
Computational Mechanics (2024) 73:1187–1202
https://doi.org/10.1007/s00466-023-02406-8

ORIG INAL PAPER

One-point quadrature of higher-order finite and virtual elements
in nonlinear analysis

Tobias Bode1,2

Received: 25 May 2023 / Accepted: 30 September 2023 / Published online: 3 November 2023
© The Author(s) 2023

Abstract
In the present article, a stability- and consistency-preserving integration scheme for polynomial Galerkin approaches of
arbitrary order is presented. The basis is formed by Taylor series expansions of the stresses with respect to the strains,
which in turn are expanded towards the spatial directions. With a split of the material and geometric nonlinearities and the
assumption of a material behavior linearly variable within an element, the strain energy in elements of arbitrary shape
and polynomial order can be evaluated exactly. Therefore, geometric moments have to be calculated in preprocessing,
requiring only evaluations of derivatives at a single integration point during the analysis. The moments can be effectively
integrated analytically over the boundary of the elements. As one of the manifold applications, the use in the context of
second order virtual elements is elaborated for which the assembly time can be significantly reduced. The combination with
the automatic differentiation and expression optimization software AceGen provides performant element routines. In the
numerical examples, the integration scheme shows promising accuracy and makes the application in more complex material
models up to computational homogenization attractive.

Keywords Quadrature by differentiation · Moment integration · Integration split · Virtual Element Method

1 Introduction

The modeling for the description and prediction of processes
in nature often leads to partial differential equations. Solving
these field equations can be done analytically in only very
few cases, so that in practice numerical solution methods are
frequently used. Variational methods such as the Galerkin
method have proven to be very effective and are widely used
in various fields in industry and research. After choosing
a suitable solution space, which is the subject of ongoing
research, a system of equations must generally be set up and
solved to obtain an approximate solution. These two parts
usually represent the largest computational effort and there-
fore, in addition to the choice of the variational method and
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the solution space, also offer the greatest potential for a reduc-
tion in computational time.

To set up the necessary system of equations, an integration
over the simulated area is required.Analytical integration can
become difficult or even infeasible for complex geometries or
nonlinear equations, leading to numerical integration through
weighted evaluations of the integrand, known as quadrature.
To achieve quasi-optimal accuracywith theGalerkinmethod,
as expected by Cea’s lemma [1], the quadrature scheme has
also to be suitably accurate. In the case of the isoparametric
finite element method (FEM), for example, one integration
point per element is sufficient for a piecewise linear approach
to evaluate the static tangent stiffness matrix accurately. A
piecewise quadratic approach may improve convergence but
typically requires an increased number of function evalu-
ations, as discussed in [2]. An overview and literature on
numerical integration methods can be found in [3, 4].

Especially in the case of complex constitutive laws, under-
integration or even selective integration is often used in
engineering to save computational time or to prevent lock-
ing, cf. [5]. The rank deficiency of the tangent matrix that
occurs with complete underintegration is accompanied by a
loss of stability and has to be treated by additional stabi-
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lization techniques [6]. These can be purely mathematically
motivated, containing a case-dependent fitting parameter, but
also physically motivated stabilizations without the need of
tuning parameters are employed, see e.g. [7, 8].

The construction of a suitable stabilization is a tightrope
walk between different goals to be achieved.On the one hand,
it is the task of the stabilization to eliminate unphysical zero-
or low-energy modes. On the other hand, the stabilization
should not in turn lead to locking phenomena. In addition,
objectivity, variational consistency and an applicability to
nonlinear problems should be ensured. In most cases, it is
not possible to completely satisfy all objectives, so a good
compromise has to be found. The strategies and interpreta-
tions of the stabilization that have been developed include the
isolation of hourglassmodes [9], the use ofmixed approaches
[10] in combination with Taylor series expansions [11, 12],
Taylor expansion of stress measures [13] and the decompo-
sition of the deformation gradient into a homogeneous and
inhomogeneous part [14, 15]. Most of these approaches are
restricted to bi- and trilinear elements.

Another approach is to define the stabilization in such
a way that it repairs the integration error due to under-
integration. In [16], this has been pursued for bilinear finite
elements involving a single integration point with a constant
Jacobian andmaterial tangent. Moutsanidis et al. [17] further
extends this approach to reduced-integration for second-
order finite elements, iso-geometric analysis and meshfree
methods. The recovery of exact integration can again lead
to locking phenomena, but these often become tolerable for
higher order approaches, which is why in the present article
a one-point integration approach is derived that is applicable
to polynomial approaches of arbitrary order.

Further on, an alternative integration method based on
series expansions and additional spatial derivatives of the
integrand is proposed that can be used for polygonal element
shapes and nonlinear material behavior. The fundamental
idea is to achieve arbitrary order polynomial integration
accuracy by evaluating higher order derivatives. Through
the series expansions, the displacement-dependent quanti-
ties can be extracted from the integrals, replacing integration
with the calculation of geometric moments in preprocessing.
The procedure can be effectively combined with auto-
matic differentiation and expression optimization, as further
demonstrated in the use of the softwareAceGen [18] through-
out this article.

In the following section, the moment integration scheme
is introduced, starting with linear elasticity in small deforma-
tions. The procedure is then continued for finite deformations
and nonlinear material behavior. In order to allow an efficient
implementation, a geometric-material-nonlinearity integra-
tion split is presented that allows to capture the full geometric
nonlinearity of the solution space while considering only
a linear material behavior in the elements tangent space.

As an excellent application of the integration scheme, the
usage within the virtual element method (VEM) is illustrated
further. Therefore, Sect. 3 introduces the VEM, where an
alternative perspective was adopted in order to demonstrate
its relationship to techniques in other discretization methods,
such as variationally consistent meshfree methods. Section4
is used for the detailed numerical analysis of the integration
scheme. A conclusion is given in Sect. 5.

2 Moment integration in Galerkin methods

This section introduces a moment integration method for
weak forms based on Taylor series expansion of stresses and
its conjugate virtual and actual kinematic measures, inspired
by the stabilization technique used in [19, 20]. The first sub-
section shows how to apply the procedure to the virtual work
for linear elasticity, arising in the weak form of the linear
momentum balance equation, and considers polynomial dis-
placement approximations. The second subsection explores
the extension to nonlinear equations and presents the idea of
an integration split of geometric and material nonlinearities.
The third subsection illustrates how to utilize the automatic
differentiation package AceGen to obtain the derivatives.

2.1 Linear elasticity, small deformations

Beginning with linear elasticity and small deformations, we
consider the integral of virtual work over a finite element
occupying region �e

0:

∫
�e
0

σ : δε d�e
0, (1)

Instead of choosing a suitable Gauss quadrature scheme
for the considered ansatz, a single reference point in the ele-
ment is chosen and Taylor series expansions of the product
terms are performed. For the stresses, the first order expan-
sion with respect to the strains yields:

σ = σ + σ ,ε : �ε (2)

where �ε = ε − ε and σ ,ε denotes the material tangent.
The further notation employs a subscript comma followed
by the tensor to represent partial derivatives. Additionally,
a constant value with respect to the argument of the Taylor
series expansion is denoted by an overline.With linear elastic
material behavior, i.e. σ = C : ε = σ ,ε : ε, the virtual work
yields

∫
�e
0

σ : δε d�e
0 =

∫
�e
0

(
σ ,ε : ε

) : δε d�e
0 (3)
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In the case of a polynomial approximation for the primary
variables (here displacements), the strain is also polynomial.
Therefore, the virtual and actual strain can be described by a
Taylor series expansion with respect to the position:

(δ)ε = (δ)ε + (δ)ε,X · �X (+ · · · ). (4)

For the sake of clarity, a second order approximation
is followed. However, an extension to arbitrary polyno-
mial approximations is possible in an analogous way. Re-
substituting into the virtual work and transforming into index
notation such that constant terms are moved outside the inte-
gral results in

∫
�e
0

σ : δε d�e
0

=
∫

�e
0

[
σ ,ε : (ε + ε,X · �X)

] : (δε + δε,X · �X
)
d�e

0

= σ,εabcdεcdδεab

∫
�e
0

1 d�e
0

+ σ,εabcdε,X cdeδεab

∫
�e
0

�Xe d�e
0

+ σ,εabcdεcdδε,Xabe

∫
�e
0

�Xe d�e
0

+ σ,εabcdε,X cdeδε,Xabf

∫
�e
0

�Xe�X f d�e
0 (5)

The integral expressions are volume moments and can
be viewed as integration weights. As they do not depend
on the displacements, they can be calculated as part of the
preprocessing. In this sense, the effort of integration can be
accomplished offline, and in the analysis phase only eval-
uations at a reference point per element are required. The
calculation of volume moments can be done either ana-
lytically or using Gauss quadrature. High-order quadrature
methods on triangles can be found in [21]. For general poly-
gons, the integral can also be shifted to the boundary where
it can be integrated analytically as shown in Sect. 3.3 for
straight edges. It should be noted that curved edges, pores,
and other complex geometries can also be easily captured by
the integration. In these cases, however, an appropriate ansatz
space must be chosen to ensure continuity and completeness
for optimal convergence.

Remark In the case of linear elasticity under small deforma-
tions, the volumemoments arise from the product of the strain
tensor and its virtual counterpart. For a polynomial ansatz of
degree n, volume moments of degree 2(n − 1) appear. The
position of the integration point and hence the evaluation of
the constant terms ( ) can be chosen arbitrarily (it could even
lie outside the element) since the integral of virtual work is
calculated exactly. Thereby, the reference position must be

taken into account when calculating the volume moments.
When nonlinear material behavior is considered, as in the
next subsection, the reference position gets relevant.

2.2 Finite deformations

To extend the method to the nonlinear regime, one could
proceed as in the stabilization approach presented in [20]
(subsection 6.3.2) and choose the first Piola–Kirchhoff stress
tensor P = �,F and the deformation gradient tensor F as
conjugate variables. However, this approach has the disad-
vantage that even for linear elastic material behavior, such
as the St. Venant material model, an exact Taylor series
expansion of Pwith respect to F requires an eighth order ten-
sor, although it exhibits some symmetries. A more efficient
approach is to use the right Cauchy–Green tensorC = FT ·F
and its conjugate stress measure �,C as kinematic variables.
This has the advantage that both C and �,C are symmetric.
Furthermore, it enables a clean separation between geometric
and material nonlinearities. This is illustrated by considering
the St. Venant model, which can be described by the follow-
ing strain energy function:

�SV = λ

2
tr (E)2 + μ tr

(
E2

)
. (6)

Here, λ and μ denote the two Lame constants, and E =
1
2 (C − I) is referred to as the Green–Lagrange strain tensor.
The corresponding stress measure and material tangent can
be computed as follows

�SV
,C = 1

2
(λ tr (E) I + 2μE) = 1

2
S (7)

�SV
,C2 = 1

4
(λI ⊗ I + 2μI) = 1

4
C, (8)

where S represents the second Piola–Kirchhoff stress tensor,
C denotes the tangent modulus with respect to the reference
configuration, and I symbolizes the fourth order identity ten-
sor.

The St. Venant material model is special in that �SV
,C2 is

constant and thus the stress measure �SV
,C is linear in C.

Therefore, the stress within a domain can be described using
a Taylor series expansion with respect to C or E, and the
expansion can be truncated after the linear term without loss
of accuracy. Hence, we now use C as the kinematic measure
in our integration approach, and obtain the expression for the
virtual work in the domain �e

0 as

∫
�e
0

δ� d�e
0 =

∫
�e
0

�,C : δC d�e
0. (9)
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The Taylor series expansion of the stress measure �,C is
then expressed as

�,C = �,C + �,C2 : �C +
( ∞∑

i=2

1

i !�,C(i+1) : �C⊗i

)
, (10)

where we first consider only the linear part. The approach
for the (virtual) right Cauchy–Green tensor is exact for a
polynomial displacement ansatz of degree n when truncated
to degree 2 (n − 1). For instance, for a simplex-shaped sec-
ond order finite element, this yields:

(δ)C = (δ)C + (δ)C,X · �X + 1

2
(δ)C,X2 : �X⊗2

+
( ∞∑

i=3

1

i ! (δ)C,Xi : �X⊗i

)
. (11)

Asmentioned in the previous subsection, the series expan-
sion of the kinematic measure can now be substituted into the
stress expression, aswell as the virtual strainmeasure into the
expression for the virtual work. Thus, the only non-constant
values remaining in the integral are geometric quantities of
the initial configuration and again result in volumemoments.
After some rearrangement, neglecting higher order terms, we
obtain:

∫
�e
0

δ� d�e
0 =

4(n−1)∑
i=0

1

i !δ�,Xi • Mi (12)

with the scalar product • and the i-th order moment tensors

Mi =
∫

�e
0

X⊗i d�e
0. (13)

The abbreviations δ�,Xi can be interpreted as the spatial
derivative of the virtual strain energy evaluated at a refer-
ence integration point. In the considered example, they are
composed as follows:

δ� = �,Cab δCab

δ�,X e = �,C2abcdC,X cdeδCab + �,CabδC,Xabe

δ�,X2 e f = �,C2abcd

(
C,X2 cde f δCab + 2C,X cdeδC,Xabf

)

+ �,CabδC,X2abe f

δ�,X3e f g = 3�,C2abcd

(
C,X2 cde f δC,Xabg

+C,X cdeδC,X2ab f g

)

δ�,X4 e f gh = 6�,C2abcdC,X2 cde f δC,X2abgh, (14)

where the overline is omitted for conveniencewhile it is actu-
ally present for all measures, indicating the evaluation at the
single integration point.

So far, the integration of the virtual work within the ele-
ment is exact for the example of the second order approach
in combination with the material model of St. Venant. Let us
consider now, a nonlinear and non-polynomial strain energy
function, such as the following neo-Hookean model accord-
ing to [22],

�NH = μ

2
(TrC − 3 − 2 ln J ) + λ

4

(
J 2 − 1 − 2 ln J

)
(15)

with the determinant of the deformation gradient J . An exact
integration using polynomial approximations is only feasible
with an infinite number of terms, which is not practical. Even
classical Gauss quadrature cannot fulfill this requirement.
However, the Taylor series approach presented above pro-
vides the opportunity to selectively integrate the material and
geometric nonlinearities with different levels of accuracy. To
ensure stability, i.e., to avoid rank deficiency of the stiffness
matrix, full geometric nonlinearity should be considered.
This is achieved by including the complete basis functions
of the Cauchy–Green tensor in the series expansion. Other-
wise, for non-simplex elements or virtual elements (Sect. 3),
all terms that ensure consistency must be included, and addi-
tional stabilization has to be used.

The considered material nonlinearity can be adjusted
adaptively in the Taylor series expansion of the stress mea-
sure (10). From a stability point of view, at least the linear
term is necessary, but often it is also sufficient. It should be
noted that highly nonlinear material behavior could also be
treated in this way, as the linear dependence is only formed
in the material tangent space. The obvious advantage is that
the evaluation of potentially computationally intensive evolu-
tion equations only needs to be performed once per element,
while still retaining the benefits of a higher-order geometric
approximation space. This becomes particularly interesting
when a whole boundary value problem needs to be evaluated
for each integration point, as is frequently done in the context
of a multiscale approach, or the shape of an element requires
a large number of Gauss points.

It should be noted, however, that in the example of plas-
ticity, an element is only fully captured as either plastic or
elastic. However, it is also possible to divide the integration
domain into several parts per element, determine the volume
moments separately for each part and evaluate the material
equations accordingly. The division and number of integra-
tion domains could be chosen arbitrarily and, if necessary,
adjusted during the simulation. Potential history variables
would then have to be interpolated with a smoothing pro-
cedure. Furthermore, it should be noted that in the case of
nonlinear material behavior, the position of the integration
point is no longer negligible and can determine whether an
element is captured, for example, as plastic or elastic. It is
advantageous to place the integration point at the centroid of
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an element or an integration cell, as in this case, the first-order
volume moment also disappears.

2.3 Automatic differentiation

The use of the Taylor series expansion of the stress ten-
sor can quickly become complex and unwieldy for more
complexmaterialmodels, especiallywhen considering a con-
sistent linearization for the assembly of the stiffness matrix.
Therefore, it is advisable to use software that allows for auto-
matic differentiation (AD) and expression optimization. For
the examples presented in Sect. 4 of this article, the pack-
ages AceGen and AceFEM were utilized. The expression
optimization recognizes symmetries and optimizes the code
accordingly, allowing for efficient generation of element rou-
tines. For instance, the fourth order tensor �,X4 (required
for second-order approximations with nonlinear kinematic
description) consists in two dimensions of 16 components,
of which only five are independent. If full material nonlin-
earity was considered, the situation gets even severe and a
manual implementation is not sensible anymore, as tensors
up to order 10 have to be computed, analogous to Eq. (14).
This strongly emphasizes the importance of AD and expres-
sion optimization for moment integration schemes.

To further improve efficiency in the automatic generation
of element routines using AceGen, it is advantageous to start
with a potential or pseudo potential, cf. [18]. The virtualwork
can be replaced by the strain energy, resulting in the residual
being obtained from the derivative with respect to the actual
unknowns (see also Sect. 3) while freezing potential history
variables. The strain energy can then be integrated in a similar
way as in Eq. (12) by

∫
�e
0

� d�e
0 =

4(n−1)∑
i=0

1

i !�,Xi • Mi . (16)

The spatial derivatives of the strain energy can be calcu-
lated using AD:

δ̂i�

δ̂Xi
= �,Xi , (17)

Thereby, δ̂ denotes theADoperator. Prior to this, the strain
energy has to be defined as a function of X. This is ensured
through the chain rule and an appropriate kinematic measure
(here C). If the computational derivative is defined without
special rules as in Eq. (17), all occurring terms are consid-
ered, as is done implicitly with Gauss quadrature. Separate
consideration of geometric andmaterial nonlinearities is pos-
sible through the additional specification of exception rules.
Often, it is sufficient to consider material nonlinearity of first
order, but an adaptive approach could also be pursued. In

the example of the second order displacement approach, for
a hyperelastic material model, the material nonlinearity of
first order can be taken into account as follows:

δ̂�

δ̂X
= �,X

∣∣∣
D�
DC =̂DC�

(18)

δ̂2�

δ̂X2
=
(

δ̂�

δ̂X

)

,X

∣∣∣∣
̂DC�

DC =̂DC2�

(19)

δ̂3�

δ̂X3
=
(

δ̂2�

δ̂X2

)

,X

∣∣∣∣
̂DC�

DC =̂DC2�,
̂D
C2

�

DC =0
(20)

δ̂4�

δ̂X4
=
(

δ̂3�

δ̂X3

)

,X

∣∣∣∣
̂DC�

DC =̂DC2�,
̂D
C2

�

DC =0
, (21)

where quantities marked with (̂ ) denote auxiliary variables
that were defined priorly as

D̂C� = �,C and D̂C2� = �,C2 . (22)

Note that as an exceptional rule, the material nonlinearity
in the tangent space has been set to zero from second order
onwards.

The integration of the strain energy within AceGen for the
examples of Sect. 4 is performed using the code block shown
in Fig. 1. Thereby, intSplit is a bool that specifies whether an
integration split of material and geometrical nonlinearities
should be performed. Further, ox represents the order of the
polynomial integration accuracy, om represents the order of
material nonlinearity, and C is the kinematic intermediate
variable that depends on both the displacements u and the
position relative to the reference integration point X via the
shape functions. Details on how to compute the momentsMi

will be discussed in Sect. 3.3.

3 Application to second order virtual
elements

If the moment integration from the previous section is used
for bi- or tripolynomial elements, the required integration
order increases rapidly and becomes inefficient. For exam-
ple, moments up to degree eight are already required for the
geometrically complete integration of a trilinear element in
hyperelastic material models. While the highest polynomial
degree in the basis is relevant for the complete integration,
the convergence rate is, however, limited by the complete-
ness of the basis set. A possible workaround for this problem
is to under-integrate up to the polynomial degree required
for convergence and to add stabilization in order to prevent
a rank deficiency of the stiffness matrix.

This approach is used in the VEM in a very general way
(see [23]). Thereby, the word virtual results from the fact
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Fig. 1 Symbolic definition of
moment integration of the strain
energy in AceGen, taking into
account the material
nonlinearity om and the
polynomial integration accuracy
ox

that the generally implicit shape functions are to be evalu-
ated only at the well-defined boundary and need not to be
computed in the interior. Due to the evaluation at the bound-
ary, the elements can in principle be of quite general shape
(cf. [24]), so that also polygonal or polyhedron-shaped ele-
ments with curved boundaries are possible. This favors a
wide range of applications, for example in the discretization
of microstructures [25] or discrete particles [26] with single
elements. As alreadymentioned, the approximation (here for
the displacements) is thereby decomposed into two parts:

uh = uπ + us with us = uh − uπ . (23)

The first part, the projection uπ , is usually a polynomial
complete up to order k, which ensures the exactness and con-
vergence, that are limited by the specification of the shape
functions on the element edges. The remaining part us is
mostly evaluated at the nodes only and is used for stabiliza-
tion. By assuming that the strain energy of both parts can be
modeled separately, it results on the region�e

0 of the element
e to be

Ge
h = Ge

π + Ge
s (24)

with the projection part

Ge
π =

∫
�e
0

� (uπ ) d�e
0 (25)

and the stabilization part

Ge
s = γ e

2

nenod∑
I

u2s (XI ) . (26)

To calculate the stabilization parameter γ e, the approach
from [27] is followed in the remainder of this paper:

γ e = β

2
I • �,C2 (27)

where β equals 0.5 for Q2S meshes, 1 for Voronoi tes-
sellations and I denotes the fourth order unity tensor. The
contribution of the element e to the global residual vector
and stiffness matrix are then obtained as usual from

Re = Ge
h,ue and Ke = Re

,ue (28)

3.1 Conditions of variational consistency

As already mentioned, the shape functions are assumed to
be unknown or rather the solution of a boundary value prob-
lem within the element. The calculation of the projection
must therefore refer to the known values at the boundary.
Further, it should ensure consistency and thus be able to
approximate the polynomial of degree k exactly. A simple
least-squares regression is, however, not useful, since the
use in the Galerkin method also requires a C0 continuity
detected by the integration. Despite the fact that the virtual
shape functions are defined in such a way that they have a
global C0 continuity, this does not apply to the projection,
which is therefore subject to additional conditions.

These additional integration constraints [28] (later called
variational consistency constraints) ensure the fulfilment of
the patch test and optimal convergence. The extension to
polynomial approaches of arbitrary order (cf. [29]) has been
used mainly in the context of meshfree methods, but is very
similar to the projections in VEM and was developed around
the same time. An overview in the context of meshfree
methods can also be found in [20, 30]. The study of these
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conditions can reveal in a rather simple manner how the pro-
jections have to be defined. Therefore, a short introduction
based on the Poisson equation is given in the following:

�θ + f = 0. (29)

The weak form is obtained by multiplication with a test
function, partial integration and application of the Gauss the-
orem to obtain
∫

�0

θ,X · δθ,X − f δθ d�0 =
∫

∂�0

θ,X · n0δθ d∂�0 (30)

Inserting the Galerkin ansatz for the test function δθ =∑
I δθIφI and differentiation with respect to δθI gives the

residual of node I. With the strong form f = −�θ this
yields

∫
�0

θ,X · φI ,X + �θφI d�0 =
∫

∂�0

θ,X · n0φI d∂�0 (31)

The conditions for variational consistency are obtained
by first performing a Taylor series expansion of the primary
variable up to the desired order (here k = 2) and applying
this to the source term, as well as the trial function:

∫
�0

θ,X · φI ,X + �X ⊗ φI ,X : θ,X2 + φI Tr θ,X2 d�0

=
∫

∂�0

φI
(
θ,X · n0 + �X ⊗ n0 : θ,X2

)
d∂�0. (32)

In order to exactly reproduce arbitrary 2nd order poly-
nomials, we then differentiate with respect to the constants
θ,X and

(
θ,XX , θ,YY , θ,XY

)
and get the constraints for the test

function integration

∫
�0

φI ,X d�0 =
∫

∂�0

φIn0 d∂�0 (33)

∫
�0

(
φI ,X ⊗ �X

)
sym + φI I d�0

=
∫

∂�0

φI (n0 ⊗ �X)sym d∂�0 (34)

The first equation is necessary to fulfill the first order patch
test, the second equation additionally for the second order
patch test. Thereby, the surface integral has to vanish for
shape functions that are zero on the boundary.

Remark It should be noted that the conditions for variational
consistency of the shape functions depend on the differential
equation they are used in. Hence, above constraints derived
using the Poisson equation are not sufficient to satisfy the
second order patch test for linear elasticity. However, the
constraints resulting from the virtual work principle can be

derived in the same way. Instead of Eq. (34), then (cf. [29])
the very similar, but on the off-diagonal entries not equivalent
condition appears:

∫
�0

φI ,X ⊗ �X + φI I d�0 =
∫

∂�0

φIn0 ⊗ �X d∂�0.(35)

3.2 Construction of projection

Provided the surface integrals are evaluated exactly, the
conditions for variational consistency are equivalent to the
requirement that the virtual work σ : δε has to be integrated
accurately for arbitrary second order displacement fields. In
other words, in the case of the patch test, the virtual work
must be completely captured by the projection, so that it can
be derived from the orthogonality

∫
�e
0

σ : (επ − εh) d�e
0 = 0 (36)

for corresponding stress fields. The same projection can also
be calculated by minimization of an error functional, where
a suitable error norm has to be chosen in each case. Using
this approach, a projection for the Poisson equation and
subsequently the equations of linear elasticity is derived in
the following. Moreover, the projection is applied directly
to the shape functions, so that projected shape functions
are calculated. The projection of the respective physical
field is then obtained using the classical approach, such as
θ = ∑

I θIφπ I . Here�I are the nodal unknowns andφπ I are
the projected shape functions or rather the shape functions
of the projection.

3.2.1 Poisson equation

If we consider a second-order ansatz (k = 2) and assume that
the shape functions in the interior of each element each satisfy
Laplace’s equation, the projection of these onto a polynomial
of degree two can then be represented as

φπ = φπ0 + aπ · p, (37)

where φπ0 and aπ are coefficients and p is the centroid-
relative, full set of polynomial monomials of degree one to
two. A variationally consistent projection results from mini-
mizing the scaled L2 error

1

2

∫
�e
0

(φπ − φh)
2 d�e

0 → min{
φπ0 , aπ

} . (38)

Differentiation results in the following:

φπ0 : 0 =
∫

�e
0

(φπ − φh) d�e
0 (39)
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and aπ : 0 =
∫

�e
0

(φπ − φh) p d�e
0. (40)

The first equation yields by inserting the approach of
Eq. (37) and reformulation

∫
�e
0

φπ0 + aπ · p d�e
0 =

∫
�e
0

φh d�e
0 := me

0. (41)

The right part denotes the moment of the shape function
me

0, which is approximated later on and is also called vir-
tual moment. The gradient of the second part (Eq. (40)) is
calculated as

0 =
∫

�e
0

p ⊗ (
φπ ,X − φh ,X

) + (φπ − φh)p,x d�e
0 (42)

where the later part is included in the original equation and
thus is zero. A linear combination of the above equations that
is equivalent to minimizing an H1-error with respect to aπ

yields

0 =
∫

�e
0

(
φπ ,X − φh ,X

) · p,X d�e
0 (43)

Shifting the projection part to the left side, inserting the
projection ansatz, using integration by parts and utilizing
Gauß’ theorem leads to

aπ ·
∫

�e
0

p,X · p,X
T d�e

0 =
∫

�e
0

φh ,x · p,X
T d�e

0 (44)

=
∫

∂�e
0

φhne0 · p,X
T d∂�e

0

−
∫

�e
0

φh�p d�e
0, (45)

where ne0 stands for the normal on the surface of the element.
In the case of a second order approach, the Laplacian of the
monomials is constant, which allows the right integral to be
identified as a scaled virtual moment. In the classical VEM,
an additional unknown is introduced at the element level for
this purpose. In the serendipity approaches, see for example
[31–33], the virtual moment is approximated so that in the
case of k = 2 no additional degrees of freedom are needed
at the element level:

me
0 ≈

∫
�e
0

φcd�e
0. (46)

The function φc can thereby be determined via a nodally
integrated second-order least squares approach:

φc = ac · p̃, (47)

with the complete basis (including 1) of second order polyno-
mials p̃. The coefficients then result from the minimization:

ac = argmin

⎧⎨
⎩
1

2

nenod∑
I=1

(φc (XI ) − φI )
2

⎫⎬
⎭

=
⎛
⎝

nenod∑
I=1

p̃IφI

⎞
⎠ ·

⎛
⎝

nenod∑
I=1

p̃I ⊗ p̃I

⎞
⎠

−1

. (48)

With this, the coefficients of the projected shape functions
can now also be computed. By including the virtual moment,
they are determined as

aπ =
(∫

∂�e
0

φne0 · p,X
T d∂�e

0 − �pm0

)

·
(∫

�e
0

p,X · p,X
T d�e

0

)−1

(49)

and φπ0 = 1

‖�e
0‖

(
m0 − aπ ·

∫
�e
0

p d�e
0

)
, (50)

where ‖�e
0‖ denotes the volume of the element. The surface

integral in Eq. (49) has a third order polynomial argument
and can be computed either analytically or using a 3-point
Gauß-Lobatto quadrature.

3.2.2 Balance of linear momentum

If the projected functions calculated in the previous subsec-
tion are used to solve the equations of linear elasticity, it
turns out that they satisfy the first order patch test, but not the
second order patch test, and in general do not guarantee opti-
mal convergence. This is due to the fact that the conditions
for variational consistency are not the same from the second
order upwards. For linear quasistatic problems, it would be
sufficient to perform a projection of the strain tensor, analo-
gous to Eq. (36) (cf. [34]). Volume loads and dynamic terms
can then be considered via separate projections. Here, how-
ever, once again the approach to apply the projection to the
full shape functions (not just their derivatives) will be pur-
sued.

Interior-optimal shape functions (in the sense that each of
their linear combinations exactly satisfies the interior differ-
ential equation) cannot generally be represented by a scalar
function in the case of linear elasticity, but require a tensor-
valued representation:

uπ =
nenod∑
I=1

φ I π · uI , (51)
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where φ I π is a tensor of second order. To calculate the pro-
jected shape functions, we first use a strain projector and
then compute an L2 projection that results in the same strain
projection. For the second order formulation, a linear strain
field has to be considered. Thus, we may obtain the projected
strain field of a shape function with the first order ansatz as

επ = (
uπ ,X

)
sym = aεπ ·

⎛
⎝ 1

X
Y

⎞
⎠ (52)

and calculate the 9 independent coefficients aεπ by minimiz-
ing

1

2

∫
�e
0

�ε : �ε d�e
0 → min

aεπ

(53)

with�ε = επ −εh . Following the procedure of least squares,
the coefficients are the root of

0 =
∫

�e
0

(επ − εh) : επ ,aεπ
d�e

0 := Qεπ . (54)

The integral of the left part can easily be computed via
moment integration, since the argument is a second order
polynomial:

∫
�e
0

επ : επ ,aεπ
d�e

0 =
2∑

i=0

1

i !
(
επ : επ ,aεπ

)
,Xi • Me

i , (55)

where the overline denotes evaluations at the centroid. As the
actual shape functions in the interior of an element shall not
be computed, the integral of the right part has be transformed
into a surface integral:

∫
�e
0

εh : επ ,aεπ
d�e

0 =
∫

�e
0

uh ,X : επ ,aεπ
d�e

0

=
∫

�e
0

(
uh ⊗ επ ,aεπ

)
,X

− uh · Div (επ ,aεπ

)
d�e

0

=
∫

∂�e
0

(
uh ⊗ ne0

) : επ ,aεπ
d∂�e

0 − me
u · Div (επ ,aεπ

)
.

(56)

Thereby first the fact was used that the double contraction
of a symmetrical tensor with an antisymmetrical yields zero.
Then partial integration can be used and the volume integral
is transformed into a surface integral, where a serendipity
projection is performed on both entries of

∫
�e
0
uh d�e

0. The

virtual moment of the displacement vector me
u can be com-

puted analogous to Eqs. (46) to (48). Note that the divergence
operates one the first or second index of επ ,aεπ

. Having com-
puted both integrals, we can obtain the projected strain field
of Eq. (52) by performing one Newton step on (54):

επ = −
[(

∂Qεπ

∂aεπ

)−1

· Qεπ

]
·
⎛
⎝ 1

X
Y

⎞
⎠ . (57)

As mentioned before, for dynamic analyses or the appli-
cation of volume forces, the strain projection is not sufficient
and the full projection of the shape functions is required.
But they are not uniquely determined by επ . To achieve
uniqueness, the information about the constant part and the
antisymmetric part of the shape function gradient is still
needed. This can be included by an L2 minimization.

Therefore, we use a Taylor series expansion and compare
the coefficients. In total, 12 equations are needed to uniquely
determine the projection of the displacement field. The sym-
metric gradient of the shape function vector already includes
nine components. Two additional equations come via the L2

minimization as in (38) for each component of the displace-
ment field. The last equation may be obtained from the L2

minimization of the antisymmetric part of the shape function
gradient, such that a full set of equations uniquely identifying
the coefficients states

(
uπ ,X

)
sym = επ (58)

(
uπ ,X

)
sym,X

= επ ,X (59)∫
�e
0

uπ d�e
0 = me

u (60)

(
uπ ,X

)
asym = 1

2
∥∥�e

0

∥∥
∫

�e
0

uh ·
(

ne0Y−ne0X

)
d�e

0. (61)

Finally, the projected shape functions can be easily
obtained by differentiationwith respect to the nodal displace-
ments:

φ I π = ∂uπ

∂uI
. (62)

3.3 Calculation of integrationmoments on polygons

The calculation of the monomial moments may e.g. be done
either with triangulation and Gaussian quadrature or analyti-
cally (which was used for this article). Therefore, the volume
integral can be shifted to an integral over the surface, similar
as in [35]. Let us consider the integral of a polynomial mono-
mial p = p (x, y) over �e

0. We may integrate the monomial
with respect to one of the coordinates, e.g. x , and name it
P . Thus, p = P,x and we compute the integral as the first
component of

∫
�e
0

(
p

. . .

)
d�e

0 =
∫

�e
0

Grad P d�e
0 =

∫
∂�e

0

Pne0 d∂�e
0

(63)
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Fig. 2 Mathematica command for symbolic evaluation of the con-
tribution of a straight surface segment to polynomial moments, here
exemplarily p = (

1, x, y, xy5
)
. The variables {x1, y1} and {x2, y2}

respectively stand for the position vectors (relative to the element’s cen-
troid) of the nodes bounding the line element. nx denotes the fraction
of the surface segment in the x direction

Considering a polygonal region �e
0, the integral formula

over one line segment of ∂�e
0 can be easily generated via

Mathematica as exemplarily stated in Fig. 2. Once com-
puted the monomial moments with respect to the centroid
of the polygon, the integral of a polynomial can be easily be
obtained from a Taylor series expansions as e.g. in Eq. (55).

Alternatively, a quadrature rule can also be applied to eval-
uate the surface integrals. If the shape functions are included
and the order is below 2(k + 1) − 3 (here k = 2), the
Gauss–Lobatto quadrature may be used, whereby only nodal
evaluations are necessary and the edge nodes can be summed
up.

3.4 Treatment of volume forces and tractions

One possibility to variationally consistently apply volume
loads b is to capture them in the consistency part of the weak
form, see for example [36]. For this purpose, the potential
from Eq. (25) has to be extended:

Ge
π =

∫
�e
0

� (uπ )−b ·uπ d�e
0 −

∫
∂�0∩∂�e

0

t ·uh d∂�e
0 (64)

For this, in the case k = 2, in the displacement projec-
tion, at least the constant monomial (as in Eq. (61)) must be
included in the minimization of the L2 error. Thus, the con-
stant source term necessary to satisfy the second-order patch
test can be accurately accounted for. The surface loads t act
on the boundary and can therefore be considered directly via
the known polynomial shape functions.

For the sake of diversification, a different approach will
be followed within the scope of this article: Direct applica-
tion to the nodes. The necessary weights for this, such as
the effective nodal surfaces normals, can be determined, for
example, via the conditions for variational consistency, cf.
[37, 38]. Another possibility is to define pseudo strain energy
functions and evaluate the global residual vector in certain
configurations. The nodal residuals then serve as nodal load
applicants. This has the advantage that volume loads can be

incorporated in the same manner. In addition, the implemen-
tation effort is marginal when using AD software, since only
the definition of the strain energy has to be replaced in com-
parison to the mechanical analysis. For the calculation of the
effective nodal surfaces, the trace of the deformation gradient
can be used as pseudo strain energy.

�SL = Tr F, (65)

where the surface normals result as nodal residuals, eval-
uated in the undeformed configuration (as in Eq. (28)):

n0 I = GSL
π,uI . (66)

Similarly, nodal volume load applicants can be calculated
using the pseudo strain energy

�V L = 1

2
ε : ε (67)

The residual vector now has to be evaluated in the
deformed configuration

uI = 1

2

(
X2
I

Y 2
I

)
. (68)

Again, the weighting factors result as

vb I = GV L
π,uI (69)

The application of the surface and volume loads can then
simply be added to the strain energy part of Eqs. (25) and
(26):

G = Gπ + Gs −
nnod∑
I

[
uI · PI · n0 I +

ndim∑
d

u I dbI dvb I d

]
.

(70)

Note that corner nodes require separate treatment if the
load application is different on both sides of the node. Since
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Fig. 3 On the left: Voronoi
discretization for the patch test
with free nodes (black),
Dirichlet nodes (blue) and
Neumann nodes (red). On the
right: Exemplary deformed
configuration of the second
order patch test with the
projection of Sect. 3.2.1 (color
figure online)

the nodal load applicants are effective quantities, the sur-
faces of the neighbored line segments are aggregated. The
individual surfaces can be decomposed by projections of the
effective surface vector in the direction of the adjacent sur-
face unit normals.

4 Numerical examples

The following section contains five examples demonstrating
moment integration in FEM and VEM. In the first part, the
fulfillment of the patch test and the convergence rates within
linear elasticity are examined. Subsequently, three classical
examples in the field of hyperelasticity are given.

4.1 Linear elasticity patch test

With the patch test, the fulfillment of the conditions of vari-
ational consistency can be verified numerically in a simple
way, since the conditions have also emerged from the require-
ment that the patch test is to be fulfilled. In this example the
region {X × Y } ∈ {[−1, 1] × [−1, 1]} is discretized and the
error to a polynomial solution is calculated. The integration
of the errors was done with moment integration, including
spatial derivatives up to order k2 with k = 2. In the patch
test of first and second order, respectively, the used analytical
solution is

u =
(
0.1X + 0.3Y
0.2X + 0.4Y

)
or rather

u =
(
0.12X + 0.14Y + 0.16X2 + 0.18XY + 0.2Y 2

0.11X + 0.13Y + 0.15X2 + 0.1XY + 0.21Y 2

)

(71)

For the latter, a source term is additionally necessary,
which results from the strong form of linear elasticity:

b = −
(
0.42λ + 1.14μ
0.6λ + 1.32μ

)
, (72)

Table 1 Error norms in L2 and H1 for the linear and quadratic patch
tests with different projections

Patch test order εL2 εH1

Projection of Sect. 3.2.1 1 8.8 · 10−16 4.6 · 10−15

Projection of Sect. 3.2.2 1 1.0 · 10−15 5.2 · 10−15

Projection of Sect. 3.2.1 2 2.6 · 10−4 2.9 · 10−3

Projection of Sect. 3.2.2 2 5.3 · 10−16 2.6 · 10−15

where the Lamé constants are calculated from theYoung’s
modulus E = 1 and the Poisson’s ratio ν = 0.3. The impo-
sition of the boundary conditions is shown in Fig. 3. While
the black points represent free nodes, the blue points refer
to the Dirichlet boundary and the red points to the Neumann
boundary. Additionally, the exemplary deformation in the
case of the second order patch test is shown. Table 1 lists the
errors in the L2 and H1 norm for the two projections from
Sects. 3.2.1 and 3.2.2. It can be easily seen that the conditions
for variational consistency of the Poisson equation from the
second order on are no longer sufficient to guarantee accu-
racy in the weak form of the linear momentum preservation.
Using the projection of Sect. 3.2.2, the patch test is satisfied
up to machine precision.

4.2 Convergence study

In the second example, a manufactured solution (cf. [39])
is used to investigate whether the expected convergence
rates are achieved. For this, at the boundary of the domain
{X × Y } ∈ {[−1, 1] × [−1, 1]} the displacement is imposed,
corresponding to

u =
(
sin π

2 X cos π
2 Y

cos π
2 X sin π

2 Y

)
. (73)
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Fig. 4 Exemplary deformed configuration of themanufactured solution
with a Voronoi discretization

A volume load is applied to all interior nodes in accor-
dance with the strong form of linear elasticity:

b = − E (1 − ν) π2

2
(
2ν2 + ν − 1

)
(
sin π

2 X cos π
2 Y

cos π
2 X sin π

2 Y

)
. (74)

As material parameters E = 1 and ν = 0.3 are used. The
error in the L2 and H1 norm is calculated under continuous
mesh refinement. Figure4 shows an example of the deformed
configuration for a Voronoi discretization with (2N )2 and
N = 3 elements. The errors and the corresponding average
convergence rate are plotted for different discretizations in
Fig. 5. The abbreviationV2 stands for a second-orderVoronoi
mesh. The tessellation was regularized with an initially ran-
dom seed point distribution using three Lloyd iterations.
Furthermore, the abbreviation Q2S stands for an eight-node
element and T2 for a six-node element. In addition, a one-
point moment-integrated (MI) triangular third-order finite
element was included. All formulations or element shapes
show optimal convergence properties, only the virtual ele-
ment with Laplace projection (LP, see Sect. 3.2.1) shows a
disturbed convergence rate.

4.3 Cantilever with end load

The further numerical examples consider finite deformations
and a nonlinear material behavior corresponding to (15).
First, a thin beam with a length of 1000 and a height of 1
is considered. At the left end the beam is clamped and at
the right end it is loaded with a line load of 10−6 in the
(vertical) negative y-direction. Plane strain conditions with
material parameters E = 1 and ν = 0.49 is considered. An
exemplary deformed shape of the beam is shown in Fig. 6.

For discretization, one element is used along the y-
direction. In the longitudinal direction, a refinement with
2N−1 elements is performed. The resulting vertical displace-
ment at the free end of the beam is plotted on the right side of
Fig. 6 for different formulations. While a classical Gaussian
quadrature was used for numerical integration for the FEM,
the virtual elements were integrated by moment quadrature
with linearized material behavior using a geometric mate-
rial nonlinearity integration split. It is evident that despite
the linearization in each element, the VEM solution with T2
elements is almost exactly above the FEM solution. Thus,
moment integration can be used effectively even if large dif-
ferences in stress occur within one element, as is the case
with a discretization into two triangular elements. As such,
bending stresses predominate in the left-hand region, while
tensile stresses predominate in the right-hand region due to
the large deformation. The locking to be observed is inher-
ent to the displacement-based formulations without further
treatment, as expected.

Finite elements with additional consistent components,
as the FEM Q2 and FEM Q2S formulations, show in this
specific example a slightly softer behavior. This is assumed
to be because only the full polynomials to degree two are
considered in the projection, and thus the VEM formulations
have the same consistent basis set as the T2 FEM-Elements.
Choosing a higher ordermoment integration scheme or using
Gaussian quadrature does not affect this.

4.4 Cook’s membrane problem

The next example examined is Cook’s membrane problem,
see e.g. [40]. The geometry of the problem, as well as the

Fig. 5 Plot of the L2 (left) and
H1 (right) error for the
manufactured solution with
different element topologies and
formulations. The mean
convergence rate is plotted next
to the abbreviations in the
legends
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Fig. 6 On the left: Deformed
configuration of the thin beam
problem. On the right:
Convergence of the vertical
displacement of the free end for
different formulations and
element topologies

Fig. 7 On the left: Geometry, boundary conditions andmaterial param-
eters of the Cook’s membrane problem. On the right: Exemplary
deformed configuration of a VEM Voronoi discretization with colored
vertical displacement

boundary conditions, material parameters and an example
deformed state are shown in Fig. 7. Various virtual and finite
element topologies were subject to refinement. The gener-
ated meshes contain 2N elements (the triangular ones twice
as many). To ensure a mostly regular Voronoi discretiza-
tion, 50 Lloyd iterations were performed with an initially
random seed point distribution. All virtual elements were
integrated using one-point moment quadrature with linear
material behavior in the material tangent space per ele-
ment, and the finite elements were integrated using Gaussian
quadrature. For comparison, Voronoi-shaped VEM elements
with triangulation andGaussian integration (abbreviationGI)

are also shown. The Load application was performed in one
step and an average of 7 Newton iterations.

To compare the formulations, Fig. 8 plots the vertical dis-
placement of the upper right corner against the element
division and the computation time of the analysis phase
(assembling time plus linear solver time). All calculations
were performed on a desktop computer with intel core i7-
7700. Due to the different integration, the VEM T2 and
FEM T2 formulations are not identical and a deviation is
observed for very coarse discretization. Nevertheless, the
VEM, especially with the Voronoi discretization, shows very
good convergence behavior in this example.

The average times required to assemble the residual vec-
tor and tangent matrix per element and iteration are listed
in Table 2. Although for neo-Hooke’s material behavior, the
moment integratedVEMelements on theT2 topology require
about three times the assembling time as a Gaussian inte-
grated FEM element, the factor is only about 1.8 for the Q2S
topology.

Comparing triangulationwithGauss quadrature andmoment
integration using Voronoi cell-formed VEM elements shows
a clear advantage of moment integration. Considering the
computational effort for node-based stabilization and inte-
gration of the projection part separately, it is found that in
the case ofmoment integration, the computational time of the
stabilization part is predominant. In fact, the assembly time
for the classical one-point underintegration increases to the
fourth-order moment integration by only about 42 percent. If
a combined element routine (stabilization plus projection) is

Fig. 8 Convergence behavior of
the vertical displacement of the
upper right edge of Cook’s
membrane for various element
topologies with VEM and FEM.
On the left, values are plotted
over the element division, while
on the right over the logarithmic
scaled computational time of the
analysis phase
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Table 2 Average computing times for the assembly of the global residual vector and stiffness matrix for one Newton iteration, devided by the
number of elements

VEM VEM VEM VEM FEM FEM FEM
V2 V2, GI Q2S T2 Q2 Q2S T2

Av. K&R time (µs) 11.18 24.58 4.53 3.12 2.98 2.53 1.05

Fig. 9 On the left: Geometry, boundary conditions andmaterial param-
eters of the punch problem. On the right: Deformed configuration in
case of a random Voronoi discretization with the integration scheme

X4. Blue coloring denotes nodes on the Dirichlet boundary, while the
red nodes are on a combined Dirichlet/Neumann boundary (color figure
online)

Fig. 10 Convergence of the
vertical displacement of the
upper left and upper right nodes
with increasing mesh division
for different moment integration
schemes

generated by means of AceGen, the average evaluation time
results to about 11.18µs compared to the Gaussian integra-
tion with 24.58µs.

4.5 Punch test

Finally, the punch test is consulted as in the [32] The
geometry, boundary conditions, material parameters and an
exemplary deformed configuration are shown in Fig. 9. The
nodes with Dirichlet boundary condition are highlighted in
blue. The nodes colored red are subjected to a line load and
are additionally constrained in the x-direction.

In a convergence study, the vertical displacement in the
two upper vertices is analyzed. The calculated displacements
are plotted in Fig. 10. Biquadratic finite elements integrated
by Gaussian quadrature are used as reference. The VEM
discretizations consist of randomly generated Voronoi cells
without further Lloyd iterations. To ensure an element cor-
ner at the edge of the load application, the Voronoi mesh was
generated on the left half of the domain and mirrored to the
right. Three different moment integration schemes are com-

pared as well as triangulation and Gaussian quadrature. The
integration with geometric-material nonlinearity split with
linear material behavior per element in the tangent space is
given the abbreviation M1X4. For the X4 and X8 integration
schemes, full material nonlinearity was included, i.e., with-
out a differentiation exception. The fourth and eighth degrees
were used as the highest derivative order, respectively.

It can be observed that due to the very large deforma-
tion, the assumption of material behavior linearly varying
within an element can lead to a loss of accuracy with coarse
discretization. Capturing the full material nonlinearity can
address this inaccuracy, and the spatial derivative up to degree
four can be considered sufficient. The additional cost of the
X4 scheme is very small due to the efficient code generation
by AceGen and is only a few percent. For the derivatives
included up to degree eight, the assembly time doubles. Fur-
thermore, oscillations are seen in the graph for the coarse
discretizations, which is due to the random generation of
the Voronoi cells. After sufficient refinement, the solution
quickly converges to the reference solution.

123



Computational Mechanics (2024) 73:1187–1202 1201

5 Conclusion

The present article has presented an integration scheme
alternative to the Gaussian quadrature of the weak form in
Galerkin methods. By the additional evaluation of higher
order derivatives, the number of integration points can be
reduced to one without a loss of stability or disturbing the
convergence rate. Thus, the integration method is particu-
larly relevant in all those areas where either many integration
points are needed or each individual integration point is
very expensive. Its effective use was therefore demonstrated
using a second-order VEM formulation where the assembly
time for Voronoi cell shaped elements can be approximately
halved compared to Gaussian quadrature in case of neo-
Hooke’s material behavior.

The numerical examples presented show that in many
cases it is sufficient to assume a linearly varying material
behavior in each element. This considerably shortens the
expressions for the spatial derivatives of the strain energy,
which also allows a manual use, i.e. without AD software. If
the accuracy is no longer sufficient for coarse discretizations
and very large deformations, higher nonlinearities have to
be considered. It is then advisable to switch directly to full
nonlinearity, which, however, only makes sense when using
AD.

For further development, particularly interesting areas are,
on the one hand, the use in curvilinear elements, where often
a large number of integration points is used. Moreover, the
use in inelastic problems should be investigated, where it is
necessary to consider the plastic yielding in the construc-
tion of the material tangent space. Last but not least, the use
in macro elements in computational homogenization could
offer a promising possibility to significantly reduce the num-
ber of micro problems to be solved.
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