined under the assumption of a fully devel-
oped damage profile, hence it may be not be sufficient to
enforce positivity of α(x) for α(x) < 1 ∀x ∈ �.
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Fig. 8 Error in dissipated fracture energy�err
D imposing damage recovery via penalization for linear and parabolic heterogeneity profile depending

on �o/l f (Left) and L/�o (Right) with �o = 0.2 and �o/h = 150. (Dashed red line) -1% tolerance error. (Color figure online)

Although a fully-damaged profile including penalty can-
not be obtained analytically for an heterogeneous bar, Chet

should have the following properties:

• At the homogeneous limit, Chet → Copt in (24). I.e.:

lim
l f →∞Chet = 9GIc0

(
L
�o

−4
)

64�oT OLrec
.

• Chet should account for shrinking the compact support of
the fully damaged profile and the heterogeneous GIc(x)
by considering �o/l f and Gmax

Ic = max(GIc(x)) contri-
butions.

Accordingly, the expression below is proposed for mini-
mum penalty coefficient in an heterogeneous bar:

Chet =
9Gmax

Ic

(
L
�o

(
1 + �o

l f

)
− 4

)

64�oT OL
1+n�o/l f
rec

(25)

With n being a coefficient calibrated for the heterogeneity
profile to recover 99% of the dissipated fracture energy, used
as a criterion in [37] for homogeneous case.

Considering �o � h Fig. 8a, b show n = 1 and n = 2 are
appropriate coefficient to ensure 99% recovery of dissipated
fracture energy enforcing damage positivity for linear and
parabolic profiles GIc(x) (Fig. 3a and c), respectively.

To check the penalty coefficient influence when used for
different h-refinements we adopt the mesh in Fig. 7. The
penalty is activatedonly forαu(x) < 0 thatmayoccur outside
the damage compact support ≈] L−4�o

2 , L+4�o
2 [ and we adopt

an uniformmesh, i.e. hmax = h in Fig. 7. Considering a linear
heterogeneity profile (Fig. 3a), the proposed correction Gh

Ic
in (33) (see Sect. 3.3) and different mesh refinements h, we

compute the error in fully-damaged profile αerr
u for different

tolerances T OLrec. These are presented in Figs. 9a, b.
One may notice that the mesh refinement and the penalty

coefficient are independent since the error is controlled by
mesh refinement inside the damage band ≈] L−4�o

2 , L+4�o
2 [

and by the penalty coefficient via T OLrec outside the dam-
age band where positivity constraint is activated. Mesh
dependency is seen where penalty is activated at x =
L+4�o

2 = 1.4 for the coarser mesh �o/h = 2 but the error
is smaller. Thus, the penalty coefficient (25) is adapted for
ensuring damage positivity regardless the mesh refinement
as �o/h ≥ 2.

3.2 Damage evolution and irreversibility constraint

Weaddress here an evolution process forwhich irreversibility
constraint (7) may also be enforced via penalization [37].
Starting from the initial state (u0,α0)=(0,0) for Ut = 0, a
penalty term is added to the potential energy functional:

�Cirr (ut , αt ) =
∫

�

1

2
(1 − αt )

2E(x)u′
t
2dx

+
∫

�

3GIc(x)

8�o
(αt + �2oα

′
t
2)dx

+ Cirr

2

∫
�

< αt − αt−1 >2− dx
︸ ︷︷ ︸

penalty term

(26)

Here too, an optimal penalty coefficient is derived to
recover 99% of dissipated fracture energy and we consider
the case for which αt−1 = αu . For an homogeneous bar [37]:
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Fig. 9 Error in damage half-profile αerr
u imposing damage positivity via penalization for linear heterogeneity profile and different tolerances

T OLrec and mesh refinement, �o = 0.2, �o/l f = 0.5 and L/�o = 10

Cirr = 27GIc

64�oT OL2
irr

(27)

with T OLirr = 0.01. Since L/�o ratio is not involved, we
consider an optimal penalty coefficient for an heterogeneous
bar to satisfy:

• lim
l f →∞Cirr

het = 27GIc0
64�oT OL2

irr
, corresponding to the homoge-

neous case (27).
• Cirr

het accounts for heterogeneousGIc(x) throughGmax
Ic =

max(GIc(x)) contribution.

Hence the expression below is proposed for minimum
penalty coefficient to enforce irreversibility in a heteroge-
neous 1D bar.

Cirr
het = 27Gmax

Ic

64�oT OL2
irr

(28)

Considering �o � h Fig. 10 shows the penalty coefficient
(28) is satisfying to recover 99%of dissipated fracture energy
enforcing damage irreversibility for linear and parabolic
GIc(x).

3.3 Numerical GFE
Ic

GIc has to be corrected in a PF formulation to overcome
the overestimation of the dissipated fracture energy �D(αu)

because of smearing the crack over �o = O(h). For a
homogeneous bar a correction was suggested in [34]. The
dissipated fracture energy is:

Fig. 10 Error in dissipated fracture energy�err
D imposing damage irre-

versibility via penalization for linear and parabolic heterogeneity profile
depending on �o/l f with �o = 0.2 and �o/h = 150. (Dashed red line)
−1% tolerance error. (Color figure online)

�D(αu) =
∫

�

3GIc(x)

8�o
(αu + �2oα

′
u
2)dx (29)

For a homogeneous bar, i.e. l f → ∞ and GIc(x) →
GIc0 , the dissipated energy at fracture is �D(αu) = GIc0
with αu the fully-damaged profile and αu = 1 at x∗ = L/2.
The overestimation is related to the discontinuity at x∗ ∈ S.
uh ∈ H1(�) is approximated by continuous shape functions
( C0(�)), whereas u(x) ∈ H1(�/S := x∗). Hence, the dis-
placement discontinuity and the damage kink at x∗ = L/2
are approximated on an element of size h (see Fig. 11a, b for
linear FE approximation).
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Fig. 11 a Representation of linear FE-approximation of displacement
discontinuity and b Damage kink at crack location x∗ = L/2 (zoomed
in the crack location)

h-FE discretization in a homogeneous 1D domain results
in an overestimation of dissipated energy at fracture of order
O(h), i.e. Gh

Ic + O(h) = GIc (see [34] for �o = O(h)

and linear elements). As indicated in Figs. 11a, b, displace-
ment discontinuity and damage kink is better approximated
as �o/h → ∞, i.e. h → 0.

Gh
Ic = GIc

1 +
(

3h
8�o

) (30)

For a heterogeneous material a connection similar to (30)
is unknown, thus former studies suggested to consider �o ≥ h
[9] to �o > 5h [14, 20, 22]. The larger the ratio �o/h, the
smaller the error �err

D . Thus, [13] suggested �o ≥ (4 − 5)h
and the constraint �o � h is suggested in [18]. As �o/h →
∞:

�err
D = �FE

D − �EX
D

�EX
D

→ 0 (31)

�EX
D can be computed for the 3 different heterogeneity pro-

files, depending on �o/l f and δ (the support of αu(x)) [33].
For a finite h, and considering a linear heterogeneity pro-

file (Fig. 3a), two correction approaches are investigated.
Naive approach. The correction in [34] is applied replacing
the homogeneous GIc by GIc(x):

Gh
Ic(x) = GIc(x)

1 +
(

3h
8�o

) (32)

Alternative approach. The dissipated fracture energy cor-
responds to the fracture toughness at crack location, i.e.
GIc(x∗ = L/2) = GIc0 . Since �D(αu) is overestimated,
GIc(x) and GIc0 are also. GIc(x) depends on GIc0 thus
based on arguments of [34] and symmetry of GIc(x) profile,
one may apply a correction to the overestimated GIc0 such

that x∗ = L/2 is at the middle of an element. More precisely,

Gh
Ic = GIc0 + 2 ·

∫ L+h
2

L
2

GIc(x)dx = GIc0

+2 · 3GIc0

8�o

∫ L+h
2

L
2

(
1 + |x − L

2 |
l f

)
dx

= GIc0

1 + 3h
8�o

(
1 + h

4l f

) (33)

Remark 2 For a homogeneous bar, i.e. l f → ∞, the correc-
tion (33) reduces to (30) with GIc = GIc0 .

We investigate the proposed corrections based on the
induced error in dissipated fracture energy �err

D and the
induced error in fully-damaged profile αerr

u = αEX
u − αFE

u .
Numerical examples shown in Figs. 12a, b demonstrate

that the proposed "Alternative correction" reduces the over-
estimation of dissipated fracture energy compared to the
"Naive approach". For �o/h = 2 the overestimated dissi-
pated fracture energy is associated with fracture toughness
overestimation such that partially-damaged profile occurs
instead of fully-damaged profile αu(x). Both Naive and
Alternative approaches correct this toughening effect by well
representing the fully-damaged profile αu(x) (Fig. 12b).

We remark that both Naive correction and our pro-
posed Alternative correction results in the same accuracy
when approximating the damage profile (Fig. 12c). Thus,
GIc correction is limited to a global improvement in the
fully-damaged phase. Prior to the fully-damaged phase, to
better approximate the damage profile αu(x), regardless the
adopted correction, one needs a better numerical approxima-
tion by either refining the mesh i.e. h-version or increasing
the polynomial order of the shape functions i.e. p-version.
Nucleation stress
One of themost important quantity of interest is the nucle-

ation stress (peak stress σp) in a PF analysis.We demonstrate
that for a heterogeneous bar an accurate dissipation energy
computation does not ensure an accurate determination of
the nucleation stress, and the reason for it.

We use the penalty coefficient (28) to ensure damage
irreversibility andmonitor σp. Considering the linear hetero-
geneity profile and the explicit solutions derived in Sect. 2, we
perform h−extensions forUt = (0.25, 0.5, ..., Nstep, 1)× û
starting from the initial state (u0,α0)=(0,0) at Ut = 0.

The relative error in peak stress is computed by σ err
p =

σ FE
p −σ EX

p

σ EX
p

.σ EX
p = 1.21as seen in inFig. 5 andTable 1.σ FE

p is

calculated at a Gauss point in the last element of the bar with
Nstep = 100. The effect of GIc-correction approaches on
σ err
p is shown in Fig. 13. Onemay observe that themost accu-

rate σ FE
p is obtained without corrections of GIc whereas
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Fig. 12 Error in dissipated fracture energy �err
D (Top) and in fully damaged profile (Bottom) using different correction approaches, linear profile

GIc(x), �o = 0.2, �o/l f = 0.5 and L/�o = 10. (Dashed red line) 1% tolerance error. (Black line) No correction. (Dashed gray line) Naive approach.
(Blue line) Alternative approach. (Color figure online)

errors are induced by the naive and alternative corrections
which assure least errors in the dissipated energy. This error
decreases as the correction effect decreases (Figs. 13b and
13c), i.e. �o/h → ∞. Since on one hand σp is related to a
small maximum value of α (minimal damaged phase), which
is relatively well approximated by linear FE, and on the other
hand the GIc corrections are derived at the fully-damaged
profile, the fracture toughness is decreased while it is not
needed. Consequently the peak stress σ FE

p is underestimated
using the corrected GIc (Figs. 13a and c).

We investigate the penalization influence on αerr
u =

αEX
u − αFE

u (error in fully-damaged profile) using the
alternative GIc-correction (33) (both naive and alternative
approaches are efficient only at the fully-damaged phase).
Considering different mesh refinements αerr

u is computed
for different tolerances T OLirr and Nstep (Nstep = 5 and

Nstep = 20 for �o/h = 2 and �o/h = {20; 150} respec-
tively). Contrary to positivity constraint, expected to be
activated outside the damage band support, irreversibility
may be activated also inside the damage band (see Fig. 14
for �o/h = 150 at x = 1.3). Hence the error may be
controlled by both mesh refinement and penalty coefficient.
Outside the damage band support the error is controlled by
the penalty coefficient and the loading history through αt−1

in (26). That explains the differences between �o/h = 2
and �o/h = {20; 150} in Fig. 14a, b since the loading his-
tory is different i.e. there are approximately 3 times more
pseudo-time steps for �o/h = {20; 150}. We expect that
αerr
u increases as Nstep increases so additional positivity con-

straint α ≥ 0 may be needed as mentioned in [37].
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Fig. 13 Error in peak stress σ err
p and stress-displacement curves using different correction approaches, linear profile GIc(x), �o = 0.2, �o/l f = 0.5

and L/�o = 10. (Black line) No correction. (Gray line) Naive approach or exact stress-displacement curve. (Dashed blue line) Alternative approach.
(Color figure online)

The penalty coefficient (28) for damage irreversibility is
adapted for linear and parabolic heterogeneity profile and
regardless the mesh refinement as �o/h ≥ 2.

4 Discretization by p-FEA

A p-FE implementation of PFM for the heterogeneous bar
is investigated using hierarchic shape functions that are inte-
grals of Legendre polynomials [44]. For a p-FE extension
the mesh is fixed and the degrees of freedom (DOFs) are
increased by adding additional shape functions of a higher
polynomial order p to obtain convergence. Due to the hierar-
chical shape functions, we use the solution vector at a given

polynomial order as an initial guess at the higher polynomial
order, resulting in a faster convergence rate in the iterative
solution scheme. The p-FE algorithm used in our implemen-
tation is described in the algorithm below.

Using polynomials up to degree 8 to approximate dis-
placement and damage solutions u(x) and α(x), the numer-
ical integration is performed using 16 Gauss points (NGP =
16).

We consider the "snap shot" solution, so we concentrate
on the positivity constraint (not the irreversibility one). For
illustration purposes we focus (as in Sects. 3.3 and 3.1) on
the fully damaged phase i.e. αt (x) = αu(x) and Ut = û
corresponding to a broken bar.
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Fig. 14 Error in damage half-profile αerr
u imposing damage irreversibility via penalization for linear heterogeneity profile, different tolerances

T OLirr and mesh refinement. �o = 0.2, �o/l f = 0.5 and L/�o = 10

The bi-linear heterogeneity profile in (Fig. 3a) is consid-
ered with �o = 0.2, �o/l f = 0.5 and L/�o = 10.

For the p-FE analyses two meshes with different refine-
ment types are used: the selective mesh used for the h-FE
computations in Fig. 7 and a geometrically refinedmesh (Fig.
15). The later is expected to be optimal for convergence, as
it is for problems with singular points [45]. The selective
meshis used for fixed hmax = L/10 and �o/h = 10 ratio.

p = 1 ; /* Initialization */
while p ≤ 8 do

if p = 1 then
( 
u0, 
α0) ← (
0, 
0) ; /* Initial guess for p = 1
*/

else
( 
u0, 
α0) ← (
u p−1, 
αp−1) ; /* Update solution
from p − 1 */

end
(
u p, 
αp) ← STG_solver( 
u0, 
α0, Np(ξ)) ;
/* Staggered FE solver */
p = p + 1

end
Algorithm 1:Algorithm describing the implemented p-FE
methodology

The geometrically refined mesh is progressively refined
towards x = L/2 i.e. the location where crack nucleates
and αu = 1. The nodes do not consider boundary of the
damage support through �o/h ratio and �o/h < 2 except at
the vicinity of x = L/2. Considering the mesh symmetry at
L/2, the nodes are located as follows:

x0 = 0, x1 = L

4
, x2 = 3L

8
, x3 = 37L

80
,

x4 = 3955L

8000
and x5 = L

2
.

Fig. 15 Geometrically refined mesh used for p-FEA

The phase field profile αu(x) is shown in Figs. 16a and
16b. An excellent approximation is already achieved from
p = 4 for both selective and geometrically refinedmeshes (of
course the selective mesh hasmanymore elements). Because
p-FEA approximates very well the phase-field profile for
p ≥ 4, a correction for GIc(x) is not required.

4.1 Positivity constraint

For the positivity constrain we use the penalty coefficient
(25) derived for h-FEA.We investigate how does the penalty
coefficient depend on the polynomial order p by comput-
ing the error for the fully-damaged profile αerr

u for different
tolerances T OLrec.

Considering for example the selective mesh we compute
the error in the phase field for different polynomial orders
p and two tolerance values, as shown in Fig. 17b). Simi-
larly to h-FEA, inside the damage support band the error is
controlled by the numerical approximation through p while
outside the damage support band, where penalty is activated,
it is controlled by the penalty coefficient.

4.2 Convergence analysis: a node at the crack
nucleation

We investigate the numerical performance of the h- and the
p-FEM by quantifying the error in dissipated energy�err

D as
theDOFs is increased. The exact solution ofα(x) is also used
to determine the numerical convergence in terms of ||αerr

u ||2,
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Fig. 16 Fully damaged phase-field profile αu(x) for selective refined mesh (Left) and geometrically refined mesh (Right), linear profile GIc(x)
and increasing polynomial order p, �o = 0.2, �o/l f = 0.5 and L/�o = 10

Fig. 17 Error in phase field profile αerr
u imposing damage positivity via penalization on the selective refined mesh and linear heterogeneity profile,

different tolerances T OLrec and polynomial order p, �o = 0.2, �o/l f = 0.5 and L/�o = 10

the L2 norm error in αu(x), expressed as:

||αerr
u ||2 =

√√√√ 1

N

N∑
i=1

(αEX
u (xi ) − αFE

u (xi ))2

The points xi = x0, x1, ..., xN where the error is calculated
are the ones specified in Appendix A.

In this subsection a node is placed at the crack nucle-
ation location x = L/2. The simulations were performed on
a standard PC with an Intel Xeon CPU E5-1620 3.60GHz
processor. For the h-FEM the alternative correction (33)

is applied to GIc(x) (more efficient to achieve the fully-
damaged profile for coarse meshes).

Different mesh layouts are also investigated. For the h-
FEMwe investigate the “selective refinement” schematically
presented in Fig. 7 for which the compact support of the
damage zone is uniformly refined fromh = 0.1 toh = 0.002,
and also a “graded refinement” (see Fig. 18) forwhich the two
elements closest to the nucleation at x = L/2, on both sides,
are progressively refined (from h = 0.2 to h = 1.2e−5). Note
that the selective refinement is controlled by �0/h. For the
p-FEM the mesh is kept fixed and we choose the “selective
refinement” mesh and the “geometric refinement” mesh with
a ratio of 0.17 towards x = L/2 shown in Fig. 15.
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Fig. 18 Illustration of the graded refinement meshes

One may observe in Figs. 19 and 20 a higher convergence
rate of the p-FEM both with respect of the DOFs and CPU
compared to the h-FEM. Using geometrically refined mesh
the convergence is dramatically faster compared to h-FEM
on the selective mesh.

The h-FEM on a graded refined mesh converges much
faster compared to the selective refinement. However, it
reaches a sort of "plateau" and further refinements do not
decrease the numerical error. This is because the refine-
ment is applied recursively on the 4 elements closest to
x = L/2 so the numerical error associated with the other
elements does not decrease. This error becomes dominant
while the error associated to the crack initiation location is
constantly decreasing thanks to the refinement. Hence, an
optimal graded refined mesh requires an adaptive algorithm
to track the dominant numerical errors and adaptively refine
the mesh.

Increasing the positivity constraint i.e. T OLrec = 0.001
leads to the same conclusions.

The convergence plots show that p-FEM converges faster
compared to h-FEM when using a geometrically refined
mesh. Decreasing T OLrec i.e. increasing the penalty coef-
ficient, slightly improves the accuracy for p-FEM on a
geometrically refined mesh.

4.3 Convergence analysis: crack nucleation occurs
inside an element

To address cases for which the nucleation location is
unknown a-priori, we present the numerical performance of
the h- and the p-FEM for the same problem in the former
subsection, with same meshes only that the node at x = L/2

is removed. I.e. an element exists in the middle of the bar so
crack nucleates with a kink in α at the middle of the element.

Following the former subsection we present the error in
dissipated energy�err

D as the DOFs is increased in Figs. 21a,
b.

Again, p-FEM exhibits a higher convergence rate both
with respect of the DOFs and CPU compared to the h-FEM
for the geometrically refined mesh. One notices, as expected,
the slower convergence rate compared to the mesh with a
node at the crack nucleation location.

The numerical error associated with the FE approxima-
tion, ||αerr

u ||2 is presented in Fig. 22.
Compared to Fig. 20, one notices also here the slower con-

vergence, but again p-FEM is more accurate and converges
faster compared to theh-FEMusing the geometrically refined
mesh.

5 A pseudo three-dimensional example

A pseudo 3D extension of the heterogeneous bar is inves-
tigated using FEniCSx [46, 47]. The GIc correction and
the penalty coefficient Copt determined for the 1D case are
investigated in this 3D setting. To enable us to compare the
3D approximation to the analytical solution derived for the
1D bar, we consider a 3D elastic bar, of length L = 2 and
cross-section S = 0.1 × 0.1 fixed at the left flat surface and
subjected to a horizontal displacementUt applied to the right
end surface as shown in Fig. 23.

The material properties E(x, y, z) = E(x) and GIc(x, y,
z) = GIc(x) vary linearly as in the 1D case presented in the
previous section with a Poisson’s ratio ν = 0 (this is to allow
to compare the results to the exact 1D case). The 3D mesh
has one element in the "thickness” direction and convergence
of the dissipated energy is monitored for the h-FE on graded
refined mesh and the p-FE on geometrically graded mesh.

The p-extension implemented in FEniCSx is based
on Lagrange-based shape functions that are inferior to
Legendre-based shape functions (the stiffness matrix has to
be entirely recomputed as p-level increases and the condi-
tion number increases much faster as well). Additionally, the
p-extension is isotropic (polynomial degree in all directions
increases as p-level increases) while h- refinement is only
performed along the longitudinal axis identically to the 1D
case. Thus, numerical convergence is investigated as a func-
tion of the DOFs along the longitudinal direction (X axis).
TheGIc correction is applied to h-FEA and the penalty coef-
ficient is selected as in the 1D analysis. Figure24 presents the
convergence in dissipated fracture energy�err

D for the h-FEA
on a graded refined mesh (along X axis) compared to the p-
FEA on a geometrically refined mesh. The h-FEA converges
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Fig. 19 Convergence analysis of dissipated fracture energy�err
D as a function of DOFs (Left) and CPU time in seconds (Right) for h-FE on selective

refined mesh, h-FE on graded refined mesh, p-FE on selective refined mesh, and p-FE on geometrically refined mesh. Phase-field positivity is
imposed via penalization and T OLrec = 0.01, �o = 0.2, �o/l f = 0.5, L/�o = 10. (Dashed red line) 1% tolerance error

Fig. 20 Convergence analysis of the L2-norm error in αu(x) as a function of DOFs (Left) and CPU time in seconds (Right) for h-FE on selective
refined mesh, h-FE on graded refined mesh, p-FE on selective refined mesh, and p-FE on geometrically refined mesh.. Phase-field positivity is
imposed via penalization and T OLrec = 0.01, �o = 0.2, �o/l f = 0.5, L/�o = 10

until a "plateau" while the p-FEA converges monotonically.
These results are consistent with the ones observed for the
1D case, thus the penalty coefficient as well as the GIc cor-
rection derived for the 1D case may also be applicable in a
3D setup. Since the implementation of the p-FEA is subop-
timal in FEniCSx and does not include the p-prediction, we
don’t consider convergence in terms of CPU.

6 Summary and conclusion

Explicit solution, displacement and phase field (u(x), α(x)),
for the AT1 phase field problem in a heterogeneous bar in
tension were derived to serve as benchmark problems. We
considered E(x) andGIc(x) that had bi-linear, parabolic and
bi-exponential profiles. These solutionswere used for numer-
ical verification of h- and p-FE approximations for hetero-
geneous materials. Important insights were highlighted for
these heterogeneous materials when solved by finite element
methods.
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Fig. 21 Convergence analysis of dissipated fracture energy �err
D „ without a node at x = L/2, as a function of DOFs (Left) and CPU time in

seconds (Right) for h-FE on selective refined mesh, p-FE on selective refined mesh and p-FE on geometrically refined mesh. Phase-field positivity
is imposed via penalization and T OLrec = 0.01, �o = 0.2, �o/l f = 0.5, L/�o = 10. (Dashed red line) 1% tolerance error. (Color figure online)

Fig. 22 Convergence analysis of the L2-norm error in αu(x), without a node at x = L/2, as a function of DOFs (Left) and CPU time in seconds
(Right) for h-FE on selective refined mesh, p-FE on selective refined mesh and p-FE on geometrically refined mesh. Phase-field positivity is
imposed via penalization and T OLrec = 0.01, �o = 0.2, �o/l f = 0.5, L/�o = 10

We investigated the performance of h- and p-FE meth-
ods for AT1 PFM enforcing positivity and irreversibility by
penalization. Comparing to the explicit solutions derived:

• Weproposed and verified a new correction forGFE
Ic (x) to

be used in conjunction with h-FEMs and computed the
phase field profile in a heterogeneous bar using coarse
meshes.

• We investigated different GIc(x) correction approaches
and their influence on different quantities. We demon-
strated that the popular correction introduced for a homo-
geneous bar in [34] is inappropriate for a quasi-static

evolution problem, because the peak stress is underesti-
mated.

• We proposed and verified a penalty coefficient for het-
erogeneity effects allowing to enforce damage positivity
and irreversibility via penalization.

• For the simplified 1-D problem we demonstrated that
p-FEs exhibit a faster convergence rate compared to h-
FE implementation. Using a geometrically refined mesh
these FE methods may be a good alternative to decrease
the computational burden associated to PFM for pre-
dicting fracture in multidimensional and heterogeneous
material such as FGMs and bone.
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Fig. 23 3D clamped bar subjected to a horizontal displacement Ut at
its right surface

Fig. 24 Convergence analysis of dissipated fracture energy �err
D and

damage profile as a function of DOFs along X axis for h-FE on a graded
refined mesh and p-FE on a geometrically refined mesh. Phase-field
positivity is imposed via penalization and T OLrec = 0.01, �o = 0.2,
�o/l f = 0.5, L/�o = 10. (Dashed red line) 1% tolerance error

One-dimensional heterogeneity is a good surrogate to
2D/3D for a Poisson ratio ν = 0 and the 1D behavior is
qualitatively the same for ν > 0 [33]. The insights observed
by investigating the 1D bar are encouraging and shown to be
useful in 3D domains on a pseudo 3D example. Analytical
solutions for 3D PF problems in multi-dimensional hetero-
geneity are unknown andmanufactured solutions to verify PF
implementation for pointwise heterogeneous material such
as FGMs or bone are yet to be developed. At the same time,
since the failure initiation location is unknown a-priori,one
needs to implement multilevel approaches for local space
enrichment when p-FE methods are applied [48–50].

Acknowledgements The authors acknowledge the support of the Euro-
pean Union’s Horizon 2020 research and innovation programme under
theMarie Sklodowska-Curie grant agreementNo. 861061 -NEWFRAC
Project. The authors thank the anonymous referees for their valuable
and constructive comments leading to improvements in the presentation
and content of the manuscript.

Funding Open access funding provided by Tel Aviv University.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A PFMAT1 explicit solutions u(x)
and˛(x) for a heterogeneous
bar [0, L = 2]with 0.0001
precision

Appendix B Strong formulation of AT1 PFM
for a heterogeneous bar

Integrating by parts (18) and (19) and using the boundary
conditions of (v, β) (11), (12) leads to the strong form of
PFM.
Strong formulation (AT1 model). Given the initial state
(u0,α0)=(0,0) at the pseudo-time t = 0, find t → (ut ,αt )
∈ U × A such that:

(
E(x)(1 − αt )

2u′
t (x)

)′ = 0 ∀x ∈ �,

Equilibrium equation (B.1)

E(x)(αt − 1)ut
′2 + 3GIc(x)

8l0

(
1 − 2�2oα

′′
t

)
≥ 0,

Damage criterion, (B.2)

Table 1 Bi-linear E(x) and GIc(x) with E0 = 1, GIc0 = 8/15, l f =
0.4 and �o = 0.2

σt = σe = 1 σt = σp = 1.21 σt = σu , Broken bar
x u α u α u α

0 0 0 0 0 0 0

0.2 0.0617 0 0.0746 0 0 0

0.4 0.1346 0 0.1628 0 0 0

0.6 0.2238 0 0.2707 0 0 0

0.7 0.2773 0 0.3353 0 0 0.0216

0.8 0.3389 0 0.4101 0.0008 0 0.1689

0.9 0.4118 0 0.5004 0.0267 0 0.4799

1 0.5011 0 0.6185 0.0531 0 1.0000

1.1 0.5904 0 0.7356 0.0267 1.2974 0.4799

1.2 0.6633 0 0.8261 0.0008 1.2974 0.1689

1.3 0.7250 0 0.9014 0 1.2974 0.0216

1.4 0.7784 0 0.9661 0 1.2974 0

1.6 0.8676 0 1.0741 0 1.2974 0

1.8 0.9406 0 1.1624 0 1.2974 0

2 1.0022 0 1.2370 0 1.2974 0
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subject to the irreversibility condition (7).

Table 2 Bi-parabolic E(x) and GIc(x) with E0 = 1, GIc0 = 8/15,
l f = 0.4 and �o = 0.2

σt = σe = 1 σt = σp = 1.07 σt = σu , Broken bar
x u α u α u α

0 0 0 0 0 0 0

0.2 0.0333 0 0.0356 0 0 0

0.4 0.0830 0 0.0888 0 0 0

0.6 0.1620 0 0.1732 0 0 0

0.7 0.2187 0 0.2340 0 0 0.0225

0.8 0.2907 0 0.3102 0.0017 0 0.1783

0.9 0.3781 0 0.4059 0.0247 0 0.5045

1 0.4761 0 0.5196 0.0405 0 1.0000

1.1 0.5741 0 0.6322 0.0247 1.1243 0.5045

1.2 0.6616 0 0.7281 0.0017 1.1243 0.1783

1.3 0.7335 0 0.8050 0 1.1243 0.0225

1.4 0.7903 0 0.8657 0 1.1243 0

1.6 0.8692 0 0.9503 0 1.1243 0

1.8 0.9190 0 1.0035 0 1.1243 0

2 0.9522 0 1.0391 0 1.1243 0

Table 3 Bi-exponential E(x) and GIc(x) with E0 = 1, GIc0 = 8/15,
l f = 0.8 and �o = 0.2

σt = σe = 1 σt = σp = 1.24 σt = σu , Broken bar
x u α u α u α

0 0 0 0 0 0 0

0.2 0.0213 0 0.0264 0 0 0

0.4 0.0564 0 0.700 0 0 0

0.6 0.1143 0 0.1417 0 0 0

0.7 0.1561 0 0.1936 0 0 0.0309

0.8 0.2098 0 0.2596 0.0004 0 0.1924

0.9 0.2787 0 0.3472 0.0298 0 0.5086

1 0.3672 0 0.4695 0.0618 0 1.0000

1.1 0.4565 0 0.5908 0.0298 1.0482 0.5086

1.2 0.5246 0 0.6786 0.0004 1.0482 0.1924

1.3 0.5782 0 0.7453 0 1.0482 0.0309

1.4 0.6200 0 0.7971 0 1.0482 0

1.6 0.6779 0 0.8690 0 1.0482 0

1.8 0.7130 0 0.9125 0 1.0482 0

2 0.7343 0 0.9390 0 1.0482 0

Appendix C STG_solver: staggered FE solver
scheme for PF problem (22)–(23)

Newton–Raphson implies to compute for both displacement
and damage problem the Jacobian terms for each element
from (22) and (23). Respectively,


J u
e =

∫ Le

0
E(x)(1 − 
NT

e (x)
αe)
2 
N ′

e(x) 
N ′T
e (x) 
uedx (C.1)


J α
e =

∫ Le

0

(
E(x)( 
NT

e (x)
αe − 1) 
Ne(x)( 
N ′T
e (x) 
ue)2

+Gc(x)

cw�o
( 
Ne(x) + 2l20 
N ′

e(x) 
N ′T
e (x) 
αe +

C < 
NT
e (x) 
αe >− 
Ne(x)

)
dx (C.2)

The Jacobian terms are assembled to give the global Jaco-
bian vectors 
J u and 
J α . They are also associated to residual
vectors whose the norm gives resu and resα , respectively.
The element stiffness matrix, associated to Hessian terms
[Hi

e] = ∂ 
J i
e /∂
ie for i = {u, α}, are computed as follows:

[Hu
e ] =

∫ Le

0
E(x)(1 − 
NT

e (x)
αe)
2 
N ′

e(x) 
N ′T
e (x)dx (C.3)

[Hα
e ] =

∫ Le

0

(
E(x) 
NT

e (x) 
Ne(x)( 
N ′T
e (x) 
ue)2

+Gc(x)

cw

(2�o 
N ′
e(x) 
N ′T

e (x) +

CD<>( 
NT
e (x) 
αe) 
NT

e (x) 
Ne(x)

)
dx (C.4)

where

D<>(y) =
{
1 if y < 0
0 if y ≥ 0

(C.5)

The alternate minimization solving scheme is represented
below.
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tolN R = 1e − 10, tolSTG = 1e − 8 ; /* Tolerances */

(
u, 
α) ← ( 
u0, 
α0) ; /* Initial guess:(
0, 
0) */
while resSTG ≤ tolSTG ; /* Staggered solver for
convergence */
do

while resu ≤ tolN R ; /* Newton-Raphson solver
for (22) */
do

compute 
J u
e , [Hu

e ] for each element ;

J u ← 
J u

e , [Hu] ← [Hu
e ] ; /* Assembly */

resu ← || 
J u ||;

uincr ← solve [Hu]
uincr = − 
J u ;

u ← 
u + 
uincr ;

end
while resα ≤ tolN R ; /* Newton-Raphson solver
for (23) */
do

compute 
J α
e , [Hα

e ] for each element ;

J α ← 
J u

e , [Hα] ← [Hα
e ] ; /* Assembly */

resα ← || 
J α ||;

αincr ← solve [Hα]
αincr = − 
Jα ;

α ← 
α + 
αincr ;

end
compute 
J u

e , [Hu
e ] for each element ;


J u ← 
J u
e , [Hu] ← [Hu

e ] ; /* Assembly */

resSTG ← || 
Ju ||;
end

Algorithm 2: Staggered FE solver STG_solver

References

1. JuszczykMM,Cristofolini L,VicecontiM (2011)The humanprox-
imal femur behaves linearly elastic up to failure under physiological
loading conditions. J Biomech 44(12):2259–2266

2. Schileo E, Balistreri L, Grassi L, Cristofolini L, Taddei F (2014) To
what extent can linear finite element models of human femora pre-
dict failure under stance and fall loading configurations? J Biomech
47(14):3531–3538

3. Yosibash Z, Mayo RP, Dahan G, Trabelsi N, Amir G, Milgrom C
(2014) Predicting the stiffness and strength of human femurs with
real metastatic tumors. Bone 69:180–190

4. Katz Y, Lubovsky O, Yosibash Z (2018) Patient-specific finite ele-
ment analysis of femurs with cemented hip implants. Clin Biomech
58:74–89

5. Dahan G, Safran O, Yosibash Z (2022) Can neck fractures in proxi-
mal humeri be predicted byCT-based FEA? JBiomech 136:111039

6. Ambrosio L, Tortorelli VM (1990) Approximation of function-
als depending on jumps by elliptic functionals via �-convergence.
Commun Pure Appl Math 43(8):999–1036

7. Ambrosio L, Tortorelli VM (1992) On the approximation of free
discontinuity problems. Boll Un Mat Ital VI–B:105–123

8. Pham K, Amor H, Marigo J-J, Maurini C (2011) Gradient damage
models and their use to approximate brittle fracture. Int J Damage
Mech 20(4):618–652

9. Nguyen T-T, Waldmann D, Bui TQ (2019) Role of interfacial
transition zone in phase field modeling of fracture in layered het-
erogeneous structures. J Comput Phys 386:585–610

10. Hun D-A, Guilleminot J, Yvonnet J, Bornert M (2019) Stochastic
multiscalemodeling of crack propagation in randomheterogeneous
media. Int J Numer Method Eng 119(13):1325–1344

11. Nguyen TT, Yvonnet J, Zhu Q-Z, Bornert M, Chateau C (2015) A
phase field method to simulate crack nucleation and propagation
in strongly heterogeneous materials from direct imaging of their
microstructure. Eng Fract Mech 139:18–39

12. Xia L, Yvonnet J, Ghabezloo S (2017) Phase field modeling of
hydraulic fracturing with interfacial damage in highly heteroge-
neous fluid-saturated porous media. Eng Fract Mech 186:158–180

13. Bleyer J, Roux-Langlois C, Molinari J-F (2017) Dynamic crack
propagation with a variational phase-field model: limiting speed,
crack branching and velocity-toughening mechanisms. Int J Fract
204(1):79–100

14. Hansen-Dörr AC, Dammaß F, de Borst R, KästnerM (2020) Phase-
field modeling of crack branching and deflection in heterogeneous
media. Eng Fract Mech 232:107004

15. Corrado M, Paggi M, Reinoso J (2022) Dynamic formulation of
phase field fracture in heterogeneous media with finite thickness
cohesive interfaces. Comput Mater Sci 205:111226

16. Hansen-Dörr A, Brummund J, Kästner M (2021) Phase-field mod-
eling of fracture in heterogeneous materials: jump conditions,
convergence and crack propagation. Arch Appl Mech 91:579–596

17. Hsueh CJ, Avellar L, Bourdin B, Ravichandran G, Bhattacharya
K (2018) Stress fluctuation, crack renucleation and toughening in
layered materials. J Mech Phys Solids 120:68–78

18. HossainM,HsuehC-J,BourdinB,BhattacharyaK (2014)Effective
toughness of heterogeneous media. J Mech Phys Solids 71:15–32

19. Carollo V, Guillén-Hernández T, Reinoso J (2018) Phase-field
modeling of fracture in heterogeneous materials: jump conditions,
convergence and crack propagation. Adv Model Simul Eng Sci
91:8

20. Hu X, Gong X, Xie N, Zhu Q, Guo P, Hu H, Ma J (2022) Model-
ing crack propagation in heterogeneous granite using grain-based
phase field method. Theor Appl Fract Mech 117:103203

21. Chen H, Zhang C, Lu Q, Chen H, Yang Z, Wen Y, Hu S, Chen L
(2019) A two-set order parameters phase-field modeling of crack
deflection/penetration in a heterogeneous microstructure. Comput
Method Appl Mech Eng 347:1085–1104

22. Natarajan S, Annabattula RK, Martínez-Pañeda E (2019) Phase
field modelling of crack propagation in functionally graded mate-
rials. Compos B Eng 169:239–248

23. Asur Vijaya Kumar P, Dean A, Reinoso J, Lenarda P, Paggi M
(2021) Phase field modeling of fracture in functionally graded
materials: γ -convergence and mechanical insight on the effect of
grading. Thin Walled Struct 159:107234

24. Bach A, Esposito T,Marziani R, Zeppieri CI (2022) Gradient dam-
age models for heterogeneous materials, arXiv:2205.13966

25. KumarA,BourdinB,FrancfortGA,Lopez-PamiesO (2020)Revis-
iting nucleation in the phase-field approach to brittle fracture. J
Mech Phys Solids 142:104027

26. Nguyen TT, Yvonnet J, BornertM, Chateau C (2016) Initiation and
propagation of complex 3D networks of cracks in heterogeneous
quasi-brittle materials: direct comparison between in situ testing-
microCT experiments and phase field simulations. J Mech Phys
Solids 95:320–350

27. Nguyen T, Yvonnet J, Bornert M, Chateau C, Bilteryst F, Steib
E (2017) Large-scale simulations of quasi-brittle microcracking in
realistic highly heterogeneousmicrostructures obtained frommicro
CT imaging. Extreme Mech Lett 17:50–55

28. Patil RU, Mishra BK, Singh IV (2018) An adaptive multiscale
phase field method for brittle fracture. ComputMethod ApplMech
Eng 329:254–288

29. Cao Y, Shen W, Shao J, Wang W (2020) A novel FFT-based phase
field model for damage and cracking behavior of heterogeneous
materials. Int J Plast 133:102786

30. Schöller L, Schneider D, Herrmann C, Prahs A, Nestler B (2022)
Phase-field modeling of crack propagation in heterogeneous mate-

123

http://arxiv.org/abs/2205.13966


Computational Mechanics

rials with multiple crack order parameters. Comput Method Appl
Mech Eng 395:114965

31. Shen R, Waisman H, Yosibash Z, Dahan G (2019) A novel phase
field method for modeling the fracture of long bones. Int J Numer
Methods Biomed Eng 35(8):1–23. https://doi.org/10.1002/cnm.
3211

32. Hug L, Dahan G, Kollmannsberger S, Rank E, Yosibash Z (2022)
Predicting fracture in the proximal humerus using phase field mod-
els. J Mech Behav Biomed Mater 134:105415

33. Vicentini F, Carrara P, De Lorenzis L (2022) Phase-field model-
ing of brittle fracture in heterogeneous bars. Eur J Mech A Solids
97:104826

34. Bourdin B, Francfort GA, Marigo J-J (2008) The variational
approach to fracture. J Elast 91(1–3):5–148

35. Amor H, Marigo J-J, Maurini C (2009) Regularized formulation
of the variational brittle fracture with unilateral contact: Numerical
experiments. J Mech Phys Solids 57(8):1209–1229

36. Tanné E, Li T, Bourdin B, Marigo J-J, Maurini C (2018) Crack
nucleation in variational phase-field models of brittle fracture. J
Mech Phys Solids 110:80–99

37. Gerasimov T, De Lorenzis L (2019) On penalization in variational
phase-field models of brittle fracture. Comput Method Appl Mech
Eng 354:990–1026

38. Szabó BA, Babuška I (1991) Finite element analysis. John-Wiley,
New York

39. Wheeler MF, Wick T, Wollner W (2014) An augmented-
Lagrangian method for the phase-field approach for pressurized
fractures. Comput Method Appl Mech Eng 271:69–85

40. Heister T, Wheeler MF, Wick T (2015) A primal-dual active set
method and predictor-corrector mesh adaptivity for computing
fracture propagation using a phase-field approach. ComputMethod
Appl Mech Eng 290:466–495

41. Yosibash Z (2012) p-FEMs in biomechanics: bones and arteries.
Comput Method Appl Mech Eng 249–252:169–184

42. Pham K, Marigo J-J (2013) From the onset of damage to rup-
ture: construction of responses with damage localization for a
general class of gradient damagemodels. ContinMech Thermodyn
25:147–171

43. Marigo J-J, Maurini C, Pham K (2016) An overview of the
modelling of fracture by gradient damage models. Meccanica
51(12):3107–3128

44. Szabó B, Babuška I (2021) Finite element analysis: method, veri-
fication and validation. John Wiley & Sons, Hoboken

45. Babuška I, GuiW (1986) Basic principles of feedback and adaptive
approaches in the finite element method. Comput Method Appl
Mech Eng 55(1):27–42

46. Logg A, Mardal K-A, Wells G (2012) Automated solution of dif-
ferential equations by the finite element method: the FEniCS book.
Lecture notes in computational science and engineering, vol 84.
Springer

47. Scroggs M, Dokken J, Richardson C, Wells G (2022) Construc-
tion of arbitrary order finite element degree-of-freedom maps on
polygonal and polyhedral cell meshes. ACM Trans Math Softw
48(2):1–23

48. Zander N, Bog T, Kollmannsberger S, Schillinger D, Rank E
(2015) Multi-level hp-adaptivity: high-order mesh adaptivity with-
out the difficulties of constraining hanging nodes. Comput Mech
55(3):499–517

49. Nagaraja S, Elhaddad M, Ambati M, Kollmannsberger S, De
Lorenzis L, Rank E (2019) Phase-field modeling of brittle frac-
ture with multi-level hp-FEM and the finite cell method. Comput
Mech 63(6):1283–1300

50. Kopp P, Rank E, Calo VM, Kollmannsberger S (2022) Efficient
multi-level hp-finite elements in arbitrary dimensions. Comput
Method Appl Mech Eng 401:115575

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1002/cnm.3211
https://doi.org/10.1002/cnm.3211

	Crack nucleation in heterogeneous bars: h- and p-FEM of a phase field model
	Abstract
	1 Introduction
	2 Explicit solutions for a heterogeneous bar 
	2.1 Explicit solutions (u(x), α(x))

	3 Discretization by h-FEA
	3.1 Positivity constraint
	3.2 Damage evolution and irreversibility constraint
	3.3 Numerical GFEIc

	4 Discretization by p-FEA
	4.1 Positivity constraint
	4.2 Convergence analysis: a node at the crack nucleation
	4.3  Convergence analysis: crack nucleation occurs inside an element

	5  A pseudo three-dimensional example 
	6 Summary and conclusion
	Acknowledgements
	Appendix A PFM AT1 explicit solutions u(x) and α(x) for a heterogeneous bar [0,L=2] with 0.0001 precision
	Appendix B Strong formulation of AT1 PFM for a heterogeneous bar
	Appendix C STG_solver: staggered FE solver scheme for PF problem (22)–(23)
	References




