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Abstract
Code verification plays a crucial role for all finite element applications, especially for non-standard ones, such as immersed
boundary approaches, which are typically based on novel algorithms and often error-prone in-house implementations. Instead
of relying on rarely available analytical solutions or overkill FEM simulations, in this article, the capabilities of the method
of manufactured solutions (MoMS) are explored, enabling an easy and straightforward derivation of closed-form reference
solutions. The focus is kept on immersed problems, in particular, on the finite cell method (FCM), and manufactured solutions
are derived for 2D and 3D problems involving voids and single/multiple inclusions. We propose several approaches for
the construction of the manufactured solutions, where zero traction conditions for void regions and continuous normal
stresses along material interfaces are directly fulfilled. Thus, no weak boundary conditions are required for reproducing the
manufactured solution via FCM. This not only enables code verification for FCM implementations that lack the option of
applying weak boundary conditions, but also keeps the simulation complexity low, when testing other relevant features, e.g.,
different integration schemes or the implementation of enrichment functions. The flexibility and wide application range of the
MoMS in the context of immersed boundary simulations is demonstrated using static, quasi-static, and transient problems in
the context of linear elasticity. Finally, the analytical derivations of the manufactured solutions used in this paper are provided
as supplementary material.

Keywords Method of manufactured solutions · Immersed boundary methods · Finite cell method · Extended finite element
method · Material interfaces

1 Introduction

The numerical implementation of mathematical models, just
as every program code, is rarely error-free during develop-
ment. This can often lead to wrong results, if the bug is
undetected, or to long and tedious debugging sessions [1].
Thus, testing the code against existing solutions that are
proven to be correct plays an important role in the field
of computational mechanics [2]. For this purpose, often
benchmark problems are used, which are either derived
analytically, or solved numerically with exceptionally high
accuracy. A recent collection of benchmark problems for
structural mechanics can be found in Ref. [3]. In our con-
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tribution however, we focus on an alternative approach, i.e.,
themethodofmanufactured solutions (MoMS),which allows
for testing codes against closed-form reference solutions
derived by a simple, yet robust approach [4]. In particular,
our main goal is the investigation of MoMS in the context of
immersed boundarymethods,where accurate code validation
is of great importance due to the numerous special algorithms
associated with these approaches. Despite its simplicity and
capabilities, there is very little literature so far regarding the
MoMS applied to immersed problems. Although it is men-
tioned briefly by some articles [5, 6], generally, no details
on the derivation of the manufactured solution are given. In
our opinion, the topic deserves more attention and therefore,
in this contribution, some key insights and different strate-
gies for manufacturing the displacement field are discussed,
while also addressing some possible issues. While this work
is concerned with static and transient problems of linear elas-
ticity, for the application of our derived concepts to non-linear
problems, we refer to our recent article [7].
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The outline of the article is as follows: In the remainder of
this section, first, the general concept of immersed boundary
problems is presented in Sect. 1.1, then, the governing equa-
tions for the upcoming problems are given in Sect. 1.2, and
finally, the MoMS is introduced briefly in Sect. 1.3. After the
introduction, theFCMis discussed inSect. 2. This is followed
by the main part of the paper, Sect. 3, where manufactured
solutions in the context of immersed boundary methods are
derived for various structural mechanical problems with hole
regions and material inclusions. In Sect. 3, the main focus is
the derivation of carefully tailored manufactured solutions,
whose simulation via unfitted meshes does not require weak
boundary conditions. The derived approaches are based on
different strategies and coordinate systems, and are demon-
strated via several numerical examples.

1.1 Immersed boundary problems

In immersed boundarymethods, such as the finite cell method
(FCM) [8, 9], the spectral cell method (SCM) [10, 11], the
cut finite element method (CutFEM) [12], and the extended
finite element method (XFEM) [13], the considered domain
generally has a complicated shape, such that a geometry-
conforming spatial discretization is often cumbersome to
achieve. Thus, the general approach of these methods is to
embed the region of interest into a larger domain of sim-
ple shape, which is easy to discretize by Cartesian meshes.
Beyond structures with highly complex outer boundaries,
these methods also often deal with problems, where the
material domain contains void regions and/or inclusions of
additional materials,1 as depicted in Fig. 1a. Here, �mat is
the domain of the matrix material, �void of the void, and
�inc of the inclusion, with their corresponding boundaries
∂�mat, ∂�void, and ∂�inc, respectively. Finally, the unit nor-
mal vectors belonging to the different domain boundaries are
denoted by n. The embedding of the original problem into
the extended domain �e and the meshing of the new prob-
lem are depicted in Fig. 1b and c. Here, �fict is the fictitious
domain with theoretically zero stiffness, which also includes
all void regions within the physical domain �void ⊆ �fict.

The numerical challenges faced in these methods are typ-
ically caused by the fact that elements are intersected by
the boundaries (see Fig. 1c), leading to important simulation
aspects, such as the

1. Integration of discontinuous element matrices (FCM: [5,
14–17], XFEM: [18–21], CutFEM: [22]),

2. Stabilization schemes for ill-conditionedproblems (FCM:
[23–25], XFEM: [13, 26, 27], CutFEM: [28, 29]),

1 Note that in the framework of XFEM, the problem formulation also
often includes cracks.

3. Implementation of weak boundary conditions on
immersed boundaries (FCM: [30],XFEM: [13], CutFEM:
[31]),

4. Accurate capturing of weakly or strongly discontinuous
displacement fields (FCM: [32], XFEM: [33, 34], Cut-
FEM: [6]),

5. Mass lumping and time integration schemes for transient
problems (SCM: [10, 35]),

to just name a few. The list given above demonstrates the
multitude of important topics related to immersed bound-
ary methods, which are entire research areas on their own.
Since the listed challenges are often tackled using novel algo-
rithms and advanced computational concepts, reliable and
easy testing of the different features used in these methods
is of significant importance.

1.2 Governing equations

Let � ∈ R
d and ∂� ∈ R

d denote a material domain and
its boundary in a d-dimensional space, respectively, while
an arbitrary point space is denoted by x ∈ R

d . Furthermore,
T ∈ R is the time domain in the interval [t0, tend]. With-
out derivation, the governing equations for structural linear
elasto-dynamics read [36, 37]

Div(σ ) + b = κ u̇ + ρ ü in � × T , (1)

u = ũ on �D × T , (2)

σ · n = t̃ on �N × T , (3)

u = u0 in � and for t = t0 , (4)

u̇ = u̇0 in � and for t = t0 , (5)

where u is the displacement, u̇ the velocity, ü the accelera-
tion, and b the body force field. The parameter ρ denotes the
mass density,whileκ stands for the isotropic dampingparam-
eter. The boundary ∂� is the disjoint set of Neumann �N and
Dirichlet boundaries �D, on which prescribed tractions t̃ and
displacements ũ are defined, respectively. Furthermore, u0
and u̇0 denote initial values for the time t = t0. Finally, σ is
the symmetric Cauchy stress tensor resulting from Eq. (6),
where C is the fourth-order constitutive tensor and ε the
linearized (Cauchy–Green) strain tensor, defined as the sym-
metric gradient of u

σ = C : ε, (6)

ε = 1

2

[
Grad(u) + Grad(u)T

]
. (7)

If the given problem contains material inclusions, i.e. � =
�mat∪�inc, the displacement field u is generally onlyweakly
continuous along the material interface ∂�inc and the stress
and strain tensors obey certain jump conditions [13]. On
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Fig. 1 FCM concept

the one hand, the continuity of the normal stress vectors is
required

(
σmat(x) − σ inc(x)

) · ninc(x) = 0 ∀x ∈ ∂�inc, (8)

where σmat and σ inc denote the stress fields in�mat and�inc,
respectively. On the other hand, the strain tensors must fulfill
the Hadamard jump condition

εmat(x) − εinc(x) = 1

2

(
a(x) ⊗ ninc(x) + ninc(x) ⊗ a(x)

)

∀x ∈ ∂�inc, (9)

where a is the jump of the directional derivatives of u with
respect to ninc at the interface [38].

1.3 Method of manufactured solutions

A closed-form solution to the governing Eqs. (1)–(7) is gen-
erally not possible, and thus, for given external loads and
boundary conditions, the problem is solved in a weak sense
using different numerical methods [36, 37]. In the context of
the MoMS, the problem is reversed: Instead of solving for
u, one manufactures (assumes) u, whose spatial and time
derivatives are known. This can be easily inserted in the
strong form (1) to compute the body load analytically

b = −Div(σ ) + κ u̇ + ρ ü. (10)

Note that besides b, generally, other relevant quantities, such
as stresses or the strain energy, can be computed analytically
as well. For every partial differential equation (PDE), the
solution fields should be constrained by suitable boundary
conditions (BCs). For traditional problemswhere u is sought,
BCs are readily given on �N and �D. On the contrary, in the

manufactured solution, no BCs are given, but the manufac-
tured solution yields theBCs. That is, when themanufactured
problem is reproduced numerically, the BCs required for
the numerical framework derive frommanufactured solution
itself as prescribed displacements or tractions. Depending on
which option is chosen, the corresponding boundary pieces
are classified as �N or �D for the simulation. It is clear that
for the computed body load and appropriate BCs, the man-
ufactured displacement field, in fact, satisfies Eqs. (1)–(7).
Thus, in case of a correct implementation of the numerical
approach, b acting in the domain,2 and appropriate BCs on its
boundary should lead to an approximate solution uh that con-
verges to the manufactured reference solution in a suitable
error measure.

As pointed out in Ref. [4], it is important to realize that
the manufactured solution does not necessarily have to be a
physically realistic solution; the only requirement is that it
satisfies the chosen PDE. In the simplest cases, manufactured
solutions can be derived even by hand, however, for robust
derivations of more complex problems, computer algebra
systems (CAS) are favored, allowing a great flexibility when
solving PDEs symbolically. For this purpose, all the manu-
factured solutions discussed in this paper are derived using
Wolfram Mathematica [39]. The Mathematica note-
books used for the analytical derivations of the numerical
examples in Sect. 3 can be found as supplementary material
in Ref. [40].

Due to its simplicity and effectiveness, theMoMS is listed
by the American Society of Mechanical Engineers as part of
the Guide for verification and validation in computational
solid mechanics [41, 42]. Additionally, it offers a convenient
andmore accurate approach for code verification, than testing
against an overkill FEM solution, whose accuracy is limited,

2 At this point it is assumed, that the numerical code under investigation
can handle distributed body loads.
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and derivation is not only often cumbersome and time con-
suming, but in some cases, simply not possible. For further
reading on the topic, we refer to Refs. [4, 43].

Remark on immersed boundary methods:Note that when
reproducing the manufactured solution in an immersed
boundary framework, the numerical solution should be con-
strained on all boundaries, including ∂�void and ∂�inc as
well. As it will be shown in Sect. 2.2, enforcement of
field values at the immersed boundaries requires additional
computational effort, which we seek to eliminate in this con-
tribution.

2 Finite cell method

In this paper, we use the FCM [8, 9, 44] as a representative
for immersed boundary problems, which is typically based
on the discretization explained byFig. 1 and high-order shape
functions [45, 46], enabling an efficient and accurate simula-
tion on coarse meshes. The FCM is covered in a wide range
of contributions, which is why we only provide a brief intro-
duction at this point. For more details, the interested reader
is referred to Refs. [46, 47]. Without derivation, the weak
formulation of the governing Eqs. (1)–(7) in the context of
the FCM reads

Be(u, v) = Fe(v) (11)

where the bilinear and linear functionals are defined over the
extended domain �e as

Be(u, v) =
∫

�e

ε[u] : αC : ε[v] dx +
∫

�e

ακ u̇ · v dx

+
∫

�e

αρ ü · v dx, (12)

Fe(v) =
∫

�e

αb · v dx +
∫

�N

t̃ · v dx. (13)

Above, v denotes the test function, and ε[u] together with
ε[v] are the strain tensors based on u and v, respectively.
Furthermore, α is the indicator function

α =
{
1 in �mat ∪ �inc

10−q in �fict
, (14)

which penalizes the energy contribution of the fictitious
domain.Considering a two-dimensional setting, in eachfinite
cell, the displacement field u(c) = [u(c)

1 , u(c)
2 ]T is approxi-

mated using smooth shape functions

u(c) =
p+1∑

j=1

N jU
(c)
j , (15)

where N j is the j th shape function, U (c)
j the displacement

associated with the given shape function, and p the polyno-
mial degree of the approximation.3 The integration of the cell
matrices is often performed using a local integration mesh
(LIM) with nsc sub-cells [5, 9, 14, 16]. Then, e.g., the cell-
specific stiffness matrix is computed as

K (c) =
∫

�(c)

BTCB det(Jξ→x )dξ =
nsc∑

k=1

∫

ωk

BTCB

det(Jη→ξ ) det(J ξ→x )dη, (16)

where �(c) is the cell domain and ωk ⊂ �(c) is the domain
of the kth sub-cell. Furthermore, det(Jη→ξ ) and det(J ξ→x )

denote the Jacobi determinants of the mappings from the
local space of the sub-cell to the local space of the cell, and
from there to the global space, respectively [16]. Note that
in Eq. (16), C is the elasticity matrix in Voigt notation and
B contains the derivatives of the shape functions. Finally,
assembling the cell matrices leads to the system of equations

KU + DU̇ + MÜ = F, (17)

where K , D, and M are the global stiffness, damping,
and mass matrices, respectively, and F is the load vector.
Furthermore, U , U̇ , Ü denote the nodal unknowns, i.e., dis-
placements, velocities, and accelerations, respectively.

2.1 Local enrichment

In case of multi-material problems, the C0-continuous dis-
placement field within a cell is poorly approximated by
Eq. (15), leading to severe oscillations in the strain and stress
fields, significantly deteriorated simulation accuracy, and
finally, sub-optimal convergence rates [32]. Instead, for cells
with material interfaces, u(c) is often approximated using a
local enrichment approach originating from the XFEM [13,
19, 49], and applied in the context of FCM in Refs. [5, 15,
32]. The key idea is to compose u by the smooth us and
enriched displacements ue, such that u = us + ue. Thus,

3 Here, the same approximation is used for all components of the dis-
placement field. However, it is also possible to use more advanced
polynomial degree templates as shown in Ref. [48].
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Eq. (15) turns into [50]

u(c) =
p+1∑

i=1

NiU
(c)
i +

n(c)
inc∑

m=1

p+1∑

j=1

ψmN jE(c)
m, j , (18)

where in the second term, n(c)
inc is the number of inclusions

present in the cell, E(c)
m, j is the degree of freedom (DOF)

associated with the enrichment of the mth interface with its
corresponding enrichment function ψm . There are multiple
ways how ψm , which ensures the C0-continuity of u(c), can
be defined. In this contribution, we follow the modified-abs
enrichment proposed by Moës et al. [49]

ψm =
pψ+1∑

l=1

Nl |ϕm(xl)| −
∣∣∣∣∣∣

pψ+1∑

l=1

Nlϕm(xl)

∣∣∣∣∣∣
, (19)

which by definition, vanishes at the uncut element boundaries
and thus, parasitic terms and partially enriched transition ele-
ments can be avoided [34]. In Eq. (19), ϕm is the level-set
function of the immersed inclusions, where the domain and
its boundary are defined by

�
(m)
inc = {x | ϕm(x) < 0}, (20)

∂�
(m)
inc = {x | ϕm(x) = 0}. (21)

Furthermore, pψ is the polynomial degree for approximating
ψ . Thus, pψ is typically chosen based on the complexity
of ∂�inc [32].

2.2 Boundary conditions

Due to the unfitted discretization used in the FCM, direct
enforcement of the BCs on a set of boundary nodes is not an
option. SinceNeumannBCs are already included in theweak
problem statement (second term on the right-hand side of
Eq. (13)), they canbe readily enforcedby integratingover�N,
which generally cuts through the finite cells. Dirichlet BCs
require additionalweak constraints to the systemby using the
penalty method [51, 52], Lagrange multiplier method [53,
54], or the Nitsche method [55, 56]. As mentioned before, in
this contribution, the prime goal is to manufacture analytical
solutions where weak boundary conditions are not necessary.
However, for sake of completeness, in Sect. 3.1.1, one exam-
ple is presented using the Nitsche method, which is typically
favored in the context of FCM [24, 57–59]. Without deriva-
tion, in case of static problems, Be and Fe for the symmetric
Nitsche method read [60]

Be(u, v) =
∫

�e

ε[u] : αC : ε[v] dx −
∫

�D

u · (σ [v] · n) dx

−
∫

�D

(σ [u] · n) · v dx + β

∫

�D

u · v dx, (22)

Fe(v) =
∫

�e

αv · b dx +
∫

�N

v · t̃ dx

−
∫

�D

ũ · (σ [v] · n) dx + β

∫

�D

ũ · v dx, (23)

whereβ is a stability parameter,which should be high enough
to ensure the coercivity of the weak form [61]. The value for
β depends on multiple factors, such as mesh size, polyno-
mial degree of theAnsatz space, andmaterial properties [58].
The value for β can be estimated by solving a generalized
eigenvalue problem globally [62], or locally in the individual
elements [61, 63].

3 Manufactured solutions without weak
boundary conditions

In this section, manufactured solutions are formulated, such
that boundary conditions along the intersecting boundaries
and interfaces are naturally fulfilled. This means zero trac-
tions along free surfaces and continuous normal stresses
along internal material interfaces are required. Since the BCs
are already fulfilled, no weak enforcement of them is neces-
sary. Such manufactured solutions are ideal for (i) the testing
of codes which do not support weak BCs, or when (ii) the
problem complexity should be purposely low while validat-
ing other features of the program. The numerical examples
presented in this section are performed using our in-house
Matlab code based on spectral cells with Lagrangian shape
functions [35, 64, 65]. For the analytical derivation of the
given examples, see the supplementary material in Sect. [40]

3.1 Void regions with radial displacements

For problems with void regions, the key idea is to assume a
manufactured displacement u, which results in a stress field
σ for which the tractions along the void’s boundary are van-
ishing

t(x) = σ (x) · nvoid(x) = 0 ∀x ∈ ∂�void. (24)

Then, ∂�void is treated as a Neumann BC in the FCM simu-
lation, on which th = t needs to be enforced. However, since
t is vanishing at hole’s boundary, �void is essentially a free
boundary, and the BC is readily fulfilled. In the following,
for problem with void regions, a circular/spherical geometry
for �void is assumed and a radial displacement field is con-
structed defined in a polar/spherical coordinate system (see
Appendix A.1.2 and A.2.2)
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2D : u(r) =
[
ur (r)
0

]
or 3D : u(r) =

⎡

⎣
ur (r)
0
0

⎤

⎦ . (25)

In this case, the zero traction condition involving tensor-
valued variables reduces to a one-dimensional condition on
a scalar field

Eq. (24) −→ σrr(r = R) = 0, (26)

where R is the circle’s/sphere’s radius. In 2D (plane stress
state) for example, Eq. (26) reads

σrr(r = R) = E

1 − ν2

(
dur
dr

∣
∣∣∣
r=R

+ ν
ur(r = R)

R

)
= 0. (27)

Zero tractions for the manufactured solution are obtained if
the value within the brackets vanishes at the free boundary.
This is possible in the following three cases:

1. If ν = 0 is assumed, the above expression reduces to
the requirement of vanishing derivatives of ur at r = R,
regardless of ur(r = R).

2. In case of E 	= 0 and ν 	= 0, a simple approach is
to construct ur , such that at r = R, both the displace-
ment and its first derivative with respect to r are zero, i.e.,
ur (r = R) = 0 and ur,r (r = R) = 0.

3. In the general case, where none of the material properties
and field values are zero at r = R, zero tractions can be
achieved by fine tuning ur and its derivative, such that
Eq. (27) is fulfilled. This is typically achieved by intro-
ducing an additional parameter (see Sect. 3.1.1).

3.1.1 Plate with circular hole—static analysis

First, a static case featuring a rectangular plate �phys with
a circular hole �void is investigated. Due to its symmetry,
only a quarter of the problem is simulated, while appropriate
symmetry BCs are applied, as depicted in Fig. 2a. For the
material properties, E = 1Pa and ν = 0.3 are chosen, while
a plane stress state is considered. Furthermore, a radius of
R = 2m is chosen for the circular void and themanufactured
displacement field is defined as

ur = r ln(c r), (28)

which will be prescribed to the numerical solution along the
red boundaries, as indicated in Fig. 2a. In the static case of
Eq. (10), Eq. (28) leads to the body load

br = 2

r

E

ν2 − 1
. (29)

In this sub-section, two values of c are investigated

a) c = 1 −→ weak BC via Nitsche method (30)

b) c = 1

R
exp

( −1

1 + ν

)
−→ weak BC directly fulfilled

(31)

leading to the radial field values depicted in Fig. 3. On the
one hand, in case of a), c is chosen arbitrarily, leading to non-
zero field values at r = R, which need to be enforced in a
weak sense. Here, we use the Nitschemethod to prescribe the
displacement value ur (r = R) = 2 ln(2) (i.e., ∂�void ∈ �D

in Fig. 2a). On the other hand, in case of b), the parameter c is
derived carefully (seeAppendixB.1.1), such that σrr given by

Fig. 2 Plate with a circular hole
loaded by body force field in the
domain and prescribed
displacements on its boundary
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Eq. (30) Eq. (31) 

Fig. 3 Manufactured solution along the cut line A–A’ of Fig. 2a. The parts lying in �void are blurred out, indicating that they are not of interest

Eq. (27) vanishes at r = R. Thus, ∂�void is a free boundary
with readily fulfilled Neumann BC (i.e., ∂�void ∈ �N in
Fig. 2a). A numerical reproduction of the displacement field
for case b) is depicted inFig. 2b,where the simulation domain
is discretized by 132 cells with p = 5. Note that the entirely
fictitious cells are discarded, leading to 141 active finite cells.
For more discussion regarding the numerical solution, see
the end of this sub-section. The strain energy in the physical
domain is computed analytically as (Appendix B.1.2)

��phys = ��e − ��void

=
{
57.86222286702496 J for case a)

4.745538525601361 J for case b)
, (32)

where ��e is the strain energy in the square-shaped embed-
ding domain

��e = 1

2

4∫

0

4∫

0

σ (r) : ε(r) dxdy, (33)

and ��void denotes the integral of the strain energy func-
tion over �void, which is computed in polar coordinates (see
Appendix A.1.3)

��void = 1

2

π/2∫

0

R∫

0

σ (r) : ε(r) r drdθ. (34)

In the current example, various h-refinements are con-
ducted using polynomial degrees of p = 1, . . . , 5, and
discretizations by 1, 32, 72, 92 and 112 finite cells. As of
the numerical integration, an LIM with boundary aligned
sub-cells based on the blending function method are used
[14]. In the sub-cells, (p + m)2 integration points are used,
with m =1, 2, 2, 3, and 5 for p =1, 2, 3, 4 and 5, respec-
tively.4 In every simulation, for the uncut phyical cells,m =1
is chosen, and for integration points in �void, α = 10−12 is
used.

Additional settings for the Nitsche method in case a): The
curve integrals are computed directly on the circular arc with
an exact mapping. For the integration along curve, p + k
integration points are used with k = 1, 1, 2, 3, and 3 for the
investigated polynomial degrees. Finally. the penalty param-
eter in Eqs. (22) and (23) is chosen as β = CE/h.5 Here, h
is the edge length of the cells and C is chosen as C = 102,
103, 103, 103, and 105 for p = 1, . . . , 5.

4 Due to the blending functions containing trigonometric terms in the
current case, the often used (p+1)2 integration points lead to observable
integration errors. Thus, a slight increase of the number of integration
points is necessary, to take the more complex geometry mapping of the
sub-cells into account. Note that non-polynomial body loads can also
increase the need for a more accurate numerical integration.
5 Note that robust implementation of the Nitsche method is based on
a β-parameter which does not depend on a user input, as mentioned in
Sect. 2.2. However, for the purpose of the current numerical example,
this is not of importance, and instead, we rely on empirically chosen
values.
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Eq. (30) Eq. (31) 

Fig. 4 Relative error in the energy norm erelE [%] for problems with enforced and directly fulfilled weak boundary conditions

The simulation quality is measured by the relative error in
the energy norm

erelE =
√

|� − �h|
�

· 100%, (35)

where �h is the strain energy computed by FCM. The cor-
responding convergence curves over the degrees of freedom
(DOF) are depicted in Fig. 4, where theoretical convergence
rates with p/2 [37, 66], indicated by the black triangles,
are obtained for both cases. Note that while the Nitsche
method requires additional computational effort, Fig. 4b
demonstrates that using the proposed approach (Eq. (31)),
the manufactured solution can be reproduced with a really
high accuracy without the need for a weak imposition of the
boundary conditions. Here, we refer again to Fig. 2b, where
the vanishing values of σrr on the circular boundary can be
observed.

3.1.2 Plate with circular hole—undamped frequency
domain analysis

In this section, a frequency domain analysis is conducted
in order to verify the implementation of dynamic features
such as the mass matrix. The manufactured solution in this
example exhibits a harmonic time dependence

ur (r , t) = ûr(r) · exp(i�t), (36)

ür(r , t) = −�2ûr(r) · exp(i�t), (37)

where ûr is the amplitude of the displacement field based
on Eqs. (28) and (31),6 and � = 2π f [Hz] is the circular
frequency defined by the excitation frequency f [Hz]. Note
that all other quantities, such as

ε = ε̂ · exp(i�t), (38)

σ = σ̂ · exp(i�t), (39)

b = b̂ · exp(i�t) (40)

are oscillating with the same harmonic function, or with the
square of the harmonic function

� = �̂ · exp(i�t)2. (41)

Note that since û equals u from the previous example, and the
material properties are also the same, �̂ is equal to the value
defined in Eq. (32) for case b). Due to the same harmonic time
dependence of the solution fields and body load, rather than
solving Eq. (17) in space and time, the steady state problem

(K − �2M)Û = F̂ (42)

is solved. In the current case, the static body load ofEq. (29) is
extended by an inertia term according to Eq. (10). Following
from the accelerations given in Eq. (37), the magnitude of
the harmonic radial body load is

b̂r = 2

r

E

ν2 − 1
− ρ�2ûr(r). (43)

6 This and the following sub-section are both based on case b) from
Sect. 3.1.1.
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Here, the second term should counteract the inertia effects,
such that the manufactured displacement field is indeed
reproduced by the numerical model. This is demonstrated
in Fig. 5a, where a body load without the ρ�2ûr term results
in a typical frequency plot with resonance amplitudes at the
location of the system’s eigenfrequencies (red curve). How-
ever, counteracting the inertia forces enables an approximate
reproduction of the manufactured displacement and strain
energy regardless of � (blue curve). Note that despite its
constant appearance, the strain energy is not really constant,

and the relative error in the energy norm reveals in Fig. 5b,
that evenwith the presence of theρ�2ûr term, excitationwith
a particular eigenfrequency leads to the decay of simulation
accuracy.

For further analysis, the excitation frequencies f =
1000Hz and f = 3900Hz are selected (indicated in Fig. 5b)
and the convergence results of the relative error in the energy
norm are depicted in Fig. 6. For the h-refinement, the same
settings are used as in the previous example. For an excita-
tion frequency far away from an eigenfrequency (Fig. 6a),

Fig. 5 Global simulation accuracy over the frequency range when using Eqs. (29) and (43) for the computation of body loads

Fig. 6 Convergence rates of the relative error in energy norm erelE [%] for different excitation frequencies

123



Computational Mechanics

optimal convergence rates are obtained, demonstrating the
capabilities of the current manufactured solution for verifi-
cation of steady state FCMproblems.However, a preliminary
study should always be conducted, such that possible eigen-
frequencies are avoided, since they spoil the convergence
rates (Fig. 6b) and thus, the code verification.

3.1.3 Plate with circular hole—damped frequency domain
analysis

In this section, the problem of Sect. 3.1.2 is extended by
a velocity proportional damping term, for which, the body
force vector is given in Eq. (10). Due to the presence of first
time derivatives, Eqs. (36)–(37) are extended by

u̇ = i�û exp(i�t) (44)

where, û is the sameas defined inEqs. (28) and (31). Since the
problem is solved in the frequency domain, only the spatial
terms of Eq. (10) are of interest, thus, the magnitude of body
load reads

b̂ = −Div(σ̂ ) + i�κ û − �2ρ û. (45)

For now, a stiffness proportional loss factor damping is used,
which is typically defined for the global system of Eq. (17)
as

D = κ

�
K . (46)

By reverse engineering from Eq. (46), the closed-form
expression for the manufactured body force reads

b̂ = − Div(σ̂ ) + iκ Div(σ̂ ) − �2ρ û

= (−1 + iκ)Div(σ̂ ) − �2ρ û. (47)

Note that Eq. (17) is a system of equations, where both the
coefficient matrix and the right-hand side contain complex
numbers, and thus, the global displacement vector Û is com-
plex.Most solvers can handle complex inputs, however, if the
used code does not provide this feature, the problem can be
solvedby separating the real and imaginary parts according to
Ref. [67]. For the current example, all simulation settings are
the same as before, with the exceptions, that f = 100Hz is
chosen, and additionally, a loss factor dampingwith κ = 0.01
is assumed. In Fig. 7a, the relative error in the energy norm
erelE is depicted, however, since the reference displacement
field is known at every point, other standard error estimators
can be used as well, such as the relative error of the displace-
ment in the L2-norm

erelL2 = ||e||L2

||u||L2

· 100%, (48)

as depicted in Fig. 7b. In Eq. (48), e = u − uh, and for a
given vector field f , and inner product defined as 〈·, ·〉, the
L2-norm reads

|| f ||L2 =
(∫

�

〈 f , f 〉 dx
)1/2

. (49)

Fig. 7 Convergence rates for the damped frequency domain analysis for f = 100Hz
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For both error measures, theoretical convergence rates are
obtained, i.e., p/2 and (p+ 1)/2 for erelE and erelL2 over DOF,
respectively, as indicated by the black slopes. Thus, the ver-
ification of damped steady state problems in an embedded
framework is also demonstrated. Note that for low levels of
error, the integration accuracy and precision of the computa-
tional program and language can be limiting factors for the
simulation quality, as seen by the plateau in the curve for
p = 5.

3.1.4 Cube with spherical hole—static analysis

The manufactured solution given in Eq. (28) for the 2D case
can be extended to 3D, however, in this case, the zero traction
condition of Eq. (27) modifies to

σrr = E

(1 + ν)(2ν − 1)

[
(ν − 1)

dur
dr

∣∣∣∣
r=R

−2ν
ur (r = R)

r

]
= 0 , (50)

leading to the c-parameter (cf. 2D case in Appendix B.1.1)

c = 1

R
exp

(−1 + ν

1 + ν

)
. (51)

Finally, based on the chosen displacement field and constitu-
tive law, the body load applied in the physical domain reads

br = −3E(ν − 1)

r(1 + ν)(2ν − 1)
. (52)

The simulation domain for the current problem with a spher-
ical void region is depicted in Fig. 8a. Note that for the
current 3D case, the chosen displacement field leads to a

strain energy, whose computation involves integrals of the
form

∫∫∫
ln(
√
x2 + y2 + z2) dx dy dz, (53)

which unfortunately, cannot be computed symbolically.
Although, in a sense, this poses a limitation, a comparison of
the numerical solution to the manufactured one is still pos-
sible, if e.g., the L2-norm of the displacements is computed
according to Eq. (48). For the current problem, h-refinements
with p = 1, 2, and 3 are performed using discretizazions
by 1, 33, 73, and 113 cells. The numerical integration is car-
ried out using a novel integration scheme with merged octree
sub-cells [16]. Here, the refinement level of the octree is set
to R = p + 2, and in the physical cells as well as in the
integration sub-cells, (p + 1)3 integration points are used.
The corresponding results are depicted in Fig. 8b, where the
black slopes indicate the theoretical convergence rates with
(p + 1)/3 for relative error in the L2-norm erelL2 over DOF.
The obtained excellent results indicate an error-free imple-
mentation and demonstrate the suitability of the MoMS in
the context of 3D problems.

3.2 Inclusion regions with radial displacements

Manufactured radial displacement fields formulated in
polar/spherical coordinate systems can be applied to prob-
lems with inclusions as well. In this case, the tensor-valued
normal stress jump condition for the interface is reduced to
the simple scalar condition

Eq. (8) −→ σ inc
rr (r = R) − σmat

rr (r = R) = 0. (54)

Fig. 8 Problem setup and global
accuracy of the simulation
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In particular, for a 2D case with a plane stress state, the above
equation reads

σ inc
rr = Einc

1 − ν2inc

(
duincr

dr

∣∣∣∣
r=R

+ νinc
uincr

r

)

= Emat

1 − ν2mat

(
dumat

r

dr

∣∣∣
∣
r=R

+ νmat
umat
r

r

)
= σmat

rr , (55)

where for the displacement field along the interface, the
equality

uincr (r = R) = umat
r (r = R) (56)

must hold. Similar to Eq. (27), there exist multiple ways
for choosing the material properties and manufacturing the
displacement, such that the stress-continuity is fulfilled. For
now,

uincr (r = R) = umat
r (r = R) = 0 (57)

is assumed. In this case, radial stress continuity is fulfilled if

duincr

dr

∣∣
∣∣
r=R

= c
dumat

r

dr

∣∣
∣∣
r=R

, (58)

where

c = Emat(1 − ν2inc)

Einc(1 − ν2mat)
. (59)

3.2.1 Cube with spherical inclusion—static analysis

In this section, a 3D test is conducted involving a cube of
side length a = 4m (�mat) and a spherical inclusion with a
radius of R = 2m (�inc), as depicted in Fig. 9a.While on the
three faces indicated by red, the manufactured displacement
is prescribed, on the remaining faces, symmetry boundary
conditions are used. For �mat in the given example, a radial
displacement field defined in spherical coordinates is chosen

umat
r (r) = s

(
r5 − 4r3

)
, (60)

where s is a scaling factor chosen to be s = 1/(1.6 · 105).
Furthermore, the displacement field in �inc reads

uincr (r) = c umat
r (r). (61)

Note that in this case, Eq. (58) holds, and c is defined based on
Eq. (59). For umat

r (r = R) = 0 and for any c 	= 1, the man-
ufactured displacement field exhibits a kink at the interface
(Fig. 10b). In the current example, the material properties
Emat = 10Pa, Einc = 0.1Pa and νmat = νinc = 0.3 are

chosen, leading to c = 100. The deformed shape of the sim-
ulation domain is depicted in Fig. 9b. The body loads in
spherical coordinate system read

bmat
r = −4sEmatr(νmat − 1)(7r2 − 10)

2ν2mat + νmat − 1
, (62)

bincr = −c
4sEincr(νinc − 1)(7r2 − 10)

2ν2inc + νinc − 1
, (63)

for the inclusion and matrix, respectively, which are, in fact,
equal due to the choice of c. The strain energy for the multi-
material domain �mat ∪ �inc reads

� = 2048s2

17325

(
704c2(2933371λmat + 3328226μmat)

+ 1075π
[
c2(λinc + 2μinc) − (λmat + 2μmat)

])

= 9.664790469963024 · 10−2 J .

(64)

For the current example, the domain is discretized by a sin-
gle cell only and a p-refinement is conducted with p =
1, . . . , 6. The computation of the enriched cell matrix is
performed using a novel octree-based, Boolean integration
approach (B-FCM) formulti-material problems [5]. The sim-
ulation accuracy is investigated in Fig. 10. Here, the global
result is measured by the relative error in the energy norm erelE
in Fig. 10a, while in Fig. 10b–d, local results along the cut
line B–B’ of Fig. 9a are depicted for p = 6, i.e., weakly con-
tinuous displacements, discontinuous strains, and continuous
stresses. Both the global and local results indicate an accu-
rate FCM approximation of the multi-material manufactured
solution, even in the presence of embedded interfaces.

3.3 Multi-material manufactured solutions based on
level-set functions

In this section, an alternative framework is introduced for
deriving the manufactured solution, which is (i) based on
Cartesian coordinates, (ii) ideal for problemswith inclusions,
and (iii) supports a much larger range of immersed geome-
tries than the approach discussed so far.As point of departure,

u =
{
umat in �mat

uinc in �inc
(65)

is assumed, where uinc and umat are the displacement fields
on the two sides of thematerial interface ∂�inc. A convenient
way for introducing a kink in the displacement field along
∂�inc is where uinc is a uniformly scaled version of umat

uinc = c umat, (66)
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Fig. 9 Simulation of a 3D inclusion problem with a single finite cell

Fig. 10 Global results and local field values along the cut line B–B’ indicated in Fig. 9a
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with vanishing displacements along the interface

uinc(x) = umat(x) = 0 ∀x ∈ ∂�inc. (67)

Note that if Eq. (67) is violated, Eq. (66) would actually
introduce a jump in the displacements, rather than a kink.
Since level-set functions ϕ are, by definition, vanishing at
∂�inc (cf. Equation (21)), it is very convenient tomanufacture
u using ϕ. The parameter c in Eq. (66) will be defined soon,
such that stress continuity along the interface normal ninc
is fulfilled. As point of departure, instead of requiring the
fulfillment of the original stress continuity condition given
in Eq. (8), we rather seek a more general restriction in the
whole domain

σ inc(x) = σmat(x) ∀x ∈ �, (68)

which naturally fulfills Eq. (8), yet it does not require specific
knowledge of the interface normal ninc. Thus, more general
geometries can also be tested. From Eq. (66), it naturally
follows that

εinc = c εmat. (69)

and in case of a plane stress state in Cartesian coordinates,
equality of the functions σ inc

xx and σmat
xx implies

σ inc
xx = σmat

xx , (70)

c

[
Einc

1 − ν2inc

(
εmat
xx + νincε

mat
yy

)]

= Emat

1 − ν2mat

(
εmat
xx + νmatε

mat
yy

)
(71)

which is fulfilled for all values of εmat
xx and εmat

yy if

c = Emat

Einc
and νinc = νmat. (72)

This condition also ensures the continuity of the stresses
σ inc
yy = σmat

yy . Regarding the shear stresses, equality is ful-
filled for

σ inc
xy = σmat

xy , (73)

c
Einc

1 − νinc
εmat
xy = Emat

1 − νmat
εmat
xy , (74)

c = Emat

Einc

1 − νinc

1 − νmat
(75)

which is, if νinc = νmat is assumed, identical to Eq. (72). In
the following sub-sections, the capabilities of this approach

are presented for deriving closed-form reference solutions
for inclusions of different geometries.

Remark on the assumption in Eq. (68): Note that the
assumption is not valid for real physical problems, however,
in the framework of MoMS, this issue does not constitute
a problem. Despite the equality of the stress tensors, the
(i) Young’s moduli in �mat and �inc are still different, and
(ii) the displacement field is still C0-continuous. Thus, the
above introduced approach represents a legitimate inclusion
and allows for validation of multi-material immersed bound-
ary codes.

Remark on void regions: While the presented level-set-
based approach is really convenient for problems with
material interfaces, its application to problems with hole
regions is more tedious. In the multi-material case, instead
of requiring the stress fields to have a specific value along
the material interface, only their continuity is required by the
special case posed by Eq. (68). For hole regions, vanishing
tractions have to be ensured, i.e., σ must take a specific value
at the free boundary, such that

σxxnx + σxyny = 0, (76)

σxynx + σyyny = 0, (77)

is fulfilled in a 2D setting. Note that when assuming a radial
displacement field in polar/spherical coordinates with cir-
cular/spherical geometries (Sects. 3.1 and 3.2), the above
system of equations reduces to Eqs. (26) and (54), and man-
ufacturing u for which Eq. (24) holds, is trivial. However,
regardless of the chosen coordinate system, for hole regions
with more complex shape, there is no way around taking
nvoid into account.

Finally, we would like to point out, that these issues only
arise if zero traction conditions should be naturally fulfilled
by the manufactured displacement field. In case of weak
boundary conditions (Sect. 2.2), no restrictions apply regard-
ing the shape of the void region and the chosen coordinate
system.

3.3.1 Plate with elliptic inclusion—static analysis

For demonstration of the methodology described above,
a square domain with an elliptic inclusion is investigated
(Fig. 11a), where the manufactured displacement field in
�mat

umat(x, y) =
[
ux(x, y)
uy(x, y)

]
=
[
ϕ(x, y)
ϕ(x, y)

]
(78)
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Fig. 11 Problem setup. All
dimensions and displacements
are given in [mm]

is based on the level-set function of the ellipse

ϕ(x, y) =
(

x

Rx

)2

−
(

y

Ry

)2

− 1, (79)

and uinc in �inc is computed based on Eq. (66). For the
Young’s moduli, Emat = 1Pa and Einc = 10Pa are chosen,
while in both domains, νmat = νinc = 0.3 applies. Based
on the chosen material parameters and Eq. (72), c = 0.1
holds for the current problem, and the corresponding C0-
continuous displacement field is depicted in Fig. 11b along
the cut line C–C’ of Fig. 11a. Furthermore the body load
vectors are defined as

bmat =

⎡

⎢
⎢
⎣

Emat(3 − 2νmat)

2(ν2mat − 1)

− Emat(−9 + νmat)

4(ν2mat − 1)

⎤

⎥
⎥
⎦ and

binc =

⎡

⎢⎢
⎣

c Einc(3 − 2νinc)

2(ν2inc − 1)

−c Einc(−9 + νinc)

4(ν2inc − 1)

⎤

⎥⎥
⎦ , (80)

which are for b = −Div(σ ) in the static case, in fact, equal7.
Additionally, due to Eq. (78) being a second order polyno-
mial in the current example, the body force field is constant.
Finally, the closed-formexpression for the strain energy reads

�ref = 5c2Einc(νinc − 3)π

8(ν2inc − 1)
− Emat(νmat − 3)(5π − 918)

8(νmat − 1)(νmat + 1)

= 1215

728
(204 − π) [J] = 335.2238529201764 [J]. (81)

7 Note that this is not the case, e.g., if inertia terms are also present.
In that case, although σ inc = σmat still holds, bmat = −Div(σmat) +
ρmat ümat and binc = −Div(σmat) + ρinccümat.

Since themanufactured solution is a quadratic polynomial
and the elliptic interface can also be exactly approximated
by 2nd order polynomials, p = 2 and pψ = 2 should yield
basically exact results, provided that other numerical errors
are also marginal. Indeed, a discretization of� by 2×2 cells
and numerical integration via sub-cells based on the blending
function method yield practically exact results in the energy
norm when compared to Eq. (81)

erelE = 6.1078 · 10−6 %. (82)

In Fig. 12a, the discontinuous strains are visualized for the
chosen problem,where Eq. (69) holds, while Fig. 12b depicts
a continuous stress field, which follows from the requirement
posed in Eq. (68).

3.3.2 Plate with elliptic inclusion—damped frequency
domain analysis

The previous example offers a great way for testing inclu-
sions of more complex shapes in a single step. However, if a
convergence analysis is desired, the initially polynomial dis-
placement field can be multiplied by non-polynomial terms.
For the current example, the same domain setup is used as in
Fig. 11a, but Eq. (78) is extended by a trigonometric term

û(x, y) =

⎧
⎪⎨

⎪⎩

ûmat(x, y) =
[
ϕ(x, y) sin(x)

ϕ(x, y) sin(x)

]

in �mat

ûinc(x, y) = c ûmat(x, y) in �inc

. (83)

Furthermore, this time, a damped frequency domain analy-
sis is conducted for f = 100Hz, where the manufactured
displacement is of the form

u(x, y, t) = û(x, y) exp(i2π f t) (84)
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Fig. 12 Visualization of the discontinuous strain and continuous stress fields for the given problem. The dashed line indicates the location of the
elliptic material interface

Fig. 13 Real and imaginary parts of the complex displacement field over �mat ∪ �inc

The material properties are chosen as Emat = 1.5 ·109 Pa,
κmat = 1 and ρmat = 1 kg/m3 in thematrix�mat, and Einc =
6 · 109 Pa, κinc = 0.5 and ρinc = 2 kg/m3 in the inclusion
�inc. In case of the current multi-material problem with loss
factor damping, a complex c-parameter is used

c = Emat(1 + iκmat)

Einc(1 + iκinc)
= 0.3 + 0.1i, (85)

leading to a displacement field, which has a real part over
�mat ∪ �inc and imaginary part over �inc, as depicted in
Fig. 13 for a discretization by 4×4 spectral cells with quintic

shape functions. Note that unlike Im(u) in �mat, Re(u) in
�inc is not zero, it is only scaled down, similar to Fig. 11.

For multi-material problems in general, the damping
parameter is yet another discontinuous material property.
Thus, Eq. (46) cannot be applied globally to the assembled
system matrices, but has to be realized on sub-cell-level dur-
ing the numerical integration

D(c) =
nd∑

i=1

κi K
(c)
i , (86)

where nd is the number of material sub-domains in the cell
c, while κi and K (c)

i are the damping parameter and stiff-
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Fig. 14 Relative error in the L2-norm [%]

ness matrix corresponding to the i th material sub-domain,
respectively. In the following, we perform h-refinements
using discretization by 22, 42, 82, and 152 finite cells while
approximating the displacements by polynomial degrees of
p = 1, 2, . . . , 5. Due to the elliptic inclusion, the enrichment
term is realized using pψ = 2 for all settings. The relative
error in the L2-norm indicates optimal convergence rates in
Fig. 14 for the real and imaginary parts of u, which are both
weakly continuous at the material interface, as depicted in
Fig. 13.

3.3.3 Plate with elliptic inclusion—transient analysis

In the current example, a transient problem is considered
by extending the manufactured solution of Sect. 3.3.1 by a
time-dependent term

u(x, t) = û(x) · τ(t), (87)

for which τ(t) = sin(� t) is chosen with � = 10 [Hz].
The magnitude of the displacement field û(x), the material
properties, and the discretization are identical to those in
Sect. 3.3.1. Additionally, in both domains, i.e., matrix and
inclusion, ρmat = ρinc = 1 is chosen, and according to
Eq. (10), the corresponding transient body forces read

bmat(x, t) =

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

Emat(3 − 2νmat)

2(ν2mat − 1)

− Emat(−9 + νmat)

4(ν2mat − 1)

⎤

⎥
⎥
⎦− ρmat�

2ûmat(x)

⎞

⎟
⎟
⎠

sin(� t), (88)

binc(x, t) =

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

c Einc(3 − 2νinc)

2(ν2inc − 1)

−c Einc(−9 + νinc)

4(ν2inc − 1)

⎤

⎥⎥
⎦− ρinc�

2ûinc(x)

⎞

⎟⎟
⎠

sin(� t). (89)

Instead of solving the problem in the frequency domain, the
Newmark time integration scheme is used in a time interval
from t0 = 0 [s] to tend = 1 [s] using different numbers of
time steps nT = 2m , with m = 3, 4, . . . , 128.
Initial conditions. For the transient solution, appropriate ini-
tial displacements and velocities are required according to
Eqs. (4) and (5), respectively. These can be easily derived for
the manufactured solution, where for the current case

u0(x) = û(x) · τ(t0) = 0, (90)

u̇0(x) = û(x) · τ̇ (t0) = �û(x). (91)

Since the multi-material problem at hand is solved using the
local enrichment approach, the mesh consists of a base mesh
for the standard shape functions and an overlay mesh for
the enrichment shape functions, with their associated DOFs
{Uα}nNα=1 and {Eα}nNα=1, respectively.

9 Consequently, initial
values have to be assigned to both Uα and Eα , such that ûh

8 The coarsest time discretization corresponds to 23 = 8 time steps
with a step width of�t = 1.25 ·10−1 [s], while the finest discretization
to 212 = 4096 time steps, with a step width of �t ≈ 2.44 · 10−4 [s].
9 Here,α is used for the global node numbering, and nN stands for num-
ber of nodes in the mesh. Since for the current problem all 4 quadratic
finite cells are enriched, nN = 25 applies to both meshes.
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Fig. 15 Unsatisfactory solution in the time domain when setting the initial conditions based on Eqs. (92) and (93)

is an appropriate approximation of û in Eq. (91). Since it is
not known a priori how the base and overlay meshes partici-
pate in the approximation of the C0-continuous û, the direct
assignment of initial values toUα andEα based on the known
û is not possible. As a solution to this problem, we propose
the following approach: Prior to the transient analysis, a static
manufactured problem is constructed with the displacement
field û. For the current problem, the static analysis is nothing
else than Sect. 3.3.1, where it was shown, that obtained nodal
results yield the theoretically exact solution.10 These nodal
results, which include both Uα and Eα , can be directly used
for setting the initial conditions.
Remark. Note that the above mentioned issue only arises
for numerical methods utilizing base and overlay meshes to
account for material interfaces. For transient manufactured
problems featuring only void regions, initial values only have
to be assigned to Uα . In this case, the known manufactured
displacement field û can be directly used to set

Uα = û(xα), (92)

where xα denotes the position of the node α.
Results.Let us evaluate the strain energy and displacement in
x-direction at the point p = [0, 0] over the simulation time,
denoted by �h(t) and uhx( p, t), respectively, using different

10 Note that it is not a necessary requirement that the initial values are
obtained with such extreme accuracy. In fact, the initial values need to
be only as accurate as the spatial accuracy achievable by a given mesh.
Thus, for any mesh and manufactured solution, the proposed approach
yields the initial nodal values for the transient solution with sufficient
accuracy.

numbers of time steps (nT = 16, 32 and 128), and compare
them to the reference solutions �(t) and ux( p, t).

First, Fig. 15 demonstrates the necessity of the a priori
static solution. Here, Eq. (92) is used for the initial values on
the base mesh, while

Eα = 0 (93)

is set on the overlay mesh. In addition to Fig. 15, the severely
deteriorated results are also depicted in convergence analysis
in Fig. 17, demonstrating how the wrong initial conditions
can spoil the code verification of multi-material simulations
in the context of the MoMS.

The correct results using the proposed approach for
obtaining the initial conditions are depicted in Fig. 16.
Already here, an increasing accuracy can be observed for
finer time discretizations, reassuring about the code testing
capabilities of the MoMS for enriched transient SCM simu-
lations. That the numerical solution indeed converges to the
manufactured one, is demonstrated in the remainder of this
section.
For an arbitrary time-dependent function χ(t), we denote the
L2-norm over the time domain T = [t0, tend] by

||χ(t)||L2(T ) =
⎛

⎝
tend∫

t0

χ(t)2 dt

⎞

⎠

1/2

, (94)

which can be simply computed for the discrete time data.
Using Eq. (94), the relative error in the strain energy and
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Fig. 16 Solution in the time domain using different number of time steps

Fig. 17 Convergence analysis for the transient multi-material SCM
problem

displacement over time are computed as

εt� = ||�(t) − �h(t)||L2(T )

||�(t)||L2(T )

· 100% (95)

and

εtu = ||ux( p, t) − uhx( p, t)||L2(T )

||ux( p, t)||L2(T )

· 100% (96)

The evaluation of Eqs. (95) and (96) for the investigated time
discretization leads to quadratic convergence rates depicted
in Fig. 17, as expected for the Newmark algorithm.

3.3.4 Plate with multiple inclusions—static analysis

In this section, the capabilities of the level-set-based approach
are further demonstrated for the analysis of a problem involv-
ing multiple inclusions. In particular, a two-dimensional
domain is considered including a matrix material �mat and
four circular inclusions {�(m)

inc }4m=1, as depicted in Fig. 18a,
where the level-set function

ϕm = (x − O(m)
x )2 + (y − O(m)

y )2 − R2
i . (97)

defines the mth inclusion (Fig. 18b). The origins and radii
of the inclusions are given in Table 1. The manufactured
displacement field for the given problem is defined as

u(x) =

⎧
⎪⎨

⎪⎩

umat(x) =
[
ϕ(x)

0

]

in �mat

uinc(x) = cm umat(x) in �
(m)
inc

, (98)

where ϕ(x) is a common level-set function

ϕ(x) = ϕ1(x) ϕ2(x) ϕ3(x) ϕ4(x), (99)

which vanishes at all of the four interfaces (Fig. 18c)

ϕ(x) = 0 ∀x ∈ ∂�
(1)
inc ∪ ∂�

(2)
inc ∪ ∂�

(3)
inc ∪ ∂�

(4)
inc. (100)

Hence, the chosen manufactured displacement field fulfills
Eq. (67). In our implementation, ϕ is only used for the man-
ufactured displacement u; the geometry description and the
construction of the enrichment functions are both based on
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Fig. 18 Multi-material problem with four inclusions and level-set functions used for defining the manufactured displacement field

Table 1 Dimensions and material properties of the different domains

Domain Ox [m] Oy [m] R [m] E [Pa] ν [−] c [−]
�mat − − − 1 0.3 −
�

(1)
inc −1 −1 0.8 10 0.3 1/10

�
(2)
inc 1 −1 0.8 2 0.3 1/2

�
(3)
inc 1 1 0.8 5 0.3 1/5

�
(4)
inc −1 1 0.8 20 0.3 1/20

the individual level-set functions ϕi (i = 1, 2, 3, 4).11 While
in certain cases, the geometry description can be switched
from ϕi to ϕ, care must be taken when the geometries are
overlapping,12 as the resulting common ϕ can interfere with
inside-outside tests and the definition of the manufactured
solution. For the current example, the general case is investi-
gated, where all inclusions have different material properties
(Table 1), leading to scaling parameters unique to the indi-
vidual material interfaces

cm = Emat

E (m)
inc

. (101)

Finally, the strain energy for the entire system is obtained
by adding up the strain energies of the four quadrants indi-
cated by the blue dashed lines in Fig. 18a, where for the i th

quadrant, the strain energy reads

�i = A1

A5(ν
2
inc,i − 1)(ν2mat − 1)

·
[
A2c

2Einc,i (νinc,i − 3)(ν2mat − 1)π

11 See Ref. [68] for the discussion on unwanted artifacts associated
with enrichment functions based on a common level-set functions.
12 In the current case, since the domains defined by ϕi < 0 are not
overlapping, the common level-set function (99) is negative only if a
point is inside oneof the circles, andpositive otherwise, i.e., in thematrix
material. Thus, an unaltered geometry description via ϕ is possible.

−Emat(ν
2
inc,i − 1)(νmat − 3)(A3 + A4π)

]
. (102)

Here, A1, A2, . . ., A5 are constants defined in Appendix B.
For the current problem, a p-refinement with p = 1, 2, . . .,
8 is performed, while the domain is discretized by 32 and 42

finite cells according to Fig. 19. Although these meshes are
almost identical, in the latter case, cells are exclusively cut
by a single interface (light gray cells), in the former case,
intersections by 2 (purple) and even 4 interfaces (yellow) per
cell arise as well. Therefore, n(c)

inc in Eq. (18) is either 1, 2,
or 4, and the number of DOFs associated with the different
cells is not uniform, which can be a potential source of error
during code development. For both meshes, the numerical
integration is carried out via sub-cells with blending geom-
etry mapping and (p + 1)2 integration points are used. For
the enrichment function defined in Eq. (19), pψ = 2 is used.
According to Fig. 19, both of the investigated meshes lead
to similar convergence curves and very low errors, reassur-
ing about (i) the correct implementation of cellswithmultiple
enrichment terms in the code and (ii) suitability of the current
manufactured solution for problemswithmultiple inclusions.
Additionally, the red curve, where no enrichment is used,
demonstrates the results of an unsatisfactory simulation.

The local accuracy of the simulation is demonstrated
below, where Fig. 20a depicts for 32 cells with p = 8 the
accurately approximated C0-continuous displacement field
along the indicated two cut lines. Note that the differentmate-
rial properties (cf. Table 1) lead to displacement fields in the
inclusions, which are only differing in their c-parameters.
Finally, Fig. 20b depicts the continuous σxx-field for the cor-
rect results, and the typical oscillations when no enrichment
is used, causing the sub-optimal convergence observed in
Fig. 19. In conclusion, the current sub-section demonstrates
that the MoMS can be simply applied to code verification
even when simulating highly complex heterogeneous struc-
tures with multiple interfaces per cell.
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Fig. 19 Global accuracy of the
simulation using different
meshes and cells that are cut by
multiple interfaces

Fig. 20 Local results of the simulation evaluated along the indicated diagonal cut lines

4 Conclusion

TheMethod of Manufactured Solutions (MoMS) is a power-
ful tool for verifying the accuracy and correctness of numer-
ical simulations based on carefully constructed reference
solutions. In this contribution, the MoMS was successfully
extended to immersed boundary methods, enabling an easy
and robust testing of the advanced algorithms, typically used
in such approaches. When deriving manufactured solutions
for immersed problems, the unfitted nature of the mesh poses
the need for additional considerations, such as whether the

given problem should be reproduced with or without weak
boundary conditions, and whether the immersed geometries
are void regions ormaterial inclusions. Our findings and con-
clusion regarding these topics and the derivation of more
complex manufactured solutions are given below.
Boundary conditions:When reproducing the manufactured
problem numerically, the required boundary conditions orig-
inate from the boundary values of the manufactured solution.
Note that this not only includes the outer boundaries, but all
immersed boundaries as well. The boundary values on these
parts can be enforced in a weak sense, as demonstrated in
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Sect. 3.1.1, already enabling a verification of immersed sim-
ulation codes. However, in Sect. 3, the options for deriving
manufactured solutions, which yield readily fulfilled bound-
ary conditions for the immersed boundaries, are discussed.
In this case, no weak boundary conditions are required,
which decreases the simulation complexity by a consider-
able amount.On the other hand, however,more care is needed
when deriving the manufactured solution. The workflow and
characteristic features of this approach are thoroughly dis-
cussed in Sect. 3.1 for problems with void regions and in
Sects. 3.2 and 3.3 for material inclusions. In all cases, the
obtained theoretical convergence rates illustrate the capabil-
ities of the proposed approach to be used in a robust code
testing framework.
Void regions: If the immersed geometry represents a void
region, weak boundary conditions can be avoided by manu-
facturing a displacement field resulting in zero tractions on
the void’s boundary. According to our investigations, such
displacement fields are best derived in cylindrichal/spherical
coordinate systems, while assuming non-zero displacement
components in the radial direction only. By additionally
assuming a circular/spherical shape for the void, the nec-
essary conditions for deriving the right displacement field
reduce to an easily solvable single equation with only one
unknown, as given in Eqs. (27) and (50).
Material interfaces: The above strategy (i.e., radial man-
ufactured displacement field + circular/spherical geometry)
is also applicable to problems with inclusions, as shown in
Sect. 3.2. However, manufactured fields for multi-material
problems are much more robustly derived by following the
approach in Sect. 3.3, that features a carefully constructed
C0-continuous displacement field, which, together with the
correct material properties, results in equal stress fields in the
matrix and inclusion domains (remark in the next paragraph).
Agreat advantage of thismethod is that the normal stress con-
tinuity is fulfilled regardless of the inclusion’s shape, thus,
more complicated geometries can be considered. Finally, the
problem can be easily stated in Cartesian coordinates, and
a level-set function defining the inclusion can be directly
used for constructing the displacement field. In Sect. 3.3.4,
it is demonstrated that this approach can be even used for
deriving manufactured analytical solutions involving multi-
ple inclusions as well.
Physical nature of the manufactured solution: Working
in the context of MoMS requires to think differently about
solutions to PDEs. As long a manufactured solution satis-
fies the given mechanical governing equations, it can be

tailored freely to exhibit certain properties. This freedom
was exploited in Sect. 3.1 to achieve vanishing tractions for
void regions. However, an even better example for this is the
approach proposed in Sect. 3.3 for multi-material problems:
While in reality, stress fields are hardly equal in the matrix
and inclusion, the existence of such a case is not forbidden.
Although common loading states usually do not cause such a
behavior of the problem, via the carefully designed material
properties, body loads and boundary conditions of a manu-
factured solution, the desired state can be achieved without
violating the mechanical principles.
Extensions: Our investigations demonstrate that for both
voids and inclusions, the static manufactured solutions can
be easily extended tomore complexmechanical frameworks,
such as quasi-static problems without (Sect. 3.1.2) and with
damping (Sects. 3.1.3 and 3.3.2), as well as to transient prob-
lems (Sect. 3.3.3). Furthermore, as shown in Sects. 3.1.2 and
3.1.4, the derived concepts for radial displacement fields can
be also easily extended from 2D to 3D. Although not demon-
strated in this paper, it is conjectured that the same applies
to the multi-material manufactured solutions of Sect. 3.3 as
well. Finally, as an extension to geometrically and physically
non-linear problems, we refer to our recent article demon-
strating the capabilities and robustness of our proposed code
testing framework [7].

Using the introduced concepts, the paper demonstrates
a wide application range of the MoMS in the context of
immersed frameworks, that is easy to derive and to extend.
We believe, that using the discussed techniques, the MoMS
has a great potential when testing the desired parts of all
immersed simulation tools.
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A Curvilinear coordinate systems

In Sects. 3.1 and 3.2, instead of a Cartesian coordinate sys-
tem, polar and spherical coordinate systems are used, for
which the necessary relations are briefly elaborated below.

A.1 Polar coordinates

Here, a polar coordinate system is assumed with the coordi-
nates r ≥ 0, and θ ∈ [0, 2π [, measuring the distance from
the origin, and the polar angle, respectively (Fig. 21a).

A.1.1 General displacement field

Assuming a polar displacement field in the plane u(r , θ) =
[ur (r , θ), uθ (r , θ)], the strain and stress relations in case of
a plane stress state read

εrr = ∂ur
∂r

, (103)

εθθ = 1

r

∂uθ

∂θ
+ ur

r
, (104)

εrθ = 1

r

∂ur
∂θ

+ ∂uθ

∂r
− uθ

r
, (105)

σrr = E

1 − ν2
(εrr + νεθθ ), (106)

σθθ = E

1 − ν2
(εθθ + νεrr), (107)

σrθ = E

1 + ν
εrθ . (108)

A.1.2 Radial displacement field

In this article, radial displacements are considered, i.e.,
ur(r) 	= 0, while uϕ = 0. In this special case, Eqs. (103)–

(108) reduce to

εrr = dur
dr

, (109)

εθθ = ur
r

, (110)

σrr = E

1 − ν2
(εrr + νεθθ ), (111)

σθθ = E

1 − ν2
(εθθ + νεrr). (112)

Resulting from the divergence operator in a polar coordinate
system, the body load vector for the static case reads

b = −div(σ ) (113)
[
br
bθ

]
= −

⎡

⎣
∂σrr

∂r
+ σrr − σθθ

r
0

⎤

⎦ . (114)

A.1.3 Integration

In polar coordinates, the indefinite double integral of a func-
tion f is written as

∫∫
f dxdy =

∫∫
f r drdθ. (115)

In case of computation of the strain energy �, f is the strain
energy density function ψ̃ , which is given for the radial strain
and stress fields as

ψ̃(r)

= 1

2
σ (r) : ε(r) = 1

2

[
σrr(r)εrr(r) + σθθ (r)εθθ (r)

]
. (116)

Fig. 21 Visual representation of
the curvilinear coordinate
systems used in this paper
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A.1.4 Conversion to Cartesian coordinates

For a given point x = [x, y] in space, polar coordinates are
computed as

r =
√
x2 + y2, (117)

θ = atan2 (y, x) , (118)

and the projection of a vector pointing in radial direction vr
at x to the Cartesian axes is realized by

vx = vr(r) cos(θ), (119)

vy = vr(r) sin(θ). (120)

A.2 Spherical coordinates

Here, a spherical coordinate system is assumedwith the coor-
dinates r ≥ 0, θ ∈ [0, 2π [, and φ ∈ [0, π [, measuring the
distance from the origin, the polar angle, and the azimuthal
angle, respectively (Fig. 21b).

A.2.1 General displacement field

For a general displacement field in spherical coordinates
u(r , θ, φ) = [ur (r , θ, φ), uθ (r , θ, φ), uφ(r , θ, φ)], the
strain relations read

εrr = ∂ur
∂r

, (121)

εθθ = 1

r

(
∂uθ

∂θ
+ ur

)
, (122)

εφφ = 1

r sin(θ)

∂uφ

∂φ
+ ur

r
+ uθ cot(θ)

r
, (123)

εrθ = 1

r

∂ur
∂θ

+ ∂uθ

∂r
− uθ

r
, (124)

εrφ = 1

r sin(θ)

∂ur
∂φ

+ ∂uφ

∂r
− uφ

r
, (125)

εθφ = 1

r sin(θ)

∂uθ

∂φ
+ 1

r

∂uφ

∂θ
− uφ cot(θ)

r
, (126)

while stresses are defined by

σrr = (λ + 2μ)εrr + λεθθ + λεφφ, (127)

σθθ = λεrr + (λ + 2μ)εθθ + λεφφ, (128)

σφφ = λεrr + λεθθ + (λ + 2μ)εφφ, (129)

σrθ = 2μεrθ , (130)

σrφ = 2μεrφ, (131)

σθφ = 2μεθφ. (132)

A.2.2 Radial displacement field

In this article, radial displacements are considered, i.e.,
ur (r) 	= 0, while uθ = uφ = 0. In this special case,
Eqs.(121)–(132) reduce to

εrr = ∂ur
∂r

, (133)

εθθ = ur
r

, (134)

εφφ = ur
r

, (135)

σrr = (λ + 2μ)εrr + λεθθ + λεφφ, (136)

σθθ = λεrr + (λ + 2μ)εθθ + λεφφ, (137)

σφφ = λεrr + λεθθ + (λ + 2μ)εφφ. (138)

All other quantities are zero. Resulting from the divergence
operator in a spherical coordinate system, the body load vec-
tor for the static case read

b = −div(σ ) (139)
⎡

⎣
br
bθ

bφ

⎤

⎦ = −

⎡

⎢⎢
⎣

1

r2
∂(r2σrr)

∂r
− σθθ + σφφ

r
0
0

⎤

⎥⎥
⎦

= −
⎡

⎢
⎣

∂σrr

∂r
+ 2σrr − σθθ − σφφ

r
0
0

⎤

⎥
⎦ . (140)

A.2.3 Integration

In spherical coordinates, the indefinite triple integral of a
function f is written as

∫∫∫
f dxdydz =

∫∫∫
f r2 sin(φ) drdθdφ. (141)

In case of computation of the strain energy �, f is the strain
energy density function ψ̃ , which is given for the radial strain
and stress fields as

ψ̃(r) = 1

2
σ (r) : ε(r) = 1

2

[
σrr(r)εrr(r)

+σθθ (r)εθθ (r) + σφφ(r)εφφ(r)
]
. (142)

A.2.4 Conversion to Cartesian coordinates:

For a given point x = [x, y, z] in space, spherical coordi-
nates are computed as

r =
√
x2 + y2 + z2, (143)

θ = atan2 (y, x) , (144)
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φ = cos−1
( z
r

)
, (145)

and the projection of a radial vector component vr at x to the
Cartesian axes is realized by

vx = vr cos(θ) sin(φ), (146)

vy = vr sin(θ) sin(φ), (147)

vz = vr cos(φ). (148)

B Supplementary data for the numerical
examples

B.1 Plate with circular hole

B.1.1 Parameter c for the displacement field

For the manufactured displacement field in Eq. (28), the
radial derivative reads

d
(
r ln(c r)

)

dr
= ln(c r) + 1. (149)

Inserting this and Eq. (28) into Eq. (27) yields

σrr(r = R) = E

1 − ν2

(
ln(c R) + 1 + ν

R ln(cR)

R

)
= 0,

(150)

which is fulfilled in the general case, if the term inside the
bracket vanishes. With minor algebraic manipulations and
by taking the exponential function of both sides

ln(c R) + 1 + ν
R ln(cR)

R
= 0, (151)

ln(c R) = −1

1 + ν
, (152)

exp
(
ln(c R)

) = exp

( −1

1 + ν

)
, (153)

the value of c, for which σrr(r = R) = 0, is found to be13

c = 1

R
exp

( −1

1 + ν

)
. (154)

B.1.2 Strain energy

The closed-form expression when integrating the strain
energy density over a quarter of the square domain reads

��e = 4E

ν2 − 1
A, (155)

13 Here, the identity exp(ln(c R)) = c R is exploited.

where

A = 4G(1 + ν) + 2π − 6π ln(2) − 5
[
2 + ln(2)(ln(32) − 4)

]

−ν
[
8 + 5ln(2)(ln(32) − 4) + π(ln(64) − 2)

]

−2(1 + ν)ln(c)
[
π + ln(1024) − 4 + 2ln(c)

]
. (156)

Additionally, the strain energy function integrated over the
quarter disk results in

��fict = −Eπ(1 + 2(1 + ν)ln(2)2 + 2(1 + ν)ln(c)ln(4c))

2(ν2 − 1)
.

(157)

B.2 Plate withmultiple inclusions

Below, the constants used in Eq. (102) are given

A1 = 262144, (158)

A2 = 315989438712948, (159)

A3 = −42761031824498125, (160)

A4 = 315989438712948, (161)

A5 = 28867950439453125. (162)
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