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Abstract
Direct flexoelectricity is a size-dependent phenomenon, very prominent at smaller scales, that connects the strain gradients
and the electric field. The very existence of strain gradients enhances noncentrosymmetry and heightens the interaction
between piezoelectricity and flexoelectricity, demanding fully coupled higher-order electromechanical formulations. The
numerical instability of the existing finite elements used to model flexoelectricity alone is revealed due to their reliance on
the stabilization parameter. Thus, two new finite elements Qu2s2p2l0 (QL0-4) and Qu2s2p2l1 (QL1-16) are proposed
for mixed FEM that are numerically robust without any need of such stabilization parameters. Additionally, the existing finite
element Qu2s1p2l0 [Q47 in (Deng et al. in J ApplMech 84:081004, 2017)], is implemented from scratch to replicate known
results and benchmark the performance of newly proposed finite elements. To verify the robustness of these elements, various
benchmark problems for flexoelectricity in dielectric solids, such as a thick cylinder and truncated pyramid are simulated.
The great agreement of the numerical results with the existing ones reflects the foundational nature of the proposed elements.
Furthermore, the proposed mixed finite elements were used to successfully analyze cantilever beam and truncated pyramid
problems where piezoelectric effects were taken into account for the first time. Current results are intrumental in simulating
flexoelectricity and piezoelectricity together to highlight their interactions using newly proposed numerically robust finite
elements.

Keywords Flexoelectricity · Higher-order electromechanical theory · Numerically robust mixed FE · Fully coupled
electromechanical framework · Flexoelectricity extended with piezoelectric contribution

1 Introduction

Piezoelectricity was discovered in 1880 [2]. According to
this phenomenon, mechanical energy could be converted to
electrical energy and vice versa, known as two-way lin-
ear electromechanical coupling. Direct piezoelectricity is
defined as the generation of electrical voltage across the
(poly)crystal on the application ofmechanical strains. In con-
trast, converse piezoelectricity causes mechanical distortion
on the application of electrical voltage difference. However,
piezoelectricity is only observed in dielectrics without cen-
trosymmetry. This is a limitation of the choice of dielectric
material for the application of piezoelectricity in microelec-
tromechanical systems (MEMS). As a universal alternative,
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flexoelectricity is the most advanced phenomenon observed
in all dielectrics. Flexoelectricity is the coupling between
strain gradients and electric field or electric field gradient
andmechanical strains [3]. Flexoelectricitywas first put forth
more than 60 years ago [4]; however, it was only quan-
tified a decade later for the first time [5]. It has regained
attention because of the experimental evidence obtained of
flexoelectricity due to technological advances [6–8]. Also,
flexoelectricity involves mechanical strain gradients. As gra-
dients are inversely proportional to the length scale on which
they are applied, i.e., a size-dependent effect, flexoelectricity
is very prominent at smaller scales such as micrometer- or
nanometer-scales [9]. This illustrates promising applications
of flexoelectricity along with non-linear material behavior of
ferroelectricity for high-precision devices inMEMS [10–12].

Classical continuum theory cannot capture the length scale
effect due to the absence ofmaterial length scale parameter in
the formulations. Material length scales were introduced by
Cosserat [13] due to strain gradients and were significantly
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extended and improved in [14, 15]. Such gradient-based
theories lead to fourth-order partial differential equations
dependent on displacements that demand C1-continuous ele-
ments for the standard finite element method (FEM) to be
used. Since then, variousmethods such asmeshfreemethods,
iso-geometric analysis, C1-continuous elements,mixedFEM
(MFEM), have been developed to solve problems involving
gradients [16].

The meshfree method was initially proposed for flexo-
electricity based on local maximum entropy [3]. Using this
method, different boundary value problems (BVP) based
on the experimental setup given in [17–19] were simulated.
However, the meshfree method is still in its embryonic stage
and is under development [16]. Iso-geometric analysis (IGA)
is a new method first proposed in [20]. This technique uses
nonuniform rational B-splines (NURBS), which could be
of any arbitrary order based on the definition of its basis
function [21]. This enables IGA to be applied to complex
problems where gradients can be incorporated easily. This
being said, IGA is also used for modeling flexoelectricity
[22–24]. Nevertheless, similar to the meshfree method, IGA
also has some prominent drawbacks, such as gaps and over-
laps that needs to be accounted for [25]. Another technique
directly utilizes C1-continuous elements, such as those pro-
posed in [26]. However, such elements are complicated in
their implementation due to the use of higher-order basis
functions and involve higher complexities and computational
costs in 3D. Immersedboundarymethodbasedon ahierarchi-
cal B-Spline inspired by IGA for flexoelectricity is proposed
in [27]. In the immediate past, a collocation-based mixed
finite element for flexoelectricity was proposed in [28, 29].
Recently, the authors proposed a second-order collocation
based mixed finite element that is capable of capturing flex-
oelectricity more precisely [30]. It was demonstrated that
it is challenging to enforce C1-continuity even in a weak
sense with collocation-based formulations, and the need for
a smoothing scheme is inevitable. Further, the authors also
developed a 3D collocation-based mixed finite element to
eradicate the computational expensiveness of the traditional
mixed FEM [31].

MFEM is a prominent method already employed and
tested for flexoelectricity [1, 32–34]. This technique assumes
mechanical displacements and their gradients as independent
variables. The compatibility between the mechanical strains
(computedbasedonmechanical displacements) and indepen-
dently assumed strains as kinematic constraints are enforced
usingLagrangemultipliers [35, 36]. It is experimentally chal-
lenging to separate flexoelectricity and piezoelectricity [11].
Applying amechanical strain gradient breaks the centrosym-
metry of the unit cell which activates flexoelectricity. In case
of noncentrosymmetric crystalline structure, such mechan-
ical strain gradient either enhances or suppresses existing
piezoelectric coupling. Hence, fully coupled higher-order

electromechanical formulations are necessary. Most of the
available literatures based on MFEM has considered only
flexoelectricity in centrosymmetric dielectrics and neglected
piezoelectric impact [1, 32–34].

In this work, fully coupled electromechanical formula-
tions for flexoelectricity in dielectric and piezoelectric solids
are presented. MFEM is utilized to model flexoelectricity
with weakly enforced C1-continuous behavior. Lagrange
multipliers enforce kinematic constraints analogously to [35,
36]. In Sect. 2, constitutive and governing equations and
necessary boundary conditions for flexoelectricity and piezo-
electricity are described. In Sect. 3, variational formulations
of mixed FEM for deriving weak form are given. In Sect. 4,
mixed finite element implementation along with three differ-
ent types of user element that includes two newly proposed
user elements are presented. In Sect. 5, the user elements
implemented in Fortran are exclusively verified for linear and
higher-order electromechanical theories using BVPs from
various literature. Thereafter, a piezoelectric truncated pyra-
mid with flexoelectric effect is calculated for the first time.
In Sect. 5.5, the newly proposed elements are compared with
the known user element [1] based on the influence of sta-
bilization parameter on results. Finally, in Sect. 6, the key
conclusions from this work are summarized.

2 Higher-order electromechanical theory in
piezoelectric solids

2.1 Strain gradient elasticity theory

Current subsection summarizes the classical strain gradient
elasticity (SGE) theory in brief.

A fixed rectangular Cartesian system with orthonormal
base vectors ei (i = 1, 2, 3) is assumed. Einstein summation
convention is used for repeated (dummy) indices. For small
deformations, mechanical strains can be defined from the
mechanical displacements ui as

εi j = 1

2

[
ui, j + u j,i

]
, (1)

where (), j represents the partial derivative of the field with
respect to x j . Rotation gradient χi j and rotation vector θi are
defined as [36]:

χi j = θ j,i , θi = 1

2
εi jkuk, j , (2)

where εi jk is theLevi-Civita permutation tensor. In [15], three
different forms of strain gradient elasticity theory based on
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the different definitions of strain gradients were proposed as

η̃i jk = uk,i j , η̂i jk = 1

2

[
u j,ki + uk,i j

]
,

¯̄ηi jk = 1

3

[
ui, jk + u j,ki + uk,i j

]
.

(3)

In [36], different forms of SGE theories for general strain
gradient solids given in [15] are analyzed in detail, and three
forms of internal energy density are presented:

U = Ũ(εi j , η̃i jk) = Û(εi j , η̂i jk) = ¯̄U(εi j , χi j , ¯̄ηi jk), (4)

where specifically,

Ũ =1

2
λεi iε j j + μεi jεi j

+ 1

2
l2
[
λη̃i j j η̃ikk + μ

[
η̃i jk η̃i jk + η̃i jk η̃k ji

]]
, (5a)

Û =1

2
λεi iε j j + μεi jεi j + 1

2
l2
[
λη̂i j j η̂ikk + 2μη̂i jk η̂i jk

]
, (5b)

¯̄U =1

2
λεi iε j j + μεi jεi j + l2

[
2

9
[λ + 3μ]χi jχi j − 2

9
λχi jχ j i

+1

2
λ ¯̄ηi i j ¯̄ηkk j + μ ¯̄ηi jk ¯̄ηi jk + 2

3
λεi jkχi j ¯̄ηkpp

]
. (5c)

In the present work, both type I and type II forms given in
Eqs. (5a) and (5b) were implemented and evaluated. Since
type II is an equivalent of type I form [36], the numerical
examples, as expected, yielded identical results using type II
equations as those with type I equations. Therefore, only the
details pertaining to the type I form are included hereon. It is
observed that the above-described forms perform well for a
wide range of problems such as thick cylinder [1], plate with
a hole under biaxial loading [36], cantilever beam in open
and closed circuit condition [16].

2.2 Constitutive equations for flexoelectricity
including piezoelectricity

SGE formulations are now extended with higher-order elec-
tromechanical coupling between the strain gradients and
electric field to encompass flexoelectricity. Beyond that, the
linear electromechanical coupling is considered for the fully
coupled numerical simulations of size-dependent piezoelec-
tric structures. Most authors have modeled flexoelectricity
neglecting piezoelectric contribution [1, 3, 28, 32] due to
simulation simplicity which includes the isotropic mechan-
ical and dielectric tensors assumption while neglecting the
anisotropic piezoelectric material tensor.

The general form of internal energy density based on elec-
tric polarization is presented in [37]. Since it is relatively
easier to work with the alternative equivalent form based
on an electric field, the electric enthalpy density obtained

after the Legendre transformation is considered as a func-
tion of the electric field [1, 3, 16, 28]. Based on the SGE
theory that involves the first gradient of mechanical strains,
the general form of electric enthalpy density for direct flex-
oelectricity obtained by permutation of all mechanical and
electrical terms is given as

h̃(εi j , η̃i jk, Ei ) =1

2
Ci jklεi jεkl + 1

2
Ai jklmn η̃i jk η̃lmn

− 1

2
κi j Ei E j − dki j Ekεi j − fi jkl Ei η̃ jkl .

(6)

where Ei is the electric field that relates to electric potential
φ as Ei = −φ,i , Ci jkl is elastic stiffness tensor, Ai jklmn

is the higher order elasticity tensor from SGE theory. κi j
is dielectric permittivity tensor. di jk is piezoelectric tensor
whereas fi jkl is direct flexoelectric tensor.

The constitutive equations for the thermodynamic conju-
gateswhich aremechanical stressσi j , higher order stress τi jk
and electric displacement De

i for the mechanical strain εi j ,
type I strain gradient η̃i jk and electric field Ei , respectively
are

σi j = ∂ h̃

∂εi j
= Ci jklεkl − dki j Ek, (7a)

τ jkl = ∂ h̃

∂η̃ jkl
= A jklmni η̃mni − fi jkl Ei , (7b)

De
i = − ∂ h̃

∂Ei
= κi j E j + di jkε jk + fi jkl η̃ jkl . (7c)

Piezoelectricity influences mechanical stress but has no
direct contribution to higher-order stress. Further based on
Eq. (7b), flexoelectricity influences higher-order stress but
has no direct involvement in mechanical stress. However,
the interconnection between the higher-order stress and the
mechanical stress is evident from the natural boundary condi-
tion given inEq. (12), that needs to satisfied.However, both of
these phenomena explicitly influence electric displacement.

2.3 Balance equations and boundary conditions for
flexoelectricity

The balance equations and boundary conditions are derived
following [37, 38]. Themomentum equilibrium andmaxwell
equations for a bulk body with volume V and surface A, in
which volumetric body forces bi and volumetric free charges
qe are acting, have the form

σi j, j − τi jk,k j + bi = 0, (8a)

De
i,i + qe = 0. (8b)
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For a complete description of the problem, the associ-
ated essential and natural boundary conditions are described
below.

1. Essential (Dirichlet) boundary conditions:

(a) Prescribed displacement onmechanical displacement
boundary ∂Vu

ui = ūi (9)

(b) Prescribed electric potential on electric potential
boundary ∂Vφ

φ = φ̄ (10)

(c) Prescribed normal derivative of mechanical displace-
ment on the corresponding boundary ∂Vu,n

∇nui = ui,lnl = ūi,lnl (11)

2. Natural (Neumann) boundary conditions:

(a) Prescribed tractions on traction boundary ∂Vt with
∂Vu ∪ ∂Vt = ∂V, ∂Vu ∩ ∂Vt = ∅
[
σi j − τi jk,k

]
n j + [Dt

l (nl)
]
τi jmn j nm

−Dt
j

(
τi jmnm

) = t̄i (12)

(b) Prescribed surface charges on boundary ∂Vω with
∂Vφ ∪ ∂Vω = ∂V, ∂Vφ ∩ ∂Vω = ∅

De
i ni = ω̄ (13)

(c) Prescribed higher order traction on corresponding
boundary ∂Vτ with ∂Vu,n∪∂Vτ = ∂V, ∂Vu,n∩∂Vτ =
∅

τi jmnmn j = τ̄i (14)

(d) Jump �•�, indicates the difference in the enclosed
quantity across edges cα formed by intersection of
smooth surfaces. Closed curves bound the smooth
surfaces (in a counter-clockwise direction) in which
si is the unit vector tangent to cα and m = s × n.

�m jτi jknk� = T̄ (15)

The boundary condition Eq. (11) is active due to the SGE
theory, whereas boundary condition Eq. (13) is active due to
flexoelectricity.

3 Variational principle with kinematic
constraints

The equivalent formof electric enthalpy density of the system
given in Eq. (6) based on constitutive Eqs. (7) can be written
as

h̃(εi j , η̃i jk, Ei ) = 1

2
σi jεi j + 1

2
τi jm η̃i jm + 1

2
De

i Ei . (16)

Whereas the total external work done on the system based
on Neumann boundary conditions Eqs. (12 – 14) is

W =
∫

V
bkukdV +

∫

V
qeφdV +

∫

A

ti ui d A +
∫

A

ω̄φd A

+
∫

A

τ̄i∇nuid A −
∑

α

∮

cα

�−m jτi jknk�uidc.
(17)

Then the total potential energy of the system 
 is given
as


 =
∫

V
h̃dV − W. (18)

From Eqs. (8a and 7b), the existence of a fourth derivative
of displacements in Eq.(18) can be postulated. This demands
C1-continuous elements which ensure continuity of mechan-
ical strains. This cannot be modeled straightforwardly using
traditional FEM. Mixed FEM can be used allowing usage
of C0-continuous elements for problems involving gradi-
ents. For this, mechanical strains are treated as independent
variables, in contrast to computing them solely as dis-
placement gradients. Such independently assumed strains
are regarded as relaxed strains ψi j as they are observed
to be smoothly varying across C0-continuous elements in
contrast to mechanical displacement gradients computed
from mechanical displacements. Relaxed strains ψi j are
utilized further for computing strain gradients η̃i jk . Never-
theless, kinematic constraints are to be enforced between
relaxed strains and mechanical displacement gradient for
which Lagrange multipliers Li j are used in a weighted
residual manner. For such C0-continuous elements, the kine-
matic constraints could only be enforced weakly. Therefore,

the constraints for tangential component
[
ψt
i j − utj,i

]
are

relaxed [1]. Also, for smooth surfaces without any disconti-
nuities, the line integrals over curve cα should be zero [38].
Total potential energy given in Eq. (18) enhanced with kine-
matic constraints Li j

[
ψi j − u j,i

]
takes the form:
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∗ =
∫

V

[
1

2
σi jεi j + 1

2
τi jm η̃i jm + 1

2
De

i Ei

]
dV

−
∫

V
bkukdV −

∫

V
qeφdV

−
∫

A

ti ui d A −
∫

A

ω̄φd A −
∫

A

τ̄i∇nuid A

+
∫

V
Li j
[
ψi j − u j,i

]
dV.

(19)

In order to derive the equivalent weak form for the func-
tional described in Eq. (19), the variational principle δ
∗ =
0 is used along with the application of Reynold’s transport
theorem [37–39] leading to

∫

V

[
σi jδεi j + τi jmδη̃i jm + De

i δEi
]
dV −

∫

V
bkδukdV

−
∫

V
qeδφdV −

∫

A

tiδuid A −
∫

A

ω̄δφd A

−
∫

A

τ̄iδ∇nuid A +
∫

V
δLi j

[
ψi j − u j,i

]
dV

+
∫

V
Li j
[
δψi j − δu j,i

]
dV = 0.

(20)

Eq. (20) is the weak form that is the basis for describing
mixed FEM and further computations.

4 Newly proposed finite elements:
description and implementation

The finite element formulation for piezoelectric solids
exhibiting flexoelectricity is developed based on Eq. (20).
The weak form is discretized for variations of each indepen-
dent variable, resulting in a set of linear equations that must
be solved numerically. Since only the first derivatives of ui ,
ψi j ,φ exist in the weak form, C1-continuity is neverthe-
less ensured by kinematic constraints. Various elements in
the context of mixed FEM have been proposed for modeling
flexoelectricity in dielectric solids [1, 28, 32–34]. However,
the piezoelectric contribution was neglected.

All the finite elements analyzed in present work include
flexoelectricity and piezoelectricity necessary for fully cou-
pled electromechanical analyses. The elements developed
in this work consist of mechanical displacements [u1, u2],
relaxed strains [ψ11,ψ21,ψ12,ψ22], electric potential [φ],
Lagrangemultipliers [L11,L21,L12,L22] as degrees of free-
dom (DOFs).

Three different forms of 9 noded quadrilateral elements
have been used in this work as illustrated in Fig. 1 and
described below:

1. Existing element referred as Qu2s1p2l0 (Q47 accord-
ing to [1]) comprises of 7 DOFs that include u1, u2,ψ11,

ψ21,ψ12,ψ22,φ at corner nodes, 3 DOFs that include
u1, u2,φ at midside nodes and 7 DOFs that include
u1, u2,φ,L11,L21,L12,L22 at centre node. In this ele-
ment, mechanical displacements and electric potential are
interpolated using biquadratic shape functions, whereas
relaxed strains are interpolated linearly. Lagrange multi-
pliers are assumed to be constant across the element.

2. New element referred as Qu2s2p2l0 (QL0-4) com-
prises of 7 DOFs that include u1, u2, ψ11,ψ21,

ψ12, ψ22,φ at corner nodes, 7 DOFs that include
u1, u2,ψ11,ψ21,ψ12,ψ22,φ at midside nodes and 11
DOFs that include u1, u2,ψ11,ψ21,ψ12,ψ22,φ,L11,

L21,L12,L22 at centre node. In this element, mechan-
ical displacements, relaxed strains, and electric poten-
tial are interpolated using biquadratic shape functions,
whereas Lagrange multipliers are assumed to be constant
across the element. The nomenclature QL0-4 denotes
(Q)uadratic element with (L)agrange multiplier assumed
to be constant (0) having (4) components per element.

3. New element referred as Qu2s2p2l1 (QL1-16) com-
prises of 11 DOFs that include u1, u2,ψ11,ψ21,ψ12,

ψ22,φ,L11,L21,L12,L22 at corner nodes, 7 DOFs that
include u1, u2,ψ11,ψ21, ψ12,ψ22,φ at midside nodes
and 7 DOFs that include u1, u2,ψ11,ψ21,ψ12,ψ22,φ at
centre node. In this element, mechanical displacements,
relaxed strains, and electric potential are interpolated
using biquadratic shape functions, whereas Lagrange
multipliers are interpolated linearly. The nomenclature
QL1-16 denotes (Q)uadratic element with (L)agrange
multiplier interpolated linearly (1) having (16) compo-
nents per element.

The weak form given in Eq. (20) is discretized into ele-
ments for applying a finite element algorithm. In this section,
“

(

• ” corresponds to nodal quantities. Let “Ve” represent an
element. Collating all terms based on their respective inde-
pendent variations brings

∫

Ve

[
δ

(

ε T {σ} − ∇δ

(

u {L}
]
dVe

+
∫

Ve

[
δ

(

ψ T {L} + δ

(

η̃ T {τ}
]
dVe −

∫

Ve
δ

(

φ T {qe
}
dVe

−
∫

Ve

[
δ

(

E T {De}
]
dVe +

∫

Ve
δ

(

L [{ψ} − {∇u}] dVe
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(a) Qu2s1p2l0 (Q47) (b) Qu2s2p2l0 (QL0-4) (c) Qu2s2p2l1 (QL1-16)

Fig. 1 Various forms of 9 noded quadrilateral Mixed FE: a Ele-
ment with 47 DOFs Qu2s1p2l0 (Q47 according to [1]). b Element
with 67 DOFs Qu2s2p2l0 (QL0-4). c Element with 79 DOFs

Qu2s2p2l1 (QL1-16). ( ) marks u1 and u2 DOFs whereas ( )
marksψ11,ψ21,ψ12,ψ22 DOFs. ( ) marksφDOFwhereas ( ) marks
L11,L21,L12,L22 DOFs

−
∫

Ve
δ

(

u T {b} dVe −
∫

Ae

δ

(

u T {t̄
}
d Ae

−
∫

Ae

δ

(

φ T {ω̄} d Ae −
∫

Ae

δ∇n

( (

u
)T {τ̄} d Ae = 0. (21)

Eq. (21) is further simplified by neglecting tractions related
to relaxed strains, and rewritten in terms of variations of inde-
pendent variables using the corresponding connectivity and
shape-function matrices:

δ

(

u
∫

Ve

[
{Bu}T {σ} − {Mu} {L}

]
dVe

+ δ

(

ψ

∫

Ve

[{
Nψ

}T {L} + {Bψ

}T {τ}
]
dVe

− δ

(

φ

∫

Ve

[{
Bφ

}T {De}
]
dVe

+ δ

(

L
∫

Ve
{NL}T [{ψ} − {∇u}] dVe

− δ

(

u
∫

Ve
{Nu}T {b} dVe

− δ
(

φ

∫

Ve

{
Nφ

}T {
qe
}
dVe − δ

(

u
∫

Ae

{Nu}T
{
t̄
}
d Ae

︸ ︷︷ ︸
X

− δ

(

φ

∫

Ae

{
Nφ

}T {ω̄} d Ae

︸ ︷︷ ︸
Y

= 0. (22)

Since the variations δu, δψ, δφ, δL are arbitrary, the fol-
lowing system of equations is obtained assuming no body
force or free volume charges acting in the body:

G
( (

u ,

(

L ,

(

φ
)

=
∫

Ve

[
{Bu}T {σ} − {Mu} {L}

]
dVe

︸ ︷︷ ︸

F

( (

u ,

(

L ,

(

φ

)

−
∫

Ae

{Nu}T
{
t̄
}
d Ae

︸ ︷︷ ︸
X

!= 0, (23a)

H
( (

ψ ,
(

L ,

(

φ
)

=
∫

Ve

[{
Nψ

}T {L} + {Bψ

}T {τ}
]
dVe

︸ ︷︷ ︸

R

( (

ψ ,

(

L ,

(

φ

)

!= 0,

(23b)

I
( (

u ,

(

ψ
)

=
∫

Ve
{NL}T [{ψ} − {∇u}] dVe

︸ ︷︷ ︸

S

( (

u ,

(

ψ

)

!= 0, (23c)

J
( (

u ,

(

ψ ,

(

φ
)

=
∫

Ve

[{
Bφ

}T {De}
]
dVe

︸ ︷︷ ︸

V

( (

u ,

(

ψ ,

(

φ

)

−
∫

Ae

{
Nφ

}T {ω̄} d Ae

︸ ︷︷ ︸
Y

!= 0. (23d)

Linearization of the system of Eq. (23) for the Newton–
Raphson scheme results in:

{Kuu}

(

u + {KuL}

(

L + {Kuφ

} (

φ = {−F} + {X} ,
{
Kψψ

} (

ψ + {KψL
} (

L + {Kψφ

} (

φ = {−R} ,

{KuL}T

(

u + {KψL
}T (

L = {−S} ,
{
Kuφ

}T (

u + {Kψφ

}T (

ψ + {Kφφ

} (

φ = {−V} + {Y} ,

(24)

where

• {Kuu} = ∫

Ve
{Bu}T {C} {Bu} dVe corresponds to purely

elastic stiffness coefficients,
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• {KuL} = − ∫
Ve

{Mu}T {NL} dVe corresponds to coeffi-

cients that relatemechanical displacementwith Lagrange
multipliers,

• {Kuφ

} = ∫
Ve

{Bu}T {d} {Bφ

}
dVe corresponds to piezo-

electric coefficients,
• {Kψψ

} = ∫
Ve
{
Bψ

}T {A} {Bψ

}
dVe corresponds to SGE

coefficients,
• {KψL

} = ∫

Ve
{
Nψ

}T {NL} dVe corresponds to coeffi-

cients that relate relaxed strains to Lagrange multipliers,
• {Kψφ

} = ∫
Ve
{
Bψ

}T { f } {Bφ

}
dVe corresponds to flex-

oelectric coupling coefficients,
• {Kφφ

} = − ∫
Ve
{
Bφ

}T {κ} {Bφ

}
dVe corresponds to

dielectric coefficients,
• {Bu} ,

{
Bψ

}
,
{
Bφ

}
are the differential matrices used to

computemechanical strains, relaxed strain gradients, and
electric field from

(

u ,

(

ψ ,

(

φ , respectively.

From Eq. (24), the element stiffness matrix AMATRX,
degrees of freedom vector DOFs and RHS vector are given
as

AMATRX =

⎡

⎢⎢
⎣

Kuu 0 KuL Kuφ

0 Kψψ KψL Kψφ

KT
uL KT

ψL 0 0
KT
uφ KT

ψφ 0 Kφφ

⎤

⎥⎥
⎦ ,

DOFs =

⎡

⎢⎢⎢
⎣

(

u(

ψ(

L(
φ

⎤

⎥⎥⎥
⎦

,RHS =

⎡

⎢⎢
⎣

−F
−R
−S
−V

⎤

⎥⎥
⎦+

⎡

⎢⎢
⎣

X
0
0
Y

⎤

⎥⎥
⎦ .

(25)

The algorithm of mixed FE for flexoelectricity in piezo-
electric solids is given inAlgorithm1. In the current research,
the Direct Sparse Solver is used as a general purpose solver
with distinguished stability for efficiently solving the system
of equations.

5 Numerical simulations

In this section, new mixed FEM implementation is ver-
ified against various benchmark problems, such as thick
cylinder, truncated pyramid and cantilever beam problems.
A thick cylinder problem is used for the verification of
flexoelectricity in dielectric solids (sheer higher-order elec-
tromechanical coupling). A truncated pyramid is used to
verify the implementation taking into account all components
of strain gradients. Afterwards, a cantilever beam problem is
used for the verification of flexoelectricity in piezoelectric
solids (combined linear and higher-order electromechani-

Algorithm 1Mixed FE subroutine
1: Initialize DOFs ui , ψi j , Li j , φ � from previous time step
2: Calculate C,A, κ, d, f � material tensors
3: for i=1, Gauss points do
4: Calculate Nu ,Nψ,NL,Nφ � quadratic shape functions
5: Calculate jacobian matrices, its determinant

and inverse
6: Calculate Bu,Bψ,Bφ � differential matrices
7: Calculate Mu � gradient matrix of displacement
8: Calculate εi j , ui, j , η̃, Ei ,Li j � strain-like variables and

Lagrange multiplier
9: Calculate σi j , τi jk ,De

i based on Eq. (7) � stress-like variables
10: Evaluate F,X,R,S,V,Y based on Eq. (23)
11: Update RHS vector based on Eq. (25)
12: Calculate Kuu ,KuL,Kuφ,Kψψ,KψL,Kψφ,Kφφ

based on Eq. (24) � component matrices of element stiffness
matrix

13: Update AMATRX matrix based on Eq. (25)
14: end for
15: return AMATRX, RHS

ui
R

uo
R

u2 = ψ12 = ψ21 = 0

u
1
=

ψ
12

=
ψ

21
=

0

Fig. 2 Geometric illustration of the thick cylinder problem with 600
elements

cal coupling). Finally, a comparison of the existent element
Q47with newly proposed elements is performed to illustrate
the robustness of the proposed finite elements.

5.1 Thick cylinder: dielectric solids with flexoelectric
effect

In this subsection, the user element is verified for the case of
flexoelectricity in dielectric solids in the absence of piezo-
electricity. Also, as no piezoelectricity is considered, it is an
isotropic case. For this, a classical BVP of a thick cylinder
with prescribed inner and outer radial displacements is con-
sidered [1]. It is possible to obtain an analytical solution for
this axis-symmetric problem. Analytical solution for the pri-
mary variable uR for SGE is given in [40]. It was further
extended for flexoelectric solids with electric polarization as
local variable [41]. The analytical solution for flexoelectric
solids with electric field as local variable is given in [1].

Thegeometric illustrationof thequarter symmetrymeshed
model used for the numerical simulation and applied bound-
ary conditions is shown in Fig. 2. It is an axis-symmetric
problem with a 2D plane strain assumption. Details related
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Table 1 Thick cylinder: geometry details and applied loading

Property Inner boundary Outer boundary

Radius r i = 10 μm ro = 20 μm

Displacement uiR = 0.045 μm uoR = 0.05 μm

Electric potential φi = 0.0 V φo = 1.0 V

Table 2 Material properties of the thick cylinder [1]

Y [GPa] ν l [μm] f1, f2 [C/m] κ11, κ22 [F/m]

139 0.3 2 1 × 10−6 1 × 10−9

to the simulation model are summarised in Table 1. Super-
scripts i and o correspond to inner and outer geometrical
quantities, respectively. The numerical simulations are per-
formed using all three elements: Q47, QL0-4, QL1-16.
Table 2 summarizes the material properties used. Here, Y
is Youngs modulus, ν is Poissons ratio, l is the material
length scale, f1, f2 are the flexoelectric coefficients, κ11, κ22
are the dielectric coefficients. The results for the mechani-
cal displacements and electric potential from the numerical
simulations are compared with known analytical solution,
cf. Fig. 3. The comparison shows high correlation for all
types of finite elements. Furthermore, the electric field distri-
bution is presented in Fig. 4. Flexoelectricity has a powerful
influence due to its dependence on strain gradients which
are inversely proportional to the length scale. This increases
the material’s stiffness, yielding lower displacement through
the thickness of the beam. A steep rise in the electric field
near the inner surface of the cylinder is appealing to observe.
It is essential to state that since this example is defined at
micrometer length scale, stabilization diagonal parameter α

in the order of 10−22 is required here for the known element
Q47, cf. Sect. 5.5. The distribution of the radial and cir-
cumferential components of relaxed and mechanical strains
is shown in Figs. 5 and 6. From Fig. 5, it can be observed
that there is prominent waviness in the plot of the radial
component of mechanical strain ε11 for Q47 due to weak
enforcement of kinematic constraints which is also acknowl-
edged in [1]. This waviness in the proximity of the outer
surface does not exist in the case of the proposed elements
QL0-4 and QL1-16. There is a non-smooth distribution in
the proximity of the inner surface for the elements Q47 and
QL0-4which does not occur in case of the element QL1-16.
QL0-4 and QL1-16. For comparing the computational cost
using a test thick cylinder job with 600 elements on a stan-
dard desktop1, it is observed that Q47 takes 3.32 s / 60 MB,
whereas QL0-4 – 3.59 s / 90MB, and QL1-16 – 4.27 s / 112

1 Intel(R) Xeon(R) E5-2630 v2 @ 2.60 GHz with 32 Gigabytes of
RAM.

MB RAM. Hence, it can be stated that QL1-16 yields best
results at the expense of acceptably higher computational
cost.

5.2 Truncated pyramid: pure flexoelectric effect
without SGE

A truncated pyramid sets an excellent example for inducing
strain gradients under compression. The same was used for
performing experiments to quantify longitudinal flexoelec-
tric coefficient in [17]. This example considers a 2D truncated
pyramid under plane strain assumption. The top surface has a
length equal to the pyramid’s height, whereas the bottom has
a length of three times that of the height. Thebottomsurface is
fixed along both directions, and an applied compressive force
F = −4.5 N is distributed along the length of the top surface
[3]. The top surface is electrically grounded. A small value of
10−3×l is used for numerical stability [3, 27]. The geometry
is meshed with a total of 2500 elements. The tapered edges
are meshed with a bias ratio of 3, whereas a uniform mesh is
utilized on the top and bottom edges, ensuring a consistent
element count of 50 on each of these edges. For the sake of
verification with results from available literature the exactly
same simulation setup is used. This assumption of negligi-
ble material length scale excludes the complexities involved
due to consideration of SGE. Such a scenario is referred to
as pure flexoelectric effect [1]. With this, the energy contri-
bution due to SGE is ignored as a consequence of resulting
A jklmni ≈ 0 in Eq. (7b). Nevertheless, relaxed strains are
still computed and kinematically constrained with mechani-
cal strains to evaluate strain gradients and, consequently, the
flexoelectric contribution.

Table 3 summarizes the material properties used. Figure 7
shows the schematic illustration of the geometric details and
boundary conditions.

As a result of the difference in length between the upper
and lower side, inhomogeneous strains occur in the truncated
pyramid, which lead to strain gradients in the longitudinal
direction. Also, fixing the bottom surface yields inhomo-
geneous traction distribution supporting the development of
strain gradients. Due to this, η̃333 is significant here. In the
case of flexoelectricity, there are three independent flexoelec-
tric coefficients due to the cubic symmetry of the flexoelectric
tensor. These coefficients include f1111, f1331, f1313 that are
denoted as f11, f12, f44 in Voigt notation. Under isotropic
assumption, f11 = f1 + 2 f2, f12 = f1, f44 = 2 f2 [1, 3].
Flexoelectric constants f1 and f2 are analogous to Lame’s
constants for linear elasticity in isotropicmaterials. However,
shear component f2 = f1313 = f44 is neglected here for the
verification purpose with results of [3]. In order to assess
the implications of flexoelectricity, an effective electric field
across truncated pyramid is evaluated as Eeff = V/h, where
V is the electric potential difference between the top and
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Fig. 3 Comparison of the
mechanical displacement (left)
and electric potential (right) in
the radial direction from the
numerical simulations with
analytical solution
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Fig. 4 Electric field in the radial
direction (left) and the
corresponding electric potential
contour (right)
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Fig. 5 Comparison of
mechanical ε11 and relaxed ψ11
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relaxed ψ11 strain contour
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bottom surface generated due to the flexoelectricity. Also,
φ is assumed to be constant along the bottom surface as a
result of a sensing electrode attached to it. The effective elec-
tric field Eeff is evaluated for various sizes of the truncated
pyramid and compared with the simulation presented in [3,
27]. The results of the verification are shown in Fig. 8. The
size-dependent phenomenon of flexoelectricity is compre-
hensively illustrated in this graph. Moreover, it can be seen
that the results of the numerical modeling are in great agree-
ment with those given in the literature. The contour plot for
the electric potential distribution provide an additional illus-
tration of the pure flexoelectric effect impact (the height of

Table 3 Material properties of the truncated pyramid [27]

Y [GPa] ν f1 [C/m] f2 [C/m] κ11, κ33 [F/m]

100 0.37 1 × 10−6 0 11 × 10−9

the pyramid is taken to be 7.5 μm) and matches the known
results.

5.3 Cantilever beam: piezoelectric solids with
flexoelectric effect

As one of the important points of this work is to study
the mutual interaction between piezoelectricity and flexo-
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h

h
F/h

x3
x1 V

Fig. 7 Geometric illustration of the truncated pyramid problem

electricity, verifying the material behavior when both are
activated simultaneously is important.

In [42], the electromechanical coupling factor keff for 1D
flexoelectric cantilever beam neglecting any 2D effects is
derived analytically as

keff = χ

1 + χ

√√√
√ 1

κY

[

d231 + 12

[
f1
h

]2]

. (26)

χ is the relative electric susceptibility. In case of the numerical
simulations, keff is computed as

keff =
1
2

∫

Ve
Eiκi j E j dVe

1
2

∫

Ve
εklCklmnεmndVe

. (27)

Figure 9 illustrates the geometry of the cantilever beam
and the applied loading used in the currentwork. Thematerial
properties are summarized in Table 4. The ratio L/h = 20 is
used for this analysis. A small value of l is used for numerical
stability similar to Sect. 5.2. As the relation for keff (Eq. (26))
is based on 1D, the 2D effects of the cantilever beam problem
are to be neglected and only η̃311 is relevant here. Concen-
trated force F is applied at the free end of the cantilever beam.
The geometry is meshed with a total of 2000 elements. The
mesh consists of 10 layers of elements along the height of the
cantilever beam, while each edge along its length comprises
200 elements.

h

F

L

Fig. 9 Geometric illustration of cantilever beam problem

Table 4 Material properties of the cantilever beam [3]

Y [GPa] ν f1 [C/m] f2 κ11 κ22 [F/m] χ d31 [C/m2]

100 0.0 1 × 10−6 0.0 0.0 12.48 × 10−9 1408 -4.4

The normalized effective piezoelectric constant is computed
as [42]:

d̃ = keff/k
piezo
eff , (28)

where kpiezoeff is calculated by only activating piezoelectricity
without flexoelectricity.

The results of the simulations and various comparisons are
shown in Figs. 10 and 11. It can be seen that the results are in
great agreement with the analytical solution and the numer-
ical calculations. The aim is to illustrate the size-dependent
behavior of flexoelectricity. The existence of an additional
linear electromechanical coupling has a significant influ-
ence only for larger geometrical sizes. Figure 11 shows the
normalized effective piezoelectric constant vs. normalized
length/height of the beam. It can be concluded that flexo-
electricity is very prominent at smaller scales of study and
has a negligible influence at larger scales. However, there is
an overestimation of the piezoelectric coefficient due to the
absence of 2D effects, which was as well acknowledged in
[3]. With this, the implementation of a fully coupled elec-
tromechanical formulation is additionally verified.

5.4 Truncated pyramid: piezoelectric solids with
flexoelectric effect

In the current subsection, the analysis of piezoelectric trun-
cated pyramidwith activation of flexoelectricity is performed
for the first time. The geometry and boundary conditions are

Fig. 8 Verification of the
normalized effective
piezoelectric constant (left) in
which, h0 = 750 μm is used
for normalizing heights of
truncated pyramids on the
abscissa. Contour plot of the
generated electric potential
distribution (right)
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Fig. 10 Distribution of electric
potential φ (top) and electric
field E2 (bottom) for
piezoelectricity + flexoelectricity
case with h = 0.273 μm
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Fig. 11 Comparison of simulation of a cantilever beam problem with
analytical solution [42] and numerical results [3]

illustrated in Fig. 7, cf. Sect. 5.2. A compressive force of
−4.5 nN is applied, whereas h = 1500 nm and l = 2 nm. A
transversely isotropic AluminumNitride (AlN) piezoelectric
ceramic poled along positive x3 direction is considered. The
material properties are summarized in Table 5.

Truncated pyramid is a complex problem due to taper-
ing edges acting as sites for sheer strain gradients. This
greatly influences the electric potential generated due to
flexoelectricity. In case of linear electromechanical coupling
scenarios, the tapering edges act as stress and electric field
concentrations zones. The aim of the current study is the
analysis of the mutual interaction of flexoelectricity and
piezoelectricity.

The results obtained are shown in Fig. 12. The linear and
higher-order electromechanical influences are visible in the
contour diagrams. For the electric potential plotted along
x3- coordinate and tapered edge of the truncated pyramid
at x1 = 0, the superpositional nature of piezoelectricity and
flexoelectricity is observed. The diagram emphasizes the dif-
ference between the spatial distribution of the electric field
due to linear and higher-order electromechanical coupling.
It is stated that the influence of each of these phenomenon
is dependent on the scale of study, e.g., for truncated pyra-
mid with h = 7.5 μm, piezoelectric effect is stronger than
flexoelectric effect and hence former overshadows the lat-
ter. Whereas, for truncated pyramid with h = 7.5 nm, the
flexoelectric effect is essentially more pronounced than the
piezoelectric effect. For this reason, a truncated pyramid
with midrange size of h = 1.5μm, for which the orders of
influence are of the same magnitude, is chosen to illustrate
the interaction between these phenomena. With this study,

it is emphasized that flexoelectricity in piezoelectric solids
is more of a geometric-size dependent phenomena rather
than that of material properties. Simulations through differ-
ent scales, ranging from dominant linear electromechanical
coupling on the macro and mesoscale down to gradient-
dominated simulations on the nanoscale, are now possible
in a single numerical framework. The proposed elements
make it possible to isolate the influence of piezoelectricity
and flexoelectricity independently, which is crucial for mod-
ern miniaturized electronics.

5.5 Comparison of the existing element Q47with
newly proposed elements for flexoelectricity:
analysis of stabilization parameter˛

Current subsection illustrates the influence of stabilization
parameter on the performance of Q47[1]. The diagonal
zeros in element stiffness matrix given in Eq. (24) have to
be replaced with small numerical zeros to assure numeri-
cal stability. Such numerical zero quantity is referred to as
stabilization parameter. The challenge with Q47 is that the
stabilization parameter is problem / length scale specific and
simulations in the case of non-suitable stabilization param-
eter magnitude can produce inaccurate results. To illustrate
such behavior, the thick cylinder problem from Sect. 5.1 is
simulated with various stabilization magnitudes α, while all
other parameters are kept unchanged. This comparison is
conducted for the distribution of mechanical strain ε11 and
relaxed strain ψ11 across the thickness of the cylinder and
presented in Fig. 13. It is expected that the distribution of
ε11 and ψ11 will overlap due to the application of kinematic
constraints. However, due to the weak enforcement of such
constraints within a finite element, small deviations are pos-
sible [1].

A brief summary of the results using various stabilization
parameters for existing element Q47 is shown in Table 6. It
can be observed that the constraints are not obeyed at allwhen
α = 0.0. In contrast, in case of QL0-4 and QL1-16, the
constraints for α = 0.0 are fulfilled (i.e. there is no need for
a stabilisation parameter), as can be seen from Fig. 5. Using
stabilisation parameter larger than 10−15 yields a severe dis-
crepancy between the mechanical strains and the relaxed
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Table 5 Material properties of Aluminum Nitride piezoelectric ceramic poled along x3 direction [43] with flexoelectricity

C11 C12 C22 C13 C66 [GPa] κ11 κ33 [nF/m] d15 d31 d33 [C/m2] f2 f1 [C/m]
345 125 395 120 110 0.08 0.095 -0.48 -0.58 1.55 0.0 1×10−6

Fig. 12 Contour plot of the
generated electric potential for
piezoelectric case (top left),
flexoelectric case (top right),
combination of piezoelectric
and flexoelectric cases (bottom
left) and comparison of
generated electric potential
across truncated pyramid for
different cases (bottom right).
Here “V” stands for the electric
potential values extracted along
the x3-coordinate, while “TE” -
along tapered edge, starting
from bottom up
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Fig. 13 Comparison of mechanical and relaxed strain components for
various stabilization parameters

strains. It must also be recalled that α is strongly dependent
on the length scale of the BVP.

Another example used to illustrate the influence of sta-
bilization parameter is cantilever beam with an applied
concentrated force F = 100 μN on its free end as shown in
Fig. 9. The cantilever beam is assumed to have L/h = 25. The
material properties used for this analysis are summarised in
Table 7 and are assumed to be the same throughout the study.

Themain purpose here is to compare the deflection profile
of the cantilever beam for the existing element and for the
newly proposed elements. The results obtained are shown in
Fig. 14.

From Fig. 14, it can be observed that for Q47 with
α = 0.0, the results have very large deviation. This happens
because the kinematic constraints are not obeyed and the
relaxed strain components ψi j are not calculated correctly.
On the other hand, the results of the newly proposed ele-

ments QL0-4 and QL1-16 even with α = 0.0 yields good
results and relaxed strain components are calculated appro-
priately. When α = 10−22 is used for Q47, the results are in
good agreement with those obtained using newly proposed
elements.

Furthermore, extensive code verification was performed
to ensure the elements’ stability and accuracy. In particular,
the attention was on the so-called LBB (Ladyzhenskaya-
Babuška-Brezzi) condition, which is essential for saddle
point problems like the one at hand. Passing the patch test,
as advocated in [44], serves as a key indicator of fulfilling
the LBB condition. The patch test is a standard procedure in
FE analysis that involves constructing a small patch of ele-
ments with known analytical solutions or expected behavior.
By applying appropriate boundary conditions, the computed
results are compared with the expected solutions. As part
of the code verification process, patch tests were performed
using bi-quadratic mechanical displacement and electric
potential. The proposed elements successfully passed these
rigorous tests, providing strong evidence of their numeri-
cal robustness without the need for additional stabilization
parameters.

6 Conclusion

In the current research, two new numerically robust finite
elements for fully coupled higher-order electromechanical
simulations are proposed.
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Table 6 Summary of results for
various stabilization parameters

α 10−10 to 10−15 10−16 to 10−22 0.0

Results
Not realistic compared
to results given in liter-
ature.

Realistic & matching
results within the given
range.

Large deviation in results
as kine-matic constraints are
not obeyed.

Table 7 Material properties of the cantilever beam [1, 28]

Y [GPa] ν l [nm] f1 = f2 [C/m] κ11 = κ22 [F/m]

126 0.3 2 1 × 10−6 13 × 10−9
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Fig. 14 Comparison of deflection of beam for existing and newly pro-
posed finite elements

This involves not only the established flexoelectric for-
mulations in dielectric solids, but on top of that an additional
linear electromechanical coupling (piezoelectricity).

For dielectric insulator materials with non-cubic unit cell
structures such as tetragonal or rhombohedral ones, there
exists an intrinsic non-centrosymmetry leading to piezoelec-
tricity in addition to a flexoelectricity due to mechanical or
electrical gradients. Some tentative attempts have shown that
it is possible to capture these two phenomena, but most of
this research has not been explored in detail. The present
manuscript makes a significant contribution to the field of
flexoelectricity in several ways, including new stable mixed
finite elements for direct incorporation of both linear and
higher order coupling, with results that highlight the interac-
tions between piezoelectricity andflexoelectricity at different
length scales through in-depth analysis.

The variational formulations of flexoelectricity along
with piezoelectricity involve fourth-order partial differen-
tial equations. Therefore, a mixed FEM is employed so
that C0-continuous elements can be used, which weakly
ensure C1-continuity. Two new finite elements QL0-4 and
QL1-16 are introduced and their robustness is illustrated.
In addition, the existing finite element Q47 is implemented
from scratch to replicate results from the literature and to
gain further information on numerical stability. Our work
has shown that the existing elements rely on a stabilisation
parameter, while the newly proposed elements do not.

The reliability of new elements was demonstrated by their
application to known benchmark problems such as a thick
cylinder and a cantilever beam. The numerical results show
a great agreement with the analytical solution for the thick
cylinder problem and those from the literature.

In addition, an analysis for a piezoelectric truncated pyra-
mid with flexoelectricity is performed for the first time. The
study yielded a scale-dominated profile of the generated
electric potential for the case where flexoelectricity is acti-
vated in piezoelectric material, and enabled simulations to
be performed at the macroscale, where the flexoelectric con-
tribution is negligible and only linear piezoelectric coupling
takes place, and at the intermediate scale, where it depends
on the mutual values of the piezoelectric, dielectric and flex-
oelectric tensor components, so that the influence becomes
comparable, all the way down to nanostructural simulations,
where the flexoelectric effect can have a purely dominant
effect, depending on the geometry and loading.

It is shown that it is possible to separate piezoelectricity
and flexoelectricity with the proposed finite elements. Such
analyses are important because it is difficult to isolate differ-
ent phenomena in experiments.

It can be concluded that the proposed numerical model-
ing enabled the insight into the size-dependent interactions of
different phenomena using the newly developed numerically
robust mixed finite elements. The current research high-
lights the importance of the existing non-centrosymmetry in
the nanoscale single crystals or the genuine polarisation of
industrially used polycrystalline ceramics possessing linear
electromechanical coupling on the overall electromechanical
response of MEMS with flexoelectricity.

Currently, work is underway to incorporate the non-linear
ferroelectric material behaviour within flexoelectric formu-
lations.
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