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Abstract
The Material Point Method (MPM) is an established and powerful numerical method particularly useful for simulating
large-scale, rapid soil deformations. Therefore, it is often used for the numerical investigation of mass movement hazards
such as landslides, debris flows, or avalanches. It combines the benefits of both mesh-free and mesh-based continuum-
based discretization techniques by discretizing the physical domain with Lagrangian moving particles carrying the history-
dependent variables while the governing equations are solved at the Eulerian background grid, which brings many similarities
with commonly used finite element methods. However, due to this hybrid nature, the material boundaries do not usually
coincide with the nodes of the computational grid, which complicates the imposition of boundary conditions. Furthermore,
the position of the boundary may change at each time step and, moreover, may be defined at arbitrary locations within
the computational grid that do not necessarily coincide with the body contour, leading to different interactions between
the material and the boundary. To cope with these challenges, this paper presents a novel element-wise formulation to
weakly impose non-conforming Dirichlet conditions using Lagrange multipliers. The proposed formulation introduces a
constant Lagrange multiplier approximation within the constrained elements in combination with a methodology to eliminate
superfluous constraints. Therefore, in combination with simple element-wise interpolation functions classically utilized in
MPM (and FEM) to approximate the unknown field, a suitable Lagrange multiplier discretization is obtained. In this way, we
obtain a robust, efficient, and user-friendly boundary imposition method for immersed methods specified herein for implicit
MPM. Furthermore, the extension to frictionless slip conditions is derived. The proposed methodologies are assessed by
comparing the numerical results with both analytical and experimental data to demonstrate their accuracy and wide range of
applications.
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1 Introduction

The Material Point Method (MPM), originally proposed by
Sulsky et al. [1], is an established and powerful numerical
method particularly well suited to simulating significant and
rapid soil deformations. It combines the advantages of both
mesh-free and mesh-based methods as the physical domain
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is discretized by Lagrangian moving particles which carry
the history-dependent variables while the governing equa-
tions are solved at the Eulerian background grid. Thus, it
can be interpreted as a modified updated-Lagrangian finite
element technique with moving integration points, called
material points, while the background grid is reset at the
end of each time step. Consequently, in contrast to the stan-
dard Finite Element Method (FEM) or any other Lagrangian
mesh-based method, the problem of mesh entanglement and
the computational expense of re-meshing during the simu-
lation of large strain problems is circumvented in MPM by
systematically resetting the computational background grid.
In comparisonwith other continuum-based particlemethods,
just mentioning the smoothed particle hydrodynamics (SPH)
[2], the element-free Galerkin method [3], the reproducing
kernel particle method (RKPM) [4], or the Particle Finite
Element Method (PFEM) [5–8], MPM has many advan-
tages. The hybrid particle-mesh scheme avoids, among other
features [9, 10], expensive neighbor search or re-meshing
algorithms while preserving all the advantages of being a
FEM-based method.

MPMhas been effectively applied to a wide range of chal-
lenges during the previous decades, such as hyper-velocity
impact [10–12], high fidelity models of diagenesis with
advanced contact algorithms [13], simulation of landslides
[14, 15] or avalanches [16], multi-phase geomechanical
problems [17–19] or within multiphysics, as the partitioned
coupling with the discrete element method [20].

In addition, much research has been done to reduce the
numerical noise that arises from the transition of material
points from one background grid element to another, e.g.,
theGeneralized InterpolationMaterial Point (GIMP)method
[21], the Convected Particle Domain Interpolation (CPDI)
[22, 23], the PQMPM [24] or the usage of B-Spline basis
functions [25]. Detailed reviews of MPM can be found in
[26, 27]. The books published by Zhang et al. [28], Fern et
al. [29], and Nguyen et al. [30] provide further examples and
a detailed introduction to the theory of MPM.

Since the material points are moving through the Eulerian
background grid, boundary conditions can rarely be imposed
directly at the nodes of the computational background grid
[31, 32]. Instead, similarly to immersed methods such as
the Finite Cell Method (FCM) [33, 34], or the Isogeometric
B-Rep Analysis (IBRA) [35] essential boundary conditions
are usually processed in a weak form. Common approaches
in other FEM and immersed FEM methods are the penalty
approach ([36] for FEM, e.g., [37] for FCM, e.g., [35, 38]
for IBRA, e.g., [39] for MPM), the Nitsche method (e.g.,
[40] for FCM, e.g., [41] for IGA), Mortar-based methods
(e.g., [42] for FEM, e.g., [43] for FCM, [44] for IGA), or the
Lagrange multiplier approach ([45] for FEM, e.g., [38, 41]
for IGA/IBRA). All methods have their advantages in differ-
ent numerical scenarios. Thepenalty approach is typically the

simplest avenue, being also comparatively fast. However, the
introduction of the penalty factor adds flaws to the numer-
ical system (see also the example from Sect. 4.1). Nitsche
methods are very accurate but are mostly more involved in
the implementation and their computational complex. Mor-
tar methods condense some degrees of freedom (dofs) by
others, which requires a modification of the stiffness matrix.
This makes it hard to be handled due to the repeated updates
appearing in MPM.

Within the scope of this research, the Lagrange multi-
pliermethod is presented,which directly solves the constraint
equation and therefore is mature over the penalty approach
in terms of accuracy but still less complex than the Nitsche
method. However, designing a stable Lagrange multiplier
solution is a challenging task and has been studied inten-
sively, especially for FEM and other numerical methods
to weakly impose essential boundary conditions [46, 47].
Specifically for the imposition of boundary conditions,
Babuška [45] showed that equal order of interpolation of
the respective fields demands two different mesh sizes for
the displacements and the Lagrange multipliers. Following
that approach results in a complicated and computationally
expensive construction of the Lagrangemultiplier discretiza-
tion as proposed, for example, by Béchet et al. [47] and
extended to 3D by Hautefeuille et al. [48] for the extended
finite element method.

These approaches are not suitable for MPM as the set of
active background grid elements may vary every time step
due to the Lagrangian moving particles within the Eule-
rian background grid. Moreover, the boundary conditions
are not necessarily aligned with the body contour but can
instead be positioned arbitrarily within the background grid,
leading to different interactions between the material and
the boundary at each time step. To cope with these chal-
lenges, this paper presents a novel element-wise formulation
toweakly impose non-conformingDirichlet conditions using
Lagrange multipliers. The proposed formulation introduces
a constant Lagrange multiplier approximation within con-
strained elements in combination with a methodology to
eliminate superfluous constraints. Therefore, in combination
with simple element-wise interpolation functions classically
utilized in MPM to approximate the displacement field, a
suitableLagrangemultiplier discretization is obtained. In this
way, we obtain a robust, efficient, and user-friendly boundary
imposition method for immersed methods specified herein
for implicit MPM.

The paper is structured as follows: the fundamentals of
MPM and the used notation are summarized in Sect. 2. The
imposition of boundary conditions and the derivation of an
appropriate Lagrange multiplier field are presented in Sect.
3. Finally, in Sect. 4, numerical examples in 2D and 3D are
discussed, proving the accuracy and demonstrating the broad
application range of the proposed methodology.
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2 Material point method

This section covers the methodological fundamentals of
MPM, starting with the governing equations in Sect. 2.1,
before introducing the discretization in time and space in
Sect. 2.2 as well as the material point discretization in
Sect. 2.3. Finally, the characteristic MPM update scheme in
Sect. 2.4 is presented.

2.1 Governing equations

Consider a continuum body B, which occupies a domain �

in the three-dimensional Euclidean space E with a regular
boundary �.

The displacement u of each point within the body is
defined by

u = x − X (1)

and relates each positionX in the undeformed reference con-
figuration to its position x in the deformed configuration at
time t , which is depicted in Fig. 1.

Mapping an infinitesimal line segment in the reference
configuration dX into the current configuration dx leads to
the definition of the deformation gradient F

dx = F · dX. (2)

Cauchy’s first equation of motion, defined by

ρü = ∇ · σ + ρb in � (3)

is the governing equation for the given problem where b
denotes the volume acceleration. This balance equation holds
for every point x ∈ � for all times t assuming an isothermal

Fig. 1 Current and reference configuration of a continuum body B.
The regular boundary � is decomposed into Dirichlet and Neumann
boundaries, �D and �N , respectively

setting. It implies the symmetry condition σ = σ T for the
Cauchy stress tensor and the definition of the spatial mass
density ρ = J−1ρ0 describing the continuity of mass with
the Jacobian J = detF. The first and second material time
derivatives of the displacement field u are the velocity and
the acceleration, respectively.

The problem (Eq. 3) is determined with the boundary con-
ditions

u = u on �D (4)

σ · n = p on �N (5)

where u is a prescribed displacement field on the Dirichlet
boundary �D and p is a traction vector on the Neumann
boundary �N with the outward normal n. Additionally

u(t = 0) = u0 and u̇(t = 0) = u̇0 (6)

are initial conditionswhile u0, u̇0 are the prescribed displace-
ment and velocity at initial time t = 0. The boundary � is
decomposed into disjoint parts so that the following applies

� = �D ∪ �N and �D ∩ �N = ∅. (7)

Since in general a closed-form solution for the given prob-
lem cannot be found, a Galerkin method is applied [49, 50].
Therefore the Eq. (3) is multiplied by a weighting function η

and integrated over the current volume �. By using the vari-
ation of the displacements as the weighting function η = δu,
which equals zero on the boundary �D , the weak form of the
balance equation is obtained. Applying the product rule and
the divergence theorem, the equilibrium can be formulated
through the Principle of Virtual Work [51]:

δW = −
∫

�

σ : δed� −
∫

�

ρü · δud�

+
∫

�

ρb · δud� +
∫

�N

p · δud�N = 0 (8)

while the virtual strain δe arises from the gradient of virtual
displacement field.

Note that the stress boundary defined by Eq. (5) is part of
the weak form (see Eq.8) and, therefore often referred to as
the natural boundary condition, while the Dirichlet condition
needs to be prescribed over the boundary�D and is thus often
called essential boundary condition. Section3 discusses this
in detail and presents the Lagrange multiplier approach to
weakly impose the Dirichlet boundary condition (see Eq.4).

2.2 Discretization in space and time

To solve the equilibrium Eq. (8), a spatial discretization
is necessary to approximate the continuous fields. There-
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fore, the computational domain is subdivided into a discrete
number of non-overlapping elements, equivalently to con-
ventional finite elements. However, in comparison with
classic FEM, the patch of elements in MPM covers the com-
plete computational domain, including empty spaces into
which thematerial is expected tomove during the simulation,
and is therefore referred to as the computational background
grid in the following. Note empty elements are set temporar-
ily inactive during the simulation if they do not contain parts
of the body B.

Therefore, the solutions are calculated at the discrete
nodes of the elements while the field quantities within the
elements are approximated by locally defined basis func-
tions. For example, the displacement field is approximated
by

u ≈ uh = Nu û (9)

where Nu is the shape function matrix containing the nodal
shape functions NI , while the vector û contains the discrete
displacement values at the corresponding nodes I . Also, the
other fields, including the virtual displacement and the geom-
etry are approximated with the same principle herein. The
superscript h indicates the discretized variables while the
subscript u is utilized to distinguish between the shape func-
tion matrix of the primal variables and the one resulting from
the Lagrange multiplier discretization which is introduced in
Sect. 3.1.

Inserting the spatial discretization leads to the semi-
discrete equilibrium equation

δWh = ∂W

∂uh
δuh = δûT (−R) = 0 (10)

where R is the residual force vector

R =
∫

�

(
BT σ − ρNT

u b + ρNT
u Nu ˆ̈u

)
d�

−
∫

�N

NT
u pd�N = 0 (11)

which equals zero since the virtual displacements are arbi-
trary. Herein B is the strain–displacement matrix containing
the gradients of the shape functions while σ is the Cauchy
stress tensor written in Voigt notation.

In addition to the spatial discretization, the continuous
time domain is divided into discrete time steps tn with con-
stant time step size �t = tn+1 − tn . Within this paper,
we are following the Newmark-β [52] implicit time integra-
tion scheme specifying β = 0.25. Therefore, the discretized
fields for velocity and acceleration are approximated by the
kinematic values already known from the previous time step.
Consequently, the residual equation at each time step can be

solved for the nodal displacements, which are the remaining
unknowns.

However, as the residual force vector is non-linear in
general, the Newton-Raphson method, which is based on
Taylor’s theorem, is used to linearize the equation and
approximate the solution iteratively by

Rn+1 + ∂Rn+1

∂ûn+1 �û = Rn+1 + Kn+1�û = 0 , (12)

introducing the tangential stiffness matrix K as the lin-
earization of the residual force vector. This equation then
is subsequently solved for the incremental displacement �û
to receive the updated displacement ûn+1.

Until this point, these steps are identical to a classical
updated Lagrangian FEM solution algorithm. In contrast
to classical FEM, however, where Gaussian integration is
usually applied for the numerical integration of the volume
integrals in Eq. (12), in MPM, a particle summation is uti-
lized, which is described in the following.

2.3 Material point discretization

In addition to the computational background grid, which
approximates the continuous fields, the body B is discretized
into a finite number n p of Lagrangianmoving particles, com-
monly calledmaterial points, representing a finite volume�p

of the body

B ≈ Bh =
n p∑
p=1

�p . (13)

Applying further the classicalMPMapproach of aDirac delta
density function [1], the volume integrals within the equi-
librium Eq. (12) are transformed into a summation of the
particles.

Consequently, the entries of the tangential stiffness matrix
related to the nodes I and J of the background grid elements
can be calculated by

Kn+1
I J =

n p∑
p=1

(
(∇x NI )

T σ p(∇x NJ ) + BT
I DpBJ

+ NIρpNJ

β�t2
I
)

�p , (14)

which are then assembled to the global tangential stiffness
matrix defined in Eq. (12).Within this equation, the subscript
p indicates thematerial point values,whileDp is the constitu-
tivematrix.BI is the deformationmatrix related to each node
I , and ∇x denotes the spatial gradient of the shape function
corresponding to node I .
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Analogously, the entry of the residual vector related to
node I can be calculated by

Rn+1
I =

n p∑
p=1

(
BIσ p − ρpbNI + NIρpNu ˆ̈un+1

)
�p

−
nbp∑
bp=1

NI p̂�bp. (15)

The continuous boundary�N herein is discretized into afinite
number nbp of mass-less boundary particles such that each
boundary particle contains the discrete traction p̂ and repre-
sents a discrete area �bp of the boundary. Further details of
this approach can be found in [20, 32].

2.4 MPM update scheme

Due to the dual description of Lagrangian moving mate-
rial points on the one hand and the computational background
grid on the other hand, the MPMworkflow includes the clas-
sical finite element updated Lagrangian calculation proce-
dure, which is enhanced by repeated inter- and extrapolation
of information between background grid nodes (markedwith
subscript I) and material points (marked with subscript p).
Therefore, the MPM procedure per time step can be catego-
rized into the following phases (see Fig. 2):

Fig. 2 MPM update scheme

(I) Initialization phase: At the beginning of each time
step, the connectivity of each material point is defined,
i.e., the background grid element containing the respec-
tive material point is searched for, so that the required
shape function values NI can be evaluated at the current
position of the material point xnp. The kinematic vari-
ables u̇np and ünp are then mapped via mass projection to
the corresponding nodes of the background grid as initial
conditions:

Calculate nodal velocity:

u̇nI =
∑n p

p=1 mpu̇npNI

mn
I

(16)

Calculate nodal acceleration:

ünI =
∑n p

p=1 mpünpNI

mn
I

(17)

where

mn
I =

n p∑
p=1

NIm p (18)

is the assigned mass at the nodes of the background
grid.

(II) Lagrangian phase: This phase is identical to the
classical finite element updated Lagrangian calculation
procedure [53–56] as it solves the discretized governing
equations (Eq.12) iteratively until a converged solution
of the computational background grid is found. At this
point, it is important to mark, that solely those nodes of
the computational background grid which are assigned a
mass mI are contributing to the final equation system.
(III) Convective phase: The solution obtained at the
nodes of the computational background grid is inter-
polated to the material points. Thus, the update of the
position, velocity, and acceleration is defined by:

Material point position:

xn+1
p = xnp + Nu û

n+1 (19)

Material point acceleration:

ün+1
p = Nu ˆ̈un+1 . (20)

Material point velocity:

u̇n+1
p = u̇np + 1

2
�t(ünp + ün+1

p ) (21)

which is updated via the trapezoidal rule.
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Finally, the background grid is reset, an important feature
to simulate large strain events without the issues of mesh
entanglement and distortion.

Further details of the presented scheme, as well as an exten-
sion to mixed formulations, can be found in [57–59].

3 Dirichlet boundary conditions

To solve a problem given by Eq. (8), the definition of proper
Dirichlet boundary conditions is a crucial part. For some par-
ticular configurations, once the boundaries coincide with the
nodal discretization of the computational background grid,
the imposition is straightforward as they can be imposed in a
FEM fashion, complying naturally with the Kronecker delta
property. Those boundaries will be called grid-conforming
boundaries in the following.

However, this imposition type is not generically applicable
inMPMas thematerialmoves independently of the computa-
tional background grid, which naturally leads to boundaries
that are not aligned with the grid nodes. Therefore, alter-
native procedures are required, and the boundary has to be
enforced in a weak form which will be referred to as non-
conforming boundary conditions. Within the scope of this
research, the Lagrange multiplier method shall be examined
to weakly enforce Dirichlet conditions in MPM.

3.1 Lagrangemultiplier approach

Enforcing a Dirichlet constraint as given by Eq. (4) with the
Lagrange multiplier method to a given system leads to the
modified principle of virtual work equation:

δW (u,λ, δu, δλ) =δW (u, δu) + δWLM (u,λ, δu)

+ δWLM (u,λ, δλ) = 0 (22)

where λ is the Lagrange multiplier while the displacement u
is the primal variable. In this equation, δW (u, δu) represents
the virtual work given by Eq. (8) while the additional terms
arising from the Lagrange multiplier imposition are defined
by:

δWLM (u,λ, δu) =
∫

�D

λT δud�D (23)

δWLM (u,λ, δλ) =
∫

�D

δλT (u − u) d�D . (24)

To solve the modified virtual work equation numerically, the
continuous fields u and λ need to be approximated by locally
defined basis functions and discrete values at the nodes. This
discretization, however, has to be chosen carefully to satisfy
the inf-sup condition of Ladyzhenskaya, Babuška [45, 60]

and Brezzi [61, 62] which is discussed in Sect. 3.3. At this
point, the notation is kept general utilizing the shape function
matrix Nu for the approximation of the displacement field
(see Eq. 9) and introducing the shape function matrix Nλ to
approximate the Lagrange multiplier field by

λ ≈ λh = Nλλ̂ (25)

while λ̂ are the values at the Lagrange multiplier dofs.
Following, Eqs. (23–24) are rewritten in the discretized

version:

δWh
LM (uh,λh, δuh) = δûT

∫
�D

NT
u Nλd�Dλ̂ , (26)

δWh
LM (uh,λh, δλh) = δλ̂

T
(∫

�D

NT
λ Nud�Dû

−
∫

�D

Nλd�Dû
)

. (27)

Herein û are the discrete imposed displacements at the dis-
cretized boundary, introduced in Sect. 3.3. Applying the
Newton Raphson procedure to the modified virtual work Eq.
(22) and considering the discretization leads to the saddle
point problem:

[
K (+KLM ) �T

� 0

] [
�û
�λ̂

]
= −

[
R + �T λ̂

�û − �û

]
(28)

with

� =
∫

�D

NT
λ Nud�D and � =

∫
�D

Nλd�D . (29)

K and R are defined by Eq. (12) and KLM is the lineariza-
tion of Eq. (26) with respect to the displacements. As the
constraints are linear in uh , this term vanishes and is there-
fore posed in brackets. From Eq. (29) it can be observed
that the contribution of the Lagrange multiplier imposition
depends on the shape functions of the two discretized fields,
while the evaluation of the integral is discussed in Sect. 3.3.

3.2 Suitable Lagrangemultiplier field

The given saddle point problem, which results in a minimum
of the primal variables and a maximum for the Lagrange
multipliers, can be solved only if the inf-sup condition of
Ladyzhenskaya, Babuška [45, 60] and Brezzi [61, 62] is
satisfied. This mainly depends on the discretization of the
involved fields. While in MPM, classically simple element-
wise basis functions are chosen for the displacement field, the
Lagrange multiplier discretization has to be selected accord-
ing to that field approximation which is introduced in Sect.
3.2.1. Additionally, in Sect. 3.2.2, the chosen approach is
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enhanced to obtain a suitable Lagrange multiplier discretiza-
tion for different background grid element types excluding
superfluous constraints.

3.2.1 Discretization of the Lagrangemultiplier field

As stated by Zienkiewicz et al. [49], a necessary but not suf-
ficient condition for a stable solution is the requirement that
the rank of the tangential stiffness matrix K must be larger
or equal to the rank of Lagrange multiplier contribution �.
Thus, for the imposition of non-conforming boundary con-
ditions, this requirement is met by using a different order of
interpolation for the involved fields. Accordingly, in com-
bination with simple element-wise basis functions for the
displacement field, which are linear functions for triangular
and tetrahedral background grid elements and bi- and tri-
linear functions for quadrilateral and hexahedral elements,
respectively, a constant element-wise approximation of the
Lagrangemultipliers is selected. In particular, from a compu-
tational point of view, this is an attractive and straightforward
choice since each background grid element is assigned an
additional dof λ for the spatial directions. It contributes to
the final system of equations when the element is intersected
by the boundary. Consequently, the boundary conditions are
defined locally at the element level, which is an essential
feature for general and robust impositionwithinMPM. Espe-
cially for the numerical investigation of floweventswith large
strains as well as a changing topology of the boundaries, this
locality is an essential requirement as the selection of active
background grid elements may change in every time step.

3.2.2 Excluding superfluous constraints

The approach of simple element-wise basis functions for the
primal variables in combination with the constant approx-
imation of the dual variables does not soundly satisfy the
inf-sub condition. It is known from the formulation of mixed
elements that this approach fails, as it leads to over-constraint
systems [63, 64]. Additionally, for the imposition of bound-
ary conditions, this approach may result in a Lagrange
multiplier discretization that is locally over-constrained,
leading to spurious oscillations of the resulting Lagrange
multipliers.

This effect is also referred to as boundary locking (see e.g.,
Hughes [65]) with an adverse influence on the convergence
behavior of the primal variable. Therefore, the Lagrange
multiplier discretization has to be appointed consciously in
dependence on the respective background grid, ensuring that
conditions are not imposed twice. In this section, a procedure
to eliminate superfluous constraints to receive an appropriate
Lagrange multiplier field is proposed.

For illustration purposes, the consequences of the straight-
forward utilization of a constant Lagrangemultiplier approx-

b) rotated quad.

c) struct. tri.
(spurious oscillations)

d) unstruct. tri.
(spurious oscillations)

a) struct. quad.

Fig. 3 Solution of the discrete Lagrange multipliers at the boundary for
different background grid element types. Sub-figures a, b illustrate the
force distribution in the case of quadrilaterals (structured and rotated)
while sub-figure c, d show the results for triangular background grid
elements (structured and unstructured)

imation within all elements which are intersected by the
boundary should be exemplified for a linear elastic cantilever
beam under dead load. The clamped support is imposed by
the non-conforming Lagrange multiplier condition. Details
of the example, as well as a sketch of the system, can be
found in Sects. 4.2 and 4.3, where this example is investi-
gated further. At this point, we are focusing on the solution
for the discrete Lagrange multipliers representing the forces
at the boundary for different background grid element types.
In Fig. 3a–d, the results for four different background grid
types are depicted.

It can be observed that for quadrilateral background grid
elements, independently whether the boundary intersects
the element equally, as illustrated in Fig. 3a or arbitrar-
ily (see Fig. 3b) the resulting forces are representing the
expected stress distribution at the boundary. Due to the cho-
sen Lagrange multiplier discretization (see Sect. 3.2.1), the
forces are constant within one element.

However, spurious oscillations of the resulting forces can
be observed for triangular background grid elements. The
resulting force distributions (being the respective Lagrange
multipliers) are depicted in Fig. 3c for a structured and Fig. 3d
for an unstructured triangular background grid, indicating the
breach of the local mesh dependent inf-sub condition.

This phenomenon can be explained mechanically by the
possible deformations of the background grid element edges
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ΓD

deactivated
boundary
imposition

ΓD

prevent
rotational
movement

boundary
imposition

Fig. 4 The boundary condition should be imposed within the white
elements, whereas the Lagrange multiplier dofs should be deactivated
in the green highlighted elements. (Color figure online)

in combination with the element geometry itself. Due to
the chosen basis functions for the primal variables, the dis-
placement along the edges is approximated linearly between
the corresponding nodes. This is still the case for edges
intersected by a Dirichlet boundary. However, fulfilling the
constraints leads to a dependency on the adjacent nodal defor-
mations of that specific edge.

Consequently, the nodal deformations of a triangular ele-
ment are already determined if it has common edges with
two neighboring constrained elements. In Fig. 4 the elements
highlighted in green are such particular elements whose
nodal deformations and, consequently the resulting strains
are already determined by the neighboring constrained ele-
ments. Therefore, the constraint imposition within those
elements is superfluous and needs to be eliminated to avoid
spurious oscillations in theLagrangemultiplier solution.This
can be achieved easily within the computation by temporar-
ily deactivating the dofs of respective Lagrange multipliers
to eliminate those superfluous constraints.

To prevent the rotational movement of the constrained
elements at the boundary, two adjacent elements being inter-
sected by the Dirichlet condition need to be set active once
within the boundary geometry definition due to the constant
distribution of the Lagrange multiplier. In Fig. 4, those ele-
ments are graphically highlighted with an orange contour
and are defined at the starting point of the line, defining the
boundary geometry.

Applying the proposed scheme to the illustrative example
of the cantilever beam under dead load leads to an appro-
priate Lagrange multiplier field for triangular elements as
well. It is successfully eliminating the spurious oscillations
of the resulting forces. In Fig. 5 a) and b) the solution of the

b) unstruct. tri.a) struct. tri.

Fig. 5 Solution of the discrete Lagrange multipliers at the boundary
for triangular elements considering the proposed elimination procedure
excluding the superfluous constraints. Sub-figure a illustrates the force
distribution for a structured triangular backgroundgrid,while sub-figure
b shows the result for the unstructured background grid

Lagrange multipliers is visualized, showing a distribution of
the forces in accordance with the expected stress distribu-
tion at the boundary. Due to the elimination procedure and
in combination with a non-uniform cut of the boundary with
the background grid elements, the distribution of the forces
in Fig. 5b is obviously not as smooth as the expected stress
distribution. Therefore, a weighting procedure is applied to
distribute the element-wise constant forces to the discrete
boundary particles. This procedure is explained in Sect. 3.5.
In Sect. 4.3, the accordance of the resulting forces with the
global equilibrium is demonstrated, while Fig. 14 shows the
smooth distribution of the resulting forces at the boundary
particles.

This argumentation holds as well for quadrilateral ele-
ments. However, superfluous constraints may solely occur
if three neighboring elements sharing each an edge with the
considered element are also constrained. For the imposition
of boundary conditions, this configuration rarely appears, and
therefore no spurious oscillations of the resulting forces can
be observed in Fig. 3a, b.

For the 3D space, this theory can be extended accord-
ingly, distinguishing between neighboring elements sharing
a surface or an edge. Therefore, three constrained neigh-
boring edge elements are sufficient to describe the nodal
deformations of a tetrahedral element as long as the edges
pass through every node of the geometry. All other con-
straints within the remaining neighboring elements as well
as the constraint within the considered element itself, are
superfluous in this case. For hexahedral elements, seven con-
strained edge elements passing through all nodes would be
sufficient to describe the nodal displacements. In general,
however, the constrained elements in 3D are not distributed
such that the elimination procedure may consider the edge-
aligned neighbors only. Instead, it is of utmost importance
that the deformation of all nodes of a constraint element
is determined, and only under this condition superfluous
Lagrangemultipliers can be deactivated. It is, therefore, often
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inevitable to avoid some local superfluous constraints by
maintaining a sufficient boundary imposition for all nodes
involved. Consequently, in 3D, some oscillations in the solu-
tion of the Lagrange multipliers may be present, which,
however, are reduced to a minimum due to the elimination
procedure. In Sect. 4.4 it is demonstrated that the proposed
elimination still results in a suitable Lagrange multiplier
distribution to impose non-conforming arbitrarily shaped
Dirichlet conditions in 3D space in anMPM framework with
considerable effort.

Although there are often several possibilities to select the
elements for the boundary imposition, the solution of the
primal variable is not affected by this decision as long as the
boundary imposition determines all nodal deformations of
intersected elements. The resulting values of the Lagrange
multipliers, on the other hand, may change slightly to satisfy
the equilibrium.

From a computational point of view, the proposed elimi-
nation procedure of superfluous Lagrange multiplier dofs to
receive a suitable Lagrange multiplier distribution is attrac-
tive as well: since the computational background grid does
not change its topology, the neighboring elements sharing a
common edge or surface need to be found only once for each
element being intersected by the boundary. Consequently,
within each time-step superfluous constraints are detected
efficiently, and therefore the corresponding Lagrange multi-
plier dofs are deactivated temporally.

3.3 Particle representation of the boundary

In MPM, the continuous boundary �D shall be parti-
tioned into nbp non-overlapping sub-domains, while each
sub-domain is represented by a boundary particle with a
respective current area �bp:

�D ≈
nbp∑
bp=1

�bp. (30)

Therefore, in conformancewith the volume integration of the
body bymaterial points, a quadrature-based technique is cho-
sen for the boundary as well. Those boundary particles can
be expounded as mass-less particles carrying the necessary
information for the boundary imposition. This procedurewas
also proposed in [39] to weakly impose essential boundary
conditions by penalty augmentation. This methodology is
mature compared to other boundary tracking methods, such
as the level set method [63], as it omits the computationally
expensive calculation for the intersections of the boundary
with the elements of the computational background grid.
Instead, the search algorithms inherent in any MPM scheme
can also be used for the boundary particles, and consequently,
moving boundaries can be handled efficiently.

The boundary particles are introduced at the beginning of
the simulationwithin the respective primitives, e.g., polylines
in 2D or meshes in 3D. A user-defined number of boundary
particles are placed either equally distributed or at Gauss
point positions of the respective primitive and get assigned
the corresponding weights representing the respective area
�bp. In a two-dimensional case, the individual weight has to
be multiplied by the corresponding thickness of the model to
obtain the resulting sub-domain of each boundary particle.
Thus, the local surface integral in Eq. (28) evaluated for one
element being intersected by the boundary segment �D can
be approximated by:

∫
�D

(...) d�D ≈
nbp∑
bp=1

(...) �bp . (31)

In this case, the boundary segment within an intersected
background grid element is approximated by summing
the respective boundary particle areas located within the
respective background grid element. Consequently, a fine
discretization of the boundary by mass-less particles leads
to a good approximation of the boundary segments.

In addition to the geometrical information, as the current
position and the assigned area, the boundary particles carry
the kinematic variables needed for prescribed displacements
and the unit normal vector, which is essential for the inclined
slip condition (see Sect. 3.4). As suggested by [39], the unit
normal vectors n̂bp, defined in the outward direction of the
imposed boundary, are initialized at the beginning of the
simulation on each boundary particle, which is illustrated
in Fig. 6. The interpolated unit normal vector n̂I at the node
I of the computational background grid can then be approx-
imated within each time step by:

n̂I =
∑nbp

bp=1 n̂bp�bpNI∥∥∥∑nbp
bp=1 n̂bp�bpNI

∥∥∥ . (32)

The normal is required to construct the rotation matrixQ for
the inclined roller support described in the following section.
The unit vectors at the boundary particles are updated during
the calculation procedure according to the boundary particle
movement during the calculation procedure.

3.4 Slip boundary condition

One further novel feature of this research is the imposition
of slip Dirichlet boundary conditions, which can be oriented
arbitrarily in space, named slip conditions. In this case, the
movement in the normal direction to the support is restricted,
whereas, at the same time, the body is able to move freely
in tangential directions. In Fig. 6 the slip condition in 2D is
illustrated.
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Fig. 6 Slip conditions and definition of n̂bp at the boundary particles

Therefore, all globally oriented matrices and vectors are
rotated with an orthogonal rotation matrix:

Q =
⎡
⎣n̂x n̂ y n̂z
t̂x t̂y t̂z
q̂x q̂y q̂z

⎤
⎦ (33)

where n̂I is the resulting normal unit vector perpendicular to
the inclined surface at the node I and t̂I , and q̂I are the nor-
malized tangent vectors parallel to the surface. For a global
imposition, it is necessary that the rotation is applied locally
to those nodes affected by the rotation. Therefore, the rotation
matrix results in a block matrix

Q̂ =
[
I 0
0 Q

]
(34)

where I represents the identity matrix for those nodes which
are not affected by the rotation. Applying the modified rota-
tion matrix leads to the partially rotated system:

(
Q̂

[
K �T

� 0

]
Q̂T

) (
Q̂

[
�û
�λ̂

])
= −

(
Q̂

[
R + �T λ̂

�û − �û

])
.

(35)

To impose the roller condition, the Lagrangemultipliers in
tangential directions to the support are set to zero. This can
be achieved by setting the respective entries of the rotated
stiffness matrix to zero, except for the entry on the main

diagonal, which is set to one. As the entries in the residual
vector are also set to zero, the resulting Lagrange multipliers
in tangential directions, which can be interpreted as reaction
forces, are set to zero. Following this, the system can move
in tangential directions without restrictions.

3.5 Calculation of reaction forces

Another advantage of the Lagrange multiplier method is that
the resulting reaction forces which enforce the Dirichlet con-
dition can be calculated directly. From Eq. (28), one can
derive the additional force acting on the nodes of the com-
putational background grid due to the boundary imposition:

RD = �T λ̂ . (36)

Therefore, the resulting reaction forcesRI ,D at node I of the
computational background grid element in spatial directions
is defined by:

RI ,D = λ̂

nbp∑
bp=1

NI�bp , (37)

assuming a constant Lagrange multiplier distribution within
the element. The reaction forces at the boundary particles are
obtained by interpolating the discrete nodal reaction forces
with the respective shape functions:

Rbp =
nn∑
I=1

γI,bpNIRI ,D (38)

where γI,bp is the interpolation weighting factor to maintain
the sum of forces. It is defined by the ratio of the boundary
particle area �bp and the nodal area AI :

γI,bp = �bp

AI
, where AI =

nbp∑
bp=1

NI�bp . (39)

This appliedweightingprocedure, a classicalMPMapproach,
provides the resulting reaction forces at the discretized
boundary.

The accuracy of the proposed calculation of the reaction
forces at the boundary particles is presented explicitly in Sect.
4.3.

3.6 Material and boundary interaction

The Dirichlet boundary conditions in an MPM model can
be defined arbitrarily within the computational background
grid and, therefore, independently of the body outline. There-
fore, in contrast to classical FEM, where the conditions are
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Fig. 7 Configurations of the boundary and the material

classically defined along the body outline, in MPM it is not
necessarily the case that both boundary particles andmaterial
points lie within one background grid element. Instead, it is
possible for the body to move without the influence of the
boundary condition if there is at least one empty background
grid element between them, preventing mutual interaction
via the nodes of the computational background grid. Thus,
for the imposition of weak boundary conditions, different
configurations of material points interacting with the bound-
ary particles have to be considered and are visualized in
Fig. 7. The first configuration visualized in Fig. 7a where
material points and boundary particles are within one back-
ground grid element, the imposition of the non-conforming
boundary is straightforward, as described before. The config-
urations b and c, however, have to be considered carefully,
as the boundary particles are located within a background
grid element that contains no material points, and therefore
the stiffness of the particular element is zero. For configu-
ration c as well as setups where the material is even further
apart, the respective dofs of elements containing material
points and those containing the boundary particles are decou-
pled. Therefore, the material movement is not influenced by
the respective boundary imposition which is why the corre-
sponding element containing the boundary particles need not
be considered for the final equation system.

However, in configurations depicted in Fig. 7b where
material points are located in neighboring elements of those
being intersected by the boundary, the boundary condition
already influences the material movement. One possibility
might be to neglect the boundary in this case as well by
deactivating the boundary imposition of all boundary par-
ticles that are within a background grid element without
material points. However, this may easily lead to material

points penetrating through the boundary. This is especially
true for configurations where the boundary is defined near
the element border of the adjacent element containing the
material points. Since the boundary condition is not active
for the solution of the governing equations, the nodes of
the background grid element are updated within one time
step without considering the respective Dirichlet condition,
and after updating the material point positions, it may be the
case that the material points have already passed through the
boundary before it was activated. Therefore, another method
is proposed at this point. For those elements that contain only
boundary particles but still interact with material points, an
artificial stiffness is added to the diagonal of the respective
elemental stiffness matrix.

As a consequence, elements that contain solely bound-
ary particles are assigned an artificial stiffness, ensuring that
material points from neighboring elements are already influ-
enced by the boundary condition. Due to this influence, the
movement of the material points should be decelerated such
that they are not penetrating through the boundary but still
permitting the movement towards the boundary itself. From
the authors’ experience, Young’s modulus of the considered
material multiplied by the volume of the respective element
can be set as the artificial stiffness.

3.7 Small cut instability

In immersed methods, the small cut instabilities are well-
known problems and have been addressed by several authors
just mentioning [40]. In case a boundary cuts an element
nearby, the shape function values of the corresponding nodes
may be very small, consequently leading to ill-conditioned
stiffness matrices. Therefore, the most trivial approach to
overcome this issue is to modify the shape function values
NI evaluated at the location of the respective boundary par-
ticle such that the minimum value is larger than a user-given
threshold ε, leading to the following equation:

N̄I = N∗
I∑nn

I N∗
I

where N∗
I =

{
ε, if NI ≤ ε

NI otherwise
(40)

where N̄I is the modified shape function value and nn the
number of nodes of an element. Yet the partition of unity
is ensured by the weighting procedure. This approach was
applied in the penalty approach [39] as well to handle the
small-cut instabilities where the stabilization tolerance was
set to ε = 0.01. This assumption holds as well for the present
work.

However, it’s not sufficient to check the shape function
values of the boundary particles only. As illustrated in Fig. 8,
there are several configurations of boundary particles that
may have small shape function values. Those particles are
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Fig. 8 Possible configurations of boundary particles with small shape
function value

highlighted in green. Especially in the configuration 8a, the
small values of the shape function are not affecting the condi-
tion of the complete stiffness matrix. Therefore the proposed
modification of the shape function values is not applied in
this case.

Numerical instabilities, however, will appear in the con-
figurations 8b and c where the element is cut nearby a vertex
or parallel to one edge or surface in three-dimensional space.
As a consequence, the corresponding entries in the global
stiffness matrix will be very small compared to the other
values leading to ill-conditioned systems. To overcome this
issue, the shape function values are modified as proposed by
Chandra et al. [39] such that the minimum value is larger
than the user-given threshold.

4 Numerical examples

Several examples are presented in this chapter to show
the quantitative performance and accuracy of the proposed
boundary imposition method. First of all, the proposed
method’s advantages compared to penalty augmentation are
evaluated. Then, the convergence rate of the method is ana-
lyzed for different background grid types. Subsequently, the
boundary particle distribution is studied, evaluating the reac-
tion forces at the support. The slip condition is validated for
a sliding cylinder on an inclined slope in 2D and 3D, com-
paring the numerical results to the analytic solution. Finally,
the application of the proposed method for granular flow is
demonstrated by comparing the numerical solution to exper-
imental results and for a possible industrial example.

4.1 Pulled bar

The first example, visualized in Fig. 9 considers a linear elas-
tic cantilever beam under tension loading. The beam has a
length of L = 8m, a cross-section of A = 1×1m2 and a den-
sity of ρ = 1000kg/m3. The numerical models are created in
2D assuming a St. Venant Kirchhoff material with Young’s
modulus of E = 90MPa and a Poisson ratio of ν = 0.0 for
the constitutive equation. To apply a pure tension load, a hor-

Fig. 9 Cantilever under pure tension loading and a detailed view of
the non-conforming boundary condition and the particle discretization
within four different background grid types (a–d)

izontal gravitational force of 9.81m/s2 is considered acting
in the x-direction. For a reference solution, the analytic beam
solution of the horizontal displacement at point A at the tip
of the cantilever is considered.

The clamped support at the left side of the beam ismodeled
as a non-conforming boundary, imposing theDirichlet condi-
tion weakly either by penalty augmentation [39] or Lagrange
multiplier imposition. For the former technique, selecting an
appropriate penalty factor is necessary, which is not a trivial
task. For each numerical simulation, this factor needs to be
calibrated carefully as otherwise, either penetration of the
material through the boundary occurs if the factor is cho-
sen too low, or numerical instabilities may appear due to a
factor that is too large. Furthermore, the penalty factor intro-
duces a modeling effect in the solution field. Therefore, the
obtained solution hardly depends on the selected penalty fac-
tor, which is a drawback of the penalty imposition. To show
this spring-type behavior of the penalty imposition, the hor-
izontal displacement of point A is calculated with a penalty
factorβ varying in the range fromβ = 1010 toβ = 1030. The
results are compared to the solution obtained by the Lagrange
multiplier augmentation.
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Table 1 Background grid types for the numerical models

(a) Structured quadrilateral background grid

(struct. quad.)

(b) Rotated quadrilateral background grid

(rotated quad.)

(c) Structured triangular background grid

(struct. tri.)

(d) Unstructured triangular background grid

(unstruct. tri.)

Four different background grid types are considered for
the following study, summarized in Table 1.

The element size of the background grid is set to 0.04m
for all types. For the initialization of the material points, an
additional mesh, called body mesh in the following, is cre-
ated with an element size of 0.02m introducing the material
points at the respective Gauss point positions. In the case of a
quadrilateral background grid also a quadrilateral bodymesh
placing 4 particles per element was selected. Whereas, once
a triangular body mesh was considered 12 material points
per element were initialized. A detail of the final discretized
models can be found in Fig. 9a–d. Please notice that for the
structured background grids, the grid size was selected such
that the imposed boundary is located in the middle of the
first row of background grid elements. In case 9b, the ini-
tial geometry of the structured grid was rotated by 30◦ to
ensure an arbitrary intersection pattern of the boundary with
the computational grid.

Asmentioned before, the clamped support is modeled as a
non-conforming boundary condition. Therefore, the bound-
ary is divided into line segments with a length of 0.02m
placing four equally distributed boundary particles onto each
segment which are imposing theDirichlet condition either by
penalty augmentation or Lagrange multiplier imposition.

In Fig. 10a–d, the relative error of the horizontal dis-
placement at point A compared to the analytical solution is
plotted against the varying penalty factor for the background
grid types displayed in Fig. 9a–d. Additionally, the solution
obtained by the proposed Lagrange multiplier imposition is
shown in the plots.

As expected, the relative error of the horizontal dis-
placement at point A decreases with an increasing penalty
factor until it approaches the solution we obtained with the
Lagrange multiplier method. This behavior can be observed
for all types of background grids. A further increase in the
penalty factor, however, shows a different pattern for the
relative error depending on the background grid type. For
the structured background grids (a and c), a broad range of
penalty factors can be applied to receive similar results com-
pared to the Lagrange multiplier imposition. This, however,
is not valid for the unstructured background grid types (b and

Fig. 10 Comparison of penalty imposition and Lagrange multiplier
method

d). Here, the range of penalty factors to receive results similar
to the Lagrange multiplier imposition is rather small. Hence,
the difficulty of selecting an appropriate penalty factor can
be demonstrated even for this academic example.

It can be observed that after a further increase of the
penalty factor, certain values lead to improved results com-
pared to the solution obtained with the Lagrange multiplier
method. However, those values result from plotting the abso-
lute value of the relative error. Fromhere, a further increase in
the penalty factor leads to a stiffer behavior compared to the
analytical solution and consequently reduces the deforma-
tion of the total system. Finally, the relative error converges
toward the solution, which would be obtained if all nodes
of the background grid elements containing boundary par-
ticles would be fixed in space. The increase of the penalty
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factor, however, is limited by the conditioning of the stiffness
matrix.

In summary, this simple example demonstrates that the
appropriate choice of penalty factor is a challenging task.
Often, the calibration process leads to trial-and-error estima-
tions where some prior knowledge of the solution is required.
Furthermore, it should be noted that for this academic exam-
ple, there is quite a wide range of feasible penalty factors to
obtain reasonable results. However, for more complex simu-
lations, the suitable range of penalty factors may be severely
limited to prevent material penetration on the one hand and
preserve the numerical accuracy and stability on the other.
Therefore, the Lagrangemultiplier augmentation is an attrac-
tive alternative for theweak imposition ofDirichlet boundary
conditions since the time-consuming and challenging task
of calibrating the penalty factors is eliminated, and a user-
friendly imposition of the essential boundary conditions is
enabled.

4.2 Mesh convergence study

To study the convergence rate of the proposed Lagrangemul-
tiplier method, a mesh refinement study is performed.We are
considering the same cantilever as the previous example but
with the dead load in the global z-direction. The setup of the
system, as well as the studied background grid types, can be
found in Fig. 9 of the previous example. For the convergence
study, again, the mesh types, summarized in Table 1 are con-
sidered while a detail of each discretized model can be found
in Fig. 9a–d.

For the structured quadrilateral background mesh, the
initialization of the mesh is such that the non-conforming
boundary condition is imposed at the center-line of the
respective background element to ensure a comparable prob-
lem setup for differentmesh sizes. For the initialization of the
material points, a structured quadrilateral bodymesh is intro-
duced, placing 16 particles within each element. The size of
the body mesh is considered to be half of the background
mesh size.

For the unstructured quadrilateral backgroundmesh study,
the background grid is rotated by 30◦ to ensure an arbitrary
distribution of the boundary particles within the background
grid elements. The body mesh for the initialization of the
material points is created analogously to the first study.

To investigate the triangular background mesh, a struc-
tured background mesh, and an unstructured background
mesh is used. For those studies, the material points are ini-
tialized by a triangular body mesh which again has half the
size of the bodymesh and introduces 12 particles per element
at the Gauss-Point positions.

For all configurations, the tip displacement of the can-
tilever beam at point A is measured, and the relative error

Fig. 11 Mesh convergence study for a cantilever beam. It shows a
quadratic convergence rate for both quadrilateral and triangular back-
ground meshes for structured and unstructured meshes

compared to the analytical beam solution is calculated. The
results are plotted in Fig. 11.

The relative error of the vertical displacement decreases
quadratic with a mesh refinement for all considered back-
ground grid types.

4.3 Boundary particle distributions and reaction
forces

In addition to the previous example, the distribution of
the boundary particles within the background grid and the
influence on the numerical solution should be investigated.
Therefore, again the cantilever beam under dead load (see
Fig. 9)with different backgroundgrid element types a–d from
the previous example is considered. The background grid
mesh size of 0.05 m from the previous example is picked,
and the distribution of the boundary particles is varied from
40 to 2560. To receive an equal distribution of the boundary
particles, the boundary is divided into a varying number of
line segments while initializing one boundary particle at each
line center.

In Fig. 12 the relative error of the vertical displacement at
point A is plotted against the number of boundary particles.
One can observe that for all types of background grid ele-
ments, the results are independent of the number of boundary
particles, assuming a sufficient amount of boundary parti-
cles to enforce the boundary condition. Obviously, if the
boundary were discretized even more coarsely by boundary
particles, various background grid elements would not con-
tain any boundary particles even though they are intersected
by the boundary, and thus the constraint imposition would
be insufficient.
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Fig. 12 Convergence study for boundary particle refinement consider-
ing the four types of background grids with a constant element size of
0.05 m. The relative error of the vertical displacement at point A of the
cantilever is measured

Fig. 13 Convergence study for boundary particle refinement consider-
ing the four types of background grids with a constant size of 0.05 m.
The relative error of the resulting bending moment Mb at the clamped
support of the cantilever is measured

A similar study is performed for the resulting bending
moment, which can be calculated from the reaction forces.
For the considered linear elastic beam under dead load g =
9.81m/s2, the resulting analytical bendingmomentMb at the
boundary can be calculated as follows:

Mb = 1

2
g · ρ · A · L2 = 313.92[kNm]. (41)

The resulting numerical solution is obtained by calculating
the reaction forces at the boundary particles (see the concept
described in Sect. 3.5) and multiplying each force with the
respective distance of the boundary particle to the center-
line of the beam. The relative error compared to the analytic
results are plotted in Fig. 13 against the number of bound-
ary particles. It can be observed that by boundary particle
refinement the solution converges as expected to a constant
value.

Fig. 14 Reaction forces for the cantilever under dead load for the four
different background grid types with a size of 0.05 m

Additionally, the reaction forces at the boundary particles
are visualized in Fig. 14 for the different background grid
element types a–d.

The results show an excellent agreement with the theoret-
ical results. The forces’ distribution at the boundary matches
well with the expected solutions. Especially, the weighting
procedure, presented in Sect. 3.5 is important so that the
resulting Lagrange multiplier forces, which are visualized in
Figs. 3a, b and 5a, b are distributed to the boundary particles.

4.4 Cylinder on inclined slope

For the validation of the friction-less sliding condition
imposed by the Lagrange multiplier method, a rigid cylinder
with a radius r = 1m and a width of b = 1m is chosen.
It slips down an inclined slope of 60◦, enforced by grav-
ity. The material model for the cylinder is considered to be
linear elastic with a high stiffness E = 2e9Pa being a numer-
ically rigid body, and a density of ρ = 7800 kg

m3 . For pure
sliding conditions, the displacement of the cylinder can be
determined analytically. Therefore, this example is used fre-
quently for validation purposes in various literature (e.g. [39,
66]). Within this example, we are studying the displacement
of the cylinder for different background grid element types in
two- and three-dimensional space, while the non-conforming
slip boundary condition is imposed by the proposedLagrange
multiplier method. In Fig. 15 the 2D system of the cylin-
der is visualized, including a detailed view of four different
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Fig. 15 Cylinder sliding down inclined slope in 2D and a detailed
view of the non-conforming boundary condition within four different
background grid types

Fig. 16 Cylinder sliding down inclined slope in 3D and a detailed
view of the non-conforming boundary condition within three different
background grid types

background grid types, visualizing the definition of the non-
conforming boundary condition. In Fig. 16 is sketched the
three-dimensional model with three zoomed regions visual-
izing the considered background grid types and the definition
of the non-conforming boundary condition.

Similar to the previous validation examples, a structured
(Fig. 15a) and unstructured quadrilateral (Fig. 15b), aswell as
a structured (Fig. 15c) and unstructured triangular (Fig. 15d)
background grid, are chosen for the two-dimensional space,
resulting in four case studies where the slip condition
is imposed as a non-conforming boundary. A mesh size of
0.12 m is considered for the background grids, whereas for
the initialization of the material points an unstructured trian-
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Fig. 17 Cylinder on an inclined plane: simulation results for friction-
less slip condition in comparison to the analytical solution for different
mesh types in 2D

gular body mesh with the size of 0.06 m is selected placing
three particles per element. For the numerical simulation, a
time step of�t = 0.001s is selected and the displacement of
the cylindrical center is plotted for 1s. The results in compar-
ison with the analytical solutions are plotted in Fig. 17 and
show a great agreement with the analytical solution, inde-
pendently of the considered element type.

Within 3D, the numerical results are studied for three
different background grid element types. The first case
(Fig. 16a) considers a structured hexahedral background
mesh with a size of 0.12 m, where the non-conforming
boundary is imposed centered within the respective ele-
ments. For the tetrahedral elements the size was chosen to be
0.12 m. A structured (Fig. 16b) and an unstructured tetrahe-
dral (Fig. 16c) background grid is studied. The final results
are plotted in Fig. 18 in comparison with the analytical dis-
placements, proofing the accuracy of the proposed method
also for 3D simulations.

4.5 Granular column collapse

In this validation case, a granular column collapse of non-
cohesive soil is simulated according to the two-dimensional
experiments conducted by [67]. The setup of the experiment
is visualized in Fig. 19.

It shows the granular material at its initial position, con-
fined to a region of 20×10×5cm3, and after releasing flows
down due to gravity. During the experiment, the configura-
tion of the material was captured by a high-speed camera at
different times until the final run-out of the material. Based
on the experimental data, as well as the numerical SPH simu-
lations done by Bui et al. [68], a non-associated elasto-plastic

Fig. 18 Cylinder on an inclined plane: simulation results for friction-
less slip condition in comparison to the analytical solution for different
mesh types in 3D

material model is chosen, assuming theMohr-Coulomb yield
criterion with finite strain assumption. The material param-
eters of the granular material are summarized in Table 2.

The left and bottom side walls of the considered exper-
imental setup are modeled with a non-slip boundary con-
dition. To show the performance of the newly proposed
Lagrange multiplier method for granular material with large
topological changes, those boundaries are imposed by non-
conforming boundary conditions. Therefore, boundary par-
ticles are introduced along the left and bottom side walls.
In Fig. 19 the zoomed region indicates the boundary particle
distribution within the background grid.

For the computational background grid, structured quadri-
lateral elements with a size of 0.002 m are chosen, whereas
for the initialization of the material points a structured
quadrilateral body mesh with the size of 5e−4 m is intro-
duced, placing 4material points at the respective Gauss point
positions. The boundary is divided into line segments of
5e − 4 m, initializing three boundary particles each. The
simulation runs until the final run out with a time step of
�t = 5e−5s.

In Fig. 20, the obtained numerical results are compared to
the experimental results obtained by [67] at different times.
It can be observed that the deformation pattern, as well as
the runout, matches very well. In accordance with the SPH
simulations conducted by [67] the material is still moving
at time t = 0.35 s and reaches a final run out of 0.55 m at
the end, which as well fits the final material configuration
of the experiment. In addition to the material configuration
at different times, the failure line of the numerical simula-
tions is compared to the experimental results. A very good
agreement can be observed. However, the failure line at the
bottom cannot be reproduced accurately by considering a
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Fig. 19 Simulation model of the
granular column collapse
experiment with a detailed view
of the discretized model and the
non-conforming boundary
condition

Table 2 Parameters for the granular material

Young’s modulus Poisson’s ratio density

E = 5.84MPa ν = 0.3 ρ = 20.4 kN
m3

internal friction angle cohesion dilatation angle

�′ = 21.9◦ c′ = 0.0kPa � = 0.0◦

fixed boundary imposition within the numerical model. To
capture this phenomenon in the numerical model, the friction
at the boundary needs to be considered, which is not part of
the scope of the presented research.

4.6 Cone filled with granular material andmoving
boundary

The final example in this paper demonstrates the advantages
of the proposed method for industry-scale applications. This
study considers a cone filled with granular material, while at
the bottom, the gravity-driven material can flow out. During
the simulation, the cone is moving upwards with a constant
velocity of v0 = 0.2m

s . The example setup is visualized
in Fig. 21 with a zoomed region at the corner to show the
discretization of the system. A quadrilateral structured back-
ground grid with a size of 0.03m is used for the computation.
An unstructured triangular body mesh with size 0.02 m is
created to initialize the material points, placing 16 particles
into each element. At the non-conforming boundary, which

is imposed as a slip condition, 4 boundary particles are ini-
tialized within each line segment with an initial length of
0.02 m. A time step of �t = 1e−3s is considered for the
computation.

To represent the elastoplastic behavior of dry soil, the
granular material properties were selected to be the same
as in the preceding case (see Table 2).

The solution of the numerical simulation is visualized
in Fig. 22 showing the material flow for six specific times
until the cone is emptied and the complete material rests on
the ground. The bottom is modeled as a fixed conforming
boundary condition. The boundary particles, imposing the
non-conforming slip condition at the outline of the cone, are
moving in total 1.2 m in the vertical direction, corresponding
to the imposed constant velocity for 6s in total.

This example demonstrates the broad application range
of the newly proposed boundary imposition method by the
Lagrange multiplier method, as the boundary can be defined
independently of the computational backgroundgrid. In addi-
tion, arbitrarily directed moving boundary conditions may
be imposed robustly for both slip and fixed conditions. This
feature is highly advantageous for MPM, where the com-
putational background grid is usually kept stationary while
the material moves through the grid. Additionally, unlike the
penalty approach, which frequently requires user calibration,
the Lagrange multiplier imposition does not require the user
to choose the problem-dependent penalty factor [39]. This
makes theLagrangemultipliermethod superior for a straight-
forward imposition of the boundary condition.
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Fig. 20 Numerical results in comparison with the experimental results published by Nguyen et al. [67] for specific times
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Fig. 21 Cone filled with
granular material. The cone
outline is modeled as a
non-conforming slip condition
with prescribed velocity

Fig. 22 Simulation results for the specific times 1s to 6s. After 6s the
complete granular material is released from the cone

5 Conclusion

This paper presents the Lagrange multiplier method for
implicit MPM to weakly impose non-conforming essential
boundary conditions in 2D and 3D. With a novel discretiza-
tion scheme, the method has been employed robustly and
efficiently. The boundary geometry is discretized by mass-
less boundary particles that move in accordance with the

boundary deformation through the Eulerian computational
background grid tracing the shape of the boundary geome-
try throughout the simulation. However, in combination with
the discretization of the physical domain by material points
which are as well moving through the computational back-
ground grid, the definition of an inf-sub stable Lagrange
multiplier field becomes a challenging task as both the set
of active background grid cells as well as the interaction
between the boundaries and the material points may change
at every time step. A local element-wise formulation of the
constraints is proposed to robustly impose non-conforming
boundary conditions with the Lagrange multiplier method in
MPM to cope with that.

As typically applied in MPM, the displacement field
is discretized by element-wise simple interpolation func-
tions, whereas a constant approximation of the Lagrange
multiplier field within the intersected elements is chosen
(see Sect. 3.2.1). From an implementation-driven point, this
approach is very attractive, as each affected background
grid element is assigned an additional dof for the Lagrange
multipliers. Consequently, the contributions of the boundary
particles are considered automatically in the assembly pro-
cedure.

However, it is demonstrated that this approach may
result in spurious oscillations in the Lagrange multiplier
solution, as the mesh-dependent inf-sub condition is not
necessarily fulfilled. Therefore, a procedure is developed to
eliminate superfluous constraints which leads to a suitable
Lagrange multiplier field (see Sect. 3.2.2). Consequently,
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the resulting forces (being the respective Lagrange multipli-
ers) are correctly representing the global stress distribution
at the boundary. Due to the constant approximation of the
Lagrangemultiplier field, those forces are constantwithin the
respective background grid elements. Therefore, a weighting
procedure is presented to calculate the respective reaction
forces at the boundary particles (see Sect. 3.5).

The proposed methodologies are also extended for fric-
tionless slip conditions, which may be oriented arbitrarily
within space (see Sect. 3.4). On top of that, prescribed
kinematic values may also be imposed, leading to moving
boundaries within space.

Several numerical examples with increasing complexity
have been simulated to assess the quality of the proposed
work. The first example demonstrates the advantages of the
proposedmethod compared to the penalty augmentation [39]
since the time-consuming and difficult task of calibrating the
problem-dependent penalty factors is eliminated. Instead, a
more user-friendly imposition of non-conforming essential
boundary conditions is enabled.

Additional examples prove the accuracy, as well as the
convergence rate of the newly proposed method, by compar-
ing the numerical results to analytical reference solutions.
Furthermore, the correctness of the frictionless slip condition
is demonstrated within 2D and 3D problems. The compari-
sonwith experimental results from the literature confirms the
validity of the proposed method, as well for the elastoplastic
regime. Finally, the advantages of the proposed method for
industrial applications are demonstrated.

It should be noted that for many simulations, the cell-
crossing error induced by the use of simple element-wise
shape functions of the primal variable can be reduced by par-
ticle refinement, as applied to the examples herein, and is
thus reduced at low computational cost. However, for exam-
ples where this approximation reaches its limit, higher-order
shape functions are required to approximate the displacement
field. Therefore, for future research, the proposed Lagrange
multiplier imposition of non-conforming essential boundary
conditions in implicit MPM should be extended to variants
of MPM that use higher-order shape functions for the primal
variable instead. A crucial task for this extension is to adjust
the discretization and interpolation order of the Lagrange
multiplier field accordingly in order to satisfy the inf-sub
conditionwhilemaintaining computational efficiency.More-
over, the increased influence domain of the boundary needs to
be considered and studied carefully for this extension, espe-
cially for configurations of the material being apart from the
boundary and approaching during simulation time.

To conclude, the proposed enhancements are a powerful
methodology to impose non-conforming boundary condi-
tions in immersed methods by the Lagrange multiplier
method, making MPM more comprehensive for the simu-
lation of large and rapid deformation scenarios. This is of

utmost importance for the predictive simulation and assess-
ment ofmassmovement hazards, including landslides, debris
flows, and avalanches.
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