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Abstract
The penalty-method-based node-to-segment (NTS) approach is widely employed in the explicit dynamic analysis owing
to its computational efficiency and implementation simplicity. However, the classical approach does not pass the contact
patch test and results in severe inaccuracies. This study attempts the accuracy enhancement of an explicit dynamic contact
analysis with minimum efficiency loss using the NTS algorithm with the modified area regularization technique (NTS-mAR).
The computational procedure is compared to an allied modified penalty-method-based NTS approach, i.e., the virtual node-
to-segment algorithm passing the patch test (VTS-PPT). Then, an extension to an explicit dynamic analysis framework is
attempted, wherein the speed of the contact force calculation significantly influences the overall computational efficiency.
The cost of the remaining computation was minimized by employing a lumped mass matrix and a one-point integration rule
for the internal force. Elastoplasticity was considered to extend its application. The accuracy improvement compared to the
classical one-pass NTS approach was similar for the modified approaches. The VTS-PPT approach requires more than twice
the cost of contact force estimation compared with the classical one-pass NTS approach. In contrast, NTS-mAR approach
induces a cost increase from 6 to 36% that of classical one-pass NTS approaches. For the given examples, the NTS-mAR
approach is beneficial when an improvement in accuracy is desired with minimum efficiency loss.

Keywords Contact algorithm · Penalty method · Modified node-to-segment approach · Explicit dynamic analysis ·
Computational speed

1 Introduction

Contact analysis using the finite element (FE) method typi-
cally involves a non-conformally discretized interface. For
such complicated situations, the node-to-segment (NTS)
approach [1–5] is used. This overcomes the node-matching
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limitations of the conventional node-to-node approach and
allows for a large deformation and sliding contact scenario.

This study focuses on the NTS approach combined with
the penalty method [6, 7]. Unlike the Lagrange multiplier
method under exact contact enforcement, the penaltymethod
allows penetration between the slave andmaster bodies. Such
a slight violation eliminates the need for additional vari-
ables, such as the Lagrange multiplier, and simplifies the
NTS approach. LS-DYNA [8] and Radioss [9] are represen-
tative commercial FE software that employ a penalty method
for the contact-impact simulation.

However, the classical one-pass NTS approach fails the
contact patch test [10]. Several remedies have been pro-
posed for penalty formulation, independent of those for the
Lagrange multiplier method [11–17]. This is because the
inaccuracy of the penaltymethod is primarily due to the char-
acteristics of the penalty parameters. The underlying idea
is to revise the constant penalty parameter so that it varies
along the contact elements while considering the geometric
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Fig. 1 Nonconformally discretized contact interface: a normal and b
pathologic cases

or material properties. The area regularization (AR) tech-
nique [18, 19] attempts to vary the penalty parameters in
proportion to the competence area of the slave node. Lee [20]
and Lee et al. [21] investigated the NTS approach using the
AR technique (NTS-AR) in a three-dimensional dynamic
condition.An examination of the frictional contact analysis is
presented in Ref. [22]. The NTS-AR approach improved the
accuracy of the classical one-pass NTS approach. It passed
the normal [19] contact patch test (Fig. 1a), in which all slave
nodes of each segment are projected upon a single master
segment. Moreover, LS-DYNA [23] functionally scales the
penalty parameter in terms of area, mass, or shell thickness.

Nevertheless, the aforementioned methods did not pass
the contact patch test for the so-called pathologic [19] sit-
uation (Fig. 1b), in which the slave segment spans multiple
master segments. This limitation was overcome by improv-
ing the NTS-AR approach to consider both slave and master
geometries. Zavarise andDe Lorenzis [19] proposed a virtual
node-to-segment approach that passed the patch test (VTS-
PPT). In this approach, the competence area of the virtual
node inside the slave segment is projected onto the master
segment and is utilized as a penalty weighting factor. The
contact force is distributed to the projected master segments
in accordance with the projected area.

The segment-to-segment (STS) [12, 24–26] and mortar
[27–36] approaches have been actively investigated over
the past few decades. These are well-established and have
been implemented in several FE software programs [8, 37],
exhibiting a high level of accuracy and stability. However,
they require significant computational costs, which is con-
trary to the NTS approach, despite recent efforts for efficient
contact simulation [38–40]. In this context, the classical one-
passNTSand alliedmodified approaches are expected to play
a major role when computational efficiency is desired with
moderate accuracy.

Recently, as another variant of the penalty-method-based
NTS approach, Kang et al. [41] proposed a NTS-AR

approach combined with a partial dual-pass scheme. This is
equivalent to the original NTS-AR approach in a normal situ-
ation. For the pathologic situation, the master nodes between
the slave projections additionally act as contact elements,
which take part of the slave penalty weighting factor. For
convenience, this is referred to as the NTS approach with
modified AR technique (NTS-mAR). NTS-mAR passed the
contact patch test with an improved accuracy equivalent to
that of the VTS-PPT approach. Furthermore, the absence
of a supplementary virtual node reinforced the simplicity of
implementation. However, the validation of NTS-mAR was
conducted within the implicit analysis in terms of accuracy.

For the modified NTS approaches of mid-fidelity to be
competitive in practice, efficient computation should be
achieved. Based on preliminary studies [41, 42], this study
attempted to extendNTS-mARapproach to an dynamic anal-
ysis including the elastoplasticity and investigated its overall
competitiveness. First, the overall procedure is described and
compared with allied NTS approaches. Subsequently, the
computational efficiency is examined in the explicit dynamic
analysis framework with a lumped mass matrix. Within such
a framework, the cost of contact force computation becomes
more crucial than that in implicit analysis because it excludes
the linear algebraic solver for global matrix computation.
To compute the internal force vector, dynamic analysis is
combined with the quadrilateral element of the one-point
integration rule. An elastoplastic model was considered to
include material nonlinearity. VTS-PPT, the evaluation of
which was also confined within the implicit static context
[19], is further extended to the same dynamic analysis frame-
work for the comparison.

2 Classical andmodified NTS approaches

This section introduces the preliminaries of the classical
one-pass NTS and its modified approaches. In this study,
the formulation and analysis of contact approaches are pre-
sented in a two-dimensional frictionless condition. The FE
of the linear interpolation function was employed because
the modified approaches, VTS-PPT and NTS-mAR, have
been formulated for linear interpolation [19, 41]. This is also
because the classical one-pass NTS approach generally deals
with the linearly interpolated FE [11].

2.1 Classical one-pass NTS approach

Figure 2 illustrates the contact element of the classical
penalty-method-based NTS approach. The slave node S on
the slave contact surface �sl

c penetrates the master segment
M1M2 on the master contact surface �ms

c . Subsequently, a
negative gap or penetration gN occurs along the unit normal
vector on the master segment n. Here, n originates from the
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Fig. 2 Contact element of the classical one-pass penalty-method-based
NTS approach

Fig. 3 Schematic of the patch test

closest point projection ξ1 = ξ̄1 from S to M1M2, whose
position is expressed by the contravariant convective coor-
dinate ξ1. The contact force at the slave node is determined
as F = εgNn, where ε denotes the penalty coefficient. For
master nodes M1 and M2, the contact force is applied in the
opposite direction proportional to each linear interpolation
function based on the projection ξ1 = ξ̄1. A detailed expla-
nation of the NTS approach is provided in Refs. [5–7].

The classical one-pass NTS approach with a constant
penalty coefficient along the slave nodes does not pass the
contact patch test. This paper presents a simple case to sup-
plement previous studies [19, 41] that extensively discussed
this drawback through numerous patch test cases. Figure3
shows the patch tests for two identical rectangular blocks. A
uniformly distributed pressure of p0 = 1N/m was applied to
the upper block, and the upper block sequentially pressed the
lower block. Here, the length l, elastic modulus E , and Pois-
son’s ratio ν were set as 1m, 1MPa, and 0, respectively. The
upper and lower surfaces were designated as the slave and
master surfaces, respectively. The analytical solution along
the interface is a uniform contact pressure, that is, a con-
tact force that achieves the local equivalence of the force and
moment. The corresponding penetration is also uniform. The
patch test validation checked if the assumption of uniform
penetration resulted in a uniform contact pressure.

Figure 4 depicts the penalty parameter distribution and
the corresponding contact force applied to each segment for
uniform penetration gN . When a contact force is applied to
a node between two segments, it is distributed proportion-
ally to the segment area. As shown, the NTS approach does

Fig. 4 Patch test of the classical one-pass NTS approach for uniform
penetration: contact force distribution

Fig. 5 Patch test of one-pass NTS-AR approach for the uniform pene-
tration: contact force distribution

not achieve local moment equivalence of the slave segments.
This is because the constant penalty parameter ε ignores the
discretization characteristics of the slave surface and those
of the master segments that include both force and moment
nonequivalence.

The NTS-AR approach [18–23] provides a simple solu-
tion for reflecting slave surface discretization. It employs a
distributed penalty parameter ε̂ and allocates the parameter
ε according to the competence area of each slave node. Here,
the competence area of a node is the sum of half the areas
of the neighboring segments. As shown in Fig. 5, the local
nonequivalence of the slave segments is resolved. However,
that of the master segments persists because the NTS-AR
approach does not consider the discretization of the master
surface, as the classical one-pass NTS approach.

Figure 6 shows the results of the numerical simulation,
wherein the contact pressure p was nonuniform. Here, the
previous assumption of uniform penetration is removed.
Therefore, for a contact approach that does not pass the patch
test, the penetration varies with the slave nodes to achieve
global equivalence, as shown in Fig. 7. Because the mag-
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Fig. 6 Patch test of the classical one-passNTSandNTS-ARapproaches
via numerical simulation: contact pressure along the slave surface

Fig. 7 Patch test of the classical one-pass NTS approach via numerical
simulation: deformed configuration for ε = 1 × 106 N/m. Scale factor
for the deformation is 5 × 104

nitude of nonuniform penetration depends on the penalty
parameter, the contact pressure distribution varies accord-
ingly.

2.2 Modified NTS approaches

The VTS-PPT [19] and NTS-mAR [41] approaches resolve
the aforementioned local nonequivalence by considering the
geometries of both the slave and master surfaces. However,
the relevant methodologies differ significantly from each
other. As illustrated in Fig. 8, VTS-PPT divides the slave
segment into two virtual segments. Subsequently, it inserts
a virtual node, which replaces the role of the existing slave
node, at the center of each virtual segment. For each virtual
node, a penalty parameter is allocated based on the area of
the virtual segment. As shown, local equivalence of the slave
surface is achieved because the contact force is applied at the
center of each virtual segment. For the local equivalence of
the master surface, the VTS-PPT approach projects the area
of each virtual segment as well as the virtual node. If the
projection of the virtual segment spans multiple master seg-
ments, the contact force is distributed according to the ratio
of the projection area to the master surface geometry. Other-
wise, the contact force is transmitted directly to the master
segment. As shown in Fig. 8, each part of the master surface,
divided by the existing discretization and projection of the
virtual segment, experiences force and moment equivalence.

Fig. 8 Patch test of the VTS-PPT approach for uniform penetration:
contact force distribution

Fig. 9 Patch test of the present NTS-mAR approach for uniform pen-
etration: contact force distribution

Insteadof inserting avirtual node, theNTS-mARapproach
employs amaster node for local equivalence, as illustrated by
Fig. 9. First, a contact pair is defined between the slave and
master segments, as in the classical one-pass NTS approach.
Then, the slave segment in which the nodal projection spans
multiple master segments is identified. The master node
between these multiple segments is projected onto the iden-
tified slave segment, and an additional contact element is
created. Penalty parameter regularization is based on a mod-
ified competence area, which is the sum of the half-areas
obtained from the nearest points between the nodes and pro-
jections. Similarly, local equivalence is observed within the
segments connecting nodes and projections in the compo-
nent.

Figure 10 shows that the numerical simulation using the
modified NTS approach passes the patch test, regardless of
the distributed penalty parameter employed, except for the
extremely large value that induces ill conditioning. Themod-
ified NTS approach ensures the local equivalence for each
contact segment, resulting in uniform penetration as depicted
in Fig. 11.

123



Computational Mechanics

Fig. 10 Patch test of VTS-PPT and the present NTS-mAR approaches
via numerical simulation: contact pressure along the slave surface

Fig. 11 Patch test of the present NTS-mAR approach via numerical
simulation: deformed configuration for ε̂ = 2.5 × 105 N/m2. Scale
factor for the deformation is 5 × 104

3 Computational framework

The accuracy of the modified NTS approach compared with
the classical one-pass approach was validated in the previous
section and in Refs. [19, 41]. Nevertheless, such accu-
racy requires additional computations. High computational
costs can render modified NTS approaches less competitive
than established high-fidelity schemes such as the mortar
approach.

It should also be noted that the importance of compu-
tational efficiency has increased, particularly for explicit
dynamic analysis. For each time step, the conventional
explicit solver minimizes the computational cost of the inter-
nal force by employing FE with reduced integration [43, 44]
and avoids global matrix computation using a lumped mass
matrix [45]. Thus, the cost ratio of contact force estimation
with respect to the total computation increases. Owing to
its efficiency, the classical one-pass penalty-method-based
NTS approach remains preferred for simulations using com-
mercial explicit dynamic FE software [8, 9]. Therefore, it is
necessary to examine whether the modified NTS approaches
enhance accuracy without significantly degrading the com-
putational efficiency in the explicit dynamic framework.

In this section, the computational frameworks of the
classical and modified NTS approaches are described. Addi-
tionally, the computational setup for the explicit dynamic
analysis is explained.

Fig. 12 Computational framework of the classical one-pass NTS
approach for contact force prediction

3.1 Algorithm comparison

Figure 12 depicts the computational framework of the clas-
sical one-pass NTS approach for contact-force prediction in
two steps. In Step A, each slave node detects its contact-pair
master segment. In Step B, the contact force for each paired
slave node is predicted. With the AR technique, the penalty
parameter estimation precedes, the computational cost of
which is negligible. Despite its inaccuracy, the classical
one-pass NTS approach consists of the simplest framework
compared with the VTS-PPT and NTS-mAR approaches.

The computational framework of the VTS-PPT approach
is illustrated in Fig. 13. Step A is the same as that in the
classical one-pass NTS approach, except that the procedure
is conducted for each virtual node. An additional Step M,
between Steps A and B, aims to reflect the characteristics of
the master surface discretization. The virtual segment related
to a paired virtual node is projected onto a master segment.
The algorithm then identifies the virtual segment projected
onto multiple master segments for further contact-force dis-
tribution. In Step B, the penalty parameter for each paired
virtual node is estimated based on the area of the virtual
segment. Subsequently, the contact force is predicted. The
contact force distribution is determined if the virtual segment
projection is associated with multiple master segments.

There are Nsl
n slave and 2Nsl

n − 2 virtual nodes if Nsl
n − 1

slave segments are adjoining. This implies that the com-
putational cost of Step A in the VTS-PPT approach is
approximately twice that of the classical one-pass NTS
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Fig. 13 Computational framework of VTS-PPT approach for the con-
tact force prediction

approach for a sufficient number of slave segments. The
tendency of the cost increase is similar in Step B. More-
over, contact force distribution is required for the virtual
node associated with multiple master segments. The com-
putational cost of Step M is expected to be relatively small
comparedwith those of StepsAandB.This is because the vir-
tual segment is projected successively onto the paired master
segment and its closest segment, not onto an arbitrary seg-
ment.

Figure 14 illustrates the computational framework of the
NTS-mAR approach. Step A is identical to that of the clas-
sical one-pass NTS approach. Step M identifies the slave
segment associated with multiple master segments. Subse-
quently, the master node between the slave node projections
is projected onto the identified slave segment. In Step B, the
penalty parameter is estimated based on the modified com-

Fig. 14 Computational framework of the present NTS-mAR approach
for the contact force prediction

petence area, and the contact force is predicted for both the
slave-to-master and master-to-slave contact elements.

In contrast to the VTS-PPT approach, Step A of the NTS-
mAR approach is as efficient as that of the classical one-pass
NTS approach. The increase in computational cost mainly
occurs in Step B owing to the additional master-to-slave con-
tact elements. In a typical situation, the discretization density
of the master surface is equal to or lower than that of the
slave surface. If there exist Ñ sl

n paired slave nodes for such
discretization, a maximum of Ñ sl

n − 1 master-to-slave con-
tact elementswill be generated. Therefore, the computational
cost of the NTS-mAR approach for Step B is approximately
twice that of the classical one-pass NTS approach. Similar
to the VTS-PPT approach, the computational cost for Step
M is expected to be lower than that for Steps A and B. The
slave segment associated with multiple master segments can
be easily identified by determining whether two end nodes
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are projected onto different master segments. Moreover, pro-
jection of the in-between master node does not require the
detection of the target segment because it is conducted on a
pre-identified slave segment.

The NTS-mAR approach, while algorithmically efficient,
has a two-pass contact strategy that will potentially lead
to an over-constrained scenario, or locking phenomena. As
outlined in Ref. [41], employing a partial two-pass contact
strategy for the selected master-to-slave elements will mit-
igate the locking phenomena, except when faced with an
exceptionally large penalty parameter value. However, the
NTS-mAR method is not entirely free from locking, as it
will eventually experience such phenomenon for increased
penalty parameter values.Consequently, it is not theoretically
feasible to develop an equivalent Lagrange-multiplier-based
scheme. This will become required in an explicit analysis
when the penalty-method-based contact strategy demands a
large penalty parameter to maintain an acceptable penetra-
tion and subsequently results in a significantly reduced time
step size.

3.2 Computational setup

Herein, the computational setup for the explicit dynamic
analysis is introduced. The central differencing method is
employed for explicit time integration [46]. The internal force
was calculated using the quadrilateral FE of a one-point inte-
gration scheme with a viscous hourglass control [43]. The
stress update was based on the equation of state and Jau-
mann stress rate, under the assumption of plane strain. For
elastoplastic materials, perfect plasticity is assumed in the
plastic regime after the yield strength is reached. A detailed
explanation on the stress update and elastoplastic materials
employed is provided in Appendix A. A lumped mass matrix
was used to efficiently update the acceleration [45], and the
damping matrix is neglected.

Before combining the contact approaches validated in a
previous patch test and in Ref. [41], the present explicit
dynamic framework is validated using an example that does
not involve contact interactions, as shown in Fig. 15. This
example was based on a previous study [43], and the elasto-
plastic material property was additionally employed. An
upward vertical load was applied to the symmetrical pinned
plate. The half-configuration was discretized using 8 × 4
quadrilateral FEs. Material properties of E = 1GPa, ν =
0.3, and ρ = 1000kg/m3 were assigned, where ρ indicates
the density.

Figure 16 shows the vertical displacement uy with respect
to time t . Excellent agreement between the present predic-
tion and that of the commercial FE software LS-DYNA
[8] was observed for both elastic and elastoplastic materi-
als, indicating that the present explicit dynamic framework

Fig. 15 Schematic of the symmetric plate

Fig. 16 Symmetric plate: vertical displacement of the observing point
according to the time integration

was successfully constructed to be combined with contact
approaches.

4 Results and discussions

In this section, the contact approaches are implemented in
an explicit dynamic framework and compared using vari-
ous examples with an emphasis on computational efficiency.
Ananalysis using the penalty-method-basedmortar approach
[30] was performed for each example. Furthermore, the fully
two-pass NTS-AR approach [19, 23, 41] was studied, recog-
nizing that the two-pass NTS method with variable penalty
weighting, as found in LS-DYNA, is among the methods
prevalently utilized in the industry. For the classical one-
pass NTS approach with a penalty parameter of ε = εNTS,
the distributed penalty parameter ε̂ was employed as εNTS/lsl

for the VTS-PPT, NTS-mAR, and mortar approaches, where
lsl denotes the average slave segment area. The distribute
penalty parameter ε̂ of the two-pass NTS-AR approach was
selected to be εNTS/lsl and εNTS/lms for the slave and mas-
ter surfaces, respectively. Herein, lms is the average master
segment area. For the example of sliding contact and colli-
sion analysis in Sects. 4.2 and 4.3, a refinement study was
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Fig. 17 Block-to-block contact: a schematic and b discretization

conducted for an efficiency comparison in various sets of
discretization. As refinement level Nr increases, the mesh
size decreases. The time step size also decreases to retain the
numerical stability of the explicit analysis. The simulation
was conducted on a MATLAB R2021a implementation with
a single processor of Intel i9-10900KF 3.70GHz CPU.

4.1 Block-to-block contact

Figure 17 illustrates an example of block-to-block contact,
which is similar to that of the previous patch test shown in
Fig. 4, except that dynamic analysis is performed herein.
In addition, a vertical speed of v̄y = −50mm/s was pre-
scribed on the top of the upper block instead of the distributed
pressure. The rectangular blocks were replacedwith configu-
rations with higher aspect ratios. The slave andmaster bodies
were discretized using 51 × 2 and 50 × 2 quadrilateral FEs.
Material properties E = 1MPa, ν = 0, and ρ = 1000kg/m3

were assigned to both the slave and master bodies. A penalty
parameter of ε = 1MN/m was used in the classical one-pass
NTS approach. Time integration was conducted through 200
steps with a step size of�t = 1ms. For the mortar approach,
a four-point Gaussian integration rulewas used for each slave
segment.

In addition to comparing the contact approaches, the
cost ratio of the contact algorithm with respect to the total
computation between the implicit and explicit analyses was
compared. Implicit analysis uses a consistent mass matrix
and a fully integrated FE. Additionally, it employs the gen-
eralized α method [47] with an energy convergence criterion
of �U�R/�U�

0 R0 < 10−20 for each Newton–Raphson
iteration. Herein, �U and R are the global displacement
increment and residual force vectors, respectively. Those
obtained from the initial Newton–Raphson iteration of each
time integration are denoted as�U0 andR0. Validation of the

Fig. 18 Block-to-block contact by the implicit dynamic analysis frame-
work: contact pressure along the slave surface at t = 0.2 s

Fig. 19 Block-to-block contact by the implicit dynamic analysis frame-
work: contact pressure along the slave surface at t = 0.2 s (Enlarged
view)

Fig. 20 Block-to-block contact by the implicit dynamic analysis frame-
work: convergence history for the first 5 time steps

present implicit time integration with commercial software
can be found in Ref. [48].

Figures18 and 19 shows the contact-pressure distribution
predicted using an implicit analysis framework. The classi-
cal one-pass NTS approach displayed an anomalously large
contact pressure at the termination of contact surface.Despite
the failure in passing the patch test, the two-pass NTS-AR
method mitigated such nonuniformity. However, the contact
pressure decreased at the end of contact surface. Refs. [19,
41] observed a similar trend during the contact patch test
with uniform surface discretization. Apart from those two
approaches, themortar approach predicted relatively uniform
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Fig. 21 Block-to-block contact by the explicit dynamic analysis frame-
work: contact pressure along the slave surface at t = 0.2 s

Fig. 22 Block-to-block contact by the explicit dynamic analysis frame-
work: contact pressure along the slave surface at t = 0.2 s (Enlarged
view)

contact pressure, and the VTS-PPT and present NTS-mAR
approaches exhibited perfectly uniform pressure. The energy
convergence criterion was satisfied within three Newton–
Raphson iterations for most time steps, as shown in Fig. 20.
Such a small number of iterations is due to the situation of
small deformation and the relatively small time step size
for the implicit analysis. The prediction using the explicit
analysis framework is shown in Figs. 21 and 22, where the
tendency of the uniformity is similar to that in the implicit
framework.

Figure 23 compares the computational times for the con-
tact approaches. The time indicated above the blue bar
represents the computational time required for the contact
contribution. The ratio in parentheses denotes the cost ratio of
the contact contributionwith respect to the total computation.
As expected, the classical one-pass NTS approach exhibited
the highest computational speed. Except this, the NTS-mAR
approach was the most efficient. The two-pass NTS-AR
method required approximately double the computational
time compared against the classical one-pass approach. Such
increase is attributed to the added contact force estimation
for the master-to-slave elements, which are nearly equal in
number to the slave-to-master elements. The computational
time for the VTS-PPT was thrice that for the classical one-
pass NTS approach, and even close to that of the mortar

Fig. 23 Block-to-block contact by the implicit dynamic analysis frame-
work: computational time. (Color figure online)

Fig. 24 Block-to-block contact by the explicit dynamic analysis frame-
work: computational time

approach. This may be due to the relatively complicated cal-
culation of contact stiffness [19]. Similarly, in the explicit
framework, the NTS-mAR approach was the fastest, exclud-
ing the classical one-pass NTS approach, as shown in Fig. 24.
The computational cost of the VTS-PPT approach, which is
alleviated because of the absence of contact stiffness com-
putation, was 2.4 times that of the classical one-pass NTS
approach. The overall cost ratio of the contact contribution
with respect to the total computation increased in the explicit
dynamic framework.

4.2 Sliding contact

Figure 25 illustrates an example of sliding contact condi-
tion, for which the situation is taken from Refs. [31, 49].
The elastic die initially moved downward to press the elasto-
plastic plate and then moved horizontally. The die and plate,
which were designated as the slave and master bodies, were
discretized by 18Nr × 3Nr and 36Nr × 4Nr quadrilateral
FEs, respectively. The material properties E = 210GPa,
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Fig. 25 Sliding contact: a
schematic, discretization for b
Nr = 1 and c Nr = 3

ν = 0.3, and ρ = 7, 850kg/m3 were assigned to the
die, and E = 69GPa, ν = 0.33, ρ = 2700kg/m3, and
σ Y = 276MPa were assigned to the plate. Here, σ Y is
the yield strength. A penalty parameter of ε = ε1NTS/Nr ,
where ε1NTS = 10GN/m, was used in the classical one-
pass NTS approach. Explicit time integration was conducted
using 150,000Nr steps with a step size of �t = �t1/Nr ,
where �t1 = 40ns. A six-point Gaussian integration rule
was employed for each slave segment in themortar approach.

A snapshot of the deformation and effective plastic strain
is shown in Fig. 26. The classical one-pass NTS approach
slightly overestimated the effective plastic strain at X = 0
owing to the local peak of the contact pressure. In con-
trast, the two-pass NTS-AR approach underestimated the
contact pressure at X = 0, and leading to an overestima-
tion of the contact pressure and the subsequent deformation
in the remaining regions. Such inaccuracy is unavoidable
in the contact approach that does not pass the patch test.
The sum of the vertical contact forces applied to the slab
is shown in Figs. 27 and 28 in terms of time. The classical
one-pass NTS approach suffers from nonphysical oscilla-
tions with high amplitudes. The abrupt peak of the contact
force was due to the activation and deactivation of the con-
tact element. As is well known [31], the mortar approach
significantly reduces such oscillations and exhibits the most
uniform contact force history. The overall force magnitude
of the VTS-PPT and the present NTS-mAR approaches was
approximated as that of the mortar approach. Comparing the
modified NTS approaches passing the patch test, NTS-mAR
predicted a smoother contact force history than the VTS-PPT
approach. Moreover, the NTS-mAR approach predicted the
lowest number of abrupt peaks owing to the complemen-
tary action between the slave-to-master and master-to-slave
contact pairs. Nevertheless, once the peak occurred, its mag-

Fig. 26 Sliding contactwith Nr = 1: distribution of the effective plastic
strain at t = 12.4ms predicted by a classical one-pass NTS, b two-pass
NTS-AR, c VTS-PPT, d present NTS-mAR, and e mortar approaches.
The colormap ranges from 0.1 to 0.3. (Color figure online)

nitude was larger than those of the two-pass NTS, VTS-PPT,
and mortar approaches.

The computation times are compared in Fig. 29. The two-
pass NTS-AR and VTS-PPT approaches requires more than
twice the computational cost for the contact force estimation
than the classical one-pass NTS approach. In contrast, NTS-
mAR requires only 22% additional time compared to the
classical one-pass NTS approach. Such tendency of the cost
is maintained even if the refinement level increases as shown
in Table 1. Thus, the NTS-mAR approach is better when a
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Fig. 27 Sliding contactwith Nr = 1: total vertical contact force applied
on the slab according to the time integration

Fig. 28 Sliding contactwith Nr = 1: total vertical contact force applied
on the slab according to the time integration (Enlarged view)

computational efficiency with mid-fidelity is desired for the
given example.

4.3 Collision analysis

Figure 30 illustrates the attempted collision analysis. The
high-speed elastic projectile initially moved downward and
collided with the elastoplastic plate. The projectile and plate
were designated as the slave and master bodies, respectively,

Fig. 29 Sliding contact with Nr = 1: computational time

Fig. 30 Collision analysis: a schematic, discretization for b Nr = 1
and c Nr = 4

Table 1 Sliding contact:
computational time for contact
force estimation according to
the refinement level

Time (s)
Nr = 1 Nr = 2 Nr = 3

Classical one-pass NTS 62 (1.00) 451 (1.00) 1446 (1.00)

Two-pass NTS-AR 140 (2.25) 1020 (2.26) 3269 (2.26)

VTS-PPT 130 (2.09) 941 (2.09) 3177 (2.20)

Present NTS-mAR 76 (1.22) 493 (1.09) 1623 (1.12)

Mortar (6-pt.) 310 (4.98) 2474 (5.49) 8462 (5.85)

The values between the parenthesis indicate the cost ratio to the classical one-pass NTS approach
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Fig. 31 Collision analysis with Nr = 1: distribution of the effective
plastic strain at t = 0.7ms predicted by a classical one-pass NTS, b
two-pass NTS-AR, c VTS-PPT, d present NTS-mAR, and e mortar
approaches. The colormap ranges from 0 to 0.25. (Color figure online)

and were discretized using 24Nr × 4Nr and 36Nr × 4Nr

quadrilateral FEs. For the master body, relatively fine dis-
cretization of 20Nr × 4Nr constituted the region of X ≤
25mm, where the master surface was designated. The prop-
erties of the elastic and elastoplastic materials were the same
as those in the above-mentioned example. A penalty param-
eter of ε = ε1NTS/Nr , where ε1NTS = 1GN/m, was used in
the classical one-pass NTS approach. Explicit time integra-

Fig. 32 Collision analysis with Nr = 1: computational time

tion was conducted using 10,000Nr steps with a step size of
�t = �t1/Nr , where �t1 = 100ns. A four-point Gaussian
integration rule was employed for the mortar approach.

Figure 31 shows the deformation and effective plastic
strain. Except for a slight overestimation in the bent regime
by the classical one-pass NTS approach, all approaches pre-
dicted almost identical results. In contrast to the previous
examples, the duration of contact occurrence is relatively
small compared to the total physical duration because the
two bodies repeatedly attach to and detach from each other.
This is one of the possible reasons why different selections of
the contact approach did not provide a significant difference
in the prediction.

Nevertheless, the computational time for contact force
estimation shows a significant difference among the contact
approaches, as illustrated in Fig. 32. Furthermore, such a dif-
ference is maintained for the refined mesh and time step size,
as shown in Table 2. This is because the detection procedure
(Step A in Sect. 3.1) occurs even for the instance of no con-
tact interaction. The total computational time might increase
if a relatively large portion is assigned as the slave surface.
Including the current example, NTS-mAR required the least
additional computational cost to alter the classical one-pass
NTS approach.

Table 2 Collision analysis:
computational time for contact
force estimation according to
the refinement level

Time (s)
Nr = 1 Nr = 2 Nr = 3 Nr = 4

Classical one-pass NTS 3 (1.00) 23 (1.00) 74 (1.00) 170 (1.00)

Two-pass NTS-AR 6 (1.92) 45 (1.97) 143 (1.95) 328 (1.93)

VTS-PPT 7 (2.06) 46 (2.05) 150 (2.04) 348 (2.05)

Present NTS-mAR 4 (1.20) 25 (1.09) 78 (1.06) 179 (1.06)

Mortar (4-pt.) 11 (3.41) 85 (3.76) 281 (3.82) 642 (3.78)

The values between the parenthesis indicate the cost ratio to the classical one-pass NTS approach
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5 Conclusions

This study examined the computational procedure of mod-
ified penalty-method-based NTS approaches, the accuracy
improvement of which against the classical approach was
emphasized in the implicit static context only. These are
extended to an explicit dynamic framework in which the cost
ratio of contact estimation with respect to the total compu-
tation is larger than that in implicit analysis. A quantitative
performance comparison was conducted, and the following
conclusions were drawn.

• As expected, the classical one-pass NTS approach is the
fastest contact analysis approach for the given examples
despite its inaccuracy.

• Excluding that, the NTS-mAR approach is the most effi-
cient modified NTS approach and provides relatively
accurate prediction compared with the classical one-pass
NTS approach.

• The accuracy is found to be similar between VTS-PPT
and NTS-mAR approaches for the given examples.

• For the sliding contact, an abrupt peak of the contact
force occurs owing to the deactivation and activation of
the contact element. The number of the peaks is reduced
by the complementary action of the dual-pass algorithm
in NTS-mAR approach.

• The mortar approach provides the most uniform contact
force history for the sliding contact. However, its com-
putational cost is significant.

• For the relatively short duration of the contact interaction,
the efficiencies of the classical one-pass NTS and NTS-
mAR approaches are valid owing to the detection stage
prevailing in the total duration.

Thus, for the given examples, the NTS-mAR approach
is the most appropriate when computational efficiency with
mid-fidelity is desired.

The competitiveness of the NTS-mAR approach will
dramatically improve when it is extended to the three-
dimensional analysis. Relevant techniques are currently
being examined to consider an arbitrarymaster surface geom-
etry and pass the patch test in a three-dimensional condition.
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Appendix A: Stress update and elastoplastic
material

This section explains the computational procedure for the
stress update and elastoplastic material employed in the
present explicit dynamic analysis framework. A theoretical
background can be found in Refs. [8, 50, 51].

The update of volumetric stress tensor σ vol for isotropic
material is based on the equation of state as in Eq. (A1).

σ vol = −K ln (J )I (A1)

Herein, K is the bulk modulus, and J is the determinant of
the deformation gradient, which is the volume ratio between
current and initial configurations.

For the update of deviatoric stress tensor σ dev, the Jau-
mann stress rate of hypoealstic material law is used. For it,
deformation rate tensorD and spin tensorW at each integra-
tion point are obtained as in Eqs. (A2) and (A3).

D = 1

2

(
(∇v)� + (∇v)

)
(A2)

W = 1

2

(
(∇v)� − (∇v)

)
(A3)

Herein, ∇v is the velocity gradient.
Then, the trial deviatoric Cauchy stress tensor σ ∗

dev is
obtained under the elastic assumption as in Eq. (A4).

σ ∗
dev = σ old

dev +
(
σ∇ J
dev + W · σ old

dev + σ old
dev · W�)

�t (A4)

Deviatoric stress tensor obtained from the previous time step
is denoted as σ old

dev. Furthermore, σ∇ J
dev is the Jaumann stress

rate of the deviatoric part, which is calculated as σ∇ J =
2GDdev for the isotropic material. Herein, G is the shear
modulus and Ddev is the deviatoric part of D.

To consider the elastoplasticity, the yield criterion is eval-
uated as φ = σ ∗

v −σ Y , where σ ∗
v is the trial von-Mises stress

obtained from σ ∗
dev. Herein, yield strength σ Y is constant

according to the perfect plasticity employed. If φ ≤ 0, the
deviatoric stress tensor becomes σ dev = σ ∗

dev. If φ > 0, it is
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scaled back as in Eq. (A5).

σ dev = σ Y

σ ∗
v

σ ∗
dev (A5)

For φ > 0, the effective plastic strain increment �ε̄ is
obtained as Eq. (A6).

�ε̄ = φ

3G + Ep
(A6)

Herein, Ep is the plastic hardeningmoduluswhich is Ep = 0
for perfect plasticity.
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