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Abstract
Continuum-kinematics-inspired peridynamics (CPD) has been recently proposed as a novel reformulation of peridynamics that
is characterized by one-, two- and three-neighbor interactions. CPD is geometrically exact and thermodynamically consistent
and does not suffer from zero-energy modes, displacement oscillations or material interpenetration. In this manuscript, for
the first time, we develop a computational framework furnished with automatic differentiation for the implementation of
CPD. Thereby, otherwise tedious analytical differentiation is automatized by employing hyper-dual numbers (HDN). This
differentiation method does not suffer from round-off errors, subtractive cancellation errors or truncation errors and is thereby
highly stable with superb accuracy being insensitive to perturbation values. The computational framework provided here is
compact and model-independent, thus once the framework is implemented, any other material model can be incorporated
via modifying the potential energy solely. Finally, to illustrate the versatility of our proposed framework, various potential
energies are considered and the corresponding material response is examined for different scenarios.

Keywords Nonlocal elasticity · Peridynamics · Automatic differentiation · Hyper-dual numbers

1 Introduction

The main objective of this contribution is to establish a com-
putational framework for CPD that is versatile and devoid
of-often overly complex-analytical derivatives for residuals
and tangents using HDN. A brief overview of CPD and HDN
are given in Sects. 1.1 and 1.2, respectively. Section1.3 elab-
orates on the key features of the manuscript. The notations
and definitions that are employed throughout the manuscript
are listed in Sect. 1.4, followed by Sect. 1.5 explaining the
organization of the remainder of the manuscript.
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1.1 Peridynamics

Peridynamics (PD) is a nonlocal framework to formulate
continuum mechanics which assumes that physical points
within a continuum body interact with each other across
a finite distance called horizon [1]. In PD, the governing
equations are formulated based on integral equations without
spatial derivatives, which makes the framework suitable for
the analysis of problems involving discontinuities and singu-
larities such as fracture [2–9]. However, the spectrum of PD
applications is considerably broad and not limited to fracture
mechanics, see Javili et al. [10] for a comprehensive review.
In bond-based PD, the interaction between two points within
the continuum is only described by a two-point force den-
sity vector. Such simplified assumption for the interactions
leads to failure in capturing the Poisson’s effect. That is, the
Poisson’s ratio is restricted to 1/4 for isotropic materials. To
overcome this limitation, state-based PD was developed [3]
where the force density vector can be defined based on the
stress tensors which allows the use of constitutive models in
PD [11]. Recently, Javili et al. [12] established an alternative
formulation for PD called “continuum-kinematics-inspired
peridynamics (CPD)”wherein the underlying kinematics are
reminiscent to classical continuum mechanics. The nonlocal
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material behavior in CPD is governed by three interac-
tions types; one-neighbor interaction which occurs between
a point and all of its neighbors; two-neighbor interaction
which occurs between a point and all pairs of its neigh-
bors; and three neighbor interaction which occurs between
a point and all triplets of its neighbors. Since the interac-
tions are defined by the change of pair-length, triplet-area and
tetrad-volume, CPDbuild upon classical continuummechan-
ics kinematics. Additionally, constrained Poisson’s ratio or
zero-energymodes are absent in CPD. Owing to its great ver-
satility and advantages, CPD has been growing rapidly. The
computational framework for the implementation of CPD
was developed in [13], see also [14]. Afterwards, Javili et
al. [15] investigated the thermodynamic restrictions on the
interaction energies in CPD and derived thermodynamically
consistent constitutive laws through a Coleman–Noll-like
procedure. Schaller et al. [16] reexamined the governing
equations inCPD for open systems anddemonstrated how the
balances of momentum, energy and entropy are modified in
the presence of an additionalmass source. Zhou andTian [17]
investigated the concept of constitutive correspondence in
CPD. Ekiz et al. [18, 19] established relationships between
the material parameters of CPD and isotropic linear elastic-
ity. For further studies on CPD, the reader is referred to the
following referenceswith applications towrinkling and insta-
bilities [20], bone remodeling [21], elasto-plasticity [22],
damage and fracture [23, 24] and interfacial modeling in
multi-phase materials [25, 26].

1.2 Hyper-dual numbers

In computational mechanics, modeling and simulation of the
mechanical behavior of materials undergoing large defor-
mations is a challenging task. Further complexities arise if
accounting for inelasticity or anisotropy is required. The
material behavior is commonly described by a potential
energy function whose derivatives with respect to certain
fields yields the stresses and tangent moduli. Accurate cal-
culation of derivatives of the potential energy function is
essential and considerably influences the simulation results.
In particular, accurate calculation of the residual guarantees
the precision in the physics of the problem and accurate cal-
culation of the tangent influences the convergence of the
Newton–Raphson scheme for solving the nonlinear system
of equations [27, 28].

There exist various methods for the calculation of deriva-
tives. At this stage of development on the subject, it seems
virtually impossible to propose a classification that pre-
cisely addresses all aspects objectively. However, for the
sake of representation and better conveying the ideas of
the manuscript, we aim to propose a somewhat fair clas-
sification. Figure1 shows a schematic classification of the

differentiation schemes.1 The first differentiation scheme
is approximate differentiation which is mainly numerical
and is based on the Taylor series expansion [29]. A well-
known example of approximate differentiation is the finite
difference method which is usually classified, for example,
into the backward, forward or central difference method.
However, finite difference methods have two major draw-
backs; first, they are approximations in essence and second,
the derivative accuracy depends on the perturbation values.
Small perturbations could yield instabilities due to machine
precision and large perturbations yield inaccuracy especially
for the second-order derivatives. Aside from the finite dif-
ference method, the complex-step derivative approximation
method [30, 31], the double number method [32] have been
proposed which do not suffer from the aforementioned dis-
advantages, see [33–39] for further studies on both methods.
The second differentiation scheme is accurate differentia-
tion which calculates the differentiation precisely. The first
and most-well known accurate differentiation scheme is the
analytical differentiation which is an ideal method due to
its efficiency. However, for complex material models such
as anisotropic materials, analytical calculation of deriva-
tives can become excessively complicated and is an arduous
task, if not impossible. In such cases, symbolic and auto-
matic differentiations become handy since they are computer
based [40]. Recently Fike and Alonso [41], based on the the-
ory of quaternions developed by Clifford [42], developed an
automatic differentiation tool employing “hyper-dual num-
bers” for the exact calculation of first and second derivatives,
see also [43]. Hyper-dual numbers (HDN) are basically an
extension of the dual numbers which are able to calculate the
up to the second-derivatives precisely. Due due their promis-
ing accuracy and versatility, hyper-dual numbers (HDN)
have been utilized in various research areas. Fundamentals
of matrix representation of hyper-dual numbers were pre-
sented by Imot er al. [44] where higher-order derivatives
could be calculated using hyper-dual numbers. Cohen and
Shoham [45] introduced the algebra of hyper-dual numbers
and hyper-dual vectors of higher orders. Endo et al. [46]
developed a new variant of hyper-dual numbers called diag-
onal hyper-dual numbers which are computationally more
efficient for the calculation of Hessian matrices. Kiran and
Khandelwal [47] utilized hyper-dual numbers in finite strain
anisotropic hyperelasticity in order to automatically calculate
the Piola stress tensor and the corresponding tangent mod-
uli from the potential energy function. A similar study was
carried out by Tanaka et al. [48] for elasto-plasticity, who
compared the performance of the incremental variational

1 The term “accurate” in accurate differentiation in fact implies precise
with no truncation or round-off errors. Finite difference methods can
also have subsets based on their order of “accuracy” but it does not
mean accurate in the sense of our accurate category.
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formulation and hyper-dual numbers, see also [49]. Further
studieswith applications to hyper-dual numbers include rigid
body kinematics [50–52], modelling equations of state [53],
reduced order modeling [54], plate and shell buckling [55],
gradient-enhanced elasto-plasticity [56] and topology opti-
mization [57, 58].

1.3 Objectives and key features

CPD is a novel continuum formulation to explain the non-
local behavior of materials. However, further exploration is
required to fully grasp its potential. As any novel model, a
crucial aspect to harness the capabilities of CPD lies in eval-
uating its utility to predict the material response for a wide
range of energy densities and to identify their key properties.
On the other hand - even for fairly simple energy densi-
ties - the derivations of the residuals and tangents in CPD
become lengthy and intricate. This, in turn makes the com-
putational implementation of CPD cumbersome and prone
to errors. This manuscript aims to facilitate investigating
arbitrary energies via a versatile framework that remains
independent of the given energymodel. To do so, we develop
a computational framework furnished with automatic differ-
entiation for a generic implementation of CPDvia employing
hyper-dual numbers (HDN). Although the governing equa-
tions of CPD are in integral form, calculation of derivatives
are necessary to solve the system of non-linear equations in
an implicit manner. In addition, the accuracy of the deriva-
tive calculation is important since it might influence the
solution path in the case of non-convex potential energy func-
tions [59] that can be encountered when modeling various
physical phenomena such as in multi-scale modeling of car-
bon nano-tube foams [60], bi-stable elastic structures [61],
mechanical transmission lines [62], narrowmagnetic domain
materials [63] and chemical surface adsorption [64]. Very
few studies have been carried out on automatic differen-
tiation methods in peridynamics [65–68]. However, to the
best of the authors’ knowledge, there exist no contribution
on implementation of hyper-dual numbers for CPD. Such
computational framework paves the way for analysis of a
wide range peridynamics material models which provides
significant insights towards better understanding of complex
material behaviors such as anisotropic materials or compos-
ites.

1.4 Notations and definitions

Throughout this manuscript, scalars are denoted by lower
case Greek letters, first-order tensor quantities are denoted
by lowercase bold letters and second-order tensor quantities
are denoted by uppercase bold letters. For instance α is a
scalar, a is a first-order tensor, A is a second-order tensor.
The cross product of two vectors a and b is a vector c = a×b

with [c]k = [a]i [b] j [e]i jk where [e]i jk is the third-order
Levi-Civita permutation tensor. The action of a second-order
tensor A on a vector b results in a vector c = A · b with
[c]i = [A]i j [b] j . The standard dot product of a vector a to a
third-order tensora results in a second-order tensor A = a ·a
with [A]i j = [a]k[a]ki j . The non-standard dot product of a
vector a to a third-order tensor a results in a second-order
tensor A = a ·a with [A]i j = [a]k[a]ik j . The imaginary
(non-real) and the real operators are denoted as � and �.
For instance, for an arbitrary complex number α + βi , the
imaginary (non-real) operator � extracts the imaginary part
as �(α + βi) = β and the real operator extracts the real
part as�(α +βi) = α. As will be discussed later, for double
numbers, dual numbers and hyper-dual numbers, the non-real
unit has different properties than the well-known imaginary
unit i and shall generally be addressed as a non-real unit. To
avoid confusing terminologies, we also refer to the imaginary
unit i as non-real.

1.5 Organization of themanuscript

The remainder of the manuscript is organized as follows.
In Sect. 2, the fundamentals of CPD and its computational
implementation are briefly reviewed. Hyper-dual numbers
and their algebra are introduced in Sect. 3 where numeri-
cal differentiation using hyper-dual numbers with respect to
scalar, vector and tensor arguments is elaborated. In Sect. 4,
CPD is furnished with hyper-dual numbers and a general
framework for calculation of the residual and tangents in
CPD is developed. Section5 details on a family of potential
energy functions employed in this manuscript. The proposed
framework is evaluated through a set of numerical examples
in Sect. 6. Finally, Sect. 7 concludes the work and provides
further outlooks. Table 1 summarizes the notation and termi-
nology adopted in this manuscript.

2 Continuum-kinematics-inspired
peridynamics

2.1 Kinematics

Let B0 be a continuum body with material configuration at
time t = 0 which is mapped to its spatial counterpart Bt via
the nonlinear deformation map as x = y(X, t) , as shown in
Fig. 2. In the material configuration, the point Xa interacts
with its neighbors X i , X j , Xk , etc within the Horizon H0.
Similarly, the point xa interacts with its mapped neighbors
xi , x j , xk , etc within the HorizonHt . The relative positions
between the points and their neighbors in the material and
spatial configurations are defined as

�ai := X i−Xa and ξai := xi−xa= y(X i )− y(Xa) .

(1)
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Fig. 1 A classification of the differentiation schemes. Note that such a classification is introduced for the sake of representation and better conveying
the ideas of the manuscript

Similar to classical continuummechanics, there exist three
relative deformation measures in CPD. The first relative
deformationmeasure is the relative position vector ξai which
describes one-neighbor interactions and is defined as

ξai := xi − xa . (2)

This relative deformation measure mimics the deformation
gradient F which maps infinitesimal material line elements
dX to their spatial counterparts dx. Note, the superscript
“ai ′′ implies that the relative position vector corresponds to
points {a, i} and shall not be confused with tensor indices.
The second relative deformation measure is the relative area
vector aai j which describes two-neighbor interactions and is
defined as

aai j :=
[
xi − xa

]
×
[
x j − xa

]
= ξai × ξaj . (3)

This relative deformationmeasure mimics the cofactor of the
deformation gradient CofF = J F−T which maps infinites-
imal material area elements dA to their spatial counterparts
da. Similarly, the superscript “ai j ′′ implies that the area is
spanned between points {a, i, j} and shall not be confused
with tensor indices. The third relative deformation measure
is the relative volume vai jk which describes three-neighbor
interactions and is defined as

vai jk :=
[[
xi − xa

]
×
[
x j − xa

]]

·
[
xk − xa

]
=
[
ξai × ξaj

]
· ξak . (4)

This relative deformation measure mimics the determinant
of the deformation gradient J = Det(F) which maps
infinitesimal material volume elements dV to their spatial
counterparts dv. The superscript “ai jk′′ implies that the vol-
ume is spanned between points {a, i, j, k} and shall not be
confusedwith tensor indices. In the limit of vanishinghorizon
the following relations hold between the relative deformation
measures

ξai := xi − xa

aai j := ξai × ξaj

vai jk :=
[
ξai × ξaj

]
· ξak

⎫
⎪⎬
⎪⎭

δ0→0���⇒
⎧⎨
⎩

ξai := F · �ai

aai j := CofF · Aai j

vai jk := DetF V ai jk
. (5)

2.2 Governing equations

The next step is to elaborate the governing equations. In order
to obtain the governing equations, the total potential energy
functional is minimized via setting its variation to zero. The
total potential energy� is composed of the internal potential
energy � and the external potential energy ϒ as

� = � + ϒ �⇒ δ� = δ� + δϒ ∀ δ y . (6)
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Fig. 2 Problem definition in CPD.A continuumbodyB0 in thematerial
configuration is mapped to its spatial counterpart Bt via the nonlinear
deformation map y. The point a interacts with its neighbors within
a horizon H0 and Ht in both material and spatial configurations,
respectively. There exist three interaction types in CPD. One-, two-

and three-neighbor interactions which correspond to the relative posi-
tion vector, area and volume, respectively. �ai is the relative position
between the points a, i . Aai j is the area formed between the points
a, i, j . V ai jk is the volume formed between the points a, i, j, k

It shall be noted that our analysis will be carried out for non-
dissipative processes in a variational setting. The variation of
the external potential energy reads

δϒ = −
∫

B0

baext · δ ya dV −
∫

∂B0

tbext · δ yb dA , (7)

with baext being the external force density and taext being the
external traction on the boundary.

2.2.1 Internal potential energy

The internal potential energy consists of the contribution of
one-, two- and three-neighbor interactions as

� = �1 + �2 + �3 =
∫

B0

[
1

2

∫

H0

ψai
1 dV1

+ 1

3

∫∫

H0

ψ
ai j
2 dV2 dV1

1

4

∫∫∫

H0

ψ
ai jk
3 dV3 dV2 dV1

]
dV .

(8)
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The factors 1/2, 1/3 and 1/4 are associated with equiv-
alent energies encountered for the same pairs, triplets and
quadruples, respectively. The variation of the internal poten-
tial energy reads

δ�1 =
∫

B0

∫

H0

δψai
1 dV1 dV ,

δ�2 =
∫

B0

∫∫

H0

δψ
ai j
2 dV2 dV1 dV ,

δ�3 =
∫

B0

∫∫∫

H0

δψ
ai jk
3 dV3 dV2 dV1 dV , (9)

where the pre-factors disappear. The one-, two- and three-
neighbor interactions potential energy densities are a func-
tion of the relative position vector between point a and its
neighbor i , the area vector formed by point a and its neigh-
bor pairs {i, j} and the volume formed by point a and its

neighbor triplets {i, j, k}, respectively, as

ψai
1 = ψai

1 (ξai ) ,

ψ
ai j
2 = ψ

ai j
2 (aai j ) ,

ψ
ai jk
3 = ψ

ai jk
3 (vai jk) . (10)

Using the relation δξai = δ yi − δ ya and the following iden-
tities

δξai = δ yi − δ ya ,

δaai j =
[
δξai × ξaj

]
+
[
ξai × δξaj

]
,

δvai jk =
[
δξai × ξaj

]
· ξak +

[
ξai × δξaj

]
· ξak

+
[
ξai × ξaj

]
· δξak , (11)

Table 1 Summary of notation and terminology

Nomenclature

δ Kronecker delta e Third-order Levi-Civita permutation tensor

X i Material position vector of point i xi Spatial position vector of point i

� Total potential energy ξai Spatial relative position vector between points {a, i}
� Total internal potential energy aai j Spatial area vector spanned between points {a, i, j}
ϒ Total external potential energy vai jk Spatial volume formed by points {a, i, j, k}
δ0 Material horizon size �ai Material relative position vector between points {a, i}
δt Spatial horizon size Aai j Material area vector spanned between points {a, i, j}
y Non-linear deformation map V ai jk Material volume formed by points {a, i, j, k}
VH volume of the horizon pai Internal force density per volume squared between points {a, i}
V i Volume assigned to each neighbor baint point-wise internal force density per volume for point a

#P Number of collocation points baext Point-wise external force density per volume for point a

#N Number of neighbors taext Point-wise external traction on the boundary for point a

x Global position vector xa Point-wise position vector for point a

R Global residual vector Ra Point-wise residual vector for point a

K Global tangent matrix K ab Point-wise stiffness matrix for points a and b

C1 One-neighbor elastic coefficient ψai
1 One-neighbor interaction energy density

C2 Two-neighbor elastic coefficient ψaik
2 Two-neighbor interaction energy density

C3 Three-neighbor elastic coefficient ψ
ai jk
3 Three-neighbor interaction energy density

� Real operator � Imaginary or non-real operator

â Hyper-complex number i1 First non-real part of hyper-complex numbers

â Hyper-complex vector i2 Second non-real part of hyper-complex numbers

Â Hyper-complex second-order tensor i12 Third (mixed) non-real part of hyper-complex numbers

ã Hyper-double number e1 First non-real part of hyper-double numbers

ã Hyper-double vector e2 Second non-real part of hyper-double numbers

Ã Hyper-double second-order tensor e12 Third (mixed) non-real part of hyper-double numbers

a Hyper-dual number ε1 First non-real part of hyper-dual numbers

a Hyper-dual vector ε2 Second non-real part of hyper-dual numbers

A Hyper-dual second-order tensor ε12 Third (mixed) non-real part of hyper-dual numbers
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the final form of the variation of the internal potential energy
variation reads

δ� =
∫

B0

∫

H0

[
∂ψai

1

∂ξai
+
∫

H0

[
2ξaj × ∂ψ

ai j
2

∂aai j

]
dV2 +

∫∫

H0

[
3
∂ψ

ai jk
3

∂vai jk

[
ξaj × ξak

]]
dV3 dV2

]

︸ ︷︷ ︸
pai

·δ yi dV1dV

−
∫

B0

[∫

H0

∂ψai
1

∂ξai
dV1 +

∫∫

H0

[
2ξaj × ∂ψ

ai j
2

∂aai j

]
dV2 dV1 +

∫∫∫

H0

[
3
∂ψ

ai jk
3

∂vai jk

[
ξaj × ξak

]]
dV3dV2 dV1

]

︸ ︷︷ ︸
baint

·δ yadV ,

(12)

with pai being the force density per volume squared and
baint being the internal force density per volume. Thus, the
compact form of the internal potential energy potential vari-
ation boils down to

δ� =
∫

B0

∫

H0

pai · δ yi dV1dV −
∫

B0

baint · δ yadV . (13)

2.2.2 Equilibrium and balance equations

Via setting the variation of the total potential energy with
respect to admissible variations δ y at a fixed material point
to zero, the governing equations for equilibrium are obtained.
Inserting Eqs. (13) and (7) into Eq. (6) yields

∫

B0

∫

H0

pai · δ yi dV1dV −
∫

B0

baint · δ yadV

−
∫

B0

baext · δ ya dV −
∫

∂B0

tbext · δ yb dA = 0 . (14)

Due to arbitrariness of δ y, we can readily extract the govern-
ing equations as

∫

B0

baintdV +
∫

B0

baextdV = 0 , subject to

∫

B0

∫

H0

pai · δ yi dV1dV −
∫

∂B0

tbext · δ yb dA = 0 , (15)

in global form and as

baint + baext = 0 , (16)

in point-wise local form. The obtained relations formulate
the linear momentum balance which is the underlying gov-
erning equation in CPD. The angular momentum balance is
a priori satisfied if the internal potential energy densities sat-

isfy material frame indifference or more precisely, if they are
defined as functions of |ξai |, |aai j | and, |vai jk |.

2.3 Computational implementation of CPD

The first step towards computational implementation of CPD
is to transform the equations from their continuous form
to a discrete form. In doing so, the integrals over the hori-
zon are transformed to summation over neighbors and using
quadrature rule, integrals over the body are transformed to
summation over collocation points. In our case, the collo-
cations points and the quadrature points coincide, thus, we
refer to them collectively as grid points henceforth, see [13].

For the linear momentum balance equation, we here
assume that external body forces are zero for the sake
of presentation. Accordingly the local form of the linear
momentum balance can be expressed in discretized form as

baint =
#N∑
i=1

∂ψai
1

∂ξai
V i +

#N∑
i=1

#N∑
j=1
j 	=i

[
2ξaj × ∂ψ

ai j
2

∂aai j

]
V i j

+
#N∑
i=1

#N∑
j=1
j 	=i

#N∑
k=1
k 	=i
k 	= j

[
3
∂ψ

ai jk
3

∂vai jk

[
ξaj × ξak

]]
V i jk = 0 ,

(17)

withV i ,V i j ,V i jk accounting for volume integrals.We define
the point-wise residual vector for collocation point Pa as
Ra , which is composed of three parts; one-neighbor interac-
tions contributions, two-neighbor interactions contributions
and three-neighbor interactions contributions. That is

Ra = Ra
1 + Ra

2 + Ra
3 = 0 , (18)

with

Ra
1 =

#N∑
i=1

∂ψai
1

∂ξai
V i ,
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Ra
2 =

#N∑
i=1

#N∑
j=1
j 	=i

[
2ξaj × ∂ψ

ai j
2

∂aai j

]
V i j ,

Ra
3 =

#N∑
i=1

#N∑
j=1
j 	=i

#N∑
k=1
k 	=i
k 	= j

[
3
∂ψ

ai jk
3

∂vai jk

[
ξaj × ξak

]]
V i jk . (19)

The global discretized residual vector R is composed of
point-wise discretized residual vectors Ra assembled into a
global vector formally represented asR = [

R1 R2 . . . Ra

. . . R#P
]T

. Similar to the point-wise residual, the point-

wise tangent can be decomposed into three parts associated
with one-, two- and three-neighbor interactions as Kab =
∂Ra/∂xb = Kab

1 + Kab
2 + Kab

3 with

K ab
1 = ∂Ra

1

∂xb
= ∂

∂xb

⎛
⎝

#N∑
i=1

∂ψai
1

∂ξai
V i

⎞
⎠ ,

K ab
2 = ∂Ra

2

∂xb
= ∂

∂xb

⎛
⎜⎜⎝

#N∑
i=1

#N∑
j=1
j 	=i

[
2ξaj × ∂ψ

ai j
2

∂aai j

]
V i j

⎞
⎟⎟⎠ ,

K ab
3 = ∂Ra

3

∂xb
= ∂

∂xb⎛
⎜⎜⎜⎜⎝

#N∑
i=1

#N∑
j=1
j 	=i

#N∑
k=1
k 	=i
k 	= j

[
3
[
ξaj × ξak

] ∂ψ
ai jk
3

∂vai jk

]
V i jk

⎞
⎟⎟⎟⎟⎠

. (20)

The fully discrete nonlinear system of governing equations
can be stated asR

·= Owhich could be solved using an iter-
ative Newton–Raphson scheme. The consistent linearization
of the resulting system at iteration n reads

Rn+1 = Rn + Kn · �xn
.= 0 thus

�xn = −K-1
n · Rn with Kn := ∂R

∂x

∣∣∣∣
n
, (21)

where�x is the incremental global deformation vector.After
each iteration, the global deformation vector x is updated
by �x according to xn+1 = xn + �xn . Obviously, equa-
tions (19) and (20) require calculations of the first and second
derivatives of the potential energy function, respectively,
which is gathered in Table 2. Such calculations are carried
out in a generic form using the hyper-dual numbers in the
next Section.

Table 2 Derivatives required for calculation of the residual and tangents
in CPD

∂ψai
1

∂ξai
∂

∂xb

(
∂ψai

1

∂ξai

)
=
[

∂2ψai
1

∂ξai
2

][
∂ξai

∂xb

]

∂ψ
ai j
2

∂aai j
∂

∂xb

(
∂ψ

ai j
2

∂aai j

)
=
[

∂2ψ
ai j
2

∂aai j2

][
∂aai j

∂xb

]

∂ψ
ai jk
3

∂vai jk

∂

∂xb

(
∂ψ

ai jk
3

∂vai jk

)
=
[

∂2ψ
ai jk
3

∂vai jk
2

][
∂vai jk

∂xb

]

3 Hyper-dual numbers

In computational mechanics, it is crucial to calculate the
derivatives of the potential energy function accurately since
it has a significant impact on simulation outcomes. Pre-
cise computation of the residual is particularly essential to
ensure the accuracy of the physics involved in the problem,
while calculating the tangent with precision affects the abil-
ity of the Newton–Raphson method to converge in solving
the nonlinear system of equations. Numerical differentiation
is a common technique to approximate the derivative of a
function using various methods. One of the disadvantages
of numerical differentiation methods compared to analyti-
cal differentiation is that they suffer from numerical errors.
There exist two main sources of error in numerical differ-
entiation. The first error type is the truncation error which
arises when higher-order terms in approximations or deriva-
tive calculations are neglected. The truncation error can be
minimized by making the perturbation value h very small.
The second error type is the subtractive cancellation error
which occurs because in computers the numbers are only
stored up to a certain precision. For example, in double pre-
cision arithmetic, the numbers are stored up to 15 decimal
digits. If the numbers that are being subtracted from each
other are too close, the computer fails to distinguish them
hence the zero difference. This leads to an incorrect approx-
imation of the derivatives. The subtractive cancellation error
increases by making the perturbation value h very small.
Therefore, both errors cannot be minimized simultaneously
via decreasing the perturbation value h. Various numerical
differentiation techniques have been developed to minimize
these errors, among which, hyper-dual numbers have proven
to be one of the most accurate methods. Appendix A pro-
vides a unifying study on various numerical differentiation
techniques and highlights the advantages and disadvantages
of each method.

Hyper-dual numbers are a number system developed
based on the theory of quaternions to calculate exact first
and second derivatives. The derivation calculation involves
converting a real-valued function evaluation to operate on
hyper-dual numbers. The hyper-dual numbers are character-
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ized by one real part and three non-real parts. A hyper-dual
number a is defined as

a = a0 + a1ε1 + a2ε2 + a12ε12 with

ε12 = ε21 = ε1ε2 = ε2ε1 	= 0 and ε21 = ε22 = 0 .

(22)

Accordingly, the real and non-real operators are defined as

� (a) = � (a0 + a1ε1 + a2ε2 + a12ε12) = a0 ,

�ε1 (a) = �ε1 (a0 + a1ε1 + a2ε2 + a12ε12) = a1 ,

�ε2 (a) = �ε2 (a0 + a1ε1 + a2ε2 + a12ε12) = a2 ,

�ε12 (a) = �ε12 (a0 + a1ε1 + a2ε2 + a12ε12) = a12 . (23)

When operations are performed on the real component of
a hyper-dual number, the derivative information for those
operations is created and stored in the non-real parts of the
number. The non-real elements of the number contain deriva-
tive information with regard to the input at every stage of the
function evaluation. Cohen and Shoham [45] demonstrated
that hyper-dual numbers are indeed an extended version of
dual numbers of order two. For the sake of simplicity, it is
usually assumed that a1 = a2 = h and a12 = 0 hence
a = a0 + hε1 + hε2. Therefore, the Taylor series expansion
of the smooth function f (x + hε1 + hε2) reads

f (x + hε1 + hε2) = f (x) + hε1
∂ f (x)

∂x
+ hε2

∂ f (x)

∂x

+ h2ε12
∂2 f (x)

∂x2
, (24)

that could be rewritten as

f (x + hε1 + hε2) = f (x) +
[
h

∂ f (x)

∂x

]
ε1

+
[
h

∂ f (x)

∂x

]
ε2 +

[
h2

∂2 f (x)

∂x2

]
ε12 ,

(25)

The first and second derivatives of f (x) can be calculated as

∂ f (x)

∂x
=

�ε1

(
f (x + hε1 + hε2)

)

h

=
�ε2

(
f (x + hε1 + hε2)

)

h
and

∂2 f (x)

∂x2
=

�ε12

(
f (x + hε1 + hε2)

)

h2
. (26)

Note that the operators�ε1 ,�ε2 and�ε12 extract themultiples
to the non-real parts ε1, ε1 and ε12, respectively. It is observed
that the first and the second derivatives neither suffer from

truncation errors nor from subtractive cancellation errors. As
a result, both derivatives are calculated in an exact manner.

3.1 Algebra and tensor analysis with hyper-dual
numbers

This section briefly elaborates the algebra of hyper-dual
numbers. Table 3 summaries the definitions for basic alge-
braic operations for hyper-dual numbers. As mentioned in
the previous section, it is usually assumed that for a typical
hyper-dual number a1 = a2 = h and a12 = 0. Therefore, a
hyper-dual number can be represented as a = a0+hε1+hε2.
Another equally important feature of differentiation with
hyper-dual numbers is that the derivatives do not depend
on the perturbation magnitude h, thus one could assume
h = 1. Accordingly, we henceforth continue our analysis
with hyper-dual numbers defined as a = a0+ε1+ε2.Assume
that f (x) is a scalar valued function of a scalar variable x .
The first and second derivatives of f (x)with respect to x can
be obtained as

∂ f (x)

∂x
= �ε1

(
f (x + ε1 + ε2)

)
= �ε2

(
f (x + ε1 + ε2)

)
,

∂2 f (x)

∂x2
= �ε12

(
f (x + ε1 + ε2)

)
. (27)

Similarly, for a two variable scalar function f (x, y), the
derivatives with respect to scalar independent variables are
obtained as

∂ f (x, y)

∂x
= �ε1

(
f (x + ε1 , y + ε2)

)
,

∂ f (x, y)

∂ y
= �ε2

(
f (x + ε1 , y + ε2)

)
,

∂2 f (x, y)

∂x∂ y
= �ε12

(
f (x + ε1 , y + ε2)

)
,

∂2 f (x, y)

∂x2
= �ε12

(
f (x + ε1 + ε2 , y)

)
,

∂2 f (x, y)

∂ y2
= �ε12

(
f (x , y + ε1 + ε2)

)
. (28)

As shown in Eq. (28), in order to find the whole set of first
and second derivatives, three different combinations of the
hyper-dual forms for the independent variables need to be
used. Thus, the function f (x, y) needs to be evaluated three
times.

3.2 Differentiation with respect to tensor arguments

Another important aspect of hyper-dual numbers is differ-
entiation with respect to first- and second-order tensors,
which will be elaborated in this section. In doing so, we

123



Computational Mechanics

Table 3 Algebra of hyper-dual
numbers a + b [a0 + b0] + [a1 + b1]ε1 + [a2 + b2]ε2 + [a12 + b12]ε12

ab [a0b0] + [a0b1 + a1b0]ε1 + [a0b2 + a2b0]ε2 + [a0b12 + a1b2 + a12b0 + a2b1]ε12
αa αa0 + αa1ε1 + αa2ε2 + αa12ε12

1

a

1

a0
− a1

a20
ε1 − a2

a20
ε1 +

[
−a12

a20
+ 2a1a2

a30

]
ε12

an an0 + na1a
n−1
0 ε1 + na2a

n−1
0 ε2 −

[
na12a

n−1
0 − n[n − 1]a1a2an−2

0

]
ε12

e(a) ea0 + ea0a1ε1 + ea0a2ε2 + ea0 [a12 − a1a2] ε12

ln(a) ln(a0) + a1
a0

ε1 + a2
a0

ε2 +
[
a12
a0

+ a1a2
a20

]
ε12

sin(a) sin(a0) + a1 cos(a0)ε1 + a2 cos(a0)ε2 + [a12 cos(a0) − a1a2 sin(a0)] ε12
cos(a) cos(a0) − a1 sin(a0)ε1 − a2 sin(a0)ε2 + [a12 sin(a0) + a1a2 cos(a0)] ε12

tan(a) tan(a0) − a1
cos2(a0)

ε1 + a2
cos2(a0)

+ ε2 +
[

a12
cos2(a0)

+ 2a1a2 sin(a0)

cos3(a0)

]
ε12

provide a systematic scheme in order to define the deriva-
tives of an arbitrary function with respect to zero-, first- and
second-order functions. In order to facilitate the terminol-
ogy, henceforth we refer to zero-order tensors as scalars,
first-order tensors as vectors and second-order tensors simply
as tensors. Also, to avoid confusing notation, we denote an
independent scalar variable as z, vector variable as z and ten-
sor variable as Z. Similar to classical continuum mechanics,
in peridynamics the problem is associated with a poten-
tial energy function whose first and second derivatives are
required in order to employ the Newton–Raphson method.
Therefore, we present our framework here for scalar-valued
functions with scalar, vector or tensor arguments. Such a
function could represent a potential energy function. Assume
φ is a scalar-valued function whose independent variables
could be scalars φ(z), vectors φ(z) or tensors φ(Z). For the
scalar variable z, using Eq. (27), the first and second deriva-
tives of φ(z) can be obtained as

∂φ(z)

∂z
= �ε1

(
φ(z + ε1 + ε2)

)
= �ε2

(
φ(z + ε1 + ε2)

)
,

∂2φ(z)

∂z2
= �ε12

(
φ(z + ε1 + ε2)

)
. (29)

Next, let a1 and a2 be two arbitrary vectors. Then, for the
vector variable z, the first and second directional derivatives
of φ(z) in the directions a1 and a2 are calculated as

∂φ(z)
∂ z

· a1 = �ε1

(
φ(z + ε1a1)

)
,

a1 · ∂2φ(z)
∂ z2

· a2 = �ε12

(
φ(z + ε1a1 + ε2a2)

)
. (30)

Similarly, we assume A1 and A2 to be two arbitrary tensors.
Then, for the tensor variable Z, the first and second direc-
tional derivatives of φ(Z) in the directions A1 and A2 are

calculated as

∂φ(Z)

∂Z
: A1 = �ε1

(
φ(Z + ε1A1)

)
,

A1 : ∂2φ(Z)

∂Z2 : A2 = �ε12

(
φ(Z + ε1A1 + ε2A2)

)
. (31)

For further details and application of tensorial derivatives in
hyperelasticity see [48, 49].

3.3 Comments on computational efficiency

Thecomputational efficiency inderivative calculationbetween
available methods is ranked sequentially as: analytical meth-
ods, finite difference method, complex numbers method,
dual numbers method and hyper-dual numbers method,
respectively [48, 49, 69]. However, the gap between the per-
formance of methods decreases as the number of degrees
of freedom in the problem increases. This is due to the fact
that instead of the derivative calculation and assembly pro-
cedure, it is the solution time (inverse computation) that
dominates in the computational efficiency. Figure3 compares
the computational effort required when differentiation is
carried out using hyper-dual numbers (blue line) versus ana-
lytical method (red line) for our implementation. The vertical
the vertical axis represents the ratio of the assembly time over
the solution time and horizontal axis represents the number of
DOFs. It is observed that as the number of degrees of freedom
increases, the computational effort gap between the analyti-
cal scheme and hyper-dual numbers decreases. As shown in
Table 3, it is observed that the summation of two hyper-dual
numbers requires four real summations. Also, multiplication
of two hyper-dual numbers require nine real multiplications
plus five real summations. Such extended algebraic calcula-
tions are the main sources of computational cost associated
with hyper-dual numbers. For example, the calculation of
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Fig. 3 Comparison of the
computational time when
differentiating using hyper-dual
numbers versus analytical
differentiation. The vertical axis
represents the ratio of the
assembly time over the solution
time and horizontal axis
represents the number of DOFs

the Hessian using hyper-dual numbers is 2.5 times slower
than the central difference method and 5 times slower than
the forward difference method [41]. However, via adopt-
ing a mixed approach, the differentiation efficiency using
hyper-dual numbers can be significantly improved in case
of iterative methods such as the Newton–Raphson method.
That is, instead of obtaining the convergence using hyper-
dual numbers, the convergence can be obtained using real
numbers and then the derivatives can be calculated via a sin-
gle step hyper-dual evaluation. Such a strategy could lead
the hyper-dual differentiation to be even more robust than
the finite difference schemes, see [41, 43] for further details.

4 CPDwith hyper-dual numbers

The final step to complete our proposed generic computa-
tional framework is to calculate the derivatives required for
residual and tangents. In doing so, we carry out the dif-
ferentiations using hyper-dual numbers. This strategy has
three main advantages; it is compact, exact and model-
independent. Thus, as the framework is implemented, any
other material model can be incorporated via modifying the
potential energy function solely. As mentioned before, there
exist three interaction potential energy densities as

ψai
1 = ψai

1 (|ξai |) ,

ψ
ai j
2 = ψ

ai j
2 (|aai j |) ,

ψ
ai jk
3 = ψ

ai jk
3 (vai jk) , (32)

associated with one-, two- and three-neighbor interactions.
All the potential energies are scalar-valued functions. The
first two potential energies have vectors as their argument
and the third potential energy has a scalar argument. Note,
Eq. (32) is amore specific formofEq. (10).All the derivations
in this section are expressed in index notation. To begin, we

rewrite the three relative deformation measures as

[
ξai
]
m

:=
[
xi
]
m

− [
xa
]
m ,

[
aai j

]
m

:=
[
ξai
]
n

[
ξaj
]
r
enrm ,

vai jk :=
[
ξai
]
n

[
ξaj
]
r

[
ξak
]
m
enrm . (33)

Similarly, for the residual we have

[
Ra
1

]
m =

#N∑
i=1

[
∂ψai

1

∂ξai

]

m

V i ,

[
Ra
2

]
m =

#N∑
i=1

#N∑
j=1
j 	=i

[
2
[
ξaj
]
s

[
∂ψ

ai j
2

∂aai j

]

r

esrm

]
V i j ,

[
Ra
3

]
m =

#N∑
i=1

#N∑
j=1
j 	=i

#N∑
k=1
k 	=i
k 	= j[

3
[
ξaj
]
s

[
ξak
]
r

[
∂ψ

ai jk
3

∂vai jk

]
esrm

]
V i jk , (34)

for which the first derivatives of the potential energy with
respect to the relative deformation measures are required.
Using the formulation presented in Eqs. (29) and (30) we
have

[
∂ψai

1

∂ξai

]

m

= �ε1

(
ψai
1 (ξai + ε1em)

)

= �ε2

(
ψai
1 (ξaim + ε1em)

)
,

[
∂ψ

ai j
2

∂aai j

]

m

= �ε1

(
ψ

ai j
2 (aai jm + ε1em)

)

= �ε2

(
ψ

ai j
2 (aai jm + ε1em)

)
,
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[
∂ψ

ai jk
3

∂vai jk

]
= �ε1

(
ψ

ai jk
3 (vai jk + ε1)

)

= �ε2

(
ψ

ai jk
3 (vai jk + ε1)

)
, (35)

with em being the unit vector in the mth coordinate direc-
tion. To proceed with the calculation of tangents, we rewrite
Eq. (20) in index notation as

[
K ab

1

]
mn

=
[

∂Ra
1

∂xb

]

mn

=
[

∂

∂xb

]

n

(
#N∑
i=1

[
∂ψai

1

∂ξai

]

m

V i

)
,

[
K ab

2

]
mn

=
[

∂Ra
2

∂xb

]

mn
=
[

∂

∂xb

]

n⎛
⎜⎜⎝

#N∑
i=1

#N∑
j=1
j 	=i

2
[
ξaj
]
s

[
∂ψ

ai j
2

∂aai j

]

r

esrmV i j

⎞
⎟⎟⎠ ,

[
K ab

3

]
mn

=
[

∂Ra
3

∂xb

]

mn
=
[

∂

∂xb

]

n⎛
⎜⎜⎜⎜⎝

#N∑
i=1

#N∑
j=1
j 	=i

#N∑
k=1
k 	=i
k 	= j

3
[
ξaj
]
s

[
ξak
]
r

[
∂ψ

ai jk
3

∂vai jk

]
esrmV i jk

⎞
⎟⎟⎟⎟⎠

. (36)

Moreover, to use the chain rule, the following constitutive
model-independent, geometric relations prove to be useful

[
∂ξai

∂xb

]

mn

=
[
δib − δab

]
δmn ,

[
∂aai j

∂xb

]

mn
=
⎡
⎣∂

[
ξai × ξaj

]

∂xb

⎤
⎦
mn

=
[ [

δib − δab
] [

ξaj
]
s

−
[
δ jb−δab

] [
ξai
]
s

]
emns ,

[
∂vai jk

∂xb

]

m
=
⎡
⎣∂

[
ξai · [ξaj × ξak]

]

∂xb

⎤
⎦
m

=
[ [

δib− δab
] [

ξaj
]
n

[
ξak
]
s

+
[
δ jb− δab

] [
ξak
]
n

[
ξai
]
s

+
[
δkb− δab

] [
ξai
]
n

[
ξaj
]
s

]
emns . (37)

for the details on the derivations, see Appendix B. Accord-
ingly, using relations inEq. (37), the final formof the tangents
read

[
Kab

1

]
mn

=
#N∑
i=1

[ [
δib − δab

] [∂2ψai
1

∂ξai
2

]

mn

]
V i ,

[
Kab

2

]
mn

=
#N∑
i=1

#N∑
j=1
j 	=i[

2
[
δ jb − δab

] [∂ψ
ai j
2

∂aai j

]

r

enrm + 2
[
ξaj
]
s

[ [
δib − δab

] [
ξaj
]
t
−
[
δ jb − δab

] [
ξai
]
t

]

[
∂2ψ

ai j
2

∂aai j2

]

rq

eqntesrm

⎤
⎦V i j ,

[
Kab

3

]
mn

=
#N∑
i=1

#N∑
j=1
j 	=i

#N∑
k=1
k 	=i
k 	= j[

3

[ [
δ jb − δab

] [
ξak
]
r
−
[
δkb − δab

] [
ξaj
]
r

]

[
∂ψ

ai jk
3

∂vai jk

]
emnr + 3

[
ξaj
]
s

[
ξak
]
r

[ [
δib− δab

] [
ξaj
]
q

[
ξak
]
t

+
[
δ jb− δab

] [
ξak
]
q

[
ξai
]
t

+
[
δkb− δab

] [
ξai
]
q

[
ξaj
]
t

]

[
∂2ψ

ai jk
3

∂vai jk
2

]
emsrenqt

]
V i jk . (38)

The last step to determine the tangents is to calculate the
second derivatives of the potential energy with respect to
the relative deformation measures. Using the formulations
presented in Eqs. (29)–(31) we have

[
∂2ψai

1

∂ξai
2

]

mn

= �ε12

(
ψai
1 (ξai + ε1 [em ⊗ en] + ε2 [em ⊗ en]

)
,

[
∂2ψ

ai j
2

∂aai j2

]

mn

= �ε12

(
ψ

ai j
2 (aai jm + ε1 [em ⊗ en] + ε2 [em ⊗ en])

)
,

[
∂2ψ

ai jk
3

∂vai jk
2

]
= �ε12

(
ψ

ai jk
3 (vai jk + ε1 + ε2)

)
. (39)
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Fig. 4 Illustration of the
behavior of the functions S1 and
ψai
1 with respect to λξ for

different values of n. For the
bottom plot, it is assumed
C1 = 1 and |�ai | = 1. Similar
behavior can be observed for the
pair S2 and ψ

ai j
2 and the pair S3

and ψ
ai jk
3

Table 4 Convergence behavior associated with the right set in Fig. 5 with C2/C1 � 1 at different deformations. The top segment corresponds to
the case with differentiation with hyper-dual numbers and the bottom segment corresponds to the case with analytical differentiations
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Fig. 5 Deformation of a unit square undergoing 100% extension in compressible and nearly compressible regimes. The left set corresponds to the
compressible material behavior with the ratio C2/C1 = 0 and the left set corresponds to the nearly incompressible material behavior with the ratio
C2/C1 � 1

As mentioned earlier, the main advantage of our proposed
framework is that it is model-independent. That is, once it is
implemented, any other material model can be incorporated
via modifying the potential energy function solely.

5 Internal potential energy

The last step to complete our proposed framework is to define
an internal energy potential. In this manuscript, we define a
family of internal potential energies based on the Seth–Hill
strain measures. To proceed, it proves convenient to define
scalar-valued ratios of the deformation measures in CPD as

λξ = |ξai |
|�ai | ,

λa = |aai j |
|Aai j | ,

λv = vai jk

V ai jk
. (40)

As mentioned before, the internal potential energy consists
of the contribution of one-, two- and three-neighbor interac-
tions. Accordingly we define the discretized energies as

ψai
1 = 1

2
C1 |�ai | S21 ,

ψ
ai j
2 = 1

2
C2 |Aai j | S22 ,

ψ
ai jk
3 = 1

2
C3 V

ai jk S23 , (41)

with the sufficient but not necessary conditions C1 > 0,
C2 ≥ 0 and C3 ≥ 0 to guarantee positiveness of the energy,
where

S1 =
⎧
⎨
⎩
1

n

[
λnξ − 1

]
n 	= 0 ,

ln λξ n = 0 ,

S2 =
⎧
⎨
⎩
1

n

[
λna − 1

]
n 	= 0 ,

ln λa n = 0 ,
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Fig. 6 Deformation of a unit cube undergoing 100% extension in
for three different material behaviors. The left set corresponds to the
compressible or length-preserving material behavior with the ratios
C2/C1 = 0 and C3/C1 = 0. The middle set corresponds to the

area-preserving material behavior with the ratios C2/C1 � 1 and
C3/C1 = 0. The right set corresponds to the volume-preserving mate-
rial behavior with the ratios C2/C1 = 0 and C3/C1 � 1

S3 =
⎧
⎨
⎩
1

n

[
λnv − 1

]
n 	= 0 ,

ln λv n = 0 ,
. (42)

Figure4 illustrates the behavior of the functions S1 and ψai
1

with respect to λξ for different values of n. Note, for the
potential energy (bottom plot) we assume C1 = 1 and
|�ai | = 1. For λξ < 1, smaller values of n render higher
energy potentials whereas for λξ > 1 the opposite behavior
is observed.

6 Numerical examples

The objective of this section is to illustrates the perfor-
mance of our proposed computational framework enabled by
hyper-dual numbers. In doing so, three different studies are

carried out with different combinations of the internal poten-
tial energies introduced inEqs. (41) and (42).Our simulations
demonstrate the influence of multi-neighbor interactions on
the material response together with the robustness of the
framework and its consistent quadratic convergence even at
very large deformations. All the examples are solved using
our in-house CPD code written in C++.

6.1 Uniaxial tension

The objective of this study is to evaluate the accuracy
of the computations using hyper-dual numbers. In doing so,
a unit specimen is subject to 100% uniaxial tension and
the convergence behaviors due to analytical derivatives and
hyper-dual numbers derivatives are compared. Figure5 illus-
trates a 2D analysis where two different material behaviors
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Table 5 Convergence behavior associated with the left set in Fig. 5 with C2/C1 = 0 at different deformations. The top segment corresponds to the
case with differentiation with hyper-dual numbers and the bottom segment corresponds to the case with analytical differentiations

are considered. The left column corresponds to a compress-
ible material behavior where C2/C1 = 0 and the right
column corresponds to the case with nearly incompressible
material behavior where C2/C1 � 1 .2 The grid spacing
for both cases is � = 0.01 and the ratio of the horizon
size over grid spacing is δ/� = 3. For this study, we con-
sider the potential energy introduced in Eqs. (41) and (42)
with n = 1. Thus, S1 = [

λξ − 1
]
, S2 = [λa − 1] and

S3 = [λv − 1]. The undeformed configurations are depicted
at the top and the deformed configurations at the intermediate
steps are shown subsequently. The vertical displacement dis-
tribution is shown throughout each specimen. It is observed
that the case with C2/C1 � 1 renders more lateral contrac-
tion compared to the casewithC2/C1 = 0which is justifiable
since larger values of C2/C1 indicate more incompressibil-
ity. Table 5 compares the convergence behavior associated
with Fig. 5-left for the compressible material behavior. The
top segment corresponds to the case where the differentia-
tion is carried out using hyper-dual numbers and the bottom
segment corresponds to the case where the differentiation
is calculated analytically. Columns correspond to different
deformation magnitudes whereas rows show the normalized
L2-norm of the residual at each Newton–Raphson itera-
tion. A quadratic convergence rate is observed for both

2 The relation C2/C1 � 1 in CPD is our way of expressing incom-
pressibility. The actual values of of the material parameters for this
case is C1 = 2.8266 × 106 and C2 = 2.8973 × 1012.

cases which is expected due to the use of Newton–Raphson
scheme. The convergence due to hyper-dual numbers is iden-
tical to the one obtained by analytical derivations for the
first few steps. Minor differences are observed at the last
stepswhich originate frommachine precision induced round-
off. Table 4 is the counter part of Table 5 for the nearly
incompressible material behavior associated with Fig. 5-
right. Similar to the previous case, an identical trend is
observed for the convergence due to the hyper-dual numbers
and the analytical derivatives.

Figure 6 illustrates a 3D analysis where a unit cube is
subject to 100% uniaxial tension. The grid spacing for this
study is � = 0.05 and the ratio of the horizon size over grid
spacing is δ/� = 3. Three different types of interactions
are considered for this example. One-neighbor interactions
with C2/C1 = 0 and C3/C1 = 0 render compressible or
length-preserving material behavior, one- and two-neighbor
interactions with C2/C1 � 1 and C3/C1 = 0 render
nearly area-preserving behavior, and one- and three-neighbor
interactions with C2/C1 � 1 and C3/C1 � 1 rendering
volume-preserving behavior 3. As demonstrated in [13], we
emphasize that it is not possible to have only two-neighbor
interactions or only three-neighbor interactions. When only
one neighbor interactions are taken into account, the least

3 The relation C3/C1 � 1 in CPD is our way of expressing incom-
pressibility. The actual values of of the material parameters for this
case is C1 = 1.83 × 105 and C2 = 1.21 × 1012.

123



Computational Mechanics

Table 6 Convergence behavior associated with the left set in Fig. 6
with C2/C1 = 0 and C3/C1 = 0 at different deformations. The top
segment corresponds to the case with differentiation with hyper-dual

numbers and the bottom segment corresponds to the case with analyti-
cal differentiations

Table 7 Convergence behavior associated with the middle set in Fig. 6
with C2/C1 � 1 and C3/C1 = 0 at different deformations. The top
segment corresponds to the case with differentiation with hyper-dual

numbers and the bottom segment corresponds to the case with analyti-
cal differentiations
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Table 8 Convergence behavior associated with the right set in Fig. 6
with C2/C1 = 0 and C3/C1 � 1 at different deformations. The top
segment corresponds to the case with differentiation with hyper-dual

numbers and the bottom segment corresponds to the case with analyti-
cal differentiations

contraction is obtained which leads to increased compress-
ibility. More incompressibility is observed when one- and
two-neighbor interactions or one- and three-neighbor inter-
actions are considered. It is important to note that although
accounting for both two-neighbor interactions and three-
neighbor interactions result in decreased compressibility, the
solutions are different indicating that they indeed correspond
to a different deformations. Tables 6, 7, 8 exhibit the conver-
gence behavior for the three material behaviors in Fig. 6.
Similarly, the residual obtained via hyper-dual number dif-
ferentiation and analytical differentiation are almost identical
where only minor differences are observed at the very last
steps.

6.2 Bending

In this study we exhibit the capability of CPD to tackle with
problems involving large deformations. In doing so, a can-
tilever beam is subject to rotation and compression at its free
end as shown in Fig. 7. The top row corresponds to a 3D anal-
ysis and the bottom row corresponds to a 2D analysis. For
both cases, the grid spacing for this study is� = 0.02 and the
ratio of the horizon size over grid spacing is δ/� = 3. The
material constants in this example areC1 = 1 andC2 = 104.
The colors indicate the deflection in y-direction and the inter-
mediate deformed configurations are depicted for each case.

For this study, we consider the potential energy introduced in

Eqs. (41) and (42) with n = 2. Thus, S1 = 1
2

[
λ2

ξ
− 1

]
and

S2 = 1
2

[
λ2a − 1

]
For all the cases, the aspect ratio of the beam

is 25 and one- and two-neighbor interactions are considered
representing a compressible material response. The defor-
mation is applied such that at each increment the points are
incrementally rotated with respect to the clamped end and
then are vertically compressed proportional to their initial
displacement. For instance, if a point’s vertical displacement
due to the initial rotation is x , then after the rotation it is ver-
tically compressed with a magnitude of ax with 0 < a < 1.
Three different values for a are considered in this study. In
the left column the compression magnitude is a = 0.1, in the
middle column the compression magnitude is a = 0.3 and in
the right column the compression magnitude is a = 0.5. As
the compression magnitude increases, it is observed that the
beams tend to increase their curvature in order to maintain
their length.

6.3 Torsion

The final example is devised to compare the robustness of our
computational framework for bulk-dominated and surface-
dominated geometries. Figures8 and 9 exhibit two blocks
with slenderness ratios of 2 and 4, respectively, that are sub-
ject to 180◦ torsion. For both cases the material constants
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Fig. 7 Deformation of cantilever beam subject to 90◦ rotation and three
different magnitudes of compression in 3D and 2D settings. In the left
column the compression magnitude is 0.1, in the middle column the

compression magnitude is 0.3 and in the right column the compression
magnitude is 0.5. Colors represent deflection in y-direction

are C1 = 1, C2 = 0 and C3 = 108. The deformed bodies
together with their corresponding convergence are shown at
different twisting angles. The colors indicate the deflection in
y-direction. For both cases, the grid spacing for this study is
� = 0.02 and the ratio of the horizon size over grid spacing
is δ/� = 3. For this study, we consider the potential energy
introduced in Eqs. (41) and (42) with n = 0, thus, S1 = ln λξ

and S3 = ln λv . For the block with slenderness ratio 2, since
the value of the horizon is small compared to the block’s
cross-section, the problem is more of a bulk-dominated type.
On the other hand, for the block with slenderness ratio of 4,
the problem is more of a surface-dominated type due to com-
parable values of the horizon and cross-section. Fewer steps
are required to obtain the convergence for the casewith larger
slenderness ratio which is understandable since there are less
collocations points hence less degrees of freedom. Nonethe-

less, it is observed that our computational framework can
deal with large deformations without losing its robustness.

6.4 Nonlocality

Finally, as the last study, we aim to demonstrate the nonlocal-
ity ofCDP. In doing so, as depicted in Fig. 10, an infinitesimal
vertical displacement is applied to an L-shaped specimen and
the value of the von Mises stress in the vicinity of the sharp
corner highlighted in Fig. 10 is investigated in both vertical
and horizontal directions. For this study, the ratio of the hori-
zon size to grid spacing is fixed δ/� = 3.0 and the value
of the grid spacing � is increased, leading to a more nonlo-
cal behavior. This example is carried out for a compressible
material behavior where ν = 0.33, thus we set the material
constant C2 to zero and change C1 in accordance with �

in order to satisfy ν = 0.33, see [18] for further details. In
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Fig. 8 Deformation of a block with slenderness ratio of 2 under 180◦ torsion. The deformed bodies together with their corresponding convergence
are shown at different twisting angles. Colors represent deflection in y-direction

Fig. 10 left, the vonMises stress in the horizontal direction is
plotted and in Fig. 10 right, the von Mises stress in the verti-
cal direction is plotted. It is observed that as the value of grid
spacing � increases, the stress concentration at the vicin-
ity of the corner decreases which indicates a more nonlocal
response. Similarly, the highest stress concentration occurs
for the casewith themost local effectwhich is associatedwith
smallest�. Note that for this study, we consider the potential
energy introduced in Eqs. (41) and (42) with n = 1. Thus,
S1 = [

λξ − 1
]
.

Motivated by the previous observation regarding the capa-
bility of CPD to capture nonlocal effects, our methodology
can be adopted to determine the overall response materials
with complex micro-structures. A well-known example of
such material is brain tissue. Several studies has been car-
ried out to determine the mechanical properties of brain
tissue [71–73]. Figure11 shows a brain sample with its
cut-out which is subject to infinitesimal shear deformation.
Such specimen is utilized to carry out rheometry analysis in
order to determine the mechanical properties of brain matter.
Undoubtedly, investigation of the nonlocal effects in brain
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Fig. 9 Deformation of a block with slenderness ratio of 4 under 180◦ torsion. The deformed bodies together with their corresponding convergence
are shown at different twisting angles. Colors represent deflection in y-direction
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Fig. 10 CPD nonlocality study on stress concentration in an L-shaped
specimen undergoing infinitesimal vertical displacement. The post pro-
cessed von Mises stress through the highlighted arrow in the domain
is plotted. For the left plot, the horizon-to-lattice size ratio is fixed
δ/� = 3.0 and the lattice size is decreased. For the right plot, the

lattice size ratio is fixed � = 0.005 and the horizon-to-lattice size
is decreased. Stress-like quantities in CPD can be computed in post
processing via an integral over the horizon, similar to the customary
practice in computational homogenization [70]

Fig. 11 A cut-out of brain sample undergoing small shear deformation

matter and determining the proper potential energy together
with parameter identification seems desirable.However, such
analysis is beyond the scope of this manuscript and shall be
carried out in a separate contribution. For relevant studies on
applications of peridynamics in biomechanics see [74–76].

7 Conclusion

Continuum-kinematics-inspired peridynamics (CPD) has
been briefly introduced as a geometrically exact alternative
to PD to formulate nonlocal continuum mechanics. Next,
hyper-dual numbers and their underlying algebra were reca-
pitulated and the associated differentiations with respect to
scalar, vector and tensor arguments were elaborated. Based
thereon, we developed a computational framework furnished

with automatic differentiation for implementation of CPD
via employing hyper-dual numbers. The proposed compu-
tational framework is compact and model-independent, and
suitable to incorporate any sophisticated material model via
modifying the potential energy solely. Using the Seth–Hill
strain measures, we proposed a family of internal potential
energies that could be utilized for various material model-
ings. Through a set of numerical examples the performance
andversatility of our proposed computational frameworkwas
evaluated while considering various loadings and material
models. The convergence due to hyper-dual numbers proved
to be highly accurate and identical to the one obtained by
analytical derivations. The numerical implementation and
solution procedure were robust and showed the asymptot-
ically quadratic rate of convergence associated with the
Newton–Raphson scheme. Taken together, differentiation
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via hyper-dual numbers renders CPD as a compelling com-
putational framework to study a broad variety of nonlocal
materials.
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Appendix A: Numerical differentiation

In this section, various numerical differentiation methods are
introduced and their associated error sources are highlighted
and compared against each other. The most well-known
numerical differentiation technique is the finite difference
method. Aside from the finite difference method, complex,
double and dual number systems have been developed to
calculate the derivatives in a more accurate or a more simple
fashion. These numbers were extended to hyper-complex,
hyper-double and hyper-dual numbers in order to offer bet-
ter accuracy for the calculation of second derivatives. Table 9
gathers all the aforementioned number systems together with
their features. Assume x is a generic independent variable,
f (x) is a generic function and h is a real number. The Taylor
series expansion of f (x) reads

f (x + h) = f (x) + h
∂ f (x)

∂x
+ 1

2!h
2 ∂2 f (x)

∂x2

+ 1

3!h
3 ∂3 f (x)

∂x3
+ . . . , (A.1)

with h being the perturbation value. In what follows, the per-
formance of various numerical differentiation techniques is
evaluated in approximating the first and second derivative of

our newly defined logarithmic potential energy which reads

ψai
1 = ψai

1 (x) = 1

2
C1 |�ai | ln

(
x

|�ai |
)

, (A.2)

with x being the independent parameter representing |ξai |.

Appendix A.1: Finite differencemethod

Before elaborating on some advanced numerical differenti-
ation methods, it is worthwhile to give a brief overview on
the finite difference method in order to set the stage for fur-
ther comparisons. There exist three main approaches to the
finite differencemethod for the calculation of first and second
derivatives. The first approach uses the backward difference
formula which calculates the first and second derivatives of
f (x) as

∂ f (x)

∂x
= f (x) − f (x − h)

h
+ O(h) and

∂2 f (x)

∂x2
= f (x) − 2 f (x − h) + f (x − 2h)

h2
+ O(h) .

(A.3)

The second approach uses the forward difference formula
which calculates the first and second derivatives of f (x) as

∂ f (x)

∂x
= f (x + h) − f (x)

h
+ O(h) and

∂2 f (x)

∂x2
= f (x + 2h) − 2 f (x + h) + f (x)

h2
+ O(h) .

(A.4)

The third approach uses the central difference formula which
offers higher accuracy and reads

∂ f (x)

∂x
= f (x + h) − f (x − h)

2h
+ O(h2) and

∂2 f (x)

∂x2
= f (x + h) − 2 f (x) + f (x − h)

h2
+ O(h2) .

(A.5)

Appendix A.2: Complex and hyper-complex numbers

For ordinary complex numbers [30, 31], the perturbation
value takes the form ih with i the imaginary unit with the
property i2 = −1. Accordingly, the Taylor expansion of the
function f (x) takes the form

f (x + hi) = f (x) + hi
∂ f (x)

∂x
− 1

2!h
2 ∂2 f (x)

∂x2

− 1

3!h
3i

∂3 f (x)

∂x3
+ . . . , (A.6)
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Table 9 Summary of different number systems with their features

complex numbers ̂̂a = a0 + a1i i2 = −1

hyper-complex numbers â = a0 + a1i1 + a2i2 + a12i12 i21 = i22 = −1 i12 = i21 = i1i2 = i2i1 	= 0

double numbers ˜̃a = a0 + a1e e2 = +1

hyper-double numbers ã = a0 + a1e1 + a2e2 + a12e12 e21 = e22 = +1 e12 = e21 = e1e2 = e2e1 	= 0

dual numbers a = a0 + a1ε ε2 = 0

hyper-dual numbers a = a0 + a1ε1 + a2ε2 + a12ε12 ε21 = ε22 = 0 ε12 = ε21 = ε1ε2 = ε2ε1 	= 0

that could be split in a real part and an imaginary part as

f (x + hi) =
[
f (x) − 1

2!h
2 ∂2 f (x)

∂x2
+ . . .

]

+
[
h

∂ f (x)

∂x
− 1

3!h
3 ∂3 f (x)

∂x3
+ . . .

]
i . (A.7)

Accordingly, the first and second derivatives of f (x) can be
calculated as

∂ f (x)

∂x
=

�
(
f (x + hi)

)

h
+ O(h2) and

∂2 f (x)

∂x2
=

2
[
f (x) − �

(
f (x + hi)

)]

h2
+ O(h2) . (A.8)

It is observed that for the first derivative, the subtractive can-
cellation error is eliminated whereas the truncation error still
exist. The second derivative though, is subject to both sub-
tractive cancellation and truncation errors.

Hyper-complex numbers are characterized byone real part
and three non-real parts [77]. A hyper-complex number â is
defined as

â = a0 + a1i1 + a2i2 + a12i12 with

i12 = i21 = i1i2 = i2i1 	= 0 and i21 = i22 = −1 .

(A.9)

Accordingly, the real and non-real operators are defined as

� (̂a) = � (a0 + a1i1 + a2i2 + a12i12) = a0 ,

�i1 (̂a) = �i1 (a0 + a1i1 + a2i2 + a12i12) = a1 ,

�i2 (̂a) = �i2 (a0 + a1i1 + a2i2 + a12i12) = a2 ,

�i12 (̂a) = �i12 (a0 + a1i1 + a2i2 + a12i12) = a12 , (A.10)

For the sake of simplicity, it is assumed that a1 = a2 = h
and a12 = 0 hence â = a0 +hi1 +hi2. Therefore, the Taylor
series expansion of the function f (x + hi1 + hi2) reads

f (x + hi1 + hi2) = f (x) + hi1
∂ f (x)

∂x
+ hi2

∂ f (x)

∂x

+ 1

2!2h
2[−1 + i12]∂

2 f (x)

∂x2

− 1

3!4h
3[i1 + i2]∂

3 f (x)

∂x3
+ . . . ,

(A.11)

that could be split into four parts as

f (x + hi1 + hi2) =
[
f (x) − h2

∂2 f (x)

∂x2

]

+
[
h

∂ f (x)

∂x
− 1

3!4h
3 ∂3 f (x)

∂x3
+ . . .

]
i1

+
[
h

∂ f (x)

∂x
− 1

3!4h
3 ∂3 f (x)

∂x3
+ . . .

]
i2

+
[
h2

∂2 f (x)

∂x2
+ . . .

]
i12 . (A.12)

The first and second derivatives of f (x) can thus be calcu-
lated as

d f (x)

∂x
=

�i1

(
f (x + hi1 + hi2)

)

h
+ O(h2)

=
�i2

(
f (x + hi1 + hi2)

)

h
+ O(h2) and

∂2 f (x)

∂x2
=

�i12

(
f (x + hi1 + hi2)

)

h2
+ O(h2) . (A.13)

Note that the operators �i1 , �i2 and �i12 extract the multiples
to the non-real parts i1, i2 and i12, respectively. It is clear that
upgrading the complex numbers to hyper-complex numbers
eliminates the subtractive cancellation errors from second
derivative whereas the truncation errors are still present.

Appendix A.3: Double and hyper-double numbers

Double numbers are distinguished from complex numbers
via their non-real part [42]. For double numbers, the pertur-
bation value takes the form he with e being the non-real part
with the property e2 = +1. Accordingly, the Taylor expan-
sion of the function f (x) takes the form

f (x + he) = f (x) + he
∂ f (x)

∂x
+ 1

2!h
2 ∂2 f (x)

∂x2
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+ 1

3!h
3e

∂3 f (x)

dx3
+ . . . , (A.14)

that could be split in a real part and a non-real part as

f (x + he) =
[
f (x) + 1

2!h
2 ∂2 f (x)

∂x2
+ . . .

]

+
[
h

∂ f (x)

∂x
+ 1

3!h
3 ∂3 f (x)

∂x3
+ . . .

]
e .

(A.15)

The first and second derivatives of f (x) can thus be calcu-
lated as

d f (x)

∂x
=

�
(
f (x + he)

)

h
+ O(h2) and

∂2 f (x)

∂x2
=

2
[
�
(
f (x + he) − f (x)

)]

h2
+ O(h2) . (A.16)

Similar to the ordinary complex numbers, the first derivative
is only subject to truncation error while the second deriva-
tive suffers from both subtractive cancellation and truncation
errors.

Hyper-double numbers are characterized by one real part
and three non-real parts. A hyper-double number ã is defined
as

ã = a0 + a1e1 + a2e2 + a12e12 with

e12 = e21 = e1e2 = e2e1 	= 0 and e21 = e22 = 1 .

(A.17)

Accordingly, the real and non-real operators are defined as

� (̃a) = � (a0 + a1e1 + a2e2 + a12e12) = a0 ,

�e1 (̃a) = �e1 (a0 + a1e1 + a2e2 + a12e12) = a1 ,

�e2 (̃a) = �e2 (a0 + a1e1 + a2e2 + a12e12) = a2 ,

�e12 (̃a) = �e12 (a0 + a1e1 + a2e2 + a12e12) = a12 ,

(A.18)

For the sake of simplicity, it is usually assumed that a1 =
a2 = h and a12 = 0 hence ã = a0 + he1 + he2. Therefore,
the Taylor series expansion of the function f (x +he1 +he2)
reads

f (x + he1 + he2) = f (x) + he1
∂ f (x)

∂x
+ he2

∂ f (x)

∂x

+ 1

2!2h
2[1 + e12]∂

2 f (x)

∂x2

+ 1

3!4h
3[e1 + e2]∂

3 f (x)

∂x3
+ . . . ,

(A.19)

that could be split into four parts as

f (x + he1 + he2) =
[
f (x) + h2

∂2 f (x)

∂x2

]

+
[
h

∂ f (x)

∂x
+ 1

3!4h
3 ∂3 f (x)

∂x3
+ . . .

]
e1

+
[
h

∂ f (x)

∂x
+ 1

3!4h
3 ∂3 f (x)

∂x3
+ . . .

]
e2

+
[
h2

∂2 f (x)

∂x2
+ . . .

]
e12 . (A.20)

The first and second derivatives of f (x) can thus be calcu-
lated as

d f (x)

∂x
=

�e1

(
f (x + he1 + he2)

)

h
+ O(h2)

=
�e2

(
f (x + he1 + he2)

)

h
+ O(h2) and

∂2 f (x)

∂x2
=

�e12

(
f (x + he1 + he2)

)

h2
+ O(h2) . (A.21)

Note that the operators�e1 ,�e2 and�e12 extract themultiples
to the non-real parts e1, e2 and e12, respectively. It is clear
that upgrading the double numbers to hyper-double numbers
eliminates the subtractive cancellation errors for both first
and second derivatives whereas the truncation errors are still
present.

Appendix A.4: Dual and hyper-dual numbers

Dual numbers are distinguished from complex numbers via
their non-real or non-real part [32]. For dual numbers, the
perturbation value takes the form hε with ε being the non-
real part with the property ε2 = 0. Accordingly, the Taylor
expansion of the function f (x) takes the form

f (x + hε) = f (x) + hε
∂ f (x)

∂x
, (A.22)

consisting of a real and a non-real part. Note, in this case,
the Taylor expansion of the function itself does not suffer
from any truncation error. Subsequently, the first derivative
of f (x) can be calculated as

∂ f (x)

∂x
=

�
(
f (x + hε)

)

h
. (A.23)

Although both subtractive cancellation error and truncation
error are eliminated for the first derivatives of f (x), the sec-
ond derivatives cannot be calculated due to the vanishing
higher order terms in the Taylor expansion.
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Table 10 Summary of the performance of the numerical differentiation methods in terms of error sources

Fig. 12 Comparison of various numerical differentiation methods in calculation of first and second derivatives

The hyper-dual numbers are characterized with one real
part and three non-real parts. A hyper-dual number a is
defined as

a = a0 + a1ε1 + a2ε2 + a12ε12 with

ε12 = ε21 = ε1ε2 = ε2ε1 	= 0 and ε21 = ε22 = 0 .

(A.24)

Accordingly, the real and non-real operators are defined as

� (a) = � (a0 + a1ε1 + a2ε2 + a12ε12) = a0 ,

�ε1 (a) = �ε1 (a0 + a1ε1 + a2ε2 + a12ε12) = a1 ,

�ε2 (a) = �ε2 (a0 + a1ε1 + a2ε2 + a12ε12) = a2 ,

�ε12 (a) = �ε12 (a0 + a1ε1 + a2ε2 + a12ε12) = a12 .

(A.25)

For the sake of simplicity, it is usually assumed that a1 =
a2 = h and a12 = 0 hence a = a0 + hε1 + hε2. Therefore,

the Taylor series expansion of the function f (x +hε1 +hε2)

reads

f (x + hε1 + hε2) = f (x) + hε1
∂ f (x)

∂x

+ hε2
∂ f (x)

∂x
+ h2ε12

∂2 f (x)

∂x2
, (A.26)

that could be rewritten as

f (x + hε1 + hε2) = f (x) +
[
h

∂ f (x)

∂x

]
ε1

+
[
h

∂ f (x)

∂x

]
ε2 +

[
h2

∂2 f (x)

∂x2

]
ε12 ,

(A.27)
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The first and second derivatives of f (x) can be calculated as

∂ f (x)

∂x
=

�ε1

(
f (x + hε1 + hε2)

)

h

=
�ε2

(
f (x + hε1 + hε2)

)

h
and

∂2 f (x)

∂x2
=

�ε12

(
f (x + hε1 + hε2)

)

h2
. (A.28)

Note that the operators �ε1 , �ε2 and �ε12 extract the mul-
tiples to the non-real parts ε1, ε1 and ε12, respectively. It
is observed that the first and the second derivatives suffer
from neither truncation errors nor subtractive cancellation
errors. As a result, both derivatives are calculated in an exact
manner. Table 10 gathers all the aforementioned numerical
differentiation methods and the types of errors they suffer
from (Fig. 12). Figure 12 compares the performance of the
presented numerical differentiation techniques in approxi-
mating the first and second derivative of potential energy
defined in Eq. A.2

Appendix B: Derivatives of CPD deformation
measures

Suppose {•} is an arbitrary variable and its derivation with
respect to the point xb is sought. Depending on the relative
deformation measures {•}, three different possibilities exist.
If {•} depends on one relative deformation measure ξai , we
have

∂{•}
∂xb

= ∂{•}
∂ξai

· ∂ξai

∂xb
= ∂{•}

∂ξai
· ∂
[
xi − xa

]

∂xb

= ∂{•}
∂ξai

·
[

∂xi

∂xb
− ∂xa

∂xb

]

= ∂{•}
∂ξai

·
[ [

δib − δab
]
i
]

=
[
δib − δab

] ∂{•}
∂ξai

.

(B.1)

If {•} depends on two relative deformation measures ξai and
ξaj , we have

∂{•}
∂xb

= ∂{•}
∂ξai

· ∂ξai

∂xb
+ ∂{•}

∂ξaj
· ∂ξaj

∂xb
= ∂{•}

∂ξai
·
[ [

δib − δab
]
i
]

+ ∂{•}
∂ξaj

·
[ [

δ jb − δab
]
i
]

=
[
δib − δab

] ∂{•}
∂ξai

+
[
δ jb − δab

] ∂{•}
∂ξaj

, (B.2)

and finally if {•} depends on three relative deformation mea-
sures ξai , ξaj and ξak , we have

∂{•}
∂xb

= ∂{•}
∂ξai

· ∂ξai

∂xb
+ ∂{•}

∂ξaj
· ∂ξaj

∂xb
+ ∂{•}

∂ξak
· ∂ξak

∂xb

= ∂{•}
∂ξai

·
[ [

δib − δab
]
i
]

+ ∂{•}
∂ξaj

·
[ [

δ jb − δab
]
i
]

+ ∂{•}
∂ξak

·
[ [

δkb − δab
]
i
]

=
[
δib − δab

] ∂{•}
∂ξai

+
[
δ jb − δab

] ∂{•}
∂ξaj

+
[
δkb − δab

] ∂{•}
∂ξak

, (B.3)

Accordingly we have

∂ξai

∂xb
=
[
δib − δab

] ∂ξai

∂ξai
=
[
δib − δab

]
i ,

∂[ξai × ξaj ]
∂xb

=
[
δib − δab

] ∂[ξai × ξaj ]
∂ξai

+
[
δ jb − δab

] ∂[ξai × ξaj ]
∂ξaj

=
[
δib − δab

] [
ξaj · e

]

+
[
δ jb − δab

] [
ξai · e

]
,

∂
[
ξai · [ξaj × ξak]]

∂xb
=
[
δib − δab

] ∂
[
ξai · [ξaj × ξak]]

∂ξai

+
[
δ jb − δab

] ∂
[
ξai · [ξaj × ξak]]

∂ξaj

+
[
δkb − δab

] ∂
[
ξai · [ξaj × ξak]]

∂ξak

=
[
δib − δab

]
[ξaj × ξak]

+
[
δ jb − δab

]
[ξak × ξai ]

+
[
δkb − δab

]
[ξai × ξaj ] . (B.4)
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