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Abstract
The fracture of vascular tissue, and load-bearing soft tissue in general, is relevant to various biomechanical and clinical
applications, from the study of traumatic injury and disease to the design of medical devices and the optimisation of patient
treatment outcomes. The fundamental mechanisms associatedwith the inception and development of damage, leading to tissue
failure, have yet to be wholly understood. We present the novel coupling of a microstructurally motivated continuum damage
model that incorporates the time-dependent interfibrillar failure of the collagenousmatrixwith an embeddedphenomenological
representation of the fracture surface. Tissue separation is therefore accounted for through the integration of the cohesive crack
concept within the partition of unity finite element method. A transversely isotropic cohesive potential per unit undeformed
area is introduced that comprises a rate-dependent evolution of damage and accounts for mixed-mode failure. Importantly, a
novel crack initialisation procedure is detailed that identifies the occurrence of localised deformation in the continuummaterial
and the orientation of the inserted discontinuity. Proof of principle is demonstrated by the application of the computational
framework to two representative numerical simulations, illustrating the robustness and versatility of the formulation.

Keywords Vascular tissue · Soft-biological tissue · Microstructure · Fracture · Cohesive zone model · Continuum damage
model · Coupled formulation · Embedded discontinuity · Partition of unity finite element method

1 Introduction

Cardiovascular diseases are the leading cause of mortal-
ity worldwide, representing an estimated 45% of all deaths
in Europe alone [1]. Biomechanical factors are known to
influence the inception and development of cardiovascular
pathologies [2], such as atherosclerosis [3, 4] and aneurysms
[5, 6]. The accrual of microdamage and the onset of vas-
cular tissue failure are of particular importance, with their
influence on clinical treatment and management strategies
becoming increasingly evident. Nevertheless, there remains
a pronounced deficit in the knowledge and understanding
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regarding specific microstructural damage and failure mech-
anisms, and how this ultimately manifests at the macroscale.

Much of this information has been gleaned from the study
of bone, where intrinsic and extrinsic mechanisms are known
to contribute toward its fracture toughness [7–10]. Addition-
ally, skin has been seen to exhibit mostly intrinsic toughening
processes, where crack propagation is described by crack
blunting, accompanied by interfibrillar sliding, fibril straight-
ening, fibrillar reorientation, and elastic stretching [11, 12].
However, such mechanisms undoubtedly emanate from the
extracellular matrix (ECM) architecture and the underlying
structure-function relationships that govern the mechanical
functionality of the tissue in question. Furthermore,with only
a limited number of load cases, such as dissection [13–15]
and penetration [16, 17], having been investigated towards
identifying crack tip mechanisms in vascular tissue, there is
evidently still much more to discern concerning influential
mechanisms in the healthy, and significantly, the diseased
arterial wall.

The complexity and inherent challenges associated with
the experimental investigation of failure have prompted the
pursuance of computational methods to model damage [18–
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24] and fracture [25–31] in soft biological tissues. The
computational modelling of fracture, in particular, consti-
tutes an indispensable tool not only to predict the failure
of cracking structures but also to shed insights into frac-
ture processes. Various continuum-oriented methods have
been proposed to tackle large deformation non-linear frac-
ture mechanical problems and, specifically, regularise the
non-polar continuum by introducing a length-scale associ-
ated with the damage mechanism of consequence [32–36].
This gives rise to mesh-independent results but at the cost
of requiring an extensively refined mesh within the fracture
process zone that invariably necessitates lengthy simulation
times, which then prevents the analysis of most clinically
relevant problems.

An alternate means of modelling material failure is to
instead characterise the fracture surface discontinuously.
Embedded formulations such as the embedded finite ele-
ment method (EFEM) [37], the extended finite element
method (XFEM) [38], and the partition of unity finite ele-
ment method (PUFEM) [39], allow for a cohesive zone to
be inserted directly within the element. A traction separa-
tion law (TSL) consequently defines the materials’ inelastic
failure properties and determines the opening of the fracture
surface. Approaches of this kind are particularly well-suited
to clearly-defined problems where for example there is a sin-
gle crack and no branching. However, fracture mechanical
concepts alone cannot fully quantify soft tissue rupture that
exhibits a distinct toughening mechanism [40, 41]. In the
context of computational modelling using embedded dis-
continuities, the continuummaterial should therefore ideally
consider the development of damage. The inclusion of such
behaviour would then necessitate a crack initialisation crite-
ria that accounts for the occurrence of material instabilities
and localisation in the continuum [42, 43].

In our present work, we use the PUFEM, previously
employed to model arterial dissection [25], to numerically
investigate the fracture mechanical properties of the arte-
rial wall. The computational framework provides a discrete
representation of a discontinuity by enhancing the nodal
degrees of freedom, giving rise to a two-field variational for-
mulation with embedded strong discontinuities. The utilised
crack tracking algorithm is detailed extensively elsewhere
[44]. All constitutive descriptions are taken from our pre-
vious study that concerns collagen-related damage in soft
biological tissues [45]. The continuous material model is
microstructurally motivated and incorporates an interfibrillar
failure mechanism that brings about collagen fiber dam-
age. A transversely isotropic cohesive material is defined
whereby a phenomenological TSL provides a surface-based
description of fracture, with parameters derived from a
bottom-up approach that qualitatively replicates a single-
element mixed-mode fracture representation (detailed in
[45]). A novel crack initialisation criterion and associated

definition of the normal to the fracture surface is introduced,
indicating the instance of numerical material instability and
the subsequent placement of a discontinuity.

To effectively demonstrate the robustness and versatility
of the computational modelling framework, we simulate the
uniaxial tensile rupture and symmetry-constrained compact
tension (symconCT) testing of the healthy porcine aorta. The
latter is an experimental setup that results in the stable propa-
gation of fracture at loading along either the circumferential
or axial directions [46].

2 Continuummechanical framework

In this section, we introduce the fundamental continuum
mechanical features associated with the numerical imple-
mentation of the PUFEM. The kinematics of strong discon-
tinuities and preliminary information concerning the con-
tinuum stress and cohesive traction responses are therefore
detailed. A derivation of the spatial variational formulation
is additionally presented.

2.1 Kinematics

We consider the reference configuration of a body to contain
an embedded discontinuity ∂�0d, that separates the body into
the subdomains �0+ and �0−, see Fig. 1. A deformation
χ(X) then maps �0+ and �0− into the spatial configura-
tions�+ and�−, withX denoting the referential position of
a material point. The kinematics of the separation is repre-
sented bymeans of a strong discontinuity in the displacement
field u = uc(X) + H(X)ue(X), where the Heavside func-

Fig. 1 Discontinuous kinematics representing the reference config-
uration �0 = �0+ ∪ ∂�0d ∪ �0−, and the current configuration
� = �+ ∪ ∂�d ∪ �−, of a body separated by a strong discontinu-
ity: the related deformation gradients are Fe = I + Graduc + Gradue,
Fd = I + Graduc + ue ⊗ N/2 and Fc = I + Graduc
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tion, H(X), holds a value of 0 for X ∈ �0− and a value of
1 for X ∈ �0+ [47]. The additive decomposition of u ulti-
mately introduces the smooth displacement fields uc and ue,
which characterise the compatible and enhanced displace-
ments, respectively.

Following the definition of the displacement field, the
deformation gradient, F(X) = I+Gradu(X), of the body is
defined as

F(X) = I + Graduc(X) + H(X)Gradue(X)

+ δd(X)ue(X) ⊗ N(Xd) , (1)

where I is the identity tensor and Grad(•) = ∂(•)/X is
the material gradient operator. The Dirac-delta function, δd,
holds a value of 0 in X ∈ �0− ∪ �0+ and a value of ∞ at
X ∈ ∂�0 d. The relation GradH(X) = δdN(Xd) is applied,
with N(Xd) being the unit normal vector defining the orien-
tation of the discontinuity at an arbitrary point Xd ∈ �0d.

A constitutive representation for the separation of a
material body necessitates the assumption of a fictitious dis-
continuity ∂�d, which is a bijectivemapping of ∂�0d into the
current configuration by means of the average deformation
gradient

Fd(Xd)= I + Grad

(
uc + 1

2
ue

)
= I + Graduc+ 1

2
ue ⊗ N .

(2)

The factor 1/2 enforces that ∂�d is the middle between
the two surfaces defining the crack [48]. The related unit
normal vector of thefictitious discontinuity ∂�d is then found
through theweighted push-forward operation of the covariant
vector N

n = NFd
−1

|NFd
−1| . (3)

We note that the constrained (incompressible) deforma-
tion of the continuous material, and so the determination of
σ̄ and c̄ in the subsequent section, requires the multiplica-
tive decomposition of the deformation into volume-changing
and volume-preserving parts [49]. As such, the modified-
deformation gradient F̄ = J−1/3F, with the Jacobian J =
detF, is introduced, completing the kinematic description.

2.2 Continuum response

The continuum response is determined subject to a classical
uncoupled formulation [50], in order that incompressibil-
ity, a focal feature of soft biological tissues, is enforced.
The Helmholtz free energy is therefore � = �̄ + U ,
with �̄ denoting a purely isochoric contribution and U =
K (lnJ )2/2, with K being the bulk modulus, denoting a

purely volumetric contribution. Consequently, the Cauchy
stress and the associated spatial stiffness are given by

σ = σ̄ + σ vol , c = c̄ + cvol , (4)

where σ̄ and c̄ are constitutive isochoric contributions,whose
full derivation is detailed in Sect. 3.1. The volumetric contri-
butions are defined subject to

σ vol = p I , cvol = p̃ I ⊗ I − 2pI , (5)

where p = dU/dJ , is the hydrostatic pressure which acts as
a Lagrangian multiplier, set to enforce incompressibility. For
simplicity, we also use the scalar function p̃ = p+ J∂ p/∂ J ,
and I is the fourth-order identity tensor.

2.3 Cohesive traction response

The coalescence of underlying soft tissue failuremechanisms
is lumped into a representative discrete surface [51]. The
cohesive response assumes the existence of a transversely
isotropic potential per unit undeformed area, ∂�0d , of the
discontinuity,

ψ = ψ(u,n, δ) . (6)

As such, the cohesive zone properties depend upon; the
gap displacement, u = ue(Xd), the current normal of
the discontinuity, n, and the scalar internal damage vari-
able δ ∈ {0,∞} that records the state of damage. The
cohesive potential has to obey objectivity requirements, i.e.
ψ = ψ(u,n, δ) = ψ(Qu,Q−Tn, δ), whereQ is an arbitrary
proper orthogonal tensor.

The damage surface φ(u, δ) is introduced, and the
Karush–Kuhn–Tucker loading and unloading conditions,
δ̇ ≥ 0, φ ≤ 0, δ̇φ = 0, and the consistency condition,
δ̇φ̇ = 0, have to be satisfied.

In accordance with the Coleman–Noll procedure [52], the
referential first Piola–Kirchoff traction vector, T, and the
internal dissipation, Dint, are provided by

T = ∂ψ

∂u
, Dint = −∂ψ

∂δ
δ̇ ≥ 0 . (7)

Furthermore, to ensure a consistent linearisation within the
PUFEM, we introduce the stiffness tensors

Cu = ∂T
∂u

, Cn = ∂T
∂n

, Cδ = ∂T
∂δ

, (8)

that describe the stiffness of the cohesive zone with respect
to all the dependent variables.
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2.4 Variational formulation

Beginning from the standard single-field variational princi-
ple,

∫
�0

Gradδu : P(F)dV − δ	ext(δu) = 0, where dV ,
P(F) and δu denote the referential volume element, the first
Piola–Kirchoff stress tensor and the admissible variation of
the displacement field, respectively; the variational foun-
dation for the PUFEM formulation may be derived [53].
Given the additive decomposition of the displacement field
δu = δuc + Hδue, application of a push-forward operation
leads to the two variational statements

∫
�−

sym(gradcδuc) : σ cdv

+ ∫
�+

sym(gradeδuc) : σ edv − δ	ext
c (δuc) = 0,

∫
�+

sym(gradeδue) : σ edv

+ ∫
∂�d

t · δueds − δ	ext
e (δue) = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

where dv is the spatial volume element in the current con-
figuration and ds is the surface element on the fictitious
discontinuity ∂�d. The quantities σ c = J−1

c P(Fc)FT
c and

σ e = J−1
e P(Fe)FT

e are the compatible and enhanced Cauchy
stress tensors, whilst t = TdS/ds is the Cauchy traction
vector acting on ∂�d. The virtual energies δ	ext

c and δ	ext
e

refer to the referential domains �0− and �0+, respectively.
Finally, sym(•) = ((•) + (•)T)/2 gives the symmetric part
of (•), whilst gradc(•) = Grad(•)F−1

c and grade(•) =
Grad(•)F−1

e are spatial gradient operators.
The consistent linearisation of Eq. (9) is extensively

detailed in [39] and the outcome with respect to the finite
element implementation is later elaborated upon in Sect. 4.1.

3 Constitutive descriptions

Here we outline the fundamental aspects concerning the
motivation and mathematical necessities for the continuum
microstructural damage model and the transversely isotropic
cohesive zonemodel.We also establish the criteria governing
crack initialisation and the orientation of the fracture surface.

3.1 Continuummicrostructural damagemodel

The key features of the continuum microstructural damage
model, first introduced in [45], are henceforth summarised to
provide a generalised overview. Further details are provided
in the appendices for the interested reader, which are taken
directly from the original publication.

3.1.1 Histomechanical assumptions

We consider vascular tissue as a fiber-reinforced material
at finite deformations, whereby collagen fibers with varying
orientations are embedded in an isotropic ground substance.
Each fiber is comprised of numerous CFPG-complexes,
mechanical sub-units containing undulated collagen fib-
rils adjacently adjoined by a proteoglycan-rich interfibrillar
matrix, see Fig. 2a. In the event that soft tissue is exposed
to tension, fibrils begin to straighten and carry load. Two
time-dependent proteoglycan (PG) deformations are con-
sidered: (i) their ability to slide when the CFPG-complex
is exposed to heightened stresses, reducing the stress back
down towards a homeostatic target stress, and (ii) their capac-
ity to recover back towards a referential minimal energy
state at low stresses [54]. Finally, it is assumed that inter-
fibrillar failure will occur at some limiting PG deformation,
see Fig. 2b, leading to the cessation of the CFPG-complexes
load-carrying ability. Furthermore, this process is postulated
as being stress-dependent; upon exposure to excessive sup-
raphysiological stress, there is assumed to be a significant
decline in the structural integrity of the interfibrillar mate-
rial.

3.1.2 Collagen associated kinematics

Collagen fiber are assumed to have a referential orientation,
in �0, defined by the unit vector M. An orientation density
functionρ(M) thendefines the referential alignment distribu-
tion of collagen fibers. If we consider an affine deformation,
then the spatial orientation of a fiber, in �, is m = FM, and
λ = |m| denotes its stretch.

The i th CFPG complex within a fiber is therefore sub-
jected to the one-dimensional stretch λ, which can be
multiplicatively decomposed into three parts, see Figure 2 in
[45]. Firstly, the straightening stretch λst i , maps the CFPG-
complex from � into �st i , and acts to straighten the initially
undulated fibril, where λst i is drawn from the probability
density function fλst (λst). A triangular distribution is used
for convenience, yet themodel remains general and is equally
applicable to any probability density function.

Secondly, the interfibrillar deformation λpg i , maps the
CFPG-complex from �st i , into �pg i , and represents the
collective deformation of all PGs within the CFPG com-
plex. However, if the threshold PG deformation λpg fail, is
surpassed, then interfibrillar failure occurs and the CFPG
complex alternatively maps into the other intermediate con-
figuration,�pg fail i . Finally, the elastic fibril deformation λf i ,
maps the CFPG -complex into �, such that

λ = λf iλi ; λi = λpg iλst i (no summation) , (10)
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Fig. 2 a A collagen fiber is
composed of multiple
CFPG-complexes, themselves
consisting of collagen fibrils and
a PG-dominated interfibrillar
matrix that connects adjacent
fibrils. PGs are made up of a
GAG duplex and are attached to
fibrils via a protein core, b
following supraphysiological
deformations interfibrillar
failure occurs in the PG-rich
matrix, leading to collagen fibril
pull-out

encapsulates the multiplicative kinematics of the i th
CFPG-complex belonging to a collagen fiber with the ref-
erential orientation M.

3.1.3 CFPG-complex constitutive properties

ACFPG-complex is considered linear elastic in a first Piola–
Kirchoff stress vs stretch setting, and so

Pf i =
⎧⎨
⎩
kf

(
λ

λi
− 1

)
; λ > λi

0 ; otherwise ,

(11)

defines the 1D stress of the i th CFPG-complex, where kf is a
stiffness parameter i.e., the fibrils stiffness. The correspond-
ing referential stiffness of the CFPG-complex is then defined
as

Cf i = 2
∂Sf i
∂λ2

=
⎧⎨
⎩

kf
λ3

; λ > λi

0 ; otherwise,
(12)

wherewith the assumption of incompressibility, Sf i = Pf i/λ
denotes the second Piola–Kirchhoff stress.

Following on from the discussion of the different inter-
fibrillar PG deformations in Sect. 3.1.1, λpg i evolves subject
to

∂λpg i

∂t
=

⎧⎪⎪⎨
⎪⎪⎩

Pf i/P0 − 1

ηslid
; Pf i ≥ P0

1 − λpg i

ηrec
; Pf i < P0

(13)

where P0, is the desired homeostatic CFPG-complex stress
and ηslid, and ηrec, are the rate parameters that govern the
aforementioned mechanisms.

Lastly, the limiting interfibrillar PG deformation, λpg fail,
likewise eluded to in Sect. 3.1.1, is defined by

λpg fail = α

P0
(Pf − P0) + β, (14)

whereα andβ are phenomenological damage-related param-
eters that determine the dependence of interfibrillar failure
on the stress of a CFPG-complex, and additionally, as per
Eq. (13), the rate of interfibrillar PG deformation. Specifi-
cally, α determines the impact of the stress state when the
CFPG-complex is stressed beyond P0, whilst β is indepen-
dent of the stress.

3.1.4 Collagen fiber properties

The relation Eq. (13) results in a highly non-linear develop-
ment of λpg i. Expressly, the imposition that only straightened
fibrils are permitted to slide necessitates a discrete imple-
mentation of the model. As such, when determining the
overall collagen fiber properties, a finite number nf of CFPG-
complexes are considered. Inverse transform sampling is
used to generate a straightening stretch λst i for the ith CFPG-
complex, with relevant equations pertaining to a triangular
distribution provided in “Appendix A”.

We present here a general summary of the integral method
for collagen fiber stress and stiffness determination. Upon
inspection of Eq. (12), we observe that the referential stiff-
ness of a CFPG-complex is solely dependent upon the overall
stretch λ, of the fiber. As such, the referential stiffness of a
collagen fiber is found through the referential stiffness of
a single CFPG-complex Cf , multiplied by the proportion
of those CFPG-complexes that are engaged in load-bearing,
which we term prec ∈ {0, 1}. To identify said proportion, we
linearly interpolate the cumulative density with respect to the
squared fiber stretch, over the nf discrete CFPG-complexes.
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It is also necessary to compute the collagen fiber damage
variable δ ∈ {0, 1}, which represents the proportion of those
CFPG-complexes that have failed based on the limiting inter-
fibrillar deformation expressed byEq. (14). It should be noted
that this differs from the damage variable used in the cohe-
sive traction response. The determination of δ is detailed in
“Appendix B”. The contribution of failed CFPG-complexes
is then neglected from the overall fiber stiffness, and the ref-
erential collagen fiber stiffness reads, generally, as

C = max
{
0,Cf(prec − δ)

}
. (15)

The corresponding second Piola–Kirchoff stress is then
ascertained through the integration of the stiffness with
respect to the squared fiber stretch, across all those CFPG-
complexes in tension. It is defined by the general expression

S =
∫ λ2

λ̄2d

Cdλ2 , (16)

where the lower bound, λ̄d, is a function of δ, i.e., the bounds
of integration will alter based on the proportion of failed
CFPG-complexes. The dependency ofC and S upon the load-
ing history, and as such, the development of internal variables
such as λpg i and δ, leads to an expansive set of piecewise ana-
lytical expressions that are additionally detailed in “Appendix
B”.

Finally, the Piola transform, i.e., the push-forward oper-
ation into the spatial configuration, determines the corre-
sponding Cauchy stress σ = λ2S, with incompressible fiber
deformation having been assumed.

3.1.5 Macroscopic collagen contribution

In line with the theory of fibrous tissues [55], the total col-
lagenous stress is found by integration of the fiber stress over
the solid angle ω, i.e., by a spherical integration over the unit
sphere, and thus is given by the relation

σ̄ coll =
∫

ω

ρ(M)
σ (λ(M))

λ2
dev(m ⊗ m)dω . (17)

There is precedent for the use of the Bingham distribu-
tion to define the referential collagen fiber orientation density
in the computational modelling of vascular tissue [56, 57].
The orientation density functionρ(M), was therefore defined
according to

ρ
(
M(φ, θ)

)= 1

2c
exp[κ1(cosφ cos θ)2 + κ2(cosφ sin θ)2] ,

(18)

with φ, and θ , denoting the azimuthal and elevation angles,
respectively. With specific regard to the morphology of the

arterial wall, values of φ=θ =0 relate to the circumferential
direction, values of φ = π/2 and θ = 0 relate to the axial
(longitudinal) direction, whilst θ =π/2 relates to the out-of-
plane radial direction. Additionally, the parameters κ1, and
κ2, determine the shape of the distribution, whilst c, is a
normalisation parameter.

3.1.6 Non-collagenous contribution

The isotropic ground substance, consisting of non-
collagenous material, is described by the (classical) Neo-
Hookean strain energy density function

ψnH = μ( Ī1 − 3)/2 , (19)

whereμ denotes the referential shear stiffness and I1 = trb is
themodified first invariant, with b = FFT being themodified
left Cauchy–Green tensor. The relationσ nH = μdev(b), then
provides the deviatoric contribution of the Cauchy stress.

3.1.7 Overall soft tissue properties

The additive decomposition of the Cauchy stress, by means
of the rule of mixtures, gives the total deviatoric stress as

σ = σ coll + σ nH , (20)

The total stress for load-bearing soft-biological tissue is then
obtained through the further addition of the isochoric stress
σ vol, as per the treatment discussed in Sect. 2.2.

3.2 Transversely isotropic cohesive zonemodel

In order to particularize the transversely isotropic cohe-
sive model introduced in Sect. 2.3, we restrict our atten-
tion to the cohesive potential of the form ψ = ψ(u ⊗
u,n ⊗ n, δ). Through application of the theory of invari-
ants, with i1, . . . , i5 denoting deformation dependent vari-
ables [58], the potential may be alternatively expressed as
ψ = ψ(i1, i2, i3, i4, i5, δ), which following particulariza-
tion reads

ψ = ψ(i1, i4, δ) = κ(δ)

2
[i1 + (1 − β)i4)] , (21)

with i1 = I : (u ⊗ u), and i4 = (u ⊗ u) : (n ⊗ n), defin-
ing the invariants used in this constitutive description. The
expression

κ = T0
δ

[
a exp

(
− b

( δ

α

)c)
+ (1 − a) exp

(
− d

( δ

α

)e)]
,

(22)
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describes the evolution of the interface stiffness under nor-
mal loading (mode I) along with the accumulation of damage
δ. The non-dimensional parameters a, b, c, d, and e define
the shape of the traction separation law as motivated by
the response of the continuum damage model introduced in
Sect. 3.1.

The parameter T0 is the respective peak normal traction,
and the parameter α normalizes the displacement and is
defined by

α = G

T0ζ
, (23)

with G denoting the respective mode I fracture energy. The
energy needed to form a unit of undeformed fracture sur-
face, whilst ζ is the numerical approximation of the integral∫ ∞
0

(
a · exp(−bxc) + (1 − a) · exp(−dxe)

)
dx .

In addition, the normal and shear responses at the inter-
face are coupled by the parameter β. It represents the ratio
between the elastic stiffness and peak traction in the nor-
mal and shear directions, such that βκ and βT0 yield the
interfaces’ shear stiffness and the peak shear traction, respec-
tively. As with the parameters a, . . . , e, also κ is motivated
by the response of the continuum damage model introduced
in Sect. 3.1.

Towards finalising the constitutive description, the devel-
opment of the state of interface damage needs to be specified.
The damage surface φ(u, δ) = |u| − δ, and the expression

δ̇ = |u| − δ

ηcz
, (24)

therefore determine the evolution of the internal scalar dam-
age variable δ (given that φ > 0). Here, the rate constant
ηcz specifies how fast damage in the cohesive zone is able
to develop. Interface damage is linked to volume deforma-
tion, and the time needed for interstitial fluid to flow into the
failure domain thus determines the time scale set by ηcz.

Figure 3 displays the normal and shear traction responses
of the proposed cohesive zone model, with the accumula-
tion of interface damage for ηcz being much smaller than the
loading rate applied to the interface for the provided example.

The first Piola–Kirchoff traction vector is determined
through Eq. (7)1, and so is defined as

T = κun + βκus , (25)

where un = (u · n)n and us = u − un denote the normal
and shear displacement at the interface, respectively. The
stiffnesses associatedwith the cohesive zonemodel are found

Fig. 3 Demonstration of the normal (blue) and shear (red) traction
responses of the proposed transversely isotopic cohesive zone model
with the accumulation of interface damage δ = |u|, where θn =
tan−1(κ) and θs = tan−1(βκ) for illustrative purposes. (Color figure
online)

through the application of Eq. (8) to Eq. (25), leading to

Cu = κ(1 − β)n ⊗ n + βκ I
Cn = κ(1 − β)n ⊗ u
Cδ = γ (un + βus)

⎫⎬
⎭ (26)

where the term γ = ∂κ/∂δ is obtained by appropriate treat-
ment of Eq. (22).

Finally, the internal dissipation, following Eq. (7)2 reads

Dint = −1

2

∂κ

∂δ
δ̇(i1 + (1 − β)i4) > 0 , (27)

and imposes a constraint on the model parameters to be used
in the traction separation law.Notably, the proposed approach
of defining the interface properties through the stiffness fac-
tor κ naturally accounts for mixed-mode conditions at the
interface.

3.3 Cohesive zone initialisation

The nature of the crack initialisation criteria in approaches
utilising embedded strong discontinuities is critical because
it determines the evolution of the fracture surface and thus
crack propagation in the failed material. As the continuum
microstructural model in the presented framework incor-
porates an internal damage mechanism and no associated
method of regularisation, the initialisation of the cohesive
zone must employ a bifurcation analysis and account for the
emergence of material instability.

To this end, following the sufficient development of colla-
gen fiber damage, the first Piola–Kirchhoff-related elasticity
tensor

AI j K l = JF−1
i I F

−1
kKci jkl , (28)
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becomes non-positive definite, and localization in the non-
polar continuum leads to material instability [42, 43]. This
therefore marks the state of deformation and the point in
space X in which the cohesive zone model is introduced. In
contrast to the description of the bulk material, the incom-
pressibility of tissue within the fracture process zone is not
enforced. Given the transversely isotropic nature of our cohe-
sive zone description, it is necessary to determine whether a
normal or shear deformation initialises the localization. We,
therefore, consider the eigenvalue problem

(A − λI) : v = 0 , (29)

and use the first negative (lowest) eigenvalueλi ; i = 1, . . . , 9
[59] to inform the crack initialisation criteria. In the event
that the lowest eigenvalue falls in the range 1 ≤ i ≤ 3,
the interface begins at the peak normal traction T0, whilst for
4 ≤ i ≤ 9, shear failure triggers the fracture and the cohesive
zone model begins at the peak shear traction βT0.

It is also necessary to define the referential normal vector
N of the discontinuity upon the activation of the cohesive
zone model. Our symconCT experiments [46] showed frac-
ture propagation along directions that were in between the
maximum principal stress direction and the weakest material
direction. Therefore, the condition

ñ = wσnσ + wcfncf , (30)

with theweightswσ = wcf = 0.5, was used to set the normal
to the interface. Here, nσ is a principal stress direction, the
push forward ofNσ , which relates to the eigenvector vi asso-
ciated with the lowest eigenvalue. Its determination subject
to the solution of Eq.29 is detailed later in Sect. 4.2.3. The
vector ncf denotes the direction along which the in-plane
orientation density of collagen fibers is lowest according
to Eq. 18, i.e., the deformed axial direction. Both vectors
refer to the point of loss of positive definiteness of A in the
deformed configuration �, and so the pull-back and normal-
ization operation

N = ñF
|̃nF| , (31)

provides the orientation of the discontinuity in the reference
configuration �0. Application of Cauchy’s stress theorem to
thefirst Piola–Kirchoff stress of the continuum,P = JσF−T ,
then provides the the peak normal traction T0.

4 Finite element implementation

This section details the key aspects of the framework’s finite
element implementation. A brief elaboration of the PUFEM

formulation’s cornerstone features is followed by a discus-
sion of the specifics for the numerical implementation of
the continuum microstructural damage model and the trans-
versely isotropic cohesive zone model.

4.1 Overview of PUFEM formulation
implementation

The computational framework is implemented in the multi-
purpose finite element analysis program FEAP [60], using an
in-house code. Within the PUFEM, the standard polynomial
interpolation functions are enriched by the Heavside func-
tion to attain good local approximations for the underlying
problem. The displacement field u is therefore expressed as

u =
nelem∑
i=I

N IuI c + H
nelem∑
i=I

N IuI e , (32)

with N I representing the standard interpolation functions,
where I is an index running between 1 and nelem, the total
number of nodes per element. Furthermore, the regular and
enhanced nodal displacements are denoted by uI c and uI e,
respectively.

With the use of the displacement field in Eq. (32), further
treatment of the variational statements provided in Eq. (9)
leads to a linearised set of equations for a single finite element

[
Kucuc Kucue
Kueuc Kueue

]e
i−1

[
�uc
�ue

]e
i

=
[
f extuc
f extue

]e
i−1

−
[
f intuc
f intue

]e
i−1

.

(33)

The indices i and i − 1 relate to the iteration steps of the
global Newton iteration procedure, whilst �uc and �ue are
increments in the compatible and enhanced displacements,
respectively.

The vectors f extuc , f
ext
ue and f intuc , f

int
ue are the nodal force vec-

tors due to external and internal loading. With the subscripts
(•)uc and (•)ue denoting an association with compatible
and enhanced degrees of freedom, respectively. The stiff-
ness matrices Kucuc , Kucue , Kueuc and Kueue emerge from
the consistent linearisation of the internal loading vectors
with respect to the compatible and enhanced displacements.
For details concerning the construction of the nodal force
vectors and stiffness matrices, based on the output quantities
from the continuum (Sect. 3.1) and discontinuous (Sect. 3.2)
constitutive descriptions, see [39].

The solution of the linearised system (33) is often termed a
monolithic approach. In the case of fracturemechanical prob-
lems however, a staggered approach is frequently utilised as
it oftentimes presents as a more robust option. In this case,
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the systemmay alternatively be split into the two subsystems

[Kucuc ]ei−1[�uc]ei = [f extuc ]ei−1 − [f intuc ]ei−1 ; (34)

[Kueue ]ei−1[�ue]ei = [f extue ]ei−1 − [f intue ]ei−1 . (35)

that are solved separately, one after the other. As such the
contributions from Kucue and Kueuc are neglected, resulting
in the increments �uc and �ue being independent from one
another.

A critical feature of numerical approaches that use embed-
ded strong discontinuities, such as the PUFEM, is the usage
of an effective method for the tracking of 3D crack sur-
faces. This work uses a two-step algorithm, first introduced
in [44]. Here, the discontinuity normalN, defined in Sect. 3.3,
serves as a trial state, which is then corrected to meet the the
morphology (geometry) of the already existent crack. The
method employs non-local smoothing to circumvent topo-
logical difficulties, thus providing a closed crack surface.

4.2 Numerical implementation of the continuum
microstructural damagemodel

The finite element implementation of the continuum
microstructural damage model requires the numerical treat-
ment of some of those relations established in Sect. 3.1.
Furthermore, Sequential details concerning the full numeri-
cal implementation of the continuummicrostructural damage
model are provided in Table 1. It conveys the ordering and
usage of the various equations used to compute the overall
soft-tissue stress and stiffness.

4.2.1 Temporal update of the proteoglycan stretch

A first-order accurate backward Euler discretization of
Eq. (13) informs the evolution of the interfibrillar PG defor-
mation based on the stress-state of a CFPG-complex. The
i th collective PG stretch is initialized as λpg i 0 ← 1.0, after
which it evolves subject to

λpg i N =

⎧⎪⎪⎨
⎪⎪⎩

λpg i N−1 + �t

ηslid
(Pf i/P0 − 1) ; Pf i > P0

λpg i N−1 + �t

ηrec
(1 − λpg i N−1) ; Pf i ≤ P0,

(36)

where the subscripts (•)N and (•)N−1 relate to the current
and previous time points, respectively. Here,�t = tN− tN−1

denotes the size of the time step and the updated λpg i N is
stored in the history Hcon

i+1 N ← λpg i N and serves as input
for the next iteration.

4.2.2 Macroscopic collagen contribution—numerical
integration

The determination of the macroscopic collagen contribution
occurring at a Gauss point of a finite element, according to
Eq. (17), requires the spherical integration of the collagen
fiber response over the unit sphere. Spherical t-designs [61]

∫
ω

(•)dω ≈
(
4π

lint

) lint∑
j=1

(•) j , (37)

have been used to numerically perform said integration and
calculate the 3D collagen-related stress, where lint denotes
the total number of spherical integration points.

4.2.3 Cessation of damage development in localised finite
elements

Upon the initiation of a localisation in the continuum bulk
material, arising from the significant accrual of collagen
fiber damage, fracture formation begins, and all subsequent
irreversible deformations are henceforth to be entirely rep-
resented by the cohesive traction model. Accordingly, once
an eigenvalue λi of A becomes negative, any further devel-
opment of damage in the continuum model for the localised
element is prevented, ultimately forcing the accumulation of
damage in the cohesive zone and thus the propagation of the
fracture surface. All algorithmic details concerning the iden-
tification and specification of localization are listed in Table
2.

However, in limited circumstances, there may also exist
finite elements whose Gauss points meet the aforementioned
localisation criterion, but they are not located ahead of the
crack tip, and therefore the problem inhibits the initialisation
of the cohesive zone model—the crack-tracking algorithm
only permits the placement of cohesive zones in those ele-
ments situated at the crack tip. Therefore, to prevent the
formation of a localised deformation, the further develop-
ment of damage in the continuum model is also prevented in
these elements.

4.3 Numerical implementation of the transversely
isotropic cohesive zonemodel

The cohesive model is implemented in a user material rou-
tine, where the input data consists of the gap displacement
u(xld) andnormal vectorn(xld) at the current timepoint.Addi-
tionally, the peak traction T0 as well as the damage variable
δ(xld) from the previous time point are available, with xld
denoting the spatial coordinate of the lth integration point of
the discontinuity.
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Table 1 Numerical implementation of the continuum damage model, detailing the determination of the Cauchy stress and the spatial stiffness at
the Gauss point level of a partition of unity finite element

Initialization at time t=0

Define the integration weight w = 4π/lint of a spherical integration point

DO j = 1, lint % Loop over spherical integration points

Define referential fiber directionM j and collagen fiber density ρ j = ρ(M j )

Define initial value of damage variable δ j = 0 and initialize history vector Hcon
j,1 ← δ j

DO i = 1, nf % Loop over CFPG-complexes

Define straightening stretch λsti according to Eq. (A3)

Define initial PG stretch λpgi = 1 and initialize history vector Hcon
j,i+1 ← λpgi

ENDDO

ENDDO

Algorithm at time t

Given: isochoric part of the deformation gradient F̄

Initialize stress and elasticity tensors σ̄coll ← 0, c̄coll ← 0

DO j = 1, lint % Loop over spherical integration points

Compute deformed fiber directionm j = F̄M j and fiber stretch λ j N = |m j |
Read damage variable at previous time point from history vector δ j N−1 ← Hcon

j,1N−1

Initialize number of fibrils recruited nr = 0

DO i = 1, nf % Loop over CFPG-complexes

Read PG stretch at previous time point from history vector λpgi N−1
← Hcon

j,i+1N−1

Compute CFPG-complex stress Pfi according to Eq. (11)

IF (Pfi > 0) nr = i

Compute λpgi N according to Eq. (36) and λpgfaili according to Eq. (14)

Initialize the damage variable δ j N = δ j N−1

IF (i > 2)

IF (λpgi−1 N
> λpgfaili−1

) AND (λpgi N ≤ λpgfaili )

Compute the damage variable δ j N at fiber stretch λ j N according to Eq’s. (B4,B5)

Account for prior damage according to δ j N = max{δ j N , δ j N−1}
ENDIF

Update integration constant A according to Eq’s. (B7,B8)

ENDIF

Store PG stretch in history vector Hcon
j,i+1N ← λpgi N

ENDDO

Compute the second Piola–Kirchhoff stress S j according to Eq’s. (B9,B10)

Compute stress factor a = S j and stiffness factor b = (S j + λ2∂S j/∂λ2)/λ4

Map collagen stress and elasticity to continuum metric

σ̄coll j = ρ j adev(m ⊗ m)

c̄coll j = ρ j bdev(m ⊗ m) ⊗ dev(m ⊗ m) − 1/6(I ⊗ σ̄coll j + σ̄coll j ⊗ I))

Update collagen stress/elasticity tensors σ̄coll ← σ̄coll + σ̄coll j , c̄coll ← c̄coll + c̄coll j

Store damage variable in history vector Hcon
j,i+1N ← δ j N

ENDDO

Multiply collagen stress and elasticity tensors by w : σ̄coll ← wσ̄coll, c̄coll ← wc̄coll

Compute non collagenous and volumetric stress/elasticity contributions σ̄nH, c̄nH, σvol, cvol

Compute total tissue stress/elasticity σ, c according to Eq. (20)

The indices j and i relate to a fiber and CFPG-complex, respectively. The subscripts (•)N and (•)N−1 relate to the current and previous time points,
respectively

123



Computational Mechanics

Table 2 Algorithm for
identification and specification
of localization conditions at the
Gauss-point level of a finite
element

(1) Initialize location mode locmode = null

(2) Solve the eigenvalue problem (A − λ I) : v, which gives i = 1, . . . , 9 eigenvalues λi and

eigenvectors vi of dimension 9

(3) Find the lowest eigenvalue λm with the corresponding eigenvector vm;m ∈ {1, . . . , 9}
(4) IF (λm < 0) % Localisation criteria satisfied

(a) Load index table

m = 1 : i = 1; j = 1

m = 2 : i = 2; j = 2

m = 3 : i = 3; j = 3

m = 4 : i = 1; j = 2

m = 5 : i = 2; j = 3

m = 6 : i = 1; j = 3

m = 7 : i = 2; j = 1

m = 8 : i = 3; j = 2

m = 9 : i = 3; j = 1

(b) Set failure mode

IF m ∈ {1, 2, 3}
locmode = normal

ELSEIF m ∈ {4, . . . , 9}
locmode = shear

ENDIF

(c) Set referential normal Nσ and shear Mσ direction

Nσ k = vi k; Mσ k = vj k; k = 1, 2, 3

(d) Compute referential peak normal traction

IF (locmode = normal)

T0 = Nσ · PNσ

ELSEIF locmode = shear

T0 = (Mσ · PNσ )/β

ENDIF

ENDIF

The backward Euler discretization of Eq. (24) yields the
iteration δN = (δN−1 + |u|ξN )/(1+ ξN ) with ξN = �t/ηcz
for the damage variable, where δN−1 and�t denote the dam-
age state at the previous time point and the time increment,
respectively. The stiffness factor κ may then be computed by
virtue of Eq. (22), and the model’s cohesive traction vectorT
and the stiffness quantitiesCu,Cn,Cδ determined according
to Eqs. (25, 26), respectively. The detailed algorithm is listed
in Table 3.

In order to prevent the occurrence of an infinite scalar
elastic stiffness κ that would result in the case of δ = 0, as
per Eq. (22), the damage variable is initialised with a value
of 1/ε, where ε is an arbitrarily large number. The elastic
stiffness-based implementation ensures the compatibility of
the traction field in the cohesive zone with the stress field in
the continuum (bulk) material.

5 Application of framework to numerical
examples

In order to demonstrate the ability of the proposed constitu-
tive formulation to study soft-tissue failure, we investigate
fracture in the medial layer of the aortic vessel wall. The tis-
sue is described by the set of parameters listed in Table 4,
which represents porcine aortic wall tissue previously tested
in our lab, with the cohesive zone model parameters numer-
ically derived directly from the softening behaviour of the
continuum via the bottom-up approach laid out in [45].

We first apply the discussed computational framework to
the simulation of the uniaxial tensile testing of a notched
specimen loaded along the arterial wall’s axial direction
until rupture. We then move our attention to the simulation
of the symconCT fracture test [46], an experimental setup
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Table 3 Numerical
implementation of the
transversely isotropic cohesive
zone model, detailing the
determination of the traction
vector and associated stiffness
entities at the Gauss integration
point level of a PUFEM element

Initialization at time t = 0

Define initial damage δ = ε, with ε = 0.001 mm

Initialise cohesive zone history vector Hdis ← δ

Algorithm at time t

Given: gap displacement u and normal of discontinuity n

Compute normal displacement un = (u · n)n and shear displacement us = u − un
Import prior damage from history δ j N−1 ← Hdis

Compute damage criterion φ = |u| − δN−1

IF φ < 0 % No further damage accumulates

Current damage is equivalent to prior damage δN = δN−1

Compute κ according to Eq. (22) and set the damage-related stiffness γ = 0

ELSEIF φ > 0 % Further damage accumulates

Update damage state δN = (δN−1 + |u|ξN )/(1 + ξN ) with ξN = �t/ηcz

Compute κ according to Eq. (22) and the scalar damage-related stiffness γ = ∂κ/∂δ

ENDIF

Store damage variable in history vector Hdis ← δN

Compute traction vector T according to Eq. (25)

Compute stiffness quantities Cu,Cn,Cδ according to Eq. (26)

The subscripts (•)N and (•)N−1 relate to the current and previous time points, respectively

conceived such that a more controlled fracture may take
place, and in doing so, microstructural failure and damage
mechanisms be more readily investigated. The quasi-static
monolithic solution of the system (33) was computed, and
all simulations were carried out on a DELL Precision 7560
Notepad with an i9 Intel processor. The fracture is forced
to initiate in the middle of the notch and then propagates
according to the method described previously.

5.1 Uniaxial tensile rupture test

A 30 × 24 × 1.0 mm3 sized patch of tissue was discre-
tised into 560 linear tetrahedral elements, see Fig. 4 (left).
As the prescribed traction separation law properties result in
a cohesive length of approximately 2mm, the model repre-
sents an overly coarse discretisation of the geometry, with
the primary aim of evaluating the numerical robustness and
capability of the PUFEM model. Dirichlet boundary condi-
tions were applied perpendicular to the notch, in the axial
direction, at the two outer edges, and a displacement rate
of 10.0 mm s−1 was prescribed. The monolithic solution of
the system (33) was computed and differing magnitudes of
load increment were investigated. The resulting impact on
the mechanical response is demonstrated in Fig. 4 (right).

The large element size paired with the small cohesive
length yields a somewhat scattered force response, which
did not pose any issues concerning numerical stability. As the
first principal stress direction and the direction of the least
in-plane collagen fiber coincide for this problem, the fracture

propagates along a straight line from the notch towards the
opposite edge of the specimen.

5.2 Symmetry-constrained compact tension test

The same 3D domain used in Sect. 5.1 was subsequently
discretized into approximately 11k linear tetrahedral ele-
ments and then tightly linked to two rigid bodies, mimicking
the clamps of the symconCT ex-vivo tissue test. As in the
symconCT laboratory experiment, the specimen was first
pre-stretched, undergoing an initial loading sequence where
the distance between the hinge points of the clamps was
increased. Subsequently, during the primary loading phase,
these points were kept fixed in space, and the displacement
of the loading points were increased at a rate of 3 mm/min.

Tissue fracture was studied for the loading of the tissue
specimen in both the axial and circumferential directions.
Whilst the specimen in the case of axial loading was com-
pletely fractured following 123 load steps, when exposed
to loading in the circumferential direction, the crack ran
into the clamps (rigid body) after 85 loading steps. With
the computer system used, the simulation of this problem
took approximately 20 and 15min, respectively. Figure5 dis-
plays a contour plot of the von Mises stress for the axial
loading case approximately halfway through the fractured
symconCT test, whilst Fig. 6 (left) and (right) compare the
simulated load–displacement curves and the alternate frac-
ture paths resulting for specimens loaded in the axial and
circumferential directions, respectively.
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Table 4 Material and structural
parameters representing the
medial layer of the porcine aorta

Matrix material

Neo-Hookean parameter μ 30 kPa

Collagen fibers

CFPG-complex structural parameters

Collagen fibril stiffness kf 100 MPa

Collagen fibril target homeostatic stress T0 0.5 MPa

Rate of PG sliding ηslid 8e2 s−1

Rate of PG recovery ηrec 2e1 s−1

CFPG-complex failure parameters

Damage parameter 1 α −0.09

Damage parameter 2 β 1.1

Recruitment parameters

Lower limit λA 1.05

Mode λB 1.25

Upper limit λC 1.45

Discretization parameters

Number of CFPG-complexes nf 15

Collagen fiber orientation distribution

Distribution parameters

Bingham concentration parameter 1 κ1 11.7

Bingham concentration parameter 2 κ2 9.6

Numerical spherical integration parameters

Number of spherical integration points lint 120

Cohesive zone model parameters

Shape parameter a 0.7435

Shape parameter b 9.9064

Shape parameter c 1.8404

Shape parameter d 1.6935

Shape parameter e 1.2540

Integral shape parameter ζ 0.34683

Mode I fracture energy G 0.50958 Nmm/mm2

Normal and shear coupling parameter β 0.8

Rate parameter ηcz 0.01 or 1.0 s−1

Fig. 4 Results for the uniaxial
rupture test. A monotonically
increasing axial displacement
was applied at a rate of
10.0 ms−1, (left) coarse
discretisation of the tissue
sample, (right) influence of the
displacement increment on the
mechanical response, with
convergence realised at
sufficiently small increments
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Fig. 5 von Mises stress contour plot for the sample loaded in the axial
direction once the crack has propagated approximately halfway through
the length of the specimen. A stress concentration ahead of the crack tip
is clearly visible, as is the significant decline in stress for those PUFEM
elements that have localised and a cohesive zone is present

6 Conclusion

The failure of vascular tissue, occurring from traumatic injury
or the presentation of disease, is an issue of undoubted clin-
ical relevance. For instance, the rupture or ulceration of the
fibrous cap that characterises atherosclerotic lesions exposes
flowing blood to highly thrombogenic plaque contents and
the potential incidence of an acute thromboembolic event.
Likewise, the rupture of abdominal aortic aneurysms (AAA)
carries a demonstrable risk of mortality due to internal bleed-
ing.However, the underlying structure-function relationships
that govern both normal and pathological mechanical func-
tionality, and ultimately the fracture properties of vascular
tissue, are as yet unknown. To date, limited efforts have been
taken to divulge the histo-mechanical mechanisms associ-

ated with damage development and rupture of the arterial
wall, whether it be experimentally or computationally. The
biomechanical simulation of fracture in load-bearing soft
biological tissues, in particular, represents a uniquely chal-
lenging endeavour from a numerical standpoint.

Thepresent study combines non-linear continuummechan-
ical and discontinuous cohesive zone frameworks within a
robust and efficient PUFEM formulation that can effectively
characterise 3D crack propagation. The continuum model
incorporates time-dependent interfibrillar damage phenom-
ena, motivated by the microstructural architecture of the
collagenous ECM, whilst the response of the (phenomeno-
logical) transversely isotropic cohesive zone model is drawn
directly from that of the continuum model. Significantly, the
outlined traction separation law can effectively characterise
mixed-mode fracture. Shear loading may influence failure
processes in soft biological tissues, so it is imperative that
such features are incorporatedwhen seeking tomodel rupture
and its associated processes. Given our cohesive description,
the parameter β determines the coupling between normal
and shear loading at the interface. As indicated by the single
finite element response at softening, a constant β has been
used. It implies that the structures that support normal and
shear load transitioning in the failure process zone diminish
homogeneously with the accumulation of damage δ.

To the best of the authors’ knowledge, this is the first
instance in which a 3D finite-strain continuum damage for-
mulation has been coupled with an embedded representation
of the fracture surface. Namely, when the development of
collagen fiber damage in the continuum material gives rise
to a localised deformation, a discontinuous cohesive zone is
embedded within the finite element of interest and all further
evolution of damage in the continuum material is halted. All
subsequent irreversible deformations are thus occupied by
the cohesive zone, leading to the separation of the crack face

Fig. 6 Results for symconCT testing, demonstrating the impact of sam-
ple orientation relative to loading direction and notch placement, (left)
the mechanical response following the pre-stretching of the specimen,
with red and blue denoting loading in the axial and circumferential

directions, respectively, (right) the associated fracture paths, also dis-
playing the facets formed when a discontinuity presents in a PUFEM
element. Fracture paths are shown in the unloaded reference configura-
tion. (Color figure online)
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in the PUFEM element. The localisation criteria, and specifi-
cally the definition of the normal to the fracture surface, is of
paramount importance to numerical simulations that employ
embedded discontinuities. A myriad of contributing factors
likely influence the formation of fracture in load-bearing soft
biological tissues. For instance, the orientation of the dis-
continuity may be a function of the stress state, the rate of
stress, and the material’s microstructural organisation, with
the true origin and impact of such considerations difficult to
fully establish. Equation (30) may therefore be seen as the
first attempt to address this problem, and the amassment of
experimental data from individual tissues would likely result
in more adequate definitions.

The discussed computational framework was able to
qualitatively capture fracture mechanical behaviour for the
explored representative numerical examples, with stable fail-
ure propagation negating the need for the introduction of
inertial effects through transient solutionmethods. The appli-
cation of the model to the uniaxial tensile rupture test aptly
showcased its versatility, with the reliable simulation of tis-
sue failure for a course mesh size and relatively large load
increments. The simulation of the symconCT example well-
replicated the general experimental observations for samples
loaded in the axial direction, with the successful demonstra-
tion of a centralised crack trajectory and the stable/controlled
decline of the force following the inception of fracture. Fur-
thermore, as our framework is generic, it is likely that fracture
in tissue types other than the vascular wall could also be ana-
lyzed.

However, in the case of samples loaded in the circum-
ferential direction, disagreement between the simulation and
experimental observations was evident.Whilst the numerical
simulation could effectively reproduce the initial orientation
of the crack (a consequence of the initialised normal defini-
tion), it was unable to recreate the ‘zig-zag’ patternwitnessed
experimentally, see [46]. From a histological andmicrostruc-
tural perspective, this may stem from the repeated branching
of the crack and the subsequent arrest of the remainingmother
crack due to unknown failure mechanisms. The numerical
formulation, as it currently stands, is limited to the presence
of a single cohesive zone within a given PUFEM element,
and so cannot suitably mimic the postulated phenomena. It is
also worth noting that in the case of the symconCT testing of
aneurysmatic aorta specimens loaded in the circumferential
direction, the crack frequently propagates into the clamps,
see Fig. 7. This observation stems from our ongoing experi-
mental study concerning human thoracic aortas and matches
with the PUFEM simulations predicted in this work. The dis-
eased human aorta is particularly fibrous, histology that then
promotes fracture in between collagen fibers.

Many of the recent modelling strategies used to charac-
terise fracture in soft biological tissues have focussed on
the phase field method [15, 28, 34]. It can handle topologi-

Fig. 7 Symmetry-constrained compact tension (symconCT) test of the
aneurysmatic thoracic human aorta loaded along the circumferential
direction. The experimentally provoked fracture path matches that pre-
dicted by the PUFEM method, as shown in Fig. 6

cally complex fractures, such as branching and intersecting
cracks, without the need to explicitly trace the fracture sur-
face, circumventing many of the numerical complexities of
crack tracking. However, it does not allow full access to the
constitutive description of fracture, and it is therefore not
necessarily ideal with respect to designing and validating
fracture laws. Additionally, the explicit integration of physi-
cal aspects, such as nonlinearities and the time dependencies
associated with fracture processes, are not well understood.
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Appendix A: Straightening stretch probabil-
ity distribution

Fibril straightening is characterised by the triangular proba-
bility density function. As such, the piecewise expression
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Fλst (λst) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λst − λA)2

(λC − λA)(λB − λA)
; λA ≤ λst ≤ λB

1 − (λC − λst)
2

(λC − λA)(λC − λB)
; λB < λst ≤ λC ,

(A1)

defines the cumulative density function for the triangular dis-
tribution, with λA and λC corresponding to the collagen fiber
stretches where the first and last fibril are initially recruited
to load bearing, respectively, and λB is the mode of the dis-
tribution. Consequently, the piecewise expression

F−1
λst

(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λA + √
(λC − λA)(λB − λA)p ; 0 ≤ p

≤ Fλst (λB)

λC − √
(λC − λA)(λB − λA)(1 − p) ; Fλst (λB)

< p ≤ 1 ,

(A2)

denotes the associated inverse cumulative density function
for the triangular distribution. Finally, the relation

λst i = F−1
λst

(
i − 1

nf − 1

)
; 1 ≤ i ≤ nf , (A3)

then defines the generated straightening stretch λst i for the
ith CFPG-complex via inverse transform sampling, with nf
denoting the total number discrete CFPG-complexes consid-
ered.

Appendix B: Collagen fiber stress and stiff-
ness determination

A full accounting of the collagen fiber stress and stiffness
determination is provided, with the inclusion of details that
were omitted from the main text. For a thorough and exhaus-
tive explanation of the constitutive descriptions intricate
details, the reader is referred to the original publication [45].

B.1 Proportion of broken CFPG-complexes

As a finite number of CFPG-complexes are considered, in
order to determine δ, it is necessary to interpolate the space
between neighboring discrete CFPG-complexes. To achieve
this, we linearly approximate the relationship between λpg
and λst across the interpolated space, through the set of
expressions

λpg=mλst+c, m = λst i − λst i−1

λpg i − λpg i−1
, c = λpg i − mλst i .

(B4)

If the limiting CFPG-complex at which failure occurs
is present within the inerpolated space i.e. λpg i−1 >

λpg fail i−1 and λpg i ≤ λpg fail i , then through application of
Eq’s (10,11,B4) to Eq (14), we arrive at the function

g(λst) = α

P0

[
kf

(
λ

λst(mλst + c)
− 1

)
− P0

]

− β − (mλst + c) = 0. (B5)

It can be solved by means of the Newton method to pro-
vide the straightening stretch corresponding to the limiting
CFPG-complex at which failure has occurred. The expres-
sion, δ = Fλst (λst), then provides the proportion of failed
CFPG-complexes, i.e. the damage of the collagen fiber.

B.2 Stress of a collagen fiber—integration over all
CFPG-complexes

A linear interpolation among the nf discrete CFPG-
complexes, with respect to the squared fiber stretch, may be
used to approximate the percentage of load-bearing CFPG-
complexes, with the damage variable δ being used to omit
those CFPG-complexes that have failed and therefore no
longer contribute towards load-bearing. The collagen fiber
stiffness can be approximated through analytical functions,
and following subsequent integration, the stress can be
obtained. The general expressions for the stiffness and stress
of a collagen fiber are derived subsequently.

Given nr ∈ {0, n f } ∩ Z number of discrete CFPG-
complexes currently recruited to load bearing, i.e. those
where Pf > 0, the fiber’s referential stiffness reads

C =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 ; nr = 0

max

{
kf
λ3

[
γnr + λ2 − λnr

2

λnr+1
2 − λnr

2
− δ

]
, 0

}
; 0 > nr

> nf
kf
λ3

[1 − δ] ; nr = nf ,

(B6)

where γnr = Fλst (λst nr ), λnr = λst nrλpg nr and λnr+1 =
λst nr+1λpg nr+1 have been used. This expression can then be
integrated over all CFPG-complexes currently recruited to
load-bearing according to

Ai =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ; nr = 0

2kf (λi −λi−1)
λiλi−1

[
(γi−1−δ)+ λiλi−1−λi−1

2

λi 2−λi−1
2

]
; δ≤γi−1

2kf (λi −λd)

λiλd

[
(γi−1−δ)+ λiλd−λi−1

2

λi 2−λi−1
2

]
; γi−1<δ<γi

0 ; δ > γi ,

(B7)
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where γi−1 = Fλst (λst i−1), λi = λst iλpg i and λi−1 =
λst i−1λpg i−1 have been used. Furthermore, λd , relates to the
altered lower bound of integration due to damage and is given
by

λd =
[
λi−1

2 + (δ − γi−1)(λi
2 − λi−1

2)
]1/2

. (B8)

The total integration constant is then defined by A =∑nr
i=2 Ai . The second Piola–Kirchhoff stress S of a colla-

gen fiber is determined through the subsequent addition of A
to the integral over the remaining portion of the interpolated
stiffness function, leading to the piecewise expression

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ; nr = 0

A + 2kf(λ − λnr )

λλnr

[
(γi−1 − δ) + λλnr − λnr

2

λnr+1
2 − λnr

2

]
; 0 > nr > nf , δ ≤ γnr

A + 2kf(λ − λd)

λλd

[
(γi−1 − δ) + λλd − λnr

2

λnr+1
2 − λnr

2

]
; 0 > nr > nf , γnr < δ ≤ γnr+1, λ ≤ λd

0 ; 0 > nr > nf , γnr < δ ≤ γnr+1, λ > λd
0 ; 0 > nr > nf , δ > γnr+1

A + 2kf(1 − δ)

(
1

λnf
− 1

λ

)
; nr = nf , δ < 1

0 ; δ = 1,

(B9)

where λd once again relates to the altered lower bound of
integration due to damage, and in this case is given by

λd =
[
λnr

2 + (δ − γi−1)(λnr+1
2 − λnr

2)
]1/2

. (B10)
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