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Abstract
This work is concerned with an adaptive reduced order model of modular structures assembled from parameter-dependent
substructures. The substructures are reduced by proper orthogonal decomposition (POD) and connected by means of a
tied contact formulation. We present a method to adapt the matrices of the substructures to parameter changes. We employ
interpolation onGrassmannmanifolds for the parametric adaption of the projectionmatrices. For the adaptation of the stiffness
matrices, we use the direct empirical interpolation method (DEIM). Manifold interpolation of the reduced stiffness matrices,
cannot be applied here since it would require semi-positive definiteness, which is here not fulfilled because of necessary rigid
body motion modes. The novelty of this work is the application of these interpolation methods to the special problem class
of POD-based tied contact model order reduction. Furthermore, we show a methodology to compute significant snapshots on
the substructure level to compute a POD basis that can be used in different global structures.

Keywords POD · DEIM · Substructuring · Interpolation

1 Introduction

Many different structures such as industrial halls or multi-
story buildings in civil engineering can be assembled from
a set of substructures, like columns, girders, and plates. In
mechanical finite element simulations, these substructures
can be meshed individually and connected by means of tied
contact formulations. The computational cost to solve those
systems is high. This cost is unnecessary, in particular when
the many systems consist of the same recurring substruc-
tures. To increase efficiency one can take advantage of the
modular nature of those systems, by reusing precomputed
stiffness matrices and applying model order reduction tech-
niques (MOR) to each substructure. In this work, we use the
proper orthogonal decomposition (POD) to reduce the sub-
structures. The POD bases of the substructures can be used
for different tied contact and boundary conditions. Often the
mechanical behavior of substructures depends on parame-
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ters. Such parameters can be used to change the geometry of
amodule to use it in amore flexibleway, or to changematerial
parameters like the fiber orientation in transversely isotropic
materials. The POD-bases, that were computed for one spe-
cific set of parameters lack accuracy when the parameters are
varied (cf. [3]). Therefore, parametric MOR techniques are
needed to ensure good accuracy over the whole parameter
range. In this work, we use interpolation techniques to adapt
the precomputed matrices of all substructures to the desired
parameter.

In structural dynamics, substructuring with a reduction of
the degrees of freedom of the subdomains has a long history.
Early works were done by [15, 24], which is still a widely
used technique in structural dynamics. In the Craig-Bampton
method and other component mode synthesis (CMS) meth-
ods, the nodes of each subdomain are split into interface
nodes and internal nodes. The degrees of freedom of the
system are reduced by a combination of eigenmodes of the
internal nodes of a substructure and static boundary modes
of the interfaces. An overview of CMS methods is given in
[1, 16].

In contrast to the Craig-Bampton method, the present
reduced order model is obtained as a combination of tied
contact (cf. [19, 30]), and MOR based on proper orthogo-
nal decomposition (POD). In POD, the projection matrices,
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that project the high-dimensional system onto the low-
dimensional subspace, are computed from data by collecting
snapshots of solutions of the system and taking the leftmodes
of their singular value decomposition, see the survey [26]
and references therein. The POD method is an established
method in fluidmechanics, large-scale dynamics, and control
[4, 8]. In recent years its popularity increased also in non-
linear solid mechanics [22, 25, 32]. For linear systems there
exist also other methods to compute reduced order models
(ROM), like e.g. balanced truncation.We chose PODbecause
it can be extended to nonlinear problems. In this work, each
substructure and its contact stiffness matrix contributions are
projected onto its reduced space separately, see e.g. [36] who
was one of the first to suggest this type of model order
reduction. The novelty here lies in the new methodology
to compute snapshots on the independent substructures and
the extension to parameter-dependent substructures. These
parameter dependencies increase the number of structures,
that can be assembled from a small number of modules,
but require an parametric reduced order model (pROM).
Two types of parameter dependencies are considered here.
Material parameters, like the fiber direction for transversely
isotropic material, and geometric parameters that adapt the
geometry of the substructure.

In this work interpolation techniques are applied for the
adaption of the ROM to parameter changes of the sub-
structures. The projection matrices for a desired parameter
are computed by interpolation on Grassmann manifolds.
This technique was chosen to keep the projection matrix
as small as possible because the substructuring method
already requires relatively largePODbases for each substruc-
ture. Other parametric MOR methods, that use a common
basis over the whole parameter range like e.g. the reduced-
basis method would result in larger projection matrices. An
overview of parametric reduced order models is given in [7].
The method to interpolate projection matrices on Grassmann
manifolds was proposed by [3]. It is a generalization of the
subspace angle method [27]. There, the riemannian frame-
work for interpolation on manifolds by [29] is applied to
Grassmannmanifolds. In this framework, the interpolants are
projected onto a tangent space, where the interpolation is per-
formed. Then, the interpolated matrix is mapped back to the
manifold. In solid mechanics, these interpolation techniques
were applied to hyperelastic transverse isotropicmaterials by
[20], who discussed the stability of interpolations on Grass-
mann manifolds.

The stiffness matrices of each substructure also need
to be adapted to parameter changes. In [2] a method was
presented where the reduced mass, damping, and stiffness
matrices were also interpolated on a manifold. This method
is restricted to semi-positive definite matrices. Therefore, it
cannot be applied in the present case, because the here pre-
sented MOR technique requires modes for the rigid body

motions of every substructure, which leads to indefinite
reduced stiffness matrices, see Sect. 3.1. Furthermore, the
whole stiffness matrices have to be known for every parame-
ter to applyDirichlet boundary conditions, that are not known
beforehand. Therefore, the full stiffness matrices are inter-
polated. In [12, 23] a Taylor series expansion was used to
approximate the mass, damping, and stiffness matrices. The
accuracy of this approach decreases for multi-dimensional
parameter spaces. Therefore, we use here the direct empiri-
cal interpolation method (DEIM) by [14] to approximate the
stiffness matrices. DEIM belongs to the class of gappy POD
methods, where a high-dimensional vector is approximated
by computing a small number of entries and reconstructing
the whole vector by POD modes.

The DEIM was developed on the basis of the gappy POD
method of [18]. The first discrete form of the empirical inter-
polation method (EIM) of [6] was presented in [21]. The
name discrete empirical interpolation method (DEIM) was
given to themethod in [14], where it was used to approximate
nonlinear terms. A further development of DEIM is QDEIM
proposed by [17], which provides a more efficient selection
operator inmost cases. In the literature there exist alsomatrix
discrete empirical interpolation methods (MDEIM) to inter-
polate operator matrices of partial differential equations (see
e. g. [9, 13, 28]).

The outline of the paper is as follows. First of all, in Sect. 2
the methods used for the adaptive parameter-dependent
ROM of modular structures are explained. This includes
the tied contact formulation, its reduced order model, and
the interpolation techniques used to adapt the matrices of
the substructures to parameter changes. In Sect. 3 the novel
simulation technique for structures assembled from a set of
parameter-dependent modules is explained, which utilizes
the methods shown in Sect. 2. Furthermore, the methodology
to compute significant snapshots for the POD of modules is
explained. In Sect. 4 numerical examples to show the capa-
bilities of the method are presented. The paper ends with a
conclusion and outlook.

2 Methods

2.1 Substructuring with tied contact

The domain of a substructure s in the reference configu-
ration is denoted by �s

0. The total domain

�0 =
ns⋃

s=1

�s
0 (1)

is the union of all domains of the substructures of the struc-
ture, where ns is the number of substructures. The Dirichlet
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Fig. 1 Illustration of a domain, that is composed of two subdomains
�1

0 and �2
0, with the Neumann boundary �1

σ and Dirichlet boundary

�2
u . At the contact interface �

1,2
c , the two tied contact conditions are

displayed

and Neumann boundaries of each substructure are denoted
by �s

u and �s
σ , respectively. The contact interface of two

neighboring substructures is denoted as �
s,r
c , with s �= r .

The domains and boundaries of two neighboring structures
are illustrated in Fig. 1. In theory, in order to connect two
substructures, two conditions have to be fulfilled on every
contact interface. The first condition states, that on every con-
tact interface the displacements of the two connected bodies
have to be equal:

usc = urc on �s,r
c , with s �= r . (2)

Secondly, the tractions at each contact interface have to be
in equilibrium:

ts = −tr on �s,r
c , with s �= r . (3)

Additionally, the balance of linear momentum

div(FsSs) + ρs
0(b

s − üs) = 0 in �s
0, (4)

must hold for every substructure s, where S is the second
Piola-Kirchhoff stress tensor, F the deformation gradient, ρ0
the density in the reference configuration, b the body force,
and ü the acceleration vector. Every substructure can have
Dirichlet boundary conditions us = ūs andNeumann bound-
ary conditions FsSs · Ns = t̄s0 acting on their respective
boundaries �s

u and �s
σ .

For the finite element discretization, the above equations
have to be transferred into the weak form

g =
ns∑

s=1

(gsstandard − gsc) = 0, (5)

where a contact term gsc has to be considered in addition to
the standard weak form of the balance of linear momentum

gsstandard . For quasi-static processes the acceleration vector
ü can be neglected. The weak forms are

gsstandard =
∫

�s
0

(Ss : δEs − ρs
0b

s · δus) dV

−
∫

�s
t

δus · t̄s0 dA, (6)

gsc =
∫

�s
c

δus · ts dA, (7)

where the contact term can be interpreted as the virtual work
of the tractions acting on the contact surfaces. The virtual
work contribution on each contact interface �

s,r
c is

gs,rc = gsc + grc =
∫

�
s,r
c

δus · ts dA+
∫

�
s,r
c

δur · tr dA, (8)

which is the sum of the contact terms of the substructures
s and r . To enforce the tied contact condition Eq. (2), the
penalty method is used, where a penalty parameter penalizes
the difference in the displacements. It relates the traction on
the contact surface to the displacement difference

ts = εws . (9)

The displacement and virtual displacement differences are
defined as

ws := usc − urc, δws := δus − δur . (10)

Inserting Eqs. (9) and (10) into Eq. (8) and exploiting the
equilibrium condition Eq. (3) leads to the virtual work con-
tribution of a contact interface �

s,r
c

gs,rc =
∫

�
s,r
c

εδws · wsdA. (11)

This equation can be discretized by finite elements, which
leads to

gs,rc
FEM= [

(δU s
c)

T (δUr
c)

T
] [

K s,r
c,ss K s,r

c,sr
K s,r

c,rs K s,r
c,rr

]

︸ ︷︷ ︸
:=K s,r

c

[
U s

c
Ur

c

]
. (12)

Here, K s,r
c is the contact stiffnessmatrix of the interface�

s,r
c ,

and U s
c, U

r
c are the displacement vectors corresponding to

the DOF on the contact interface of the substructures s and r .
The contact stiffness matrix couples the two substructures by
ensuring that the displacement vectorsU s

c andU
r
c are almost

equal. For the discretization, we use linear shape functions
and a node-to-node approach. Other contact discretizations
like the mortar method are also possible. For further infor-
mation, the reader is referred to e.g. [30]. Discretizing also
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the balance of linear momentum of every substructure leads
to the global nonlinear system of equations

R + K c U = P, (13)

where the internal force vector R = R (U), the displacement
vector U , the contact stiffness matrix K c, and the external
force vector P are assembled from the vectors and matri-
ces of the substructure. This nonlinear system of equations
is typically solved by the Newton–Raphson method. In the
special case of linear mechanics, the internal force vector
of each substructure depends linearly on the displacement
vector Rs = K sU s , where K s is the stiffness matrix of a
substructure. This results in the linear system of equations

(K + K c)U = P, (14)

where the global stiffness matrix K is assembled from the
stiffness matrices of the substructures K s . The vectors of the
substructures are written into the global residual, displace-
ment, and external force vectors

R =

⎡

⎢⎢⎢⎢⎣

...

Rs

Rr

...

⎤

⎥⎥⎥⎥⎦
, U =

⎡

⎢⎢⎢⎢⎣

...

U s

Ur

...

⎤

⎥⎥⎥⎥⎦
, and P =

⎡

⎢⎢⎢⎢⎣

...

P s

Pr

...

⎤

⎥⎥⎥⎥⎦
, (15)

which is shown here in an exemplary way for the substruc-
tures s and r . The global matrices are

K =

⎡

⎢⎢⎢⎢⎣

. . .

K s

K r

. . .

⎤

⎥⎥⎥⎥⎦
, and

K c =

⎡

⎢⎢⎢⎢⎣

. . .

K s,r
c,ss K s,r

c,sr
K s,r

c,rs K s,r
c,rr

. . .

⎤

⎥⎥⎥⎥⎦
, (16)

where the stiffness matrix K s takes a block-diagonal form,
and K c contains the contact stiffness matrices of all contact
interfaces. It has entries outside of the block-diagonal form
of K and therefore couples the substructures.

2.2 Reduced-order model

Different structures can be assembled and solved from a set
of substructures by the method described in Sect. 2.1. The
total number of degrees of freedom is typically a large num-
ber, which results in a high computational effort to solve

such a system of equations. Therefore, model order reduction
(MOR) techniques are applied to reduce the computational
effort. In the technique used here, every substructure is
projected onto its own reduced space, by a substructure pro-
jection matrix �s . The ms columns of the projection matrix
are modes that span an ms-dimensional basis for the dis-
placement vector of the substructure s. Multiplication of the
projection matrix �s with a reduced displacement vector
U s

red gives an approximation for the substructure displace-
ment vector

U s ≈ �sU s
red, (17)

Using Eq. (17), the ns-dimensional displacement vector can
be expressed by the ms-dimensional reduced displacement
vector, where ms � ns holds. The projection matrices
of each substructure �s are computed by the method of
snapshots (cf. [10, 32]), where displacement vectors of a sub-
structure are collected as columns of a snapshot-matrix and
decomposed into three matrices by a singular value decom-
position

SSnap = [us1, us2, . . . , usk] = �s�sϒs (SVD). (18)

The projection matrix is obtained by taking only the first m
columns of the matrix � into account

�s = [�s
1,�

s
2, . . . ,�

s
m]. (19)

The computation of POD bases for substructures, that can be
used in different systems is an open challenge. The method
to compute snapshots we use in this work is explained in
Sect. 3.1. It should be noted that POD is typically used in
MOR of nonlinear problems. We chose the method here
because our goal is to extend the method to nonlinear prob-
lems. A method to compute such a POD basis for linear
problems is a necessary first step toward such POD bases for
nonlinear problems.

To approximate the global displacement vectors the pro-
jection matrices of the k substructures are assembled into a
global projection matrix

� =

⎡

⎢⎢⎢⎣

�1

�2

. . .

�k

⎤

⎥⎥⎥⎦ . (20)

The dimensions of � are n × m, with m = ∑k
s=1 m

s and
n = ∑k

s=1 n
s . Using Eq. (20), the global displacement vector

is approximated by

U ≈ �U red, (21)
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where U red contains all reduced displacement vectors of the
substructures U s

red. Inserting Eq. (21) into Eqs. (13) and (14)
and applying aGalerkin projectionwith the global projection
matrix � leads to the general nonlinear system of equations

�T R + �T K c�U red = �T P, (22)

which can be solved by the Newton–Raphson method. The
specialization for linear elasticity is given by the relation

�T K�U red + �T K c�U red = �T P, (23)

which will be used in the remainder of this work. For the lin-
ear case, the projectionmatrices�s and the stiffnessmatrices
K s of all substructures can be precomputed, only the contact
stiffness matrix K c has to be computed for every new struc-
ture. The reduced stiffness matrix of the system is defined
as

K red := �T K� =

⎡

⎢⎢⎢⎣

�1T K 1�1

�2T K 2�2

. . .

�kT K k�k

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

K 1
red

K 2
red

. . .

K k
red

⎤

⎥⎥⎥⎦ . (24)

Here K s
red are the reduced stiffness matrices of the substruc-

tures. The special situation here is that each substructure is
reduced by its associated projection matrix. Consequently,
the contact stiffness matrices are reduced by the projection
matrices of the two connected substructures. This is shown
here in an exemplary way for the contact interface �

s,r
c :

K c,red := �T K c�

=
⎡

⎢⎣
. . .

�sT
c

�rT
c

⎤

⎥⎦

⎡

⎢⎣
. . .

K s,r
c,ss K s,r

c,sr
K s,r

c,rs K s,r
c,rr

⎤

⎥⎦

⎡

⎢⎣
. . .

�s
c

�r
c

⎤

⎥⎦

=
⎡

⎢⎣
. . .

�sT
c K s,r

c,ss�
s
c �sT

c K s,r
c,sr�

r
c

�rT
c K s,r

c,rs�
s
c �rT

c K s,r
c,rr�

r
c

⎤

⎥⎦ (25)

The matrix �s
c contains all rows of the projection matrix

that correspond to the contact interface DOF. We want to
emphasize the mixed projection of the coupling terms of the
contact stiffness matrix K s,r

c,sr and K s,r
c,rs . They are projected

by means of the projection matrices �s
c and �r

c of the two
substructures.

With P red = �T P and the definitions in Eqs. (24) and
(25) the reduced linear system is written as

(K red + K c,red)U red = P red. (26)

These reduced stiffness matrices of the modules are
invariant against rotations. Because any Dirichlet boundary
conditions should be possible, the matrices K s

red cannot be
precomputed.

2.3 Parametric reduced-order model

The challenge of the here-described ROM is that every pro-
jection matrix is linked to the material parameters and the
geometry for which it was computed. It is not possible to use
it for systems that significantly deviate in material and geom-
etry. The fixed geometry of the substructures is a tremendous
restriction on the applicability of the method. The ability
to adapt the parameterized geometries of the substructures
increases the number of different possible structures, that
can be assembled. Considering transverse isotropic materi-
als, we want to be able to choose any fiber direction. In this
work, we parameterize the geometry of the modules and the
fiber direction in transversely isotropic materials. These two
different cases require an adaption of the projection and stiff-
ness matrices to allow for the efficient computation of many
different structures.

Every substructure depends on a set of parameters that
strongly influence its mechanical behavior. The model order
reduction (MOR) technique explained in Sect. 2.2 will now
be extended to allow for a free choice of these parameters,
while preserving the computational efficiency by approxi-
mating all parameter-dependentmatrices. In the case of linear
mechanics, the projection matrix �s = �s( p) and the stiff-
ness matrix K s = K s( p) of all substructures depend on
the parameter vector p. Theoretically, both matrices have
to be computed for all new values of the parameter vector
p. To compute the projection matrices for new parameters
we have to perform many precomputations on the substruc-
ture level for different load cases, which is described in
Sect. 3.1. The computational effort to compute the stiffness
matrices depends on the number ns of degrees-of-freedom
of the substructure. For an efficient online simulation, this
computational effort is too high. Therefore, we approximate
the matrices by interpolation techniques, to make an efficient
online simulation of different parameter-dependent systems
possible.

In our model, the projection matrices and the stiffness
matrices are interpolated separately. The stiffness matrices
are obtained using the direct empirical interpolation method
(DEIM), (cf. [11, 14]). The projection matrices are inter-
polated by the interpolation on Grassmann manifolds as
suggested by [3].
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The interpolation of stiffness matrices is based on an
assumed affine parameter dependence

K s( p) =
k∑

i=1

fi ( p)W s
i , (27)

where W i are parameter-independent basis matrices and
fi ( p) are unknown functions of the parameter vector p.
The stiffness matrix K ( p̄) for a target parameter vector p̄
is obtained by computing the function values fi ( p̄) and
multiplying with the basis matrices W s

i . In DEIM, these
sought-after function values are approximated by a sparse
sampling of distinct values of the stiffness matrix K s( p).
DEIM cannot be used to approximate the projection matrix
becauseprojectionmatrices canonlybe computed as awhole.
Therefore, for the interpolation of the projectionmatrices, we
choose interpolation on Grassmann manifolds. In manifold
interpolation schemes, the matrices are interpolated on the
geodesic line connecting them (cf. [29]). The geodesic line
is the shortest path between two points on a manifold. The
Grassmann manifold interpolation ensures, that the interpo-
lated projection matrix is a basis with the same rank as the
precomputed bases.

In the literature, also reduced system matrices like the
stiffness matrix K red were interpolated using manifold inter-
polation techniques, cf. [2]. This interpolation uses thematrix
manifold and its tangent space. It cannot be used in our case
because it requires a mapping from the matrix manifold to its
tangent space, which is only defined for semi-positive defi-
nite (SPD)matrices. The rigid bodymotions contained in our
projection matrices lead to indefinite matrices, for which the
mappings are not defined. Furthermore, the unreduced stiff-
ness matrix is needed to apply arbitrary Dirichlet boundary
conditions.

2.3.1 Direct empirical interpolation of stiffness matrices

The direct empirical interpolation method (DEIM) is a
method to sparsely reconstruct vectors, where the sampling
points are chosenwith a greedy algorithm. It is typically used
to approximate nonlinear terms in POD-based model order
reduction, cf. [33]. In contrast to other matrix DEIM versions
(e.g. [9, 13, 28]) we apply the standard DEIM algorithm to
data vectors of stiffness matrices consisting of its nonzero
entries.

For the application to the approximation of parameter-
dependent stiffness matrices, these stiffness matrices have to
be transferred to a vector format. Here we make use of the
sparsity of stiffness matrices and use a format where only
non-zero entries are saved. In the coordinate format, every

stiffness matrix can be expressed by three vectors

K s( p) = {ks( p), rs, cs}, (28)

where ks( p) is referred to as the stiffness data vector and
contains all nonzero entries of the stiffness matrix, the posi-
tion of each value is stored in the vectors rs and cs for the
row and column positions respectively. Here, only the stiff-
ness data vector ks( p) is parameter-dependent, the row and
column position vectors are constant for all parameters.

With DEIM, the nk-dimensional stiffness data vector
ks( p) is approximated by

ks(p) ≈ � a( p), (29)

where the k columns of � span a basis for the stiffness data
vector ks( p), and a( p) is a k-dimensional coefficient vec-
tor. The basis � is computed analogously to the POD-basis
�s of the displacement vector U s . Stiffness data vectors for
different parameters are collected in a matrix which is mul-
tiplicatively decomposed by an SVD:

A = [
ks( p1) ks( p2) . . . ks( pk)

] = W�V . (30)

The basis � is obtained by taking the first k columns of the
left mode matrix W into account

� = [W1,W2, . . . ,W k]. (31)

To compute the stiffnessmatrix for a target parameter vec-
tor p̄, only k coefficients in a( p̄) have to be determined. By
selecting k rowsof the linear system inEq. (29) the coefficient
vector ā for the target parameter vector p̄ can be determined
with

ā = a( p̄) ≈ (ZT�)−1ZT ks( p̄), (32)

where the nk × k-dimensional selection matrix Z =
[eγ1 , eγ2 , . . . , eγk ] contains the unit vectors of the selected
sampling points. Then, the whole stiffness data vector for
the target parameter vector p̄ can be reconstructed with

ks( p̄) ≈ � ā = �(ZT�)−1ZT ks( p̄). (33)

Which rows are evaluated is determined by the DEIM algo-
rithm, where it has to be ensured that ZT� is non-singular.
The DEIM algorithm is a greedy algorithm to successively
choose the sampling points, at the position of the maximum
of a residual. The algorithm developed by [14] is shown in
Algorithm 1. The elements that need to be evaluated to com-
pute the selected rows of ks( p̄) can be determined from the
DOFs in the corresponding entries in the row and column
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position vectors r and c. With this method, the computa-
tional effort to compute stiffness matrices is reduced from
O(n) to O(k).

Algorithm 1: DEIM
Input: mode matrix: � = [W1,W2, . . .W k ]
Output: selection matrix: Z
Initialize: γ1 = maxloc(W1)

Z = [eγ1 ] , � = [W1]
for s ∈ {2, . . . , k} do

as = (ZT�)−1ZTW s
Rs = W s − �

γs = maxloc(Rs)

Z ← [Z, eγs ], � ← [�,W s ]

2.3.2 Interpolation of projection matrices on Grassmann
manifolds

A projection matrix �̄ for a target parameter p̄ is computed
by interpolating on the geodesic line on a Grassmann man-
ifold between projection matrices in the neighborhood. A
Grassmann manifold G(m, n) is defined as the set of m-
dimensional subspaces of theRn . Therefore am-dimensional
projection matrix � computed with POD non-uniquely
defines a point Y on the Grassmann manifold G(m, n). The
interpolation is done on the geodesic line, which is defined
as the shortest path between two points Y0 and Y1 on a dif-
ferentiable manifold. By interpolating on the geodesic line,
the underlying subspaces are interpolated, which ensures that
the interpolated matrix is a basis.

For simplicity, the method is here explained for a one-
dimensional parameter spacewith the parameter p. To extend
it to a multi-dimensional parameter space the interpolation
on the tangent space would need to be multi-dimensional. A
bilinear two-dimensional interpolation scheme is explained
in Appendix 1. To compute the projection matrix �̄ for a
target parameter p̄, the POD-basis {�1, . . . ,�k} with their
parameters {p1, . . . , pk} in the neighborhood of the target
parameter p̄ are considered. The first step is to choose an
origin point, here �o = �1. For the interpolation, all other
points are projected onto the tangent space of the origin TYo

by a logarithmic mappingX j = LogYo
(Y j ). For Grassmann

manifolds, this logarithmic mapping is defined as

� j (�
T
o � j )

−1 − �o = W j� jV j (thin SVD)

� j = W j arctan(� j )V j , (34)

where � j spans the point on the tangent space X j . The term
thin SVD refers to an SVD of an n×m matrix where only the
first k = min(n,m) singular vectors are computed (cf. [5]).
The logarithmic mappings can be done in a pre-computation
step. In the next step, the points on the tangent space are

Fig. 2 Illustration of the interpolation on the Grassmann manifold for
two points

interpolated with

�̄ =
k∑

j=1

f ( p̄, p j )� j , (35)

where f ( p̄, p j ) can be any interpolation function. For the
interpolation between two matrices, it would be f ( p̄, p j ) =
( p̄− po)/(p j− po), where po is the parameter corresponding
to the origin. To obtain the interpolated point on the Grass-
mann manifold, the interpolated point on the tangent space
X̄ that is spanned by �̄ is mapped back to it by an expo-
nential mapping Ȳ = ExpYo

(X̄ ). For Grassmann manifolds,
this mapping can be computed with

�̄ = W̄�̄V̄ (thin SVD)

�̄ = �oV̄ cos(�̄) + Ū sin(�̄),
(36)

where �̄ is the interpolated projection matrix that spans the
point Ȳ . The interpolation between two points is illustrated in
Fig. 2With this method, the projection matrix for any param-
eter inside the parameter range can be approximated.

3 Themodular method

In this section, it is explained how the methods explained in
Sect. 2 can be applied to efficiently compute structures that
are assembled from a set of parameter-dependent modules.
In this paper, we consider two different kinds of parame-
ters. The first group are material parameters like the primary
direction of transversely isotropicmaterials. The second type
are geometrical parameters like the length or the curvature
of a substructure. First, a new method to compute snapshots
on the substructure level is explained. Then the procedure to
solve a parametric reduced modular structure is described.
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Fig. 3 Characteristic load cases for all contact surfaces

3.1 Computation of snapshots

The projectionmatrices of themodules strongly influence the
quality of the solution. The unique situation in this work is,
that the projectionmatrices are computed on the substructure
level and are used in arbitrary global structures. Therefore,
the snapshots should represent the mechanical behavior of
themodules in a general sense. The snapshots of all substruc-
tures are computed by the samemethod. In the following, the
method we developed to compute snapshots on the substruc-
ture level is presented.

In this method, we combine three different types of
snapshots. The first type of snapshots are computed under
Neumann boundary conditions. The purpose of these snap-
shots is to obtain a set of basic deformation modes like
stretching, bending, or shearing. The second type of snap-
shots are computed from Dirichlet boundary conditions on
single nodes on possible contact interfaces. These snapshots
enhance the modes to better approximate the displacements
on possible contact interfaces. The third type of snapshots
are rigid bodymotions. In systems with substructuring, some
substructures have rigid body displacement because they are
connected to deformed substructures. The projection matri-
ces have to include rigid body deformation modes because
every substructure is reduced by a separate projectionmatrix.

For the first type of snapshots the first step is to define
all possible contact surfaces. Then, one contact surface is
selected as a Neumann boundary and one as a Dirichlet
boundary. On the Neumann boundary surface, the load cases
depicted in Fig. 3 are applied, while all DOFs on theDirichlet
boundary are fixed. The shapes of the load cases consist of
three quadratic, one linear, and one constant function. These
functions are chosen to represent different traction distribu-

tions on contact interfaces. The snapshots are computed for
all possible combinations ofNeumannandDirichlet surfaces.

For the second type of snapshots, all DOFs of a single con-
tact surface or all contact surfaces altogether are fixed. On
each DOF a unit displacement is applied and the resulting
displacement vector is saved into a separate snapshot matrix
SBC = [u1, . . . , unc ]. From the left modematrix of the SVD
of this snapshot matrices SBC , we choose to use five domi-
nant modes as snapshots for the projection matrix. This way
we take only the most dominant effects from this type of
snapshots into account. Taking more than five modes would
increase the size of the POD basis without increasing accu-
racy in the simulations. In the cases where snapshots for a
single contact surface are computed, two different cases are
considered. In the first case, the unit displacement is applied
to every DOF separately. In the second case, the unit dis-
placement is kept, which means that the number of DOFs
with a unit displacement increases until the displacement is
applied to all DOFs.

With these three kinds of snapshots, a relatively large num-
ber of physically reasonable PODmodes can be found,which
is needed to get accurate results for modules used in different
ways.

3.2 Solution procedure

With the method presented in this paper, a large number
of different structures that are assembled from parameter-
dependent substructures can be computed efficiently. An
advantage of this method is, that the substructures are used
many times and their matrices are obtained from precom-
putations. Substructures that are used often are referred to
as modules. For every module s, the DEIM modes �s and
the sampling points γ s

i , as well as projection matrices �s
j

for different parameters, are known. Moreover, the points
in the tangent space �s

j for the interpolation on Grassmann
manifolds can be precomputed (cf. Sect. 2.3.2). All of these
matrices are defined in a reference coordinate system.

To solve the whole reduced system, the global reduced
stiffness matrix K red (Eq. (24)), the global projection matrix
� (Eq. (20)), and the reduced contact stiffness matrix K c,red

(Eq. (25)) have to be assembled. For every structure, the
contact stiffness matrix has to be computed, the other matri-
ces are approximated for the desired parameter vector p̄.
The global projection matrix � and global reduced stiffness
matrix K red are assembled from the corresponding matri-
ces of the substructures. For every substructure, the reduced
stiffness matrix K s

red and the projection matrix �s are com-
puted in three steps. In the first step, the unreduced stiffness
matrix K s and the projection matrix�s are computed for the
desired parameter in the reference coordinate system. The
matrices are interpolated from sampled data with the meth-
ods explained in Sects. 2.3.1 and 2.3.2. In the second step,
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Fig. 4 Module (a): Rectangle with transversely isotropic material. The parameters that can be changed are the length l and the fiber direction angle
α. The length can vary between lmin = 600mm and lmax = 1200mm. The fiber direction angle α can vary between 0◦ and 90◦

the Dirichlet boundary conditions are applied to the stiffness
matrix and the reduced stiffness matrix is computed. In the
third step, the projection matrix is rotated if the module is
rotated in the global structure. The reduced stiffness matri-
ces are invariant against rotations. Finally, these matrices are
assembled into the global system Eq. (26) and solved. The
total solution is obtained by projecting the reduced vector
back. The stresses can be computed in postprocessing.

4 Numerical examples

4.1 Example 1: DEIM of stiffness matrices

In the first numerical example, the quality of the DEIM
approximation is assessed. For that, the approximated stiff-
ness matrices of two different modules are compared to the
standard stiffness matrix. The error norm for the comparison
is defined as

ek := ‖ k − kref ‖
‖ kref ‖ , (37)

where k and kref are the approximated and the standard stiff-
ness data vectors respectively. The first parameter-dependent
module (a) is a rectangle with a transversely isotropic mate-
rial, where the length l and the fiber direction α are variable.
It is illustrated in Fig. 4. The transversely isotropic material
law is the linear version of thematerial law from [34]. For the
computation of the basis � the stiffness matrices are com-
puted at the lengths l = {600, 700, . . . , 1200} and the fiber
angles α = {0◦, 10◦, . . . , 90◦}. The second module (b) is
a circular arc with variable angle φ and constant arc length
larc = 800, which is shown in Fig. 5. Here, the parameters
for the basis computation are φ = {10◦, 15◦, . . . , 90◦}.

In Fig. 6 the error norms of the modules (a) and (b) are
plotted over their parameter ranges. For module (a) the error
is plotted over the length of the module for three different
fixed fiber directions controlled by the parameter α. For all
three values ofα the error is in themagnitude of 10−14, which
leads to the conclusion that the approximation is accurate.
For module (b) the error is shown over the angle φ. With a
magnitude of 10−9, the error is significantly higher compared

to module (a). Moreover, the error norm has peaks at the two
ends of the parameter range. Even though the error is higher,
the approximation is still accurate.

A possible explanation for the higher error of the curved
module can be seen when analyzing the decay of the normal-
ized singular values of the basis computation for the DEIM
approximation. A sign of a good basis is a drop in the singular
values because it means that all snapshots can be represented
with a small number of modes. This sudden drop can be
clearly seen in Fig. 7 for module (a). In contrast to module
(a), the decay of the normalized singular values of module
(b) does not show this characteristic.

However, it can be concluded, thatDEIMgives an accurate
approximation of stiffness matrices. The accuracy depends
on the quality of the basis, which can be assessed by the
decay of the singular values.

4.2 Example 2: Two dimensional parameter space

In the second numerical example, the quality of the inter-
polated ROM over a two-dimensional parameter space is
analyzed, with a small system shown in Fig. 8. The system
consists of three substructures from two different modules.
The rectangular module is discretized by 6000 elements and
the square module by 3600 elements. At the contact inter-
faces, 60 line elements are used. All substructures have a
transversely isotropic material (cf. [34]) with the same fiber
orientation α. The material parameters are shown in Table
1. The parameter space is two-dimensional because the top
right rectangular module can vary in length.

The MOR solution of the system is compared to a ref-
erence solution over the parameter ranges of the length
and the fiber direction. For the MOR solution, the pro-
jection matrices are precomputed for the parameter values
l = {600, 700, . . . , 1200} and α = {0◦, 5◦, . . . , 90◦}. The
stiffness matrices are approximated by the DEIM basis from
Sect. 4.1. The rectangular module has 40 PODmodes and 12
DEIM modes. The square module has 52 POD modes and 5
DEIM modes.

For the reference solution, the tied contact formulation is
used without model order reduction. The displacement and
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Fig. 5 Module (b): Parameter-dependent circular arc module, where the arc length larc = 800 is constant and the angle φ can be chosen between
10◦ and 90◦ to change the curvature of the module
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Fig. 6 Error of the stiffness data vector over a parameter range. a Rectangle with transversely isotropic material dependent on the length of the
rectangle and the fiber orientation. b Circular arc module with variable arc angle

stress errors are defined analogously to Eq. (37) as

eu := ‖ u − uref ‖
‖ uref ‖ , and eσ := ‖ σ − σ ref ‖

‖ σ ref ‖ . (38)

In Fig. 9 the displacement and stress error norms are plotted
over the length of the top right module for different fiber
directions.

The displacement error is for most parameter combina-
tions below 0.2%. Only for some parameter values peaks
occur, where the displacement error is still below 1 %. The
largest peak is at l = 650 and α = 47.5◦. The stress errors
are in general several magnitudes larger. They are mostly
below 10% but the largest peak reaches 16%. The maximum
here is at l = 670 and α = 47.5◦. To assess where these large
stress errors come from the vonMises stress distributions are
analyzed.

In Fig. 10 the vonMises stresses of the MOR solution, the
reference solution, as well as the difference between those
solutions are shown for the parameter combination with the
largest errors. It can be seen that the stress distributions are
very similar. Only at the substructure interfaces differences

are visible. The stress difference plot shows, that the large
differences are concentrated at the boundaries of the mod-
ules and at the singularity. In large parts with large stresses,
the differences are small. This suggests that locally high
stress differences result in large stress error norms. The big
stress differences are in regions with low stresses. To demon-
strate this, we compute the stress error norm only for stresses
greater than a threshold σmin . In Fig. 11 the stress error is
plotted over the thresholds σmin . The error norms decrease
with increasing threshold σmin . This shows, that the large
contributions to the stress error come from regions with low
stresses.

It can be concluded that the MOR technique with the
new methodology to compute significant snapshots for the
projection matrices of the modules accurately represents the
high-dimensional system. The interpolated ROM gives rea-
sonable solutions over the whole parameter range. The peak
of the stresses at α = 47.5◦ and l = 670mm can be treated
as an outlier. The displacement field, which is the indepen-
dent variable of the system is approximated accurately over
the whole parameter range.
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Fig. 7 Decay of normalized singular values of the modes for the DEIM approximation of stiffness matrices. a Rectangle with transversely isotropic
material dependent on the length of the rectangle and the fiber orientation. b Circular arc module with variable arc angle

Fig. 8 Illustration of the
geometry and mesh of the
parametric system. The length l
of the top right module is
variable. The fiber orientation is
the same in all modules. The
system is loaded by the
distributed load q = 8N/mm
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This example shows the speed up due to the MOR and
that the modules can be used in different ways with the same
projection matrices. The geometry of the system is shown in
Fig. 12. It consists of 24 substructureswith originally 266 448
DOFs. Every module is made of transversely isotropic mate-
rial and has a randomly chosen fiber direction. The material
parameters are shown in Table 1. The rectangular module is
used 18 times, and the square module is used 6 times. The
rectangular module is discretized by 6000 elements and the
square module by 3600 elements. At the contact interfaces,
60 line elements are used. For each substructure, the projec-
tion matrix is interpolated from the same precomputed POD
bases of the rectangular and the square module, respectively.
For both modules, the projection matrices are precomputed
for the parameter values α = {0◦, 10◦, . . . , 90◦}. The rect-
angular module has 40 PODmodes and 5 DEIMmodes. The
square module has 52 POD modes and 5 DEIM modes.

Table 1 Material parameters for the transversely isotropic material
model in 105 [MPa]
k1iso k2iso k1ani k2ani kcoup

1.39 −2.62 15.42 0.53 0.37

4.3 Example 3: Largemodular system

The quadratic module is used with two, three, and four
adjacent elements. In the reduced order model, the DOFs
are reduced to 1032, which leads to a reduction factor of
nDOF/mDOF = 258. The speed-up of wall-clock time is
tref/tMOR = 15.06. In Fig. 13 we show the relative times
of the four major simulation steps related to the total simula-
tion time of the full-order model (FOM). The computational
steps are explained in Sect. 3.2. The MOR method achieved
major time savings in the first step of the computation. For
theROM this step includes the reading of themesh, computa-
tion of the stiffness-, projection- and reduced stiffness matrix
by the interpolation methods, and translation and rotation of
the nodal coordinates for every substructure. For the ROM,

123



1158 Computational Mechanics (2024) 73:1147–1163

Fig. 9 Displacement and stress
error over the length of the
rectangular module for different
fiber orientations. The fiber
orientation is the same in every
module
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Fig. 10 Contour plots of von
Mises stresses for the
parameters with the largest error
norms (l = 670, α = 47.5◦). a
Model order reduction (MOR)
solution. b Reference solution. c
Difference between MOR and
reference solution
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reading of the mesh and transformation of the nodal coordi-
nates takes roughly 65% of the time of the first step. For the
FOM only the stiffness matrix is computed, the other steps
remain the same. The computation of the contact stiffness
matrix is the same for the ROM and the FOM and takes the
same amount of time. The amount of time to assemble and
solve the system of equations is reduced because the number
of DOF of the ROM is 258 times smaller. It has to be empha-
sized, that the times of the different steps depend strongly on
the implementation.

The displacement and stress error norms are

eu = ‖ u − uref ‖
‖ uref ‖ = 0.0013, and

eσ = ‖ σ − σ ref ‖
‖ σ ref ‖ = 0.088, (39)

which are in the same magnitude as the errors in Sect. 4.2.
Figure14 shows the von Mises stress contour plots of the
MOR solution, the reference solution, and their difference.
Analogously to Sect. 4.2 the contour plots look very simi-
lar and the errors are concentrated at the interfaces between

0 5 10 15 20 25

0.1

0.12

0.14

0.16

σmin

‖(
σ

−
σ

re
f)

‖/
‖σ

re
f
‖

Fig. 11 Stress error plot over a minimum stress σmin . For the stress
error computation, only the stresses are used where |σ | > σmin holds.
This shows that the large stress errors come from big stress differences
in regions where the stresses are very low, compared to the maximum
stress of σmax = 1517.4 [MPa]. Removing the low-stress regions from
the error norm reduces it

modules. In the regions with the highest stresses, the stresses
are very accurate. This result shows, that the modules can be
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Fig. 12 Illustration of the geometry of the parametric system, where
the fiber orientation in every substructure is randomly selected. The
edges of the square module are 300mm and the rectangular module
has a length of 800mm. The system is loaded by the distributed load
q = 33.3N/mm

used in different parts of the structure, where the boundary
or contact conditions differ.

4.4 Example 4: Parameter dependent geometry

The fourth example is a frame with variable height, which
is shown in Fig. 15. The system consists of seven substruc-
tures, from two different parameter-dependent modules. The
rectangular module is discretized by 6000 elements and the
circular arc module by 12,000 elements. At the contact inter-
faces, 60 line elements are used. For the parameter-dependent
rectanglemodule, the projectionmatrices are precomputed at
l = {600, 800, . . . , 1200}. The module has 44 POD modes
and 3 DEIM modes for the stiffness matrix. The circular
arc module is precomputed at φ = {10◦, 20◦, . . . , 90◦}.
The arc module has 36 POD modes and 9 DEIM modes
for the stiffness matrix. The stiffness matrices for the DEIM

basis are computed at l = {600, 700, . . . , 1200} and φ =
{10◦, 15◦, . . . , 90◦}, for the rectangle and the circular arc
respectively.

The angle φ1 controls the height of the structure because
for a fixedwidth of b = 3000mm and a constant arc length of
all arcmodules of larc = 800mm all other parameters depend
on it. The height of the vertical rectangular substructures is
constant at l1 = 800mm. The material is linear elastic with
Young’s modulus of E = 210,000MPa and Poissons ratio
of ν = 0.3. The system is loaded with q = 50N/mm and
w = 20N/mm.

The purpose of this example is to illustrate how themethod
can be used. The parameter φ1 is varied to find the opti-
mal structure, which is computationally cheap because all
systems can be computed with MOR. Once the optimal
parameter is found, this system can be solved exactly. In our
case, we search for the stiffest frame. Therefore, in Fig. 16
the maximum displacement in x- and y-direction and the
sum of these two values are plotted over the parameter φ1.
With increasing angle φ1, the maximum displacement in
x-direction decreases, while the maximum y-displacement
increases. As a criterion for the stiffest frame, we use the
minimum of the sum of the two maximum displacements,
which yields φ1 = 72◦ for the given loading conditions.

For the stiffest version of this frame, the unreduced solu-
tion was also computed. Compared to the unreduced solution
the reduced solution had 432 times fewer degrees of free-
dom and could be solved 19.6 times faster. The reason for
this higher speed up compared to Sect. 4.3 is that the con-
tact stiffness matrix was already pre-computed and was not
included in the timed simulations. The displacement and
stress errors are

eu = ‖ u − uref ‖
‖ uref ‖ = 0.0013, and

eσ = ‖ σ − σ ref ‖
‖ σ ref ‖ = 0.032, (40)

where the stress errors are low compared to the examples
in Sects. 4.2 and 4.3, because the system does not show any
stress singularity. Figure17 shows the von Mises stresses of

Fig. 13 Bar chart of the relative
times of the different simulation
steps related to the simulation
time of the Full Order Model
(FOM)
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Fig. 14 Contour plots of von
Mises stresses. a Model order
reduction (MOR) solution. b
Reference solution. c Difference
between MOR and reference
solution

(a) MOR solution (b) Reference solution

(c) Difference
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Fig. 15 Illustration of the
geometry of the parametric
system. The height of the
system depends on the angle φ1.
The thickness t = 300mm, the
width b = 3000mm, and the
height l1 = 800mm are
constant. All other parameters
are derived from the angle φ1.
The system is loaded by the
distributed loads w = 20N/mm
and q = 50N/mm
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the reduced solution, the unreduced solution, and their dif-
ference. Analogously to Sect. 4.3 the stresses are accurate in
most regions, while at the interfaces in the rectangular mod-
ules with variable lengths the stress differences are higher.

5 Conclusions and outlook

We developed a method to efficiently solve structures, that
are assembled from parameter-dependent substructures, by
connecting the substructures with a tied contact approach
and applying POD-based MOR on the substructure level. It
was shown that the ROM could be adapted to the parameters
chosen for each substructure. To adapt the POD projec-
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Fig. 16 a Maximum x- and y-
displacement over angle φ1. b
Sum of the maximum x- and y-
displacement over angle φ1
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Fig. 17 Contour plots of von
Mises stresses. a Model order
reduction (MOR) solution. b
Reference solution. c Difference
between MOR and reference
solution
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tion matrices, we used an interpolation method on geodesics
on Grassmann manifolds. For the adaption of the stiffness
matrix, we presented a way to apply DEIM to parameter-
dependent stiffnessmatrices. Thiswas necessary because our
method requires rigid body displacement modes in the pro-
jection matrices, which lead to indefinite reduced stiffness
matrices. Therefore, matrix manifold interpolation methods
could not be used because they require semi-positive definite

matrices. Moreover, we developed a method to compute sig-
nificant snapshots for POD modes of the modules that allow
for flexible use of these modules in global structures.

The numerical examples show, that the new method to
compute snapshots leads to an accurate representation of
the displacement field. The stress field is also approximated
quite well, but at interfaces and singularities, the differences
to the reference solution can get relatively large locally,
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which drives up the error norms. Moreover, it was shown,
how the ROM of modular structures is adapted to param-
eter changes of the modules by interpolation. The stiffness
matrices of each module were approximated accurately with
DEIM. These interpolations lead to a significant reduction
of the computation time (cf. Sects. 4.3, 4.4). The slowest
parts of the reduced simulation are the computation of the
contact stiffness matrix and the computation of the reduced
stiffness matrices of the substructures. The projection of the
substructure stiffness matrices into the reduced space still
scales with the original problem. This drawback has to be
addressed in future works. Finally, it was shown, that the
proposed method is well-suited to find optimal parameters
for parameter-dependent structures. The efficient adaption of
the matrices makes simulations over whole parameter ranges
computationally cheap. These solutions are then compared
to find optimal parameters. Optimization techniques like the
gradient descent algorithm could also be applied. The neces-
sary gradients are cheap to compute because of the adaptive
model order reduction.

In the future, the method will be extended to geometri-
cally andmaterially nonlinear problems. Themain difference
would be that the system is solved by a Newton–Raphson
scheme and the tangential stiffnessmatrix aswell as the inter-
nal force vector would have to be approximated by DEIM.
Furthermore, it will be applied to modular carbon-fiber rein-
forced concrete shell structures.
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A Appendix

A.1 Bilinear interpolation on GrassmannManifolds
for two-dimensional parameter spaces

For the numerical example in Sect. 4.2 we need to interpo-
late the projection matrices in two parameter dimensions. In
the following, we will briefly explain the bilinear interpola-
tion scheme we used to compute the projection matrix for a
target parameter point ( p̄, q̄). In a pre-computation step, we
compute POD-bases � for every grid point (pi , q j ) from
the sampling parameter sets P = {p1, p2, . . . , pk} and
Q = {q1, q2, . . . , qk}. We will now explain the interpo-
lation scheme to compute the projection matrix The first step
is to find the two closest sampling parameters to each tar-
get parameter, such that pi < p̄ < p j and qk < q̄ < ql .
The interpolation is then performed between the projection
matrices of the four points: (pi , qk), (pi , ql), (p j , qk), and
(p j , ql). We choose the projection matrix of (pi , qk) as our
origin point �o := � ik . Then we compute the points in the
tangent space �il , � jl , and � jkl for all three other parameter
points (pi , ql), (p j , qk), and (p j , ql), by using Eq. (34). In
the next step, we interpolate the in this tangent space by a
bilinear interpolation [31]:

�̄ = 1

(p j − pi )(ql − qk)

[
p j − p̄ p̄ − pi

] [
0 �ik

�il � jk

]

[
ql − q̄
q̄ − qk

]
. (41)

Finally, we compute the projection matrix �̄ for the point
( p̄, q̄) by the exponential map from Eq. (36).
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