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Abstract

This is Part Il of a multipart article on a hyperelastic extended Kirchhoff-Love shell model with out-of-plane normal stress.
We introduce an isogeometric discretization method for incompressible materials and present test computations. Accounting
for the out-of-plane normal stress distribution in the out-of-plane direction affects the accuracy in calculating the deformed-
configuration out-of-plane position, and consequently the nonlinear response of the shell. The return is more than what we
get from accounting for the out-of-plane deformation mapping. The traction acting on the shell can be specified on the upper
and lower surfaces separately. With that, the model is now free from the “midsurface’ location in terms of specifying the
traction. In dealing with incompressible materials, we start with an augmented formulation that includes the pressure as a
Lagrange multiplier and then eliminate it by using the geometrical representation of the incompressibility constraint. The
resulting model is an extended one, in the Kirchhoff-Love category in the degree-of-freedom count, and encompassing all
other extensions in the isogeometric subcategory. We include ordered details as a recipe for making the implementation
practical. The implementation has two components that will not be obvious but might be critical in boundary integration.
The first one is related to the edge-surface moment created by the Kirchhoff-Love assumption. The second one is related to
the pressure/traction integrations over all the surfaces of the finite-thickness geometry. The test computations are for dome-
shaped inflation of a flat circular shell, rolling of a rectangular plate, pinching of a cylindrical shell, and uniform hydrostatic
pressurization of the pinched cylindrical shell. We compute with neo-Hookean and Mooney-Rivlin material models. To
understand the effect of the terms added in the extended model, we compare with models that exclude some of those terms.

Keywords Kirchhoff-Love shell theory - Isogeometric discretization - Hyperelastic material - Incompressible material -
Out-of-plane normal stress - Out-of-plane deformation mapping - Neo-Hookean material model - Mooney—Rivlin material
model
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A good number of shell models were presented earlier in
the finite element context (see, for example, [2-8]), with
significant effort in bending representation. The model in
[5] is based on a mixed formulation. The model in [8]
is based on a discontinuous-Galerkin type approximation
to weakly enforce C' continuity. The model in [7] is a
TUBA family element, which has displacement derivatives
as unknowns to attain C! continuity in the displacement.
The model we are introducing here is similar to the model
in [2], which uses only one parameter to represent the out-
of-plane deformation. Most of the other shell formulations,
including some based on the Reissner—Mindlin theory, use
the plane-stress assumption. The models in [3, 4], based
on the Reissner—Mindlin theory, are, however, without the
plane-stress assumption, in the finite element context.

1.2 Accounting for the out-of-plane normal stress:
summary

The isogeometric Kirchhoff-Love shell models have the
advantage of not requiring rotational degrees of freedom.
Within this category of the models, the extended method pre-
sented in this article encompasses all other extensions. We
list what the method accounts for beyond the Kirchhoff-Love
shell theory

— out-of-plane deformation in the constitutive laws

— out-of-plane deformation in the out-of-plane integration

— curvature effects in the undeformed configuration

— quadratic terms in the metric tensor

— quadratic terms in the virtual work

— out-of-plane normal stress

— separate tractions acting on the upper and lower surfaces

— moment generated by the separate shear tractions on the
upper and lower surfaces

— improved rotational kinematics

We reiterate, from [1], what motivated the development
of the method introduced in Part I. The level of accu-
racy we are striving for in representing the tractions on
the upper and lower surfaces would be meaningful in an
fluid—structure interaction computation only if the flow solu-
tion method can deliver those tractions with a comparable
level of accuracy. That level of flow solution accuracy, espe-
cially in representing the shear stress, requires moving-mesh
methods [9], where the high mesh resolution near solid sur-
faces follows the fluid—solid interface as it moves. That is
now possible even in flow computations with actual con-
tact between solid surfaces or some other topology change.
The Space-Time Topology Change method [10] enabled
that. We can both represent the actual contact and have
high-fidelity, moving-mesh flow solution near the solid sur-
faces.
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1.3 Focusin Part Il

We start with an augmented formulation that includes the
pressure as a Lagrange multiplier and then eliminate it by
using the geometrical representation of the incompressibil-
ity constraint. The resulting model is an extended one, in the
Kirchhoff-Love category in the degree-of-freedom count,
and encompassing all other extensions in the isogeometric
subcategory. The vector form of the equations used in Part I
provides good physical intuition about the formulation, and
the tensor-coefficients form helps with efficient implemen-
tation. We include ordered details as a recipe for making
the implementation practical. The implementation has two
components that will not be obvious but might be critical
in boundary integration. The first one is related to the edge-
surface moment created by the Kirchhoff-Love assumption.
The second one is related to the pressure/traction integra-
tions over all the surfaces of the finite-thickness geometry. It
will give us divergence-theorem-consistent representation in
the integrations when the basis functions have C? continu-

ity.
1.4 Outline of the remaining sections

In Sect.2, we briefly provide the kinematics, including
some of the crucial definitions, from Part I, mass conser-
vation, and the incompressibility constraint. In Sect. 3, we
present an augmented variational formulation that includes
the pressure as a Lagrange multiplier. In Sect.4, we elim-
inate the pressure by using the geometrical representation
of the incompressibility constraint. We describe the iso-
geometric discretization method in Sect.5, including the
path to the tangent stiffness matrix, and key methods in
the boundary integrations. The test computations are pre-
sented in Sect. 6, and the concluding remarks are given in
Sect. 7. The notation rules and some operator definitions are
given in Appendix A, complete expressions for the symbols,
used in putting the equations in a compact form, detailed
derivations, and range of acceptable shell thickness in Appen-
dices B and C, and the constitutive models in Appendix
D.

2 Hyperelastic incompressible shell model
2.1 Kinematics

2.1.1 Overview of geometry concepts introduced in Part |
The spatial domain 2, = T';x(hg); € R™, where T,

represents the “midsurface.” The midsurface quantities are
identified by an overbar. The undeformed configuration is
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denoted by subscript 0; £29 = I'ox (h)o, or by capital let-
ters.

The position X € Ty, its covariant basis vector is g, and
&% represents the parametric space. The thickness direction
is I, and the parametric coordinate across the thickness is & 3
The basis vectors depend on 53, and they are g,, while the
normal direction remains the same. The counterparts in the
undeformed configuration are X e T, Ea, &e, N, ég , and
G,. We note that

dg? = asdgg, (1)

where A3 is the stretch in the thickness direction, and this
parametrization was introduced in [11] to account for the
out-of-plane deformation. We use the dual basis system, and
the covariant metric tensor components for the current and
undeformed configurations are

2
Sup = Bup + 2+ Tup (£7) @)
— — 3 = 3 2
Gaﬁ = Gaﬁ + 2Kaﬁ€() + Qo{ﬂ (S()) . (3)

With that, the deformation gradient tensor F, its determi-
nant J, Cauchy—Green deformation tensor C, and Green—
Lagrange strain tensor E can be expressed. We also define
the areas

A= V|g0.|1 (4)
Ao = /[Gesl, Q)

and they depend on &3 and 53. We note that e serves as an
index position indicator for whether the tensor components
are covariant or contravariant. This simplifies the notation for
the matrix operators, such as the determinant, reduces the
dummy indices used, and reduces, the confusion that may
arise from repeated usage of indices. For details of our nota-
tion, see Appendix A.

2.1.2 Areas and mass conservation
We introduce ratios that are independent of the parametriza-

tion and, for convenience, alternate notations z and zg for & 3
and 53 :

% =AY = A, (6)
AO _ ~ 3N ~

— = Ao(§)) = Ao(z0), )
Ao

where z = z¢p = 0 at the midsurface.

Remark 1 The areas given by Egs. (6) and (7) are represented
by quadratic functions with coefficients that are the mean

and Gaussian curvatures at the midsurface of the current and
undeformed configurations.

The mass conservation law can be written as

pA(2)AdE® = poAg(z0)AgdEs, 8

where 7 is a function of z(, and using pp = pJ, we get

~ A ~
A(z)déSX— = J Ao(z0)d&; . 9)
0

Integrating both sides of Eq. (9) in corresponding parametric
coordinates, and defining the two functions

3

. &

V() = / A0z, (10)
0

N

Do) = /O J Ao(z0)dzo, (11)

we get

AV (EY) = AgVo(&)). (12)

This relationship will represent the functional form

£ = 2. (13)

The alternate form given by Eq. (12) is what we will use
instead of Eq. (1).

We now take variation of both sides of Eq. (12) holding
Sg constant at a given 53 . The left-hand side is

5 (Xx?) ! (823V> 883 + @ . A (14)
.\ ;
— AAse® + /053 5 Al dz. (15)

By using Eq. (188) from Appendix B.3 and §g, ‘53 =0g, +
S, &3, we get
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3

5 (Xf/) — AASE® + /OS g - g, |, Adz
£3
= ASE3 +Zf g¥Adz - 5g,
& i
+Zf0 g% Adz - 6m . (16)
The variation of the right-hand side of Eq. (12) is

5 (Ao¥o) = Ay /
0

We convert the integration to the current configuration as

g

8J Agdzo. (7)

53

S 1
8<A0V0) =/ 5J Ag— dz (18)
0 A3
=J-1A4
53
:Zf §1n J Adz. (19)
0
Thus, we obtain
1 & . 1 e .
3g3=—7/ g% Adz -5, —7/ 28% Adz -1 4
A Jo A Jo
=43 =Y
1 (& .
L1 / 5n J Adz. 20)
AJo
=sJ

For notational convenience, we introduce Qg‘ Q‘i‘ and §J,
and write as

SE3 = Q¥ - 58, + QY - Sy +8J. 1)

2.1.3 Incompressibility constraint

With the incompressibility constraint J = 1, Eq. (11)

becomes

s

Vo(&y) =/ Ap(z0)dzo. (22)
0

This and Eq. (10) can be integrated independently. With that,
Eq. (13) becomes a cubic function relating £3 and Sg , and
satisfying this equation makes J = 1 pointwise along the
thickness direction for any midsurface deformation.
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3 Variational formulation augmented by
pressure

3.1 Strain-energy density and stress tensor

We assume that the strain-energy density function can be
separated into the isovolumetric and volumetric parts as

@ = @Piso + Pvol- (23)

For incompressible material, the volumetric part can be rep-
resented with pressure as the Lagrange multiplier:

Pvol = p(1 = J), (24)

and ¢jso does not depend on p. The second Piola—Kirchhoff
tensor can also be separated into two parts:

S = 5P G, Gg + SPNN (25)
= 5G,Gp + SENN+ 50G,Gp + SENN, (26

iso is0 vol vol

where
0¢iso
s = , 27
1SO0 a Eaﬂ ( )
el Piso
§33 — —I0 28
iso 9Es3 (28)
pyol
s — , 29
vol P Eaﬂ ( )
8(pvol
§33 = . 30
vol P E33 ( )

This is based on writing the Green—Lagrange strain tensor as
E = E,3G* G? 4+ E33NN. The volumetric parts can further
be rewritten as

aJ
S = ~pp = -rIe’ (D)
Q,
0J J
Sw1 = —P3p= =Pz (32)
3

3.2 Internal virtual work

We repeat here Eq. (74) from Part I:
8U=ﬁ aga-/ g5 5% Agd&>dr
I'o (hn)o
+ ﬁ STy / £3g, 5 Agdg dr
(hm)o

Iy
+ﬁ ﬁ,a.f 863g,5%P Agde>dr
o (hh)o



Computational Mechanics

+ ﬁ n- f ShsrsnSP Agdgddr
o (hm)o

+ﬁ/ Sp(1—J)Apdeddr. (33)
o J(hm)o

We consider the following equations:

Ny 8p = Kap + Dapé”, (34)
S————
Kap
dsg3 dsg3
0

Substituting them into Eq. (33), we get

8U=ﬁ sga-/ g5 5% Agd&>dr
o (hn)o
+ﬁ 35’0,-/ £3g, 5 Agdg dr
o (ht)o
+ ﬁ / 8&3k4p %P Agde3d I
o J(hmdo
x2s3*A od&3dr
/1"0 /(‘hm)o d§3

+ﬁ / Sp (1 —J)Agde3dr. (36)
o J(hm)o

The along-the-thickness part of the fourth integral can be
rearranged as

S
3 L d (s34 A

/ 408 ——-235P Agde? / 7—( )A%S33Aod§3

(hyo dE3 (o A dE>

1 dA
—/ 8% — — 235 Agds>.
(ht)o d%‘

dg3
(37
Using
dinA 1 .5 dgap
_ ! 38
ez 28 ges 38)
—
:2(Ea,g+@,gé3)
= ¢%kup (39)
and
d (35%&) ) ) )
— - 68, - g"A —on, - Eg¥A +8InJA, (40)

which can be obtained from Eq. (20), we get

dsg?
/ B8 125% Aods? = —5g, - /
(

2a33 4 3
gak3S Apdé
hin)o dg? (ht)o

—aﬁ,a./ £3g72035% Agde?

(hm)o

+ / 81n 723833 Agde?
(hth)o

—/ 883g%P icpr3 s Agde’.
(hn)o
(41)

Substituting this into Eq. (36), we obtain
sU = L 58, - / gp (S —235%3¢%P) Apde3dr
Iy (hn)o
+ ﬁ ST g / g, (5% — 2353P) Agde dr
Iy (hm)o
+ ﬁ / 8&%kap (8%P — 2358 g%P) Agdg dr
I'o J(hn)o

+ ﬁ / 8In JA38P3 Agdeddr
o J(hm)o

+ﬁ / Sp (1 —J)Agdg3dr. (42)
o J(hm)o

We introduce
5% = 5P — 33¢P 5% (43)

for notational convenience and substitute Eq. (20) into Eq.
(42), obtaining

sU :/ aga-/ (gﬁiaﬁ+q3;cys§y5) Aodg3dr
Ty (hth)o
+ﬁ ST / (g3gﬁ§°‘ﬂ +(11Ky5§w‘) Aodg3dr
Iy (hm)o
+ﬁ / 8JkysSY3 Agdeddr
o J(hm)o

+ﬁ / 81n J23833 Agde3dr
o J(hm)o

+ﬁ / Sp (1 —J)Agdg3dr. (44)
Iy J(hm)o

As in Part I, we define the first Piola—Kirchhoff tensor p* G,
as

p* = g45% Ao, (45)

and its integral over (k) as

Pl = / pde3, (46)
(hm)o
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and its first moment as
P = f £3pede’. (47)
(ht)o

With those, we obtain

sU =ﬁ 58, - <f)8‘+/ quy5375A0d53> dr
Ty (hth)o

+ﬁ ST - <ﬁ7+/ Q‘fxyaSV‘sAodé) ar
Ty (hh)o

+ﬁ f 8J1c,587° Agde3dr
o J(hm)o

+ﬁ f §1n JA3SP Agde3dr
Iy J (hm)o

+ﬁ / Sp (1 —J)Agde3dr. (48)
o J(hm)o

We also note that the volumetric part of §79 is canceled as
follows:

. J
§70 = slo — pJg”® —a3g” (st%— p> (49)

=570 237083, (50)

3.3 External virtual work

The external virtual work is given by Eq. (103) in Part 1.
From Part I, we expand Egq. (108) by using Eq. (21):

S Wexsurf :-/.F ox- (ﬁa +ﬁ3) dr
0
su-(hy +hf)dr
/f n (1 1)
_ A A— A0 At
s (@) — @5Y)lg)-)ar
s+
/f )|<sg)+>dF

Aaﬁi) ‘(53)— - (‘Aﬁp

* /fo <<8 Aﬁ_> ‘@3)* - ffo (5jﬁ+) )@3>+> o

(S

and write Eq. (147) from Part I:

8 Wexedge = / 5% - h§ds + / sm - heds. (52)
EO E()

Here h§ and h¢ are the traction and its first moment (see Egs.
(144) and (145) in Part I).

Remark 2 We note that p~ and pT are defined by Egs. (113)
and (/14) in Part I. They are the normal tractions, not the
pressure.
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4 Variational formulation with the pressure
eliminated

For any midsurface deformation, we construct §U using
= 1 (see Sect.2.1.3), and the Lagrange multiplier p is
eliminated completely.

4.1 Internal virtual work

With J = 1 and 6J = 0 in Eq. (48), we get

sU =ﬁ 58, - <f»g+/ quy3§y5/§0dg3) dr
Ty (hn)o
+ﬁ Sny - (ﬁ‘l’+/ Q‘{KyaSV‘SAod?) dar
Ty (ht)o

(53)

As seen in Eq. (50), the integration does not involve the pres-
sure.

4.2 External virtual work
With §J = 01in Eq. (51), we get
5 Wexsurt = ﬁ 6% (hg +hy)ar
Iy
+ﬁ on- (A7 +hi)ar
Iy
+ /%0 (Sgoz : ((qgﬁ_”(gg)f - ((Algﬁ+)|(€3)+) ar

+ /Fo gy - (((ﬁﬁ_ﬂ(gg), - (q?ﬁ+)|(ég)+) ar.
(54)

and there is no change in Eq. (52):
8 Wexedge = / 8% - h3ds + / sm-heds. (55)
So So

4.3 Internal force and moment

We see the internal force (Py), and moment (o)} as the
factors of 6g, and 81, in the integrals over I'¢:

By =B+ [ a7 Ao
(hm)o

+ (a5 P )|(g 3+ (a5p™ )|@3),, (56)
(f’tot)? = f’? + q; Ky8§y6AOd§3
(ht)o
+ @757 |y — (@) - (57)
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Remark 3 We note that in the strong-form representation,
(Brot)g and ()| are the same as pg and pS in the Part
I; but not in the discrete form.

The moment (f)mt)‘f with respect to the midsurface may
need to be converted to moment with respect to a surface of
our choice, 53, in the deformed configuration. We do that by
first writing

b= [ (5-F)pae (58)
(hw)o
= py — &°pg, (59)
and
1 (&
R f o (z — EHAdz (60)
A Jo
=§q} — £°q%, (61)

and then using those in Eq. (57). With that and Eq. (56), the
conversion becomes

< \* AN 23 A\
(ptot>l = (ptot)1 —& (ptot)o . (62)
Remark 4 Most shell formulations do not take into account
the deformation in the thickness direction, and the moment
center is typically at the midsurface, resulting in

3\~ 3\t

53:(5) + (&%) , 63)
2

and that corresponds to the undeformed-configuration mid-
surface

3\~ 3\t
£ (&) er(éo) _ (64)
In our formulation here, the thickness-direction centers of
in the undeformed and deformed configurations may not
correspond to each other. In addition, a more physically
meaningful location would be the centroid, which would give
zero moment under uniform pressure. We note that in many
applications, the undeformed configuration is a flat plate or
we may not be taking the curvature effects into account. In
those cases, Eq. (64) represents the centroid. In our formu-
lation, if we chose é 3 to be the centroid, from

f( - (£ -#) %d? o0, (65)

we get

3Ld 3
53 — f(hth)tg i . (66)
S, L5

We can also express this at the undeformed configuration:

53 _ f(hth)() ss)hTLO)Gd‘?
f(h:h)o )‘TLO)\3dE3 .

(67)

See the definition of L, L, Lo, Lo, and At in Section 3.4 of
Part I.

5 Computational method

In this section, we describe the full method for the iso-
geometric discretization, including the linearization needed
in the Newton—Raphson iterations. We also describe a
method for reducing the effect of the edge-surface moment
creation by the Kirchhoff-Love assumption in arbitrary mid-
surface selection. Furthermore, we describe a divergence-
theorem consistent pressure/traction integration method to
overcome the difficulty due to the finite-thickness geome-

try.

5.1 Geometrical representation of the
incompressibility constraint

We start with the geometrical-constraint equation given by
Eq. (12). The area ratios in both the current and undeformed
configurations can be expressed using the mean and Gaussian
curvatures:

Az) = 1 + 2komz 4 K22 (68)
Ao(z0) = 1 4 2Kwmzo + Kaz2. (69)

See the definitions and usable expressions for the mean and
Gaussian curvatures in Appendix B.1. When the midsurface
deformation is given, the midsurface quantities are given.
Therefore, we can integrate the above equations as

. 1
V(z) =z +kmz> + §EGz3, (70)

~ _ 1—

Vo(zo) = z0 + KMZ% + §KGZ8- (71)

With those, for a given zg = ég, using Eq. (12), we
can obtain the current position z = £ in the functional
form of Eq. (13) by solving, with Newton—Raphson iter-
ations, a cubic function for z. We note that there is a
restriction on acceptable solutions for z. The restriction
comes from not having overlapping material points due to
high curvatures or large thicknesses. The range of accept-
able z can be predetermined. We use that information to
disallow going beyond that range in the Newton—Raphson
solution of the cubic equation.

@ Springer
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Remark 5 This is alimitation of the formulation here; if three
is overlapping, the computation cannot proceed with the dis-
cretization used.

5.2 Variational formulation for isogeometric
discretization

In many other shell implementations, we see the thickness
integrations done term by term. In the formulation here, it is
significantly more efficient to evaluate all the terms together
at each thickness position. For that, we use quadrature
points in the undeformed configuration and the correspond-
ing points in the deformed configuration can be obtained
as described in Sect.5.1. Consequently, in our method, we
evaluate the residuals using a rather simple expression of the
form

SU = ﬁ / SEqpS% Agdg3dr . (72)
o J(hmdo

Here S is obtained, at each thickness integration point,
from Eq. (50), using the Green—Lagrange strain tensor or
Cauchy—Green deformation tensor, and

= e ML e 3
8Eup = 85up + SKapt” + 380up (s) +88%ap.  (T3)

Here kg is not an independent variable (see Eq. (34)), and
Swap and 8&° are also not independent from the midsur-
face quantities and 64 and 8k 4. Those variations can be
expressed as

—_\V$ — \ V¢
5 = 2655 (We) + 2675 (W) (74)
aff off
883 = 88,5 Q%P + 5Kup Q%F. (75)
—__\V$ — \7d
Here (Wg) 5 and (WK> 5 are given by Egs. (223) and
(04 [0%

(224) of Appendix B.5.1,and Q%f and 0" are given by Egs.
(251) and (254) of Appendix B.6.2.

5.3 Linearization for the Newton-Raphson
iterations

The variation with subscript a is associated with the vari-
ational formulation, and the variation with subscript b is
associated with the iteration linearization:

80U = ﬁ / 84EapdpS?P Agde3dr
o J(hmdo
+ ﬁ / 840p EqpS?P Agdg3dr (76)
o J(hm)o

- /7 / 80 EapC "8y s Agdg3dr
I'o J(hn)o
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+ ﬁ / 848p Eqp S Aodg3dr. (77)
o J(hm)o

The elastic moduli Caﬂya, which include the effect of the
thickness-direction deformation, are given by Eq. (282) of
Appendix C. For the second integral, which is the geometric
stiffness, we need the second variation of Eyg:

(Sanga/S = <8aﬁaﬁ + aaaaﬁ$3) 5b€3
+ 848 (85t + 85apt”)
+ BapSaE 8pE> + 840pFap + 8abpRapt’

1 — 3 2 3
+ 50085ap () + 888 s 78)

We already mentioned that kug, §@upg, and §& 3 are not
independent, and here §,8,wqp and §, 8;,53 are also not inde-
pendent. We see §,8pwqp only in the double contraction
%saab@ﬂ Sep , and that can be written as

. _ \B
iaaabwaﬁsaﬁ = 840pFap (WS)

e SXE 4 848K ap

(W,C)aﬂxe SXE — 8,848
()", ) o™i

~ buEap[2 (2% T - 5) 02| 07
~saap [2(5% T 7) 077" 047,
..]“M

[2(5°
+ daap [ OF Byys. (79)

The derivation is given in Appendix B.5.2. The other depen-
dent second variation can be expressed as

8adpE> = 8a8yBap O + 848pKap Q2P
+ 848apQPY354E, 5 + 848ap QLY 510, 5
+ 84K ap QY885 + 84K QEY28,% 5. (80)

The derivation can be found in Appendix B.6.2, together
with the expressions for Q%27°, Q%" and Q¥"° (see Egs.
(261),(263) and (264)), and Q%27° = Q1* .

5.4 Implementation details

Based on the earlier subsections, we introduce some new
tensors and express U and §,6,U as
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aff . ~
SU= | o7, Be (z(&3 SX€A 3d3>dr
Joams ([, (Beein)” 5+ doteihas

aff - ~
+ | ok / By (z (&7 SX€A 3d3>dr
Joomas ([ (Becn)” | 55 doteihas
81)

and

8a8pU = ﬁ SaFup / (Dee (2(53) ™"
(ht)o

Iy
Ao(3)dE3 8,8, sd Il

+ ﬁ SaFap / (Do ED) P Ao(83)d&3 87, 5d T
Iy (hw)o

+ ﬁ 84K ap / (Dee (2(&3))
Iy (hw)o

ﬁ BaRup f (D GEN) T Ao(E)dE3 87, 5d T
Iy (hw)o

s A _
P Ro(Ed)de38yE, sd I

+

[ st [ (@), S Aoedagtar
Iy (hth)o

b [ basikas [ (B, 5 Aoeagar
Ty (hw)o
(82)

The tensors introduced above are also evaluated at each thick-
ness position. They are expressed as

By = [t 0] +2 () + et
(83)
Be(@)Pyc =2[6% © 5.°]aﬂxe +2 (Wk)aﬁxe + 0P ke,
(84)
and
aBys _ oo . 0000 T 0o OBYE
(Dee (@) = [Be(@)*, - €2 (B]@),." |
+ See (2)*P7?, (85)
~ o000 oo afys
Dee @) = [Be(@)™n - € (B]@),," "
+ Sex (2)7P73, (86)
(Dee (2)P70 = Dy (2))7°F, (87)
~ o000 0o 2BV
D@7 = [Be@)™a : €™ (B @),
+ Sex (2)P7°, (88)

where

See @7 = —a2?[(We)”_:5%) @ ?"]aﬂya

—___\aB . ~ g yd
+2z <<W8) y Sreqre 4 QgﬂSXf(WJ)XE )

+ @y S* QW QY + iy SXCQEET, (89)
~ afys
Sec @78 = —222[ (37 7w - 57*) 0|
_ \af . N s
+2z <(W8)a §1< Q1" + Q51 (W) ! )
X€ X€

+ QP57 1+ @, §%€ Q%P QVP + iy SHEQEEY?,

(90)
SKE(Z)aﬁyé = SSK (Z)y&xﬂ’ (91)
~ afys
SKK(Z)aﬂyS — ZZ I:S" @En]
~ —__\af .
+ (S“ﬁ +2z (W) SXf) o
X€
- - S )
+ 0 (SV“ +2:5%¢(Wy) 7 )
X€
+ @y SXCQUP QY8 4 iy SXEQUPYS, 92)

Remark 6 We note that all second-order tensors have symme-
try and all fourth-order tensors have at least minor symmetry.
We can express these by using the Voigt notation.

Remark7 The double contraction operator “:” between
fourth-order tensors is defined by Eq. (143) of Appendix A.6,
and the transpose “T” for a fourth-order tensor with minor
symmetry is defined by Eq. (144) of Appendix A.7.

Remark 8 The curvature at a thickness position differs from
the one at midsurface, as can be seen in Eq. (34). The tensors

‘55, ﬁﬁ, S‘EV‘S, ’;‘ﬁy‘s, ‘;‘EV‘S, and Qgﬁys are also func-
tions of z. In fact, they are rational functions. This is why in
this formulation it is more efficient to do the integrations by
evaluating all the terms together at each thickness-integration
point, rather than doing the integrations as in a typical
Kirchhoff-Love shell implementation.

5.5 Moment at the edge

As mentioned in Remark 21 in Part I, the b component of
the moment (see the definition of b” in Eq. (139) or Fig-
ure 6 of Part I) is predetermined in the Kirchhoff—Love shell
model, with a dependence on the midsurface selection. Here
we propose a method that makes the midsurface selection
less consequential. To do that, we add to Eq. (55) the integral

- /So sn-bb" - ((f’tot)? - (f’tot)?) G, - Bds, (93)

9% o
which makes (f)tot>1 zero instead of (Py) . Currently our
choice for £ is as given by Eq. (67). Substituting Eq. (62)
into Eq. (93), we get

(94)
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Fig. 1 The true normal n and the midsurface normal n. The bottom

curve represents the midsurface, and the upper surface, located at (& 3)+,
is obtained by setting ¢ = 1. For a given point on the midsurface, the

area change from 9 = 0to 1 is A to A, and A is the inclined area
Thus, the new form of Eq. (55) is

Wexedge = /; X - fl(e)dS +ﬁ on - ﬁj’dS
So So

+& | sm-bb" - (por)g Go - BdS. (95)
So

5.6 Surface integration

We now examine the implications of performing the upper-
and lower-surface integrations based on the midsurface nor-
mal vectors (see Fig. 1). The implications include the effect
on having a conservative form and therefore on the consis-
tency with the divergence theorem. As we do our analysis,
we describe a different way of doing the integrations.

We do the analysis for the upper surface, but it is straight-
forward to apply that also to the lower surface. First we
introduce a global thickness parameter 0 < ¥ < 1, such
that

g =EHT, (96)

and ¥ = 1 represents the upper surface in the undeformed
and current configurations. We define the following vari-
ables:

3 957
a = s 97
€)= 55 0 97)
3 _ 08’
= -_— . 98
€= e, (98)
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With that, we have new coordinate systems:

Gy = Gy + (£)) uN, (99)

8y = 8y +EN (100)
If we integrate over the current configuration, we do not need
to use the basis vectors in the undeformed configuration.
Therefore, here we focus on the current configuration. See
Appendix B.7 for the derivation of 5,311- We define A(&3) as

A= /|8e]: (101)

and its normal vector is

n= @ (102)

l21 > 2|

With that, A can also be written as

A=(g xg)n (103)
= &1 x & |- (104)

We expand the cross product as

g1 X8 =g X g +g x &) +E)xg). (105)

Because the second and third terms on the right-hand side
are orthogonal to n, we get

(81 x2) A= (g xg) 0 (106)
=A, (107)

which means

An-fi=A. (108)

From that,

é =(n-n)" (109)

We write the modified versions of Egs. (109)—(114) of Part
I as

. ~A
- (52)]
0/ led-
. ~ A
i (2] .
0/ 1+
P P 112
1 — E X ’ ( )
0/ &)~
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. A

hi = <§3hz—) : (113)
0/ e+

p~ =hy -m, (114)

pt = —h{ -m, (115)

where h is the traction acting on the curved current configu-
ration, and use these tractions in Eq. (54).

Remark 9 With h being the physical traction, and defining h
by

hA = haA, (116)
performing the integrations over the upper and lower surfaces

represented the way A represents a surface would give the
same result.

If the traction is given in terms of pressure, we need to
form the traction vector by using the true normals. There-
fore, doing the integrations over the upper and lower surfaces
using the true normals will bring us closer to a conservative
form.

Remark 10 When the traction is given in terms of pressure,
we will have consistency with the divergence theorem when
(53)_ and (53)+ are continuous across element boundaries.
Otherwise, even if we use the true normals in forming the
traction vector, we will not be in a conservative form. Then,
a uniform pressure over all the boundaries, for example,
may produce a net force. For (§ 3)~ and (£3)* to have that
continuity, the midsurface representation needs to have C?
continuity.

6 Test computations

In the Kirchhoff-Love category in the degree-of-freedom
count, the extended model in this article is encompassing all
other extensions in the isogeometric subcategory. The other
extensions can be obtained by excluding certain terms. The
set of methods compared will be described in Sect.6.1. We
conduct four test computations, with multiple cases in the
first three.

1. Dome-shaped inflation of a flat circular shell
The circular shell is inflated with a uniform pressure and
simply-supported edges. As the pressure is increasing, the
bending deformation is dominant at first, but at the end,
we have mostly in-plane deformation. From this perspec-
tive, the response to bending and in-plane deformations
is validated. Similar tests were conducted in [12, 13].

2. Rolling of a rectangular plate
One edge of the plate is clamped, and the angle along the
opposing edge is increased in a sequence of steady-state
solutions. As the angle increases, the required moment
increases. The pure bending response is validated.

3. Pinching of a cylindrical shell
While the bottom longitudinal line being simply-supported,
a uniform vertical force is applied along the top longitu-
dinal line. This is also a bending-dominant deformation,
and it involves normal-curvature change of sign. In this
problem, we are doing a verification study. Similar tests
were conducted in [14-17].

4. Uniform hydrostatic pressurization of the pinched cylin-
drical shell
The uniform pressure is applied to the pinched cylindri-
cal shell to validate the consistency with the divergence
theorem.

In these studies, the number of elements is denoted by r¢], and
the polynomial order of the B-splines by p. As integration
with Gaussian quadratures, we use (p + 1)x(p + 1) points
over the midsurface and 8 points in the thickness direction.
All test problems are with steady-state computations. We
use Eq. (95) on all midsurface edges. For the pressure load-
ing, we use the true normal of the surface, as described in
Sect.5.6. For the visualization of the deformed shapes, we
calculate the positions of the upper and lower surfaces. In all
test computations, we will be working with nondimensional
numbers.

6.1 Methods compared

We focus on two aspects of the methods. The first one
(see Fig.2) is about the out-of-plane normal stress (S33).
If we assume S # 0, there are two options, whether
we include the out-of-plane deformation in representing
the bending effect (£° # 53) or not. From those scenar-
ios, we consider three cases, identified as ‘“M1,” “M2,”
and “M3,” and with the level of assumptions decreas-
ing in that order. The second aspect (see Fig.3) is about
the metric tensors. Omitting the quadratic terms, @wqp and
ﬁaﬁ, in Egs. (2) and (3) is the common practice. When
we do not omit them, there are two options, whether
we include dwupg in Eq. (73) or not. For those scenar-
i0s, we consider three cases, identified as “A,” “B,” and
“C,” and with the level of assumptions decreasing in that
order.

The two aspects are independent and we identify their
combinations with labels like “M3-C.” For example, the
combination M3-B includes $33, and 8&3 in Eq. (73) is also
included but dwgg is not included. We also note that in com-
paring the methods, all other aspects of the formulations,
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Yes

| M1 (red) | | M2 (blue) | |M3( ) |

Fig.2 Models compared. Out-of-plane deformation and stress. Model
identifications are “M1,” “M2,” and “M3”

| Ewﬁ in 8ap and ﬁaﬁ in Gafﬁ

No Yes
Implies 0w,p = 0
No Yes

|A(dashed line)l | B (dotted line) | | C (solid line) |

Fig.3 Models compared. Metric-tensor approximation. Model identi-
fications are “A,” “B,” and “C”

Dext

Fig.4 Dome-shaped inflation of a flat circular shell. Problem setup. We
note that pey is applied on the lower surface, and not on the midsurface

such as those explained in Sects.5.5 and 5.6, remain the
same.

Remark 11 The method introduced in [15] is close to M1-A.
In performing the integrations over the undeformed configu-
ration, we take into account the curvature effects, which was
introduced in [11].

Remark 12 The method introduced in [11] is close to M2-B.

Remark 13 From the set of methods proposed here, the one
used in the comparisons is M3-C.

@ Springer

Simply-supported

(hin)o/2
(hin)o/2

Fig.5 Dome-shaped inflation of a flat circular shell. Boundary condi-
tion

6.2 Dome-shaped inflation of a flat circular shell
6.2.1 Problem setup

A flat circular shell with radius rg and thickness (44,)o shown
in Fig.4 is inflated with a uniform pressure and simply-
supported edges as shown in Fig. 5. The vertical displacement
of the plate center point is denoted by d.

6.2.2 Computational conditions

The Mooney—Rivlin material model given by Eq. (284) is
used. The parameters are given in Table 1. With the symmetry
condition, we compute only one fourth of the shell. The exact
geometry is represented by using a quadratic NURBS mesh,
with control points coalescing at the plate center. We start
with the mesh shown in Fig.6. Using order elevation and
knot insertion techniques, we obtain a mesh with p = 4
and ne] = 64. We place the midsurface at the center in the
undeformed configuration.

6.2.3 Results

Figures 7 and 8 show the deformed shapes at different
Pext Values. Figure9 shows the solutions from M1-A, M2-
B, and M3-C. Figure 10 shows pex; as a function of d. For
each of M1, M2, and M3, the A and B solutions are essen-
tially indistinguishable from the C solution. However, the
computations with M3-A and M3-B could not be contin-
ued beyond pexy = 30 and 26. We show those solutions in
Fig. 11, together with the M2-B solution as a reference.

Table 1 Dome-shaped inflation of a flat circular shell. Parameters

ro 7.5
(hw)o 0.5

Constitutive model Mooney—Rivlin

Elastic moduli Cio =80, Co; =20
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Fig.6 Dome-shaped inflation of a flat circular shell. The control mesh
with p = 2 and n¢) = 1. The physical shape in green

[ e |

0.1 0.4 0.7 1.0
Fig. 7 Dome-shaped inflation of a flat circular shell. M3-C. p = 4,
ne = 64. Deformed shapes colored by A3. pext = 12 (upper left), 24
(upper right), 36 (lower left), and 48 (lower right)

0.1 0.4 0.7 1.0

Fig. 8 Dome-shaped inflation of a flat circular shell. M3-C. p = 4,
ne] = 64. Deformed shapes colored by 13. Two views of the superim-
posed shapes for pex; = 0, 12, 24, 36, and 48

6.2.4 Discussion of the results

The performances of M1, M2, and M3 are different. At low
values of pex, M2 is closer to M1, and at high values, closer
to M3. That is because the bending stiffness plays greater role
at lower pex values, and the out-of-plane deformation plays
greater role at high pex values. The out-of-plane deformation

Fig.9 Dome-shaped inflation of a flat circular shell. p = 4, ne; = 64.
Deformed shapes at pex; = 48. Superimposed shapes from M1-A (red),
M2-B (blue), and M3-C (orange)

50
40

30

DPext

20

10

—MI1-C—M2-C —M3-C

Fig. 10 Dome-shaped inflation of a flat circular shell. p = 4, ne] = 64.
Pext as a function of d. We note that the A and B solutions are essentially
indistinguishable from the C solutions

50
o 7

30| .

Dext
= N

20 | .;f;:.- 1

T
e,
|

10

0 5 10 15 20
d

------- M2-B--- M3-A - M3-B

Fig. 11 Dome-shaped inflation of a flat circular shell. p = 4, ne] = 64.
Pext as a function of d. We show how far it was possible to compute
with M3-A and M3-B and how close those solutions are to the M2-B
solution

plays greater role at higher peyx values because the shape of
the lower surface plays greater role.

When the A and B solutions are computable, they are
essentially indistinguishable from the C solution. We get
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M (hn)o A

X1

|z
W()—E

Rigid bar

(hi)o

X1

M

Fig. 12 Rolling of a rectangular plate. Problem setup

full robustness and computability range by including all the
quadratic terms in the metric-tensor representation.

6.3 Rolling of a rectangular plate

6.3.1 Problem setup

A straightrigid rod is attached to a rectangular plate of £( x wg
as shown in Fig. 12. One edge of the plate is clamped, and the

angle 6 along the opposing edge is increased in a sequence
of steady-state solutions. The required moment M supplied

@ Springer

Table 2 Rolling of a rectangular plate. Parameters

50 b4
wo 7
(ht)o 0.1,0.2

Constitutive model Mooney-Rivlin

Elastic moduli Cio=0.4, Cyp1 =0.1

Fig. 13 Rolling of a rectangular plate. Mesh with p = 4, ne; = 16x4

o e
™y

)
(©)
[ —
090 095 1.00 1.05 1.10

Fig. 14 Rolling of a rectangular plate. M3-C. (k)0 = 0.1. Deformed
shape, colored by Az, at0 = 0, % T, 37” ,and 2. Three different views,
(a—c), and we see in (d) the half-plate with version of (b)

by the rod is obtained by integrating over the edge. We note
that at both ends, the midsurface tangent angle is given, but
the rotation around the normal direction is free.

6.3.2 Computational conditions

The Mooney-Rivlin material model is used. The parameters
are given in Table 2. With symmetry along the x; axis, we
compute only half of the plate. The half-domain mesh is
made of uniform B-splines with p = 4 and 16 x4 elements,
as shown in Fig. 13.
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1.2x1073
1.0x1073 |
8.0x107* |- .
S 6.0x107* 1
4.0x107* | 1
2.0x107* | 1
O !
0 T 2
0
--- M1-A--- M2-A--- M3-A
...... MI1-B - M2-B M3-B

—M1-C —M2-C—M3-C

Fig. 15 Rolling of a rectangular plate. (hm)o = 0.1. M as a function
of 6

k.
e

090 095 1.00 1.05 1.10

Fig. 16 Rolling of a rectangular plate. M3-C. (hy)o = 0.2. Deformed
shape, colored by A3,at6 = 0, % T, 37” and 2. Three different views,
(a—c), and we see in (d) the half-plate with version of (b)

6.3.3 Results: (hi)o = 0.1

Figure 14 shows the deformed shape at different values of 6,
and Fig. 15 shows M as a function of 6.

6.3.4 Results: (hyy)o = 0.2

Figure 16 shows the deformed shape at different values of 6,
and Fig. 17 shows M as a function of 6.

6.3.5 Discussion of the results

The trend is the same for (i, )9 = 0.1 and 0.2. From Figs. 15
and 17, M1 is stiffer than M3. M2 is stiffer than M1 for A and

0.010
0.008 |
0.006 | e
=
0.004 | .
0.002 | |
0.000 L o
0
- MI-A--- M2-A--- M3-A
------ MI-B - M2-B - M3-B

—MI1-C—M2-C —M3-C

Fig. 17 Rolling of a rectangular plate. (hy)o = 0.2. M as a function
of 6

B, and they are almost the same for C. We also see that A is
stiffer than B, and B is stiffer than C. The difference between
M3 and M1 is more than the difference between M1 and M2
for all of A, B, and C. This implies that in bending-dominant
problems, the out-of-plane normal stress has larger impact
than the out-of-plane deformation. In fact, in this example,
just accounting for the out-of-plane deformation makes the
response stiffer.

6.4 Pinching of a cylindrical shell
6.4.1 Problem setup

Figure 18 shows the cylindrical shell, with midsurface radius
ro and length ¢, and how a uniform vertical force is applied
along the top longitudinal line, with the bottom longitudinal
line simply-supported. The uniform vertical force per unit
length is F/£y. As F is increased, the midsurface displace-
ment in the —x3 direction, d, measured as shown in Fig. 18,
increases.

6.4.2 Computational conditions

The neo-Hookean material model given by Eq. (283) is used.
There are two different thickness values. The parameters are
given in Table 3. With the symmetry condition, we com-
pute only one-fourth of the cylinder. The mesh is made of
uniform B-splines in both the circumferential and longitu-
dinal directions. The mesh is built in the circumferential
direction by starting with full-circle periodic B-splines with
equally spaced control points and splitting that into half by
knot insertions. We do that for each ngj, to reduce the differ-
ence from the exact arc. Our coarsest mesh has 8 elements in
the circumferential direction and 3 in the x; direction. The
meshes used have various combinations of n and p, com-
ing from ne] = 8x3, 16x6, 24x9,32x 12, and 48x 18, and
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Simply-supported

X3

I (hao

Simply-supported

Fig. 18 Pinching of a cylindrical shell. Problem setup

Table 3 Pinching of a cylindrical shell. Parameters

o 0.09
(ht)o 0.01, 0.02
Lo 0.3

Constitutive model neo-Hookean

"w 1

p = 2,3, and 4. Figures 19, 20, and 21 show, as three exam-
ples, meshes with 8 elements in the circumferential direction
and p = 2,3, and 4. The figures also show the radius of
curvature, which of course should be constant in the exact
representation. Except for the mesh with 8§ elements in the
circumferential direction and p = 2, the deviation from the
exact radius of curvature is not noticeable. The radius of cur-
vature with p = 2 is continuous in the figure, but that is just
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Fig. 19 Pinching of a
cylindrical shell. Control mesh,
physical mesh, and radius of
curvature. Mesh with p = 2 and
8 elements in the circumferential
direction. The radius of
curvature is plotted over the
surface, in the normal direction

Fig.20 Pinching of a
cylindrical shell. Control mesh,
physical mesh, and radius of
curvature. Mesh with p = 3 and
8 elements in the circumferential
direction. The radius of
curvature is plotted over the
surface, in the normal direction

Fig.21 Pinching of a
cylindrical shell. Control mesh,
physical mesh, and radius of
curvature. Mesh with p = 4 and
8 elements in the circumferential
direction. The radius of
curvature is plotted over the
surface, in the normal direction

for the undeformed configuration, and it can be discontinuous
in the deformed configuration.

6.4.3 Results: (hyn)o = 0.01

Figures 22, 23, 24, and 25 show, for M3-C and p = 4,
nel = 96, the deformed shapes for different F values. Fig-
ure 26 shows, for p = 4, ngg = 96, and F = 8x1072,
the deformed shapes for M1-A, M2-B, and M3-C. Figure 27
shows, for p = 4, ngg = 96, F as a function of d for all
combinations of the methods. Figure28 shows, for M3-C,
mesh refinement studies with F = 4x107> and 8x1077.
Figure 29 shows, for the purpose of validating M1-A and
M2-B, mesh refinement studies for M1-A, M2-B, and M3-
C, again with F = 4x107> and 8x107>,
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@O0

|
0.95 1.00 1.05 1.10

Fig. 22 Pinching of a cylindrical shell. M3-C. (hy)o = 0.01. p = 4,
nel = 96. Deformed shape, colored by A3, when F =0

- Je

||
0.95 1.00 1.05 1.10

Fig. 23 Pinching of a cylindrical shell. M3-C. (hp)o = 0.01. p = 4,
nel = 96. Deformed shape, colored by A3, when F = 4x 1073

Fig. 24 Pinching of a cylindrical shell. M3-C. (hn)o = 0.01. p = 4,
nel = 96. Deformed shape, colored by A3, when F' = 8x 1073

Fig. 25 Pinching of a cylindrical shell. M3-C. (hp)o = 0.01. p = 4,
nel = 96. Superimposed views of the deformed shapes, colored by A3,
when F =0,2x1073,4x107,6x107>, and 8x 1073

Fig.26 Pinching of a cylindrical shell. (¢,)0 = 0.01. p = 4, nel = 96.
Superimposed views of the deformed shapes when F = 8.0x1077.
MI-A (red), M2-B (blue), and M3-C (orange)

9%x107°

6x107° | .
K

3x1075 - a

L L L
0.00 0.04 038 0.12 0.16

cc- MI-A--- M2-A--- M3-A
------ MI-B - M2-B - M3-B
—MI-C—M2-C—M3-C

Fig.27 Pinching of a cylindrical shell. (2¢,)0 = 0.01. p = 4, nel = 96.
F as a function of d

6.4.4 Results: (hyy)o = 0.02

Figures 30,31, 32, and 33 show, for M3-C and p = 4,
nel = 96, the deformed shapes for different F values. Fig-
ure 34 shows, for p = 4, ngg = 96, and F = 6.0x1074,
the deformed shapes for M1-A, M2-B, and M3-C. Figure 35
shows, for p = 4, ngg = 96, F as a function of d for all
combinations of the methods.

6.4.5 Discussion of results

From Figs.27 and 35, M2 is stiffer than M1, and M1 is stiffer
than M3. We also see that A is stiffer than B, and B is stiffer
than C. The difference between M3 and M1 is more than the
difference between M1 and M2 for all of A, B, and C. Again,
this implies the out-of-plane normal stress has large impact.

From Fig. 28, we see that the convergence rate for M3-C
is roughly pth order. From Figs.26 and 34, we see that the
differences between methods for (i) = 0.01 are not as
significant as they are for (hg)o = 0.02. However, what we
see in Fig. 29 is that, even the converged solution from M1-
A and M2-B can be obtained with M3-C using the coarsest
mesh.
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L*-norm error
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Fig.28 Pinching of a cylindrical shell. M3-C. (hw)o = 0.01. L2-norm
of the difference compared to the mesh with p = 4 and n, = 864.
F = 4x107 (top) and 8 x 10~ (bottom)

6.5 Uniform hydrostatic pressurization of the
pinched cylindrical shell

6.5.1 Problem setup

A uniform hydrostatic pressure p is applied to the pinched
cylindrical shell from Sect.6.4. We integrate po, over all
the physical surfaces. Because of the symmetry assumed in
the computations, for the purpose of evaluating the surface-
integration accuracy, we can only check the x3 component of
the force. We use the deformed shapes obtained for (hg,)g =
0.01, with ngg =96 and p = 2, 3, and 4.

The total surface area for the full cylindrical shell in the
undeformed configuration is So = 4mrg (o + (hn)o). We
computed only with one-fourth of the cylindrical shell. The
symbol f1 will represent the force obtained by integrating
Poo Over the physical surfaces of the one-fourth cylindrical
shell. Due to the symmetry, we can write
£ = 41f, - esl. (117)
where e3 is the Cartesian basis vector.

We will use nguad as a parameter representing the level
of integration effort. On the upper and lower surfaces, we
will have nqyag Xquad integration points in the 2D paramet-
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Fig. 29 Pinching of a cylindrical shell. (hg)o = 0.01. Validation of
MI1-A and M2-B. Mesh with p = 4 compared to M3-C with p = 4 and
el = 864. We also show M3-C as a reference. F = 4x107> (top) and
8x 1073 (bottom)
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Fig. 30 Pinching of a cylindrical shell. M3-C. (hp)o = 0.02. p = 4,
nel = 96. Deformed shapes, colored by A3, when F' = 0
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Fig. 31 Pinching of a cylindrical shell. M3-C. (hy)o = 0.02. p = 4,
nel = 96. Deformed shapes, colored by 13, when F' = 3.0x 1074
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Fig. 32 Pinching of a cylindrical shell. M3-C. (hp)o = 0.02. p = 4,
nel = 96. Deformed shapes, colored by A3, when F' = 6.0x 1074
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Fig. 33 Pinching of a cylindrical shell. M3-C. (hp)o = 0.02. p = 4,
nel = 96. Superimposed views of the deformed shapes, colored by A3,
when F =0, 1.5x107#,3.0x107%,4.5x 107, and 6.0x10~*

e

Fig.34 Pinching of a cylindrical shell. (¢,)0 = 0.02. p = 4, nel = 96.
Superimposed views of the deformed shapes when F = 6.0x10~%.
MI-A (red), M2-B (blue), and M3-C (orange)
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Fig.35 Pinching of a cylindrical shell. (¢,)0 = 0.02. p = 4, nel = 96.
F as a function of d
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Fig. 36 Uniform hydrostatic pressurization of the pinched cylindrical
shell. [[f]] /(pooSo)
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Fig. 37 Uniform hydrostatic pressurization of the pinched cylindrical
shell. 4] 1/ (poo So)

ric space. On the edge surfaces, we will have nquad Xnquad
integration points in the tangential parametric space and
thickness direction.

6.5.2 Results and discussion

Figures 36 and 37 show |/f|| /(peoSo) and 4 ||f1 || /(PooS0)-
From Fig.36, we see that, with sufficient integflation effort,
the machine accuracy can be reached with p = 3 and 4,
but not with p = 2. From Fig.37, we see that the force
value that is not expected to be zero is reaching almost high
enough accuracy with nguag = 3. That is less than or equal
to the typical integration accuracy requirement in solving the
structural mechanics equations.

7 Concluding remarks

This was Part Il of a multipart article on a hyperelas-
tic extended Kirchhoff-Love shell model with out-of-plane
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normal stress. We start with an augmented formulation
that includes the pressure as a Lagrange multiplier and
then eliminate it by using the geometrical representation of
the incompressibility constraint. The resulting model is an
extended one, in the Kirchhoff-Love category in the degree-
of-freedom count, and encompassing all other extensions
in the isogeometric subcategory. The vector form of the
equations used in Part I provides good physical intuition
about the formulation, and the tensor-coefficients form helps
with efficient implementation. We included ordered details
as a recipe for making the implementation practical. The
implementation has two components that are not be obvi-
ous but might be critical in boundary integration. The first
one is related to the edge-surface moment created by the
Kirchhoff-Love assumption. The second one is related to
the pressure/traction integrations over all the surfaces of the
finite-thickness geometry. It gives us divergence-theorem-
consistent representation in the integrations when the basis
functions have C? continuity.

We have presented test computations for dome-shaped
inflation of a flat circular shell, rolling of a rectangular plate,
pinching of a cylindrical shell, and hydrostatic pressurization
of the pinched cylindrical shell. We computed with neo-
Hookean and Mooney—Rivlin material models. We evaluated
the effect of the terms added in the extended model. In-plane
stress is already represented well in all other extensions of
the isogemetric Kirchhoff-Love shell model. However, if we
have pressure acting on the upper or lower surface, a good
representation of the out-of-plane deformation is required.
In bending representation, both the out-of-plane deforma-
tion and out-of-plane normal stress are important, and the
out-of-plane normal stress has a larger impact. In terms of
the robustness of the computation, the quadratic term in the
metric tensor plays a significant role when we account for the
out-of-plane normal stress. With uniform hydrostatic pres-
surization of the pinched cylindrical shell, we demonstrated
the divergence-theorem-consistency when using a midsur-
face representation with C? or higher continuity. To have
machine accuracy exactness in that consistency, the integra-
tion accuracy needs to be high. However, a level of accuracy
comparable to the overall solution accuracy might be suffi-
cient.
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A Tensor notation and operators

We explain the basics of our notation in the context of second-
order tensors. We assume that all tensors can be represented
by the dual basis system. We use the symbols A, B, C, and
D to represent the second-order tensors. A tensor can be rep-
resented as

A=A"g.g, (118)

= Agpg%e’, (119)
where g, and g* are the covariant and contravariant basis
vectors. When the basis vectors are obvious or assumed,
we will use the representation A®®, where e serves as an
index position indicator for whether the tensor components
are covariant or contravariant. We note that this is just for rep-
resenting the components, but it also represents, if needed,
the tensor by imagining the omitted basis vectors. After an
operation, if we need to use any of the remaining indices as
a dummy index, we do that by placing that index outside a
pair of brackets. For example,

(120)
(121)

A-B= AaﬂBﬁyg"‘gy
=[Aw - B*]) g8,

With Eq. (121), we do not need to use the dummy index S,
and the notation provides more physical intuition than Eq.
(120).

A.1 Determinant

The determinant of a tensor can be written as

det A = |A**| |geel . (122)
where goe represents the covariant metric tensor.

A.2 Trace

The vector-notation trace will be interpreted as

trA = A% gop, (123)
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and the matrix-form is interpreted as
rA®® = A%, (124)
A.3 Symmetries of a fourth-order tensor

We denote the components of a fourth-order tensor as Xyg, 5.
There are two types of symmetry. The major symmetry is

XaﬂyB = Xy&aﬂ~ (125)
The minor symmetry is
XaﬂyB = Xoc/%ya X(xﬁy(S = Xﬂayé- (126)

A.4 Fourth-order tensor products

Putting two tensors together without an operator in between
generates a fourth-order tensor:

X =AB. (127)
With the index notation, we can write this as
Xopys = AapBys. (128)
We can also write it as
Xapys = [AeeBaalugys - (129)
We also define the following fourth-order tensor:

Y=A0OB=BOA. (130)
With the index notation, we can write this as
Yagys = Agy Bgs + Buy Aps I AysBpy + BusAgy .

(131)

Remark 14 This operation brings minor symmetry. If A and
B are both symmetric, we will then have also major symme-

try.

We can also express the fourth-order tensor of Eq. (130) as

Yaﬂy& =[Aee © Boo]aﬁyé . (132)

A.5 Double contraction between fourth- and
second-order tensors

We define the double contractions between fourth- and
second-order tensors as

[Keeeo 1 A4%°] 5 = Xopys A7, (133)

(A% Xeese] 5 = A Xapys. (134)
We have the following identities:

A-(C+CT)-BT+B.(C+CT)-AT

AOB:C= ) ,
(135)

AT.D+D")-B+B"-(D+D")-A

D:AOB= ( + ) Z_ ( + ) .
(136)

In general, the operation © has priority over the double con-
traction. We note that the following relationship holds:

AOB:C=A0OB:C=C:ATOB",
D:(AGB:C)=D:A0B):C.

(137)
(138)

Because of Eq. (138), we can omit the parentheses; i.e.,

D: AGB:O)=D:A60B):C=D:A0B:C.
(139)

When C and D are symmetric, we can reduce the opera-
tions to

A-C-BT+B-C-AT

AOB:C= . , (140)
AT.-D.-B+BT-D-A
D:AOB= ; . (141)

We can also express the operation given by Eq. (135) as

[Aoo 0} Boo]algyfS CyS
. A%YY (Cya + ng) BF 4+ Bov (Cya + Csy) APBS
= 1 .

(142)

A.6 Double contraction between fourth-order
tensors

The double contraction between two fourth-order tensors is
defined as

[Keoeo : ¥***] 7% = Koy Y2 (143)

B

A.7 Transpose of a fourth-order tensor with minor
symmetry

The transpose of a fourth-order tensor with minor symmetry
is

g \" B
(x%) =%, (144)
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B Geometrical concepts

The concepts we cover here are applicable to both unde-
formed and deformed configurations, but we explain them
for the deformed configuration. The position in the thickness
direction is z.

B.1 Midsurface curvature tensor
We define the curvature tensor as
i =K,p8°8’. (145)

The principal curvatures are k | and k'3, and the corresponding
normalized eigenvectors t; and t,. With that, we define

1

oM =5 (K1 +%2), (146)
KG = K1K2. (147)
Then we can write
K =11t + katoty, (148)
and write
K2 =7t + ookt (149)
From the four equations above,
wgh =k : Lk —k2, (150)

N ——

=2kM
where
I, =1—nn. (151)

The principal curvatures come from the solution of the char-
acteristic equation

%2 —2kmk + kg =0, (152)
and they are

K1 =*M — /Ky — KG, (153)
iy = iom + /Ky — <G, (154)

where k1 < k. When kyz = —1, the integration arclength
in the kth principal direction is zero. From that, we have the
restriction kxz > —1. Then, we have the range limitations

if kp >0, (155)
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1
z<——

— if k1 <O.
K1

(156)

We note that if kg < 0, then we have both range limits:

1 1

—_——<ZI<-—-— (157)
K2 K1

B.2 Area

By definition, the ratio between the areas at & 3 and midsurface
is

A [ 1]
A _ Vel (158)
A Iz
This can be obtained from the tensor
A = gop2g” (159)
and we get
A2 .
(:) = det A. (160)
A

Because we are in a 2D parametric space, the determinant,
the third principal invariant, is equal to the second principal

invariant:
L (/e \2 o
detA = 3 ( :12) _A2: (161)
~ 1 ~
=A:- L -Lob):A (162)
—_—
EDZ
From Eq. (159),
A = (Bup + Wopz + Tup?®) BT (163)
=1, + 2z + K2Z%. (164)
Rearranging Eq. (150), we get
iK? = 2k — kg, (165)
and we can express A as
A= (1 —EGZZ) b + 2 (1 + ©mz) 7% (166)
We also note the following identities:
1
Dy : I, = 512, (167)
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Dy :k == Q2kmly — k), (168)
ILL:Dy: I, =1, (169)
ILLb: Dy:k=k:Dy: 1) =km, (170)

kKg=k :Dy k. (171)
We can express det A as
detA=A:Dy:A (172)

(1-z0z2)24-4(1-EGZZ)(14—EMz>EMz

+4%Gz% (1 + kmz2)? (173)
2
- (1 + 2wz + EGZ2) . (174)
Thus, we obtain
AR) = 1 + 2kmz + kg2 (175)

We now investigate about A for kg =0orkg #0.

When kg = 0, Eq. (175) is linear. If k is also zero, the
area is a constant value. If Ky # 0, the minimum area is
zero, at 7 = —%, which will be one of the limits in Egs.
(155) and (156).

When kg # 0, by setting A(z) = 0, we obtain

—im /K3 — KG
7= VM (176)
KG
—2Kkm £ (K2 — K1)

2KG

(177)

We will call the two solutions z; and z, and with that,

—2km— (ko —xk1) 1

71 = — =——, (178)
2KG K1
—2kMm + (ko — K 1
. ek VR (179)
2KG K2
The local extremum is at z = —%4 and
— — — 2
A (—_—M) SV i (180)
KG KG 4G

If g > 0, then either z < zand x» > O or z < z; and
k1 < 0. IfEG < 0, then z1 < z < zp and the maximum area
isatz = —%.

Remark 15 What is stated in the above paragraph is equiva-
lent to the statements in Eqgs. (155) and (156).

B.3 Variations of A and A

We derive S A first and set the location to the midsurface to
obtain § A. We start with

A= gl (181)
and take logarithmic variation of this:

1
SInA = —=5|geel- (182)

2A2

Because metric tensors are invertible, their variations can be
obtained by the Jacobi’s formula:

81800l = 1800l 8% 8gup (183)
= A2g°‘ﬁ8g,15. (184)
With that, Eq. (182) becomes
1
SInA = Eg“ﬂ(Sgo,ﬂ. (185)

This can be expressed with the basis vectors. By using the
identity

88ap = 08y - 85 + 8o - 88p (186)

and the symmetry of the metric tensors, we get

snA =g*sg, - g, (187)
=dg, - g% (188)

For the second variation, we start from Eq. (185), and
obtain

1 1
848pIn A = Esbg“ﬁaagaﬂ + Eg“ﬂsaabgaﬂ (189)

1 L 1) (1) 5 1
= —E(Saga,g [ 0O¢ ]aﬂy Svgys + Egaﬂaafsbgaﬂ

(190)
The midsurface versions are
.
S§InA = Eg 88ap (191)
_ gaﬂ(ggaﬂ (192)
and
5ubpInA = — 26,75 [2% © TP 6,7, + ~7P8.8,F
abpInA = - a8up [8°° O 2] b8ys + 58" 8abhBap
(193)
= —ee —ee 5o~ =0 =
= —28,8qp [g ©g ]aﬂy pEys + 8 '55(13},80,/3.
(194)
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B.4 Variations of k\, and kg

We first write Ky and kG as

KM = 5'? I, (195)
KGg = detk (196)
=k:Dy:k (197)
) 1_ _
=2y — Sk K (198)
The variation of k' is
_ I _
Skm = ESK | (199)
=8 (Kapg®”) (200)
1 1
- —Ezaﬁ 8Zup + Eg"‘ﬂ SKap (201)
N——
KM _ KM
‘)g(xﬁ _}Wotﬁ
oK oK
= 2 M SEus + M R0 (202)
d af Kap
The variation of kg is
_ e |
SkGg = 4k MoKk M — 55 (Ka/sK ) (203)
ST B si L swob
= 4kMOKM — EK Kap — Ekalg&( (204)

1
= diemdRy — S SFup + Fup[87° © 58,5

1_ _ 8o
— EKaﬁ[g.. QgOO]a,BV 8Ky8 (205)
= (@ — 2kMk™) 63,5 + (2kME™F — KF) Sk up
=—rg*
(206)
= —%G8" 88,5 + (2kmE™F — k%) 6% up (207)
—— —_—
_ BEG _ kg
T 08ap T kg
K 0K
=228 §805 + 2 5up. (208)
Bgaﬁ 0Kap
The second variation of k' is
_ _ 4d%m . _ _ 20%m .
8a8pkM = 84€ap ——F——0pEys + 8aEap ——————0ObK ys
3gaﬁagy5 agaﬂ Kys
20%km 3%kem
8aKap ————8pE. SuKap ————— Spk
T Oafeap 3Ko¢/33§y8 bEyd + Salkap 8?0033?7,5 bere
=0
oK oK
+ 2 8u8pEap + ~—-BadpRap. (209)
Bgaﬂ 0K ap

@ Springer

where
9%, 1 9P
_ l\f = — [E.. @Eoo]aﬁya , (210)
agaﬂagyé 2 8g}/6
3%keM 10g*f I e o —eetefys
=5 = _[groz]. e

0Zupdys 2085 2
With that,

— - —ee0 —ee [P
8adpin = SaFap [T O 7] 8455
—= —ee ~ —oo [
— 8a€ap [g ©g ]Otﬁ]/ Spkcys
s —ee —0e 6 b= —
— 8aKop [g ©g ]Dtﬂ)/ SpEys — Eaﬁ(saabeaﬁ

1
+ Eg"‘ﬂaaabza,g. (212)
The second variation of kg is
_ _ 4¥%G . _ _ 20%kG . _
8a0pKG = 8a5aﬂ 778198)/8 + 8[18(1/3 p— 817’(;/8
8ap98ys 084p0Kys
+ 84%, 20%G +35 Pre s
K — — bEVS K — — bKys
o kapdgys T dapiys
oK
258 5,655 + SapFap 213)
753 Q,
where
327(‘, —ap oKkg  _ 8?0”3
- =8 — — KG—
8gaﬂagy5 agy6 88y5
— ’?G [E”E" + goo o) goo]aﬂ}’a , (214)
3%k, K
—— =g 0 = —oknER”’ + 3R,
8gaﬁ81cy,3 0K ys
(215)
kG _apdkm 0K
0K qp 0K s - 0K ys 0K ys
—00—00 —o0 —oe 8
=[z"g" —g 05", (216)
Thus,

848picG = SaEapdicG [8°°8°° +3°° O g"]aﬁys SpEys
— 848058 (4mE"° — 287°) 8,5
— 8akap (4Mg™P — 26°P) V08,5 s
+8Fap [3°°8" — 7 © "] 5%y
— 2kGE8*P 848p8ap + (2kME™P — KP) 848pKup.
217)
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B.5 Variations of Eaﬂ
We define @, as the covariant components of k2:
N -
: 8.8p- (218)

We show the variations of wg in terms of variations of g4
and K og.

B.5.1 6@qp
We take variation on Eq. (218) as follows:

8@up = SKay 8" Ksp + Koy 8V 8Ksp — 2Kay 87 ¥ 88 18K sp

(219)
= 8Fuy 8" R + [(af.. g .E..)T]aﬂ
— 2oy 8V X 8E 4 8°Ksp (220)
=2[%0e : (850 (8" - 7aa)) ]
— 2[8Fae 1 ((8°° -Kae) © (8 - Fas))] o (221)
= 265 [ O 7" 1 Bou OFaa]
— 2875 [2° O T Kae OFaa] - (222)

For notational convenience, we introduce the symbols:

= \7? —ee — 178
(W) =BT oF TworL]",, (223)
(W )}/5 _ [—oo Q_.. S oY3 ]78 (224)
K p =18 8 8ee WKee af’
and we write
__\V$ — \ V¢
5oy = 2055 (We) +26%,5 (W) . (225)
ap af

B.5.2 8a0,@qp

The second variation of g is obtained by taking the varia-
tion of Eq. (225):

—_\ VS
8a0bBap = 28485 (WS)

«,

—_ \ VS
26,657 (W)
5"' aObKy§ K op

___\V$8 —_\V9
+ 20458 (We) -+ 28250 (We)
af af
(226)
where
— \78 —ee —e0 , — — 12
(Sb (Wg) op = _Z[Sbg O g Kea © KO.] of
— 22" 0T R OFw]”yy (227

= 4[(B** - pFe T**) O™ 1 Fae OFwa]”’, 5
— 22 OF e OFw]”yy  (228)
= —4[3" 07" us © By : (Ws)"“]yiﬁ
— 22" O T Fae O 8pFaa] s (229
5 (Wk)yiﬁ =[5° . O (58" Fue + 2% 55%0) ], 4
(230)
= —2[5:0 (3% - 5pFee - 2°° .E..)]V‘Lﬂ
+[2" 08" . OHFw], (23D
= —2[2" OF" : Zue © (BF0e 18" Faa) ]
+[2" 08" Fu O8FwW]"y . (232)

We will see these terms only as part of the contractions with
5P We write those contractions as

—__ \ ee 1 Z
g.. © (Shgoo : (Wé‘> ] Saﬂ
Y aﬂ

T R O BT wa]”’,, 5

, (233)

. ((Wa).... : S") 07" (m"]
(235)

S s . ~
8}, (WK)V y Saﬂ ) [goo 10 goo . g.. o) (8;,5.. . E" . F..)])’saﬂ Sotﬂ

+[2° 07" B O BT, 5 (236)
S5 ) 08 ]
i[5 o ar.]” (237)
Then, we obtain
84Ty (Wg)y(S 5
= —b.up[4 ((Wg) 5o g"]aﬁy‘sabgw
— suEap[2 (2 )@?"]aﬁy‘swy(s, (238)
(wyaa,,( ) y Sob
= —buFap [2(3°* Fuu 3 )@g“]am 55,5
+ duFap [ 5° @—"] " k5. (239)
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Thus, we can write

1 = QB _ = W op OX€ ha W op Cx€
2505bwaﬂs = 848pEap o SAC + 8abpKap p S
X€ XE€

— 84%up [4 ((Wg) ; 5) o §"]aﬂy88b§y5
— 8u€ap [2 (g" Koo - §--) o g..]"‘ﬁ%S

(s
[

go

— °« — —eoe —eoe apyd o _
_5a’(otﬁ *Kee " 8 )Gg ] 8175]/6

S.
afys
0 ?"] 4 (240)

+ 8aKap pkys-

B.6 Variations of &3

We express the variations of £3 in terms of variations of Eup
and K og.

B.6.1 &3

We take the variation of Eq. (12) and obtain

ASV +8AV =0, (241)
which gives us
8V =—VsInA. (242)
By definition, 8V and §A can be expressed as
.V v .
8V = ——8km + —okG + AsE’, (243)
3ICM aKG
.~ DA dA dA
SA = —8kkm + — kg + — 883 (244)
KM a ad
Rearranging Eq. (242), we get
A v v .
—V8InA = [ —8km + — kg + AsE? ). (245)
KM 0KG
With that, 653 can be expressed as
Vs — 3V Vv
83 =—=—(V8InA+ —dicm + — kG | - (246)
A aKM 3KG

Equation (246) is expressed in terms of the variations of £,
and kg as follows:

86% = 05ap QFF + Kap Q1. 247

@ Springer

where 0% = 0% (£3) and 0% = 0% (£3), which are
expressed as

1/~ v
Q?ﬁ(z)=—7<V§“ﬂ— Wb _aeg gaﬂ) (248)
‘ A KM
_ M.k v r OV \_up
= 2 4 KMa,M KGBEG 8
v v
- Wﬁ—zzGTg“ﬁ) (249)
KM G
1 N VoAV AV
=——= KM—— — KG— - —K
A ¢ M M Gafc 8 kM
(250)
1 _ ol o\ _ap
=—— | l14+zem — =Gz ) g*" — 2z )z, (251)
A 3
1(1aV v
Bz)=—= | —25" + — (2emg™? — 252
0% (2) A<28KMg +8EG(KMg 4 )) (252)
1(1(avV v v
= || = + ey — | 2% - P
A(z (a + KMBK(;) oG )
(253)
=1 (Lot aran P — s 2 (254)
=75 KMZ) g 3zlc z-.

Remark 16 A = 1 at z = 0, and it is possible to have A<l
(see Appendix B.2). Q?ﬂ is of order z to z°>, and Qﬁﬁ is of
order 72 to Z3.

B.6.2 8,0,&

We rearrange Eq. (246) as

cd e OV AV
A(Sé;?‘ =—V§lnA — aTSKM — T(SKG.

(255)
KM KG

We take another variation and obtain

A8a8pE> + 8, A8,
= —8,V8,InA — V8,8, In A

847 il Spiem + v 5*+82‘7553
— K —0pK —O0pK
M\ Semorem UM T demorg N6 T dremaz
=0 =0 __9A
sy
2 277 277
9 92V
— 84K % %G + SpE>
”KG< PN T et L e L )
——
=0 =0 __0A
=g
v v
- TsaSbEM - TSQSbEG. (256)
0K M 0KG
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Substituting Eqgs. (242) and (244) into this and rearranging _ lA A 0 g7d _ a,—A w4 g g 7 o7’
the terms, we get A\ 0z kM IKG
dA dA
N N _ . _ 9A - ( ©r? +2/<03Kg75>>, (261)
A8,8pE3 = V8, In A8y InA — V8,8, In A — 8“533_8”53 G
z .
] Q= - (“Q?ﬂ ( e +2xe§aﬂ)) 0y’
- SaEMaT8b€3 - 5a§3aT3bEM A\ 9Rm
M M U s (10A 5 0A o s
—5aKGﬁ5b§ — 3848 E(SMG
~ 1 8‘7 —eo0 S 752 3‘7 —aff (h=. =VS =V
+=—=[z"0 +2——5* (2rmg”’ %"
a aa_v‘s Spkm — ;_VS G- (257) A <BKM e e K(26)2)
KM K
Thus, (Bt o
\% 9A 1 s [0A s 1 08A _
8adpE> = = (84InA8,In A — 8,8, InA) —§ 53——5,,53 - ;Qsﬂ (aZQZ v
I 9A 9A L (24 pup 58V up )
_Z<6 KMaT+5 KG3_> 857 _A<3KGQE et | Brmg” —F)
1 (av “
;1 (04 9A + = (a[g“ 0z"] M) : (263)
— 84§ i aT(SbKM + 8—5bKG A\ okM
K R
1
1oV 19V Qﬁgyﬁzfa(a OO+ 55, T + o V‘S))
— = ———8u8piM — = = 8a8hKG (258) "
A KM A 9KG LA (( o —ap\ pys
_Xﬁ<<2KMg — kK )QV
By arranging the terms, we obtain
o (w7
8adpE> =5a5b§aﬁQ‘;‘ﬁ +aa8bfaﬁQ‘Zﬂ +8a5a/s<@?f y35b§y6 1OV o eee —ee o —verafyd 264
+5a§aﬁQg£y65bEy3 _’_6‘1?0”3@2!5)/55}75)/6 Aok [g sooees ] ' ( )
+ 8aRup Uik 81y s, (259)
B.7 Spatial derivatives of ¢3
where
We take the logarithmic derivative of Eq. (12) with respect to £¢
A d multiply Eq. (12 h side:
. 1 V[g"g"+2g"@*"]”‘ﬂ’”‘s AQaﬁst and multiply Eq. (12) on each side
A az ¢ ~F
; : —(A~0lnA oV — [~ 0lnAy Y
1 A A R 7
+0% (E)AKV’S +2K08Agy6>) where
KM 0KG
4 ( v —ee1aBVS ~ A Ao
-z [2* o7 aV oV okm 0V kg .. 3
— = — A 266
A\Oku - 98« ~ iy 8% | %G age Tt (266)
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+Kcﬂ[g”g"+g oz ] ) (260) % _ Vo KM 8V0 8KG ( ) 267
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0& 0Ky 08 0Kg 0&
- ((v 4KGa> el Rk
A G where K and K g are the undeformed-configuration versions of
- (v e v ) pa— 7y and K. The left-hand side of Eq. (265) is
kKGo— | |8
K
_ ﬁ —eoe —ee¥BYS Z v alnz ﬁ
43?1\/{ (e o] ) (V EES + agY
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AV aKMm
dicn 9EY

Ve ‘73an+
C\A\ e

From Eqgs. (246) and (247), we can write

1 ‘A/alanL N vV oxg
A a5« kg 0&*

1 ys_ 5
= _EQZ 8ys,a — QI}C/ Kys,a-

vV IxG 3

(268)

vV am
dMm 0EY

(269)

Thus, we get

_(.9lnA 3V
Alv +—

1 5_ S_
=A <_§QZ 8ys,a — QI): Kys,a +§,3a> .

(270)

The right-hand side of Eq. (265) can be written as the undeformed-
configuration version of the left-hand side:

— [~ 0nAy 9V
A0<V°asa+asa>

1 — _
= Ao (—5 (0} Gy = (@O} cOKysa+ (&) )

271)

where

(00 = ()} &) and (00} = (00)}° (&3), which are
expressed as

(00}’ (z0)

:-é((zﬁmiﬂ Al )6”_ ov fy5>
Ao KM 9K G dKM

272)
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0

Remembering that A3 = %, we get

1 ys_ 5
- EQZ 8ys.a — QI): Ky§,a +%—,3:1

1 — _
=13 (—E(Qag‘sGya,a7<Qk>g“1<ys,a+(53) ) (276)

,a

Thus,

1 ys_ 5
é,?(’x = EQZ 8ysa T QZ Ky§,a

@ Springer

,a

1 — _
— (5 QN Gysa+ (00} Kysa — (&) ) :

277)
Using Eq. (96), we get
& -
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, £ +
el (&), @ >0

C The elastic moduli considering thickness
deformation

The variation of the $*f = ng — 23853 ¢ is

g 0 op 9s°P 5 ap
§8%F = _Is0 s 180 §F33 — 21380 g% 8
Oy ys + Ex 33 35i508 3
—— N—
e
as33 533
233 af iso S0
— A3 S: —==35E SFE
— ~———
33y8 —=(C3333
= Ciso
+ 22353 g% 0 g** "5 E s (279)
_ (s 2 (B33 _ys 33y
- (Ciso - )‘3 <(Ciso g)/ + gaﬂ(ciso )
+3C5 s g
+2353 ([ 0 8** 1“7 + g ¢7%) ) 6E,5  (280)
= CoPYo5E, ;. (281)
From that, we get
~aByd B 2 33 s 33y6
C = Ciﬁy - )‘3 (Ciﬁ gy + gaﬂ(cisoy )
+ICE
o0 o0 8
+ 21353 ([g @ "] + g0 g7?). (282)

D Constitutive models

We test two constitutive models: neo-Hookean and Mooney—Rivlin
materials. The strain-energy density functions are

1
enH (C) = SH (trC —3), (283)

1
oMR (C) = C1o (trC — 3) + Coy (5 (we?—w(c-0)- 3) ,
(284)
where p is the shear modulus, and C( and Cy; are the coefficients

of the Mooney—Rivlin material model. The shear modulus in the
undeformed configuration is iy = u for the neo-Hookean material



Computational Mechanics

and g = 2(C1g + Co1) for the Mooney—Rivlin material. In this
article, we use these models in their incompressible-material forms.
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