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Abstract
This work presents an approach for automating the discretization and approximation procedures in constructing digital rep-
resentations of composites from micro-CT images featuring intricate microstructures. The proposed method is guided by
the Support Vector Machine (SVM) classification, offering an effective approach for discretizing microstructural images.
An SVM soft margin training process is introduced as a classification of heterogeneous material points, and image seg-
mentation is accomplished by identifying support vectors through a local regularized optimization problem. In addition, an
Interface-Modified Reproducing Kernel Particle Method (IM-RKPM) is proposed for appropriate approximations of weak
discontinuities across material interfaces. The proposed method modifies the smooth kernel functions with a regularized
Heaviside function concerning the material interfaces to alleviate Gibb’s oscillations. This IM-RKPM is formulated with-
out introducing duplicated degrees of freedom associated with the interface nodes commonly needed in the conventional
treatments of weak discontinuities in the meshfree methods. Moreover, IM-RKPM can be implemented with various domain
integration techniques, such as Stabilized Conforming Nodal Integration (SCNI). The extension of the proposed method to
3-dimension is straightforward, and the effectiveness of the proposed method is validated through the image-based modeling
of polymer-ceramic composite microstructures.

Keywords Image-based modeling · Support vector machine · Reproducing kernel particle method · Weak discontinuity ·
Microstructures

1 Introduction

In recent years, a variety of non-destructive imaging tech-
niques, such as micro-X-ray computed tomography (micro-
CT), have emerged as powerful alternatives to obtain detailed
information about the microstructure and internal deforma-
tion of composite materials [1–4]. Nevertheless, modeling
microstructures remains challenging owing to their geomet-
rical and topological complexities and heterogeneity, making
the body-fitted mesh generation for mesh-based methods
extremely tedious and time-consuming, especially in the
three-dimension model construction. An example of a 2D
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micro-CT image slice of a polymer-ceramic composite spec-
imen (polymer matrix reinforced by ceramic particles) is
shown in Fig. 1a with a resolution of 8 μm, and a body-fitted
FEM mesh is generated for a selected Region of Interest
(ROI) of 200 by 200 pixels in Fig. 1b to demonstrate the
meshing complexity. As can be seen, body-fitted meshing
requires significant mesh refinement near material interfaces
of inclusions with complex geometries. This adds complex-
ity to mesh generation and demands extensive mesh density
in the discretization, yielding 37,454 elements and 112,538
nodes in this demonstration example.

Various image segmentation techniques have been devel-
oped over the past several decades, including region-based
and classification-based methods [5]. Global and local
thresholding [6] is a simple region-based method that uses
a threshold value to separate objects from the background,
but it can lead to poor results if the threshold is not cho-
sen correctly. The region growing method [7] is another
region-based approach that relies on user-selected seed pixels
and offers advantages over thresholding, but the numerical
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Fig. 1 Micro-CT image of a polymer-ceramic composite microstructure and its corresponding body-fitted finite element mesh

results can be sensitive to the selection of initial seed points.
Clustering-based methods [8], such as K-mean clustering,
hierarchical clustering, and Gaussian Mixture Models, are
region-based, unsupervised algorithms that partition images
into local regions or clusters based on the similarity of their
attributes. They can perform image segmentation directly
with image pixel information without labeled data, but
appropriate selection of features and number of clusters are
essential to the effectiveness of many clusteringmethods. On
the contrary, classification-based methods generally adopt a
global approach for image segmentation, whereby an auto-
matic pattern recognition process is utilized in the context
of supervised learning based on manually segmented train-
ing datasets. K-Nearest Neighbor is a simple, non-parametric
supervised learning model that makes predictions based on
the k-nearest neighbors in the training data, but it usually
requires a large amount of training data to suppress high vari-
ance problems [9]. Tree-based algorithms, including decision
trees and random forests, are another widely used supervised
learning techniques in which the training data is partitioned
into smaller subsets without much data pre-processing and
with high interpretability and computational efficiency.How-
ever, these methods may have limited ability to predict
unseen data, restricted decision boundary expressiveness,
and can be sensitive to imbalanced data [10]. Recently, deep
learning algorithms have enabled to develop state-of-the-art
image segmentation methods, especially those based on con-
volutional neural networks, which can automatically learn
features from raw images with minimal human interaction.
However, these methods require large amounts of labeled
datasets with extensive training and aremathematically more
challenging to interpret due to the highly non-linear rela-
tionships between input features and output labels [11, 12].
Other techniques besides machine learning algorithms have
also been widely adopted for image segmentation. The level
set method originated from Osher and Sethian [13] uses an

auxiliary function to represent and track the evolution of
interfaces in images [14]. While it is capable of handling
irregular shapes and complex topologies, identification of
zero level set can be time consuming. Fast Fourier Trans-
form explores the frequency domain of images where quick
computations can be performed on frequency components of
images. This algorithm is highly efficient as it operates in
low-dimensional frequency domain. However, Fast Fourier
Transform provides limited direct spatial localization infor-
mation of images features, and it works more optimally for
certain image processing task like image registration [15] and
periodic patterns reconstruction and segmentation [16].

The present work employs the Support Vector Machine
(SVM) algorithms as the image segmentation method
to guide the numerical model generation. SVM is a
classification-based machine learning algorithm built on
solid mathematical foundation and optimization frameworks
[17, 18]. Compared to other supervised algorithms, SVM
is advantageous because it generates a unique maximum-
margined global hyperplane for separating training datasets,
providing a global solution for data classification. Addi-
tionally, it is not sensitive to the underlying probabilistic
distribution of the training dataset, ensuring high perfor-
mance for limited, noisy, or imbalanced datasets [19]. One
apparent limitation of the standard SVM is that it requires
O(l3) operations, where l is the length of the training dataset,
to solve a complex quadratic programming problem (QPP)
with inequality constraints. Various approaches have been
proposed to overcome this limitation, such as the training
decomposition method [20] and the reduced support vec-
tor machine algorithm [21], which significantly improves
SVM’s training speed. Additionally, more efficient formula-
tions of SVMhave been introduced, such as the Least Square
SVM algorithm [22] and the Lagrangian SVM algorithm
[23]. The Least Square SVM algorithm optimizes a dual
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problem directly using a least-square loss function, replac-
ing the hinge loss function in the original SVM’s formulation
to reformulate the complex QPP as a linear system of equa-
tions. In contrast, the Lagrangian SVM algorithm utilizes an
implicit Lagrangian for the dual of the standard quadratic
program of a linear SVM, leading to the minimization of an
unconstrained differentiable convex function in the space of
dimensionality equal to the number of training datasets. Both
mentioned algorithms eliminate the necessity of complicated
programming problem solvers, making them feasible for
classifying large datasets. In addition to the binary SVM
classifier, extensive research has been done to extend SVM to
multi-class classification. The one-vs-allmethod, one-vs-one
method, error-correcting output codes, and directed acyclic
graphs are among the most widely used approaches to han-
dle multi-class classification with SVM [24]. The traditional
binary SVMalgorithm is adopted in this work for its effective
applicability to the two-phase materials.

Numerical modeling of heterogeneous materials remains
challenging for both mesh-based methods discretized with
body-fitted discretization and meshfree methods formulated
with smooth approximations. For the Finite ElementMethod
(FEM), incomplete handling of discontinuities in mesh con-
struction can lead to suboptimal convergence [25], and
aligning meshes with interfaces is a non-trivial task for
composites with complex microstructures and significant
variations in constituent moduli. The Finite Cell Method
is a high-order embedded domain technique [26] that pro-
vides simple yet effective modification of traditional FEM
to bypass the necessity of exhaust body-fitted meshing for
geometrically and topologically complex microstructures.
Korshunova et al. [27, 28] presented image-based numerical
characterization and validation of additively manufactured
structures using Finite Cell Method and numerical homoge-
nization. Special numerical integration schemes need to be
considered to differentiate between inside and outside the
physical domain for the Finite Cell Method. The meshfree
methods utilize point-wise discretization instead of carefully
constructed body-fittedmeshes. However, meshfreemethods
such as element-free Galerkin (EFG) [29] and reproducing
kernel particlemethod (RKPM) [30–32] typically suffer from
Gibb’s-like oscillation in the approximation when modeling
weak continuities in composite materials, as their smooth
approximation functions with overlapping local supports fail
to capture gradient jumpconditions acrossmaterial interfaces
[33]. Considerable effort has been dedicated to developing
effective techniques for dealing with interface discontinu-
ities. Since the proposedwork is under theGalerkinmeshfree
framework, the review ofmethods developed based onmesh-
based context to address interface discontinuities is omitted
here. Reviews on some key non body-fitted FEM develop-
ments for interface discontinuities can be found in [34, 35].

Two primary approaches in meshfree methods have been
proposed for handling material interface weak discontinu-
ities. The first approach involves introducing discontinuities
in the meshless approximation function. Krongauz and
Belytschkoproposed two types of jumpenrichment functions
into the conventional Moving Least Squares or Reproduc-
ing Kernel (RK) approximation of the field variables [33].
The enrichment functions introduce discontinuous deriva-
tives into solutions along material interfaces, but additional
unknowns must be solved in this method. Chen et al. [36]
introduced the jump enrichment functions into the RK shape
function based upon enforcing the consistency conditions,
which is termed the interface-enriched reproducing kernel
approximation. However, coupling interface-enriched RK
shape functionswith the standardRK shape function requires
duplicated unknowns. In addition, Masuda and Noguchi
introduced a discontinuous derivative basis functions to
replace the conventional polynomial basis function used in
MovingLeast-Squares approximations [37].Another class of
methods introduces modifications to the weak formulation to
consider the effects of discontinuity in a weak sense. Codes
and Moran treated material interface discontinuities by a
Lagrange Multiplier technique so that the approximations
are disjoint across the interfaces while the Lagrange Mul-
tiplier imposes the interface continuity constraints into the
variational formulation of the meshfree discretization [38].
This approach introduces additional degrees of freedom to be
solved associated with the Lagrange Multiplier, and stability
conditions need additional attention. On the other hand, the
discontinuous Galerkin formulation has also been consid-
ered, where the continuity of a field variable and its resulting
interface flux or traction across interfaces are imposed in
the weak form [39, 40]. Wang et al. proposed a Discon-
tinuous Galerkin reformulation of the EFG and RKPM to
address interface discontinuity problems of composite mate-
rials [41]. This approach avoids duplicated unknowns, and
by decomposing the domain into patches, the gradient jump
of the dependent variable is captured by the boundary of
the adjacent patches while the continuity condition is real-
ized weakly through an augmented variational form with
associated flux or traction crossingmaterial interfaces. Addi-
tionally, othermeshfreemethods have also been proposed for
non-body-fitted discretization of heterogeneous media, such
as the immersed methods [42, 43]. However, these meth-
ods require special care of interface oscillations due to the
employment of volumetric constraints on the foreground and
background discretization.

The current work introduces a novel Interface-Modified
Reproducing Kernel Particle Method (IM-RKPM) to prop-
erly handle weak discontinuities in composite materials
across material interfaces. The proposed approach utilizes
signed distance functions obtained from SVM classified
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micro-CT images to introduce regularized weak discontinu-
ities to the kernel functions for arbitrary interface geometries.
No duplicated unknowns, special enrichment functions, or
complicated reformulation of the RK shape functions are
required in the proposed approach, offering automatedmodel
construction capabilities for modeling complex microstruc-
tures.

The remainder of the paper is organized as follows.
Section 2 provides basic equations for themodel problem and
the Reproducing Kernel Particle Method, and the associated
numerical domain integration techniques are also discussed
in this section. A brief introduction of the SVM formulation
and the proposed SVM and RK-guided procedures for image
segmentation of heterogenous materials are introduced in
Sect. 3. Section 4 presents an interface-modified kernel func-
tion and the Interface-Modified Reproducing Kernel Particle
Method formulation to introduce weak discontinuities in
the image-based modeling of composite microstructures. In
Sect. 5, two numerical examples for image-based modeling
ofmicrostructures are demonstrated, and the paper concludes
with a discussion and summary in Sect. 6. Throughout the
paper, the following abbreviations and symbols have been
introduced:

• SVM: Support Vector Machine
• IM-RKPM: Interface-Modified Reproducing Kernel Par-
ticle Method

• SCNI: Stabilized Conforming Nodal Integration
• micro-CT: micro-X-ray Computed Tomography
• ROI: Region of Interest
• QPP: Quadratic Programming Problem
• FEM: Finite Element Method
• EFG: Element-Free Galerkin
• RKPM: Reproducing Kernel Particle Method
• SVM-RK: Support Vector Machine Guided Reproducing
Kernel

• B2: Quadratic B Spline Kernel Function
• B3: Cubic B Spline Kernel Function
• SEM: Scanning Electron Microscopy
• EDS: Energy Dispersive X-ray Spectroscopy
• PK: Power Kernel Function
• S

RK: SVM-RK discretization node set containing total
number of N P nodes

• �I (x): RK shape function with support centered at node
x I and evaluated at point x

• φa(x − x I ): RK kernel function with a compact support
a defined over a node I ’s associated subdomain �I

• HT (x − x I ): Vector of monomial basis functions to the
order of n

• M(x): Moment matrix
• ˜∇�I (xL): Smoothed RK shape function gradient evalu-
ated at nodal integration point xL

• ˜B(xL): Gradient matrix associated with smoothed nodal
RK shape function gradient

• D � {(xi , yi )}li�1: Labeled SVM training data set con-
taining l pairs of training data xi ∈ R

d and corresponding
response label yi ∈ {−1, 1}

• w: d-dimensional weight vector
• b: A scalar bias
• h(x; {w, b}): d-dimensional separating hyperplane

• {xSVi
}NSV

i�1 : The set of support vectors with a total number
of Nsv data points

• ξ∗: Margin
• h∗(x): Optimal separation hyperplane that maximizes the
margin

• ∇εi : Slack variable corresponding to the i th data point
• C : Penalty weight parameter
• K

(

xi , x j
)

: Kernel function used in non-linear SVM for-
mulation

• γ : Gaussian radial basis kernel scale
• S(x): SVM classification score function
• S

0: A set of training data points located at image pixel
centroids with a total number of N P0 points

• S
+: A subset of S

0 that contains elements with non-
negative classification scores

• S
−: A subset of S

0 that contains elements with negative
classification scores

• {x+K , x−
K

}N PI F
K�1 : Interface-searching node pairs with x±

K ∈
S

± as a near-interface master/slave node
• d∗

K : A scaler line search step for identifying interface node
x∗
K• RK : Interface node line search direction for identifying

interface node x∗
K• S

I F : Interface node set, containing a total number of N P∗
identified interface node x∗

• S
C+: Master candidate node set, a subset of S

+ containing
near-interface master nodes

• S
C−: Slave candidate node set, a subset of S

− containing
near-interface slave nodes

• ˜S(x): RK shape function interpolated classification score
function

• sI : SVM classification score value for node x I ∈ S
0

• �0
I (x): RK shape function centered at node x I ∈ S

0

• ˜H : Regularized Heaviside function for interface modifica-
tion

• φa(x − x I ): Modified RK kernel function with a compact
support a

• ξ (x): A distance measure normalized with respected to the
nodal spacing

• M(x): Modified moment matrix
• � I (x): Interface modified reproducing kernel shape func-
tion

• {x∗+
K , x∗−

K

}

: Mirrored node pair for the interface node x∗
K

123



Computational Mechanics (2024) 73:907–942 911

2 Basic equations

2.1 Model problem

Let a model elasticity problem be defined on a domain �

with its boundary assigned as ∂� � ∂�g ∪ ∂�t , ∂�g ∩
∂�t � ∅, where the subscripts g and t denote the Dirichlet
and Neumann boundaries, respectively. The strong form for
heterogeneous elastic media can be described as:

∇ · σ + s � 0 in �

u � u on ∂�g

n · σ � t on ∂�t (1)

where u represents the unknown displacement field, σ is the
Cauchy stress tensor, s is the body force vector, u and t are
the prescribed displacement vector and the applied surface
traction vector on the Dirichlet and Neumann boundaries,
respectively, and n is the unit outward normal of the Neu-
mann boundaries. The elastic constitutive relationship for
heterogeneous materials is represented as:

σ (x) � C(x) : ε(u(x)) (2)

Here C(x) is the elasticity tensor defined as:

C(x) �
{

C1, x ∈ �1

C2, x ∈ �2 (3)

where �i are material sub-domains to be segmented by the
SVM classification of microstructure image pixels.

The weak formulation is to find u(x) ∈ U ⊂ H1
g , such

that for all weight function v(x) ∈ V ⊂ H1
0 ,

∫

�

ε(v) : σ (u)d� �
∫

�

v · sd� +
∫

∂�h

v · td	 (4)

The Galerkin formulation seeks the trial solution function
uh ∈ Uh ⊂ U , so that for all weight function vh ∈ V h ⊂ V ,

∫

�
ε
(

vh
)

: σ
(

uh
)

d� �
∫

�
vh · sd� +

∫

∂�h

vh · td	 (5)

2.2 Reproducing kernel approximation

Let a closed domain � � � ∪ ∂� ⊂ R
d be dis-

cretized by a set of N P nodes denoted by S
RK �

{

x1, x2, . . . , xN P |x I ∈ �
}

, and let the approximation of a
field variable u(x) in�bedenoted by uh(x). TheRKapprox-
imation of the field variable u(x) based on the discrete points
in the set S

RK is formulated as follows:

uhi (x) �
∑N P

I�1
�I (x)di I (6)

where �I denotes the RK shape function with support cen-
tered at the node x I and di I is the nodal coefficient in i th

dimension to be sought. Moreover, let a node I be asso-
ciated with a subdomain �I , over which a kernel function
φa(x − x I ) with a compact support a is defined, such that
� ⊂ ⋃

I∈SRK�I holds. The RK approximation function is
constructed as [30–32, 44]:

�I (x)�C(x; x−x I )φa(x−x I )�
⎛

⎝

∑

|α|≤n

(x−x I )
αbα(x)

⎞

⎠φa(x−x I )

≡ HT(x−x I )b(x)φa(x−x I ) (7)

HT (x − x I ) � [1, x1 − x1I , x2 − x2I , . . . , (x3 − x3I )
n]
(8)

where α is a multi-index notation such that α � (α1,
α2, . . . , αd ) with a length defined as |α| � α1 + α2 +
· · · + αd , and xα ≡ xα1

1 · xα2
2 , . . . , xαd

d , bα � bα1α2···αd .
The term C(x; x − x I ) � HT(x − x I )b(x) is called the
correction function of the kernel φa(x − x I ) designed to
introduced completeness to the RK approximation. The
terms

{

(x − x I )
α
}

|α|≤n form a set of basis functions, and

HT (x − x I ) is the corresponding vector of basis functions
to the order n. The vector b(x) is the coefficient vector of
{bα(x)}|α|≤n and is solved by enforcing the following dis-
crete reproducing conditions [45]:
∑N P

I�1
�I (x)xα

I � xα, |α| ≤ n (9)

or equivalently,

N P
∑

I�1

�I (x)(x − x I )
α � δ0α, |α| ≤ n

Or

N P
∑

I�1

�I (x)H(x − x I ) � H(0) (10)

where H(0) � [1, 0, . . . , 0]T according to Eq. (8). After
inserting Eq. (7) into Eq. (10), b(x) is obtained as:

b(x) � M−1(x)H(0)φa(x − x I ) (11)

where M(x) is the moment matrix and is formulated as:

M(x) �
N P
∑

I�1

H(x − x I )HT(x − x I )φa(x − x I ) (12)

Finally, the RK shape function is obtained as:

�I (x) � HT(0)M−1(x)H(x − x I )φa(x − x I ) (13)
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Fig. 2 RK domain discretization and examples of kernel functions

Fig. 3 Examples of 1D and 2D RK shape functions constructed based on the cubic B-spline kernel function and linear basis functions

Examples of 1-dimensional kernel functions are shown
in Fig. 2, and the 1- and 2-dimensional RK shape functions
constructed based on cubic B-spline kernel function and lin-
ear basis functions are shown in Fig. 3. The locality and the
smoothness of the RK approximation functions are deter-
mined by the kernel function,while the order of completeness
in the approximation is determined by the order of basis func-
tions n. Interested readers are referred to [30–32, 44, 46, 47]
for basic properties of reproducing kernel approximation.

2.3 Numerical domain integration

Due to the rational nature and arbitrary local supports,
introducing RK approximations in the Galerkin weak form
requires special attention. The conventional Gauss integra-
tion on background integration cells leads to a sub-optimal
convergence unless significantly high-order quadrature rules

are used, which is computationally infeasible especially in
three-dimension [44]. More recent quadrature integration
methods have been developed to handle broken integration
cells commonly encountered in non-geometrically conform-
ing meshes, such as the moment fitting based methods [48,
49] and smart octree based methods [50]. Those quadrature
methods can achieve similar accuracywith low order quadra-
ture points compared to the conventional Gauss integration
and handle complex and irregular integration domains. How-
ever, it would be natural for meshfree methods to use
nodal-based numerical integrations. Several nodal-based
integration techniques have been proposed, such as stabi-
lized conforming and non-conforming nodal integrations
[51–56] and variationally consistent integration [57], along
with various stabilization methods [58–60]. The stabilized
conforming nodal integrationmethods is utilized in this work
and is summarized in this section.
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Fig. 4 Voronoi tessellation of
domain and representative nodal
cell

2.3.1 Stabilized conforming nodal integration

One solution that significantly eases the computational cost
of Gauss domain integration is to use the discretized nodes
as integration points [58], referred to as the direct nodal
integration. The direct nodal integration technique is appeal-
ing because of its simplicity and efficiency, as it does not
require a background integration mesh, which makes numer-
ical approximation truly "mesh-free." Nevertheless, since it
is similar to a one-point quadrature rule, the under-integration
of the weak form results in improper zero energy modes in
most situations [51, 58].

Chen et al. [51] introduced the Stabilized Conforming
Nodal Integration (SCNI) method as an enhancement of
the direct nodal integration by fulfilling the consistency
conditions between the approximations and the numerical
integration of the weak form known as the integration con-
straints. The SCNI method is formulated to exactly meet
the first-order integration constraint and also to remedy the
rank deficiency in the direct nodal integration method by
introducing the following smoothed gradient in the Galerkin
approximation:

(14)

∇̃�I (xL ) � 1

WL
∫
�L

∇�I (x) d�

� 1

WL
∫

∂�L

�I (x) nd	, WL � ∫
�L

d�

where �L denotes the nodal representative conforming
smoothing cells, and n represents the unit outward normal
of the smoothing cell boundaries. A convenient way of gen-
erating conforming smoothing cells is to create the Voronoi
diagram according to the domain boundaries and nodal coor-
dinates, as illustrated in Fig. 4, where the boundary integral
in the smoothed gradient in Eq. (14) is carried out by the cell
boundary quadrature points.

The associated gradient matrix ˜B(xL) of RK approxima-
tion evaluated at nodal integration point xL is now expressed

in terms of smoothed gradient as:

B̃ I (xL) �
⎡

⎢

⎣

b̃I1(xL) 0
0 b̃I2(xL)

b̃I2(xL) b̃I1(xL)

⎤

⎥

⎦

b̃I i (xL) � 1

WL

∫

	L

�I (x)ni (x)d	 (15)

The stiffness matrix is then integrated by nodal integration
with the smoothed gradient as:

K �
N P
∑

L�1

˜B
T
(xL )C(xL )˜B(xL )WL (16)

It is noted that Voronoi cells conformed to the material
interfaces without confining to the existing pixel points can
be constructed, as demonstrated in Fig. 4. In such construc-
tion, the centers of those Voronoi cells can be viewed as the
integration points that are not coincided with the image pixel
points. A naturally stabilized nodal integration [56] can be
added to SCNI for additional stabilization. Details of con-
structing those Voronoi cells near the material interface are
given in Appendix A.

3 Support vector machine (SVM)
classification of micro-CT images
andmodel discretization

3.1 Support vector machine (SVM) classification
algorithm

The Support Vector Machine (SVM) is a class of supervised
machine learning algorithms that assigns labels to objects
through training [61]. Let a labeled classification dataset con-
taining l sets of data be denote as D � {(xi , yi )}li�1, where
xi ∈ R

d is the d-dimensional data points, and yi is the label
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corresponding to the ith data point. Since the primary focus
of this work is bi-material classification, yi is assumed to be
either −1 or +1, representing the negative (matrix) and pos-
itive (inclusion) classes, respectively. If the given dataset is
perfectly linearly separable, the SVM classification process
can be described as to find a separating hyperplane in the
form of a linear discriminant function in d-dimension:

h(x; {w, b}) � wT x + b (17)

where w denotes a d-dimensional weight vector and b
denotes a scalar bias. Additionally, h(x; {w, b}) serves as
a linear classifier for class prediction following the decision
rule:

y �
{

+1 i f h(x; {w, b}) > 0
−1 i f h(x; {w, b}) < 0

(18)

Therefore, the weight vector w is orthogonal to the defined
hyperplane, and for each xi ∈ D, the relative distance in
terms of w to the defined hyperplane can be expressed as:

ξi � yi
(

wT xi + b
)

‖w‖ (19)

The margin of the linear classifier is identified by select-
ing a collection of the data points that achieve a minimum
distance to h(x; {w, b}), which are called the support vectors
{

xSVi
}NSV

i�1 , and are defined as:

{

xSVi
}NSV

i�1
� argmin

x i∈D

{

yi
(

wT xi + b
)

‖w‖

}

(20)

Note that if the distances of all support vectors to the hyper-
plane are normalized to be 1, the margin can be defined as
ξ∗ � 1

‖w‖ . Thus, the goal of training the SVM with a linear
classifier as Eq. (17) can be described as to find the optimal
hyperplane h∗(x) as follows:

h∗(x) � h
(

x;
{

w∗, b∗}),

w∗, b∗ � argmax
w, b

{

1

‖w‖
}

,

subject to : yi
(

wT xi + b
)

≥ 1, ∀xi ∈ D (21)

The constrained optimization problem described in
Eq. (21) can be formulated as an equivalent convex con-
strained minimization problem:

min
w, b

J (w) � 1

2
‖w‖2,

subject to : yi
(

wT xi + b
)

≥ 1, ∀xi ∈ D (22)

which is called the primal formulation of SVM with linear
classifier [18]. Instead of directly solving the primal convex
minimization problem, it is computationally more efficient
to solve the dual problem, formulated using the Lagrange
multipliers. To construct the dual problem, a Lagrange mul-
tiplier λi is introduced for each linear constraint based on the
Karush–Kuhn–Tucker (KKT) conditions [62]:

λi

(

yi
(

wT xi + b
)

− 1
)

� 0, λi ≥ 0 (23)

Then the objective of the dual problem can be formulated as:

min
w, b

L � 1

2
‖w‖2 −

l
∑

i�1

λi

(

yi
(

wT xi + b
)

− 1
)

(24)

By finding the stationary point of the Lagrangian L with
respect to w, the optimal weight vector w can be expressed
in terms of a linear combination of the data points, data label,
and Lagrange multipliers:

w �
l
∑

i�1

λi yi xi (25)

Additionally, a new constrain arises whenminimizing L with
respect to the bias, which indicates that the sum of the labeled
Lagrange multipliers must be equal to zero. Therefore, by
substitutingEq. (25) intoEq. (24), the dual problem’s training
objective can be formulated as:

max
λ

Ldual �
l
∑

i�1

λi − 1

2

l
∑

i�1

l
∑

j�1

λiλ j yi y j xTi x j ,

subject to : λi ≥ 0,
l
∑

i�1

λi yi � 0, for i � 1, 2, 3, . . . , l

(26)

where Eq. (26) forms a well-known convex quadratic pro-
gramming problem (QPP).

Nevertheless, it is possible that no such hyperplane can
be found through Eq. (26) as the real-world data sets are
rarely perfectly separable. To deal with cases with overlap-
ping classes, a non-negative slack variable ∇εi is introduced
to each data point xi ∈ D, such that the linear constraint in
Eqs. (21) and (22) is modified as:

yi
(

wT xi + b
)

≥ 1 − ∇εi ,

∀xi ∈ D, ∇εi ≥ 0, ∀i � 1, 2, 3, . . . , l (27)

It is worth noting that the magnitude of ∇εi affects the cor-
rectness of the classification of its corresponding data point
xi : when ∇εi ≥ 1, the data point will be misclassified as
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it appears on the wrong side of the hyperplane. As a result,
for non-separable data sets, SVM introduces a “soft margin”
concept into the training process, and the new training objec-
tive function can be described as:

min
w, b, {∇εi }

{

1

2
‖w‖2+C

l
∑

i�1

∇εi

}

,

subject to : yi
(

wT xi + b
)

≥ 1 − ∇εi , ∀xi ∈ D,

∇εi ≥ 0, ∀i � 1, 2, 3, . . . , l (28)

where C is a weight parameter that penalizes the cost of
misclassification and

∑l
i�1 ∇εi gives the loss due to the

deviation from the separable cases with the introduction of
slack variables. Moreover, the penalty weight parameter C
controls the trade-off between maximizing the hyperplane’s
margin and minimizing the misclassification’s loss. There-
fore, the selection of C depends on the nature of problems
and datasets at hand. Figure 5 presents the hard- and soft-
margined linear SVM classifiers trained on a binary dataset.
For the hard-marginedSVMclassifier, the support vectors are
located exactly on the maximum lower and upper margins,
while the soft-margined SVM classifier relaxes the linear
separability constraints, which allows some support vectors
to cross over the decision boundary. Note that although the
dataset in Fig. 5 is linearly separable, if the linear separa-
bility is strictly enforced, as for the hard-margined case, the
resulting margin is significantly smaller than the one for the
soft-margined case.

By introducing Lagrange multipliers λi and βi , corre-
sponding to each of the constraints in Eq. (28), a Lagrangian
of Eq. (28) can be formulated as:

(29)

L � 1

2
‖w‖2 + C

l
∑

i�1

∇εi

−
l
∑

i�1

λi

(

yi
(

wT xi + b
)

− 1 + ∇εi

)

−
l
∑

i�1

βi∇εi

By minimizing the L with respect to w, b, and ∇εi , respec-
tively, one additional relationship connecting the penalty
weight parameter C to λi and βi is obtained, in addition
to the ones acquired in the linearly separable cases:

C � λi + βi (30)

Therefore, the dual objective can be described as:

max
λ

Ldual �
l
∑

i�1

λi − 1

2

l
∑

i�1

l
∑

j�1

λiλ j yi y j x
T
i x j ,

subject to : 0 ≤ λi ≤ C ,
l
∑

i�1

λi yi � 0, for i � 1, 2, 3, . . . , l

(31)

Note that the objective function achieved for the inseparable
cases is the same as the one obtained from the linearly sep-
arable cases in Eq. (26), except one additional constraint on
the Lagrange multiplier λi .

For complicated data sets, the linear classifier is often
found inadequate. One strategy is to introduce non-linear
transformation function φ, which maps the data points x to
a higher dimension so that the projected data points φ(x) are
approximately linearly separable in the higher dimensional
feature space. However, upscaling the dimensionality usu-
ally leads to high and impractical computational costs. Since
the Lagrange dual formulation in Eq. (31) only depends on
the dot product between two vectors in the feature space,
the SVM can utilize the “kernel trick” to include high-
degree polynomial features. The idea of the kernel trick is
to represent l data point x by a l by l kernel matrix K
that contains elements ki , j � K

(

xi , x j
) � 〈φ(xi ), φ(x j )〉,

which performs pairwise similarity comparisons between the
original low dimensional data points without an explicit def-
inition of the transformation function φ for mapping data to
high dimensions. More detailed introduction to the require-
ment and existence of kernel function can be found in [19].
Therefore, the dual formulation of the training objective for
non-linear SVM can be described by replacing xTi x j in
Eq. (31) by a kernel function K

(

xi , x j
)

:

max
λ

Ldual �
l
∑

i�1

λi − 1

2

l
∑

i�1

l
∑

j�1

λiλ j yi y j K
(

xi , x j
)

,

subject to : 0 ≤ λi ≤ C ,
l
∑

i�1

λi yi � 0, for i � 1, 2, 3, . . . , l

(32)

Note thatEq. (32) canbeviewed as a generalizedLagrange
dual formulation of SVM since for linear cases, the kernel
function can be expressed as the data point dot product as:

Linear : K
(

xi , x j
) � xTi x j (33)

Otherwidely used kernel functions are polynomial andGaus-
sian radial basis kernel functions, which are illustrated in
Eq. (34) and (35), respectively.

Polynomial : K
(

xi , x j
) �

(

1 + xTi x j

)q
, q � 2, 3, . . . ,

(34)
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Fig. 5 Hard- and soft-margined SVM linear classifiers

Gaussian radial basis : K
(

xi , x j
) � e−γ ‖xi−x j‖2 , γ > 0

(35)

Figure 6 demonstrates the transformation of the 2-
dimensional training data to 3-dimension using a Gaussian
kernel. It is clear that the 3-dimensional data points become
linearly separable by a 2-dimensional hyperplane, and the
resulting separating hyperplane can be projected back to the
2-dimensional space, which becomes a nonlinear decision
boundary.

Moreover, the SVM produces a classification score by
predicting new datasets that provide information about the
material class and reveal the location of material interfaces.
The classification score is a signed distance measure for an
observation point x to its nearest decision boundary, with a
score of zero denoting x is precisely on the decision bound-
ary. Therefore, the classification score acts as a guide in
identifying material boundaries in the image, facilitating
more accurate numerical model generation. The classifica-
tion score for predictions at x to the positive class is defined
as:

S(x) �
NSV
∑

j�1

λ j y j K
(

x j , x
)

+ b (36)

where NSV is the total number of support vectors and (λ1,
λ2, . . . , λNSV , b) are the trained SVM parameters.

In summary, the SVM algorithms have shown promis-
ing performances in many application fields [63]. During the
hyperplane selection process, SVMs utilize different kernel
functions to transform the low-dimensional, non-linear, and
possibly non-separable training data to higher-dimensional
feature spaces, which allows the data to be linearly separated.

In addition, the selected high-dimensional hyperplane can be
projected back down to the original space where the train-
ing data belong, providing non-linear decision boundaries
between the separated classes [64]. As a result, SVMs not
only aid in classifying different material pixels from micro-
CT images of heterogeneous materials but also inherently
identify material interfaces. Here, we use SVMs to guide
numerical model discretization for the proposed Interface-
modified Reproducing Kernel Particle Method, which will
be introduced in the later sections.

3.2 Frommicro-CT images to numerical models

In this work, the sample images are taken from micro-
CT, which is an imaging technique that generates three-
dimensional images of an object’s microstructure with
(sub)micron resolution using an X-ray tube with cone-beam
geometry as a source and a rotating sample holder [65].
The overall processes of generating Support Vector Machine
Guided Reproducing Kernel (SVM-RK) numerical model
from micro-CT images are summarized in Fig. 7.

3.2.1 Training data preparation and training the SVM

The training data points are located at the centroid of each
pixel cell in the sample image, and the physical coordinates
of those data points are assigned as the training data for the
SVM. To supervise the SVM’s training, response labels y,
are created by segmenting the sample image using Otsu’s
method [66]. Otsu’s method selects a global threshold that
maximizes inter-class intensity variance from the zeroth- and
the first-order cumulative moments of the sample image’s
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Fig. 6 An example of training the non-linear SVM with the Gaussian kernel (The circled data points are the support vectors)

Fig. 7 Flowchart of SVM-RK
numerical model generation

Fig. 8 Sample alumina-epoxy
image

intensity-level histogram. Figure 8 illustrates an alumina-
epoxy composite micro-CT image slice, where the white
areas in the sample image indicate the alumina inclusion
material and the grey areas represent the epoxy material in
the matrix. A ROI of 30 × 30 pixels (area in the red box)
containing 4 irregularly shaped alumina particles is selected

to demonstrate the SVM training and numerical model gen-
eration processes. Note that only the pixel centroid material
class assignments and physical coordinates are provided as
labeled training data, and the goal of training is to identify
material class at arbitrary locations within the image domain
for numerical integration purposes.
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Table 1 SVM hyperparameters selected for training the sample image

SVM training hyperparameters Values

Kernel function Gaussian radial basis
function

Kernel scale (γ in Eq. (35)) 0.25

Penalty weight parameter ( C in Eq. (28)) 500

Specific hyperparameters of the training must be deter-
mined beforehand to facilitate SVM classification, which
are summarized in Table 1. The kernel scale determines the
extent to which each data point affects the shape of the deci-
sion boundaries, which is selected as 0.25. Furthermore, a
penalty weight parameter C of 500 is chosen to ensure that
the resulting separation hyperplane resembles the material
interface. The Gaussian radial basis function is selected as
the kernel function based on the geometries of the inclu-
sions, as they are distinctive small particles. The selections
of the kernel scale and penalty weight parameter are opti-
mized utilizing an iterative Bayesian optimization process,
and the objective function for the Bayesian optimization pro-
cess is to minimize the fivefold cross validation classification
loss. A total of 30 iterations are performed, and once the
iterations are completed, the hyperparameter configuration
associated with the smallest validation classification loss is
selected as the optimal set of hyperparameters for the SVM
model. Additionally, a standardization in which the train-
ing data points are normalized to have a zero mean and a
standard deviation of unity is performed. The standardiza-
tion of the training data is critical because SVM training
is based on the relative distances between the training data
points, andwithout standardization, larger-scale training data
may dominate in distance determination, leading to a biased
model.

3.2.2 RK interface nodes

In the Interface-modified RK approximation to be proposed
in Sect. 4, a set of interface nodes are included to introduce
proper weak discontinuity across material interfaces. In this
section, we present an approach to generate interface nodes,
utilizing the score S(x) (Eq. (36)) that is produced during the
SVM classification and can be interpreted as a scaled signed
distance function.

Let S
0 ≡ {x I }N P0

I�1 be the set of training data
points located at the image pixel centroids in the image
domain �, and define S

+ ≡ {

x ∈ S
0|S(x) ≥ 0

}

and
S

− ≡ {

x ∈ S
0|S(x) < 0

}

. Consequently, defining a set

of interface-searching node pairs
{

x+K , x
−
K

}N PI F
K�1 in which

x±
K ∈ S

± is a near-interface master/slave node (see Remark

3.1 for details). The search of an interface node x∗
K ≡

x+K + d∗
K RK can be defined as follows:

Find d∗
K ∈ R such that:

S
(

x+K + d∗
K RK

) � 0, ∀K � 1 · · · N P∗ (37)

where RK � (x−
K − x+K )/‖x−

K − x+K ‖ is the line search
direction. The resulting RK node set is then S

RK ≡ S
0 ∪

S
I F with S

I F ≡ {

x∗
K

}N P∗
K�1, which serves as the SVM-RK

discretized model.

Remark 3.1 The interface-searching node pairs
{

x+K , x
−
K

}N PI F
K�1 can be determined in various ways. In

this work, the following approach is taken: given the set of

support vectors
{

xSVL
}NSV

L�1, define the master candidate node
set S

C+ ≡ {

x I ∈ S
+|‖x I − xSVL ‖≤ ξ�, ∀L � 1 · · · NSV

}

,
in which � and ξ denote the image voxel size and a scaling
factor, respectively. In this work ξ � 1.5 is used. The
corresponding nearest slave nodes x−

K are found such that,
for x+K ∈ S

C+,

x−
K � argmin

x I∈SC−
‖x I − x+K ‖ (38)

with the slave candidate node set S
C− ≡

{

x I ∈ S
−|‖x I − xSVL ‖≤ ξ�, ∀L � 1 · · · NSV

}

. Note that
Eq. (38) can result in multiple x−

K for one x+K and lead to
the master–slave pairs. Figure 9a illustrates an example of
the master and slave candidate nodes plotted along with the
support vectors. The corresponding candidate node pairs are
shown in Fig. 9b.

Remark 3.2 The solution of d∗
K in Eq. (37) can be deter-

mined iteratively by the Newton–Raphson method. For
the (ν + 1)th iteration, the increment �dν+1 for d∗ν+1

K �
�d∗ν+1

K + d∗ν
K is obtained as follows:

�d∗ν+1
K � −S

(

x∗ν
K

)

/

(

∂S
(

x∗ν
K

)

∂x∗ν
K

· RK

)

(39)

Remark 3.3. One may consider interpolating the score
functionwith SVMpredicted nodal score valueswithout con-
structing Eq. (36) as follows:

˜S(x) �
N P0
∑

I�1

�0
I (x)sI (40)

where �0
I (x) and sI are the RK shape function constructed

on S
0 and SVM score value (signed distance) for node x I ,

respectively. The RK shape function can serve as a filter for
potentially noisy predicted score values to provide smooth-
ing on the zig-zagmaterial interface determined directly from
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Fig. 9 Interface node candidates and resulting master–slave interface node search pairs

image pixels. Equation (40) is used for numerical implemen-
tation in the current work.

Remark 3.4. To ensure relative even distribution of nodes
around interfaces, a MATLAB built-in function “uniqetol”
with a relative tolerance 0.01 is applied to the interface node
set S

I F . In addition, x I ∈ S
0 is removed if ‖x I − x∗

K ‖<
ζ� for all x∗

K ∈ S
I F , and ζ � 1/3 is selected in this

work. An example of rearranged RK nodes is illustrated in
Fig. 10. The material interfaces are represented by a sim-
ple line connection in Fig. 10 for visualization purposes; the
interface-modified RK approximation to be discussed next
requires only the interface point locations and the signed dis-
tance of each discrete point obtained from SVM. Note that

discretization far from the material interfaces can be made
coarser to improve computational efficiency.

3.3 Image-based SVM-RKmodel validation

3.3.1 Validation with a synthetic image

A synthetic two-phase image containing the known locations
of inclusions is generated, as illustrated in Fig. 11. The syn-
thetic image has a dimension of 10 mm × 10 mm and a
resolution of 244 × 244 pixels. To account for uncertainties
in the imagingprocess,Gaussian noise is added to the original
image, and the manufactured testing image is scaled down to

Table 2 Results of interface node
search algorithm with various
kernel support sizes

Support size Number of
constructed interface
nodes

Mean iteration
number

Mean score
values

Edge detection
mean squared
error

1.10 134 3.72 1.63E−12 0.0065

1.50 134 4.61 5.91E−12 0.0065

2.00 134 4.60 4.40E−12 0.0065

2.50 133 4.62 2.99E−12 0.0066

3.00 131 4.97 4.15E−12 0.0067
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Fig. 10 RK numerical model for the test image

Fig. 11 Synthetic testing image for validating the SVM-RK interface
node generation

100 × 100 pixels to lower the resolution, especially around
the material interfaces. Figure 12 demonstrates the manu-
factured noisy testing image, which will serve as the input
image for the image-based SVM-RK model generation. The
accuracy of the obtained interface nodes is determined by
a normalized mean square error of the discretized material
interfaces as:

MSE � 1

NC · L

⎛

⎝

NC
∑

j�1

N P∗
∑

K�1

(‖x∗
K − c j‖−R j

)2

⎞

⎠

1
2

(41)

Fig. 12 Manufactured noisy testing image for validating the SVM-RK
interface node generation

Fig. 13 Interface nodes overlapped with the manufactured test image

where c j and R j represent the center coordinates and radius
of the inclusion to which the interface node x∗

K ∈ S
I F

belongs, N P∗ is the total number of generated interface
nodes in the set S

I F , and NC and L denote the total number
of inclusions in the synthetic image and the x-dimension of
the synthetic image, respectively.

As previously discussed, for implementation the score
function is interpolated using the RK shape function in
Eq. (40), and the locality and smoothness of the RK shape
function may differ depending on the size and order of con-
tinuity of the kernel function chosen for its construction.
Therefore, various RK kernel support sizes and kernel func-
tionswith different orders of continuity are employed to study
their effects on the accuracy of the SVM-RK interface node
generation algorithm. Figure 13 illustrates the obtained inter-
face nodes overlaid with the synthetic image using a cubic
B spline RK kernel (B3, C2continuity) with a normalized
support size of 2 and linear bases. In addition, results of
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Fig. 14 Micro-CT input image
selection for quantitative RK
discretization model validation

Table 3 Results of interface node
search algorithm with various
RK kernel functions

Kernel
Function

Number of
constructed interface
nodes

Mean iteration
number

Mean score
values

Edge detection
mean squared
error

C0(Tent) 133 3.62 5.92E−13 0.0065

C1(B2) 132 4.64 4.78E−12 0.0066

C2(B3) 134 4.60 4.40E−12 0.0065

the interface node generated with various support sizes and
kernel function continuities can be found in Tables 2 and
3, respectively. Upon comparison of results in Tables 2 and
3, it can be observed that the proposed SVM-RK interface
node search algorithm converges less than an average of 5
iterations for all instances, and the resulting interface nodes
achieve average scores (Eq. (40)) to the order of 10−12. Addi-
tionally, the normalized mean square error of the proposed
image-based RK discretization model generation process is
approximated 0.65% for all scenarios. Moreover, the results
show that the generated interface nodes are not sensitive to
the choices of the kernel support size and kernel continuity
(tent function with C0 continuity, quadratic B spline function
(B2) with C1 continuity, and B3 with C2 continuity) used in
constructing the score function (Eq. (40)).

3.3.2 Validation of the image-based SVM-RK discrete model
with Scanning Electron Microscopy (SEM) images

To analyze the quality of the proposed image-based RK
discretization model generation procedure, a comparison is
made between the constructed digital surface model from
micro-CT and a surface image obtained from Scanning Elec-
tron Microscopy (SEM) with a spatial resolution of 1.5 μm
for the same specimen as a comparison reference. SEM uses
an electron beam to scan the surface of a material, producing
a high-resolution image that reveals details such as surface
topography, crystalline structure, chemical composition, and

Fig. 15 Constructed RK discretization model for the quantitative vali-
dation

electrical behavior of the top 1 μm portion of a specimen
[67]. The inclusion materials in SEM are identified based on
the Energy Dispersive X-ray Spectroscopy (EDS), a chem-
ical analysis technique that detects X-rays emitted by the
material in response to the electron beam to form an elemen-
tal mapping of the SEM-scanned specimen surface [68]. The
micro-CT input image for constructing the numerical model
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Fig. 16 Constructed SVM-RK discretization model superimposed with
the micro-CT input image (only showing the interface nodes)

is selected accordingly near the surface of the same speci-
men, and a ROI around 2.82 mm by 2.37 mm is chosen to
match the SEM scanned area, which is highlighted in the red
box in Fig. 14.

An SVM-RK discretization model is created from the
input 2D slice of the micro-CT image using the proposed
method, as illustrated in Fig. 15, containing discretized nodes
in the epoxymatrix, alumina inclusions, and on the identified
material interfaces. The constructed SVM-RK discretization
model is superimposed over the original micro-CT image,
and the result is shown in Fig. 16. Furthermore, the alumina
inclusions enclosed by the identified interface nodes in the
constructed SVM-RK discretization model are highlighted
and overlaid onto the SEMsurface image,which is contrasted
with the EDS-layered SEM image shown in Fig. 17. As can

Fig. 18 Comparison between the SEM surface image and micro-CT
image

be seen, the obtained image-based RK discretization model
agrees well with the input micro-CT image in detail.

Remark 3.5 It is worth noting that the surface of the spec-
imen was polished to enhance imaging quality for SEM,
which may cause slight alterations to the distribution of sur-
face particles. Figure 18 illustrates the minor discrepancies
between the SEM and micro-CT images. As the blue boxes
indicate, misalignments can be observed for certain inclusion
particles. Additionally, smaller particles were not captured in
the SEM scan, as highlighted in the red boxes. Consequently,
the inclusion particles identified by the SVM-RK discretiza-
tion model exhibit slight variances compared to the EDS
elemental mapping result, as illustrated in Fig. 17. Never-
theless, they are mostly consistent, particularly for the larger
and more distinctive inclusion particles.

Fig. 17 Comparison of EDS overlaid and SVM-RK discretization model overlaid SEM surface images
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Fig. 19 Plots of 1D interface-modified kernels with different interface kernels (Left to right: original kernel function, regularized Heaviside scaling
function, modified kernel function, modified kernel function’s derivative)

Fig. 20 1D traditional RK and
IM-RK shape functions and
derivatives

123



924 Computational Mechanics (2024) 73:907–942

Fig. 21 Comparisons between 2D traditional RKPM and IM-RKPM shape functions and their derivatives (the blue and the black functions represent
shape functions on the opposite sides of the material interface)

4 Interface-modified reproducing kernel
approximation guided by support vector
machine

4.1 Interface-modified kernel functions

With the material interface segmented by the SVM, the weak
discontinuities across the material interfaces are to be intro-
duced by modifying the regular RK kernel function with a
regularized Heaviside function ˜H as follows:

φa(x − x I ) � φa(x − x I )˜H
(

ξ I (x)
)

(42)

where φa(x − x I ) is a modified kernel function, and ˜H(·)
and ξ I (x) in Eq. (42) are defined as:

˜H(·) � max(0, tanh(·)) (43)

and

ξ I (x) �
{

− S(x)
c , S(x I ) < 0

+ S(x)
c , S(x I ) > 0

(44)

where S(x) is the score function, and c denotes a scaling fac-
tor that has a length of the order of nodal spacing. Note that
S(x) is a signed distance of an evaluation point to its nearby
interface, which is given from the output of the SVM-RK
image segmentation and is readily available for evaluation of
regularized Heaviside function ˜H . This normalized distance
measure ξ (x) is applicable to general n-dimensional image
data. The kernel functions associated with nodes away from
the interfaces have been scaled to zero at the material inter-
faces by the regularized Heaviside function, and the kernel
functions associated with the interface nodes are not scaled.
Aswill be discussed in the next section, the “reproduced” RK
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Fig. 22 IM-RK interpolation of a 2D function

shape functions via the reproducing conditions given in Eqs.
(9)–(10) reveals a weak (C0) continuity of the approximated
function at the material interface due to the Heaviside scal-
ing in Eq. (42) regardless of the continuity of kernel function
associatedwith nodes at thematerial interfaces. Hence, cubic
B spline (B3) kernel functions with C2 continuity or power
kernel (PK) function with C0 continuity [69] can be con-
sidered for the kernel function associated with the interface
nodes:

φB3
a (z) �

⎧

⎪

⎨

⎪

⎩

2
3 − 4|z|2 + 4|z|3 f or 0 ≤ |z| ≤ 1

2
4
3 − 4|z| + 4|z|2 − 4

3 |z|3 f or 1
2 ≤ |z| ≤ 1

0 otherwise

z � x − x I

a

(45)

φPK
a (z) �

{

(1 − z)α f or 0 ≤ z ≤ 1
0 otherwise

z � x − x I

a
(46)

Figure 19 shows the un-modified kernel functions
φa(x − x I ), regularized Heaviside function ˜H (ξ I (x)), the
interface-modified kernel functions φa(x − x I ) and their
derivatives φa, x (x − x I ) in 1D with different choices of
interface kernels. The blue, red, and black kernel functions

are associated with the interface node, nodes within the sup-
port of interface nodes, and nodes away from the interface,
respectively.

Remarks 4.1. 1. One can observe that after the interface
modification, the influence domains of all nodes, except the
interface node, terminate at the interface location, which nat-
urally introduces a weak discontinuity to interface-modified
kernel functions, even for the case of the smooth B-spline
kernel at the interface.

2. The added computational cost to perform the proposed
kernel modifications is marginal because only a scaling is
applied to the original kernel functions to construct kernel
modifications, and this can be done effortlessly for arbitrary
spatial dimensions.

4.2 Interface-modified RK (IM-RK) approximation

Let us consider the RK discretization node set S
RK in the

SVM-RK discretized numerical model. Recall that interface
nodes in S

RK are contained in the set S
I F . Let S

RK \S
I F

denotes the set of all RK discrete points excluding those on
the interfaces, then the RK shape function can be written as
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Fig. 23 IM-RK shape functions for nodes around the interfaces: top
view (right) and the zoom-in plot of two shape functions in the black
box (left)

Fig. 24 IM-RK shape function for interface nodes: top view (right) and
the zoom-in plot of two shape functions in the black box (left)

follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�I (x) � C(x; x − x I )φa(x − x I )

� (HT(x − xI)b(x))φa(x − x I ), ∀I ∈ S
I F

�I (x) � C(x; x − x I )φa(x − x I )

� (HT(x − xI)b(x))φa(x − x I ), ∀I ∈ S
RK \S

I F

(47)

where φa(x − x I ) is the regular kernel functions without
interface modification and φa(x − x I ) is the interface-
modified kernel function defined in Eq. (42). The unknown
coefficient vector b(x) is obtained by imposing the nthorder
reproducing conditions, as shown in Eq. (10). Substituting
Eq. (47) into Eq. (10) yields:

b(x) � M
−1

(x)H(0) (48)

where M(x) is the modified moment matrix:

M (x) �
∑

I∈SI F
HT (x − x I ) H (x − x I )φa (x − x I )

+
∑

I∈SRK \SI F
HT (x − x I ) H (x − x I )φa (x − x I )

(49)

By substituting Eq. (48) into Eq. (47), the interface modified
reproducing kernel shape function is obtained as:

� I (x) �
{

HT (0)M
−1

(x)H(x − x I )φa(x − x I ), ∀I ∈ S
I F

HT (0)M
−1

(x)H(x − x I )φa(x − x I ), ∀I ∈ S
RK \S

I F

(50)

Finally, the IM-RK approximation of the displacement field
uh(x) is expressed as:

uhi (x) �
N P
∑

I�1

� I (x)di I (51)

As shown in Eq. (51), no duplicated degrees of freedom
associated with the interface nodes are added (such as inter-
face enrichments) when using the IM-RK to approximate the
displacement field. Figure 20 compares the 1D traditionalRK
and IM-RK shape functions and their derivatives in a domain
[0, 10] with a material interface at x � 5. The red-colored
node in Fig. 20 is the interface node, and the shape functions
colored black, blue, and red are associatedwith nodes outside
the support of the interface node, nodes within the influence
of the interface node, and the interface node, respectively.

Fig. 25 Schematic of
compression-shear test on a
polymer-ceramic composite
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Fig. 26 Discretized RK numerical model for IM-RKPM simulation
(unit: mm)

Fig. 27 FEM body-fitted mesh

Remarks 4.2. 1. Owing to the regularization function
˜H (ξ I (x)) introduced in Eqs. (43)–(44), nodes on different
sides of the interface lose communication, leading to weak
discontinuities in the IM-RK shape functions. This is true
even when a smooth cubic B-spline kernel is used for all
nodes, including the interface nodes, as shown in Fig. 20.
Sameweak discontinuity properties exist in high dimensions,
as shown in Fig. 21, regardless of the smoothness of interface

kernel functions. Figure 22 illustrates the IM-RK interpola-
tion of a function:

f (x) �
{

ec1‖x‖2 , i f ‖x‖≤ R

ec2‖x‖2 + (ec1R
2 − ec2R

2
), i f ‖x‖> R

where c1 � 0.5, c2 � 0.1, and the interface is a circular arc
with R � 0.8. IM-RK shape functions with smooth cubic B-
spline kernels can effectively capture weak discontinuities
along the interface in the interpolated function and represent
its discontinuous x-directional derivative field, while both the
interpolated function and its x-directional derivative fields
are smooth across the interface when using the standard RK
shape functions with B3 kernels.

2. Since all kernel functions vanish at the interface, except
for the kernel functions defined on the interface nodes, the
resulting IM-RKapproximation functions possessweakKro-
necker delta properties, as have been discussed in [46]. These
weak Kronecker delta properties, however, do not exist in
high dimensions because the supports of interface nodes
overlap except for interface nodes located on domain bound-
aries.

In this work, the meshfree method using the above IM-
RK approximation as the approximation function for the
test and trial functions under the Galerkin framework is
named the Interface-Modified Reproducing Kernel Particle
Method (IM-RKPM). Twonumerical examples are presented
in Appendix B to validate the accuracy and convergence of
proposed IM-RKPM.

4.3 IM-RK shape functions for the image-based
numerical model

Figures 23 and 24 respectively show the IM-RK shape func-
tions of non-interface nodes near the interfaces and the
IM-RK shape functions of the interface nodes, constructed
on the image-based SVM-RK discretized model shown in
Fig. 10.

In Figs. 23 and 24, the non-zero IM-RK shape functions
are color-coded by different color blocks, and the maximum
shape function is shown at each plotting point in the top view.
By observing the results in Fig. 23, the shape functions are
truncated across arbitrarily shaped interfaces. The interface
nodes’ shape functions, however, provide support coverage
to the nodes located on both sides of the interface with C0

continuity along the interfaces’ normal direction for embed-
ding weak discontinuities normal to the interface.

123



928 Computational Mechanics (2024) 73:907–942

Fig. 28 IM-RKPM and FEM
approximated displacement
solution in both x- and
y-directions (unit: mm)

5 Image-based numerical results

5.1 Compression-shear test on 2D composite
microstructure

In this numerical example, a compression-shear test is con-
ducted on a composite constructed based on the image shown
in Fig. 25. The image consists of 200 × 200 pixels with a
pixel size of 8 μm. The physical dimensions of the speci-
men are 1.6 mm in width and height. The bottom edge of the
specimen is fixed in both x- and y- directions, while the top
edge is prescribed with a total displacement of −0.01 mm in
both x- and y- directions. In addition, two vertical edges of
the specimen are assigned as traction-free. The material con-
stants for the alumina inclusionmaterials are: E1 � 320GPa,
ν1 � 0.23, while the epoxy material is with material con-
stants: E1 � 3.66GPa, ν1 � 0.358.

The problem at hand is examined using the proposed
IM-RKPM and compared with the results produced using
ANSYS [72], a commercially available FEM software with
a much refined body-fitted mesh. All numerical analyses are
performed under the 2D plane strain condition. The proposed
IM-RKPM uses Nitsche’s method [70] to apply Dirichlet

boundary conditions. The numerical model of the test image
is constructed following Sect. 3.2, as shown in Figs. 26, and
the IM-RKPM approximation functions presented in Sect. 4
using cubic B-spline kernel with normalized support size
of 2 and linear bases. The model employed for FEM anal-
ysis is manually traced from the inclusion geometries of
the test image, resulting in a slight variation between the
FEMand IM-RKPMdiscretization near interfaces. The FEM
approximation involves a fine body-fitted mesh that com-
prises of 37,454 elements and 112,538 nodes, as illustrated
in Fig. 27. On the other hand, the IM-RKPM approximation
uses only 11,316 nodes to discretize the image domain,which
is approximately one-tenth of the number of nodes used in
the FEM model. Figure 28 demonstrates the IM-RKPM and
FEMapproximated displacement solutions, respectively, and
it is observed that both IM-RKPM and FEM predict similar
displacements.

Figure 29 shows the strains predicted by IM-RKPM
and FEM, respectively. As shown in Fig. 29, the strains
of IM-RKPM display sharp transitions across the material
interfaces and concentrated strains around the corners of
the material interfaces, comparable to the results obtained
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Fig. 29 IM-RKPM and FEM approximated strain solutions in plane view

Fig. 30 3D view of the input
image volumetric data matrix

using the FEM approximation. Furthermore, both the IM-
RKPM and FEM approximations of strain solutions show
some coalescence of the strain concentration around some
closely positioned inclusions, as indicated by the boxed
areas in Fig. 29. The results show that the proposed IM-
RKPM, accompanied by the SVM-based RK discretization
with simple interface modified RK approximation functions,
is capable ofmodeling compositematerialswith complicated
microstructure and arbitrarily shaped inclusions with accu-
racy comparable to that obtained from a much refined and
laborious FEM model.

5.2 Uniaxial tensile test on 3D composite
microstructure

In this example, a three-dimensional image-based SVM-RK
model is constructed, and a uniaxial tensile test is conducted
on the specimen’s numerical model with the same mate-
rial properties and essential boundary treatment by Nitsche’s
method [70] as those used in Example 5.1. The input of
imaged-based 3D numerical model generation is performed
by stacking 30 slices of ROI of 30 by 30 pixels extracted from
reconstructed micro-CT 2D images of a specimen’s internal
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Fig. 31 SVM training and prediction results and RK interpolated deci-
sion boundaries (unit: mm)

microstructure along the z-direction into a volumetric data
matrix, as illustrated in Fig. 30. The size of the test volume is
0.24 mm× 0.24 mm× 0.24 mm, corresponding to an input
image voxel size of 8 μm. The uniaxial tension is applied to
the two surfaces with surface normal in the z-direction under
prescribed displacements in the z-direction while without
constraints in the x–y displacements.

Although the training data points are now in R
3, the dis-

crete model generation procedures remain the same as those
for 2D, which corresponds to the physical coordinates of
voxel centroids, as detailed in Sect. 3.2. The training response
labels are obtained by stacking the segmented ROIs using
Otsu’s method into a binary volumetric data label matrix. It
is important to note that both matrices that contain the train-
ing data points and training response labels are concatenated
before being fed into the SVM, which means that the com-
bined training data set can be represented asD � {xi , yi }li�1,
where xi ∈ R

3, yi ∈ {−1, 1}, and l � 27, 000 for
the present case. For the SVM training, the same hyper-
parameters specified in Sect. 3.2.1 are utilized. Figure 31
demonstrates the SVM material classification results, the
support vectors resulting from training, and the RK inter-
polated decision boundaries. It is worth mentioning that the
resulting RK interpolated separating hyperplane, which is
the material interface determined by the SVM training and
RK interpolation, exhibits a smoother appearance in con-
trast to the inclusion geometries represented by binary label
data volumetric matrix. This outcome is not surprising, given
that SVM considers all three dimensions of the training
data points to identify an appropriate separating hyperplane,

which ismore realistic and resembles a specimen image stack
with higher resolution (i.e., with a smaller voxel size).

Figure 32 illustrates the results of identified interface
nodes and the 3D RK discrete model of the test volume,
where the black (small) nodes, blue nodes, and red nodes
represent the epoxy material points, alumina material points,
and points on the material interfaces, respectively. The 3D
SVM-RK discretization model contains in total 17,648 dis-
cretized nodes, among which 2330 nodes are on the material
interfaces.

The produced 3D SVM-RK discrete model is utilized for
a uniaxial tensile test in the z-direction. The model’s bottom
surface is fixed in all three directions, while a z-directional
displacement of 0.01 mm is prescribed at the top surface of
the model. The other surfaces of the specimen are assigned
traction-free boundary conditions. The proposed IM-RKPM
is employed for the numerical solution, and Fig. 33 depicts
the displacement solution in all three directions. The pre-
dicted normal strains are plotted in Fig. 34, to which a
transparency filter is applied such that strain with a large
magnitude is not visible. As shown in Fig. 34, the regions
with the relatively small magnitude of strains are consistent
with the shapes of the alumina inclusions, which is expected
because the alumina inclusions are significantly stiffer than
the surrounding epoxy matrix. In Figs. 35, 36, and 37, the
normal strains are plotted on multiple slices and are com-
pared with the slices of the inclusion contours. The results
show that distinctive strain transitions in all three dimensions
can be observed across interfaces. In addition, some strain
concentrations are observed between two nearby inclusions
and around the corner of the inclusions. Overall, this example
demonstrates the capability of the proposedSVM-RK image-
based model and IM-RKPM inmodeling composite material
with arbitrarily shaped inclusions in three dimensions.

6 Conclusion

A Support Vector Machine (SVM) guided model discretiza-
tion and reproducing kernel approximation, utilizing micro-
CT images of heterogeneous materials as input, is introduced
in this work. The trained SVM-RK model generates classifi-
cation scores forRKPMmodel discretization from the image,
enabling their use as inputs for (1) interface node genera-
tion and (2) the interface kernel modification to construct
a modified RK approximation of weak discontinuities. The
SVMclassification scores, representing the signed distances,
enables identification of material phase, interface discretiza-
tion, and interface surface normals, allowing automatic
construction of RK approximation with weak discontinu-
ities and interface-conforming gradient smoothing cells for
SCNI based domain integration. The proposed image-based
SVM-RK model generation process was validated through a
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Fig. 32 3D interface node assignment result and RK discretized numerical model for the test volume (unit: mm)

Fig. 33 IM-RKPM approximated displacement solutions (unit: mm)

Fig. 34 IM-RKPM approximated normal strain solutions (unit: mm)
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Fig. 35 Slices of x-directional normal strain results compared to the interface contours

Fig. 36 Slices of y-directional normal strain results compared to the interface contours
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Fig. 37 Slices of z-directional normal strain results compared to the interface contours

synthetic image and a high-resolution surface image obtained
from the SEM.

The resulting Interface-Modified Reproducing Kernel
Particle Method (IM-RKPM) effectively remedy Gibb’s
oscillations commonly seen in the conventional RKPM for
modeling problems with weak discontinuities. The pro-
posed method incorporates a regularized Heaviside func-
tion defined on the SVM classification score to achieve
RK approximation with interface weak discontinuity while
avoiding Gibb-type oscillations. These procedures involved
in the proposed SVM guided RK approximation with inter-
faceweak discontinuities are fully automatic in 3-dimensions
and without the need of using duplicated degrees of freedom
on the interface nodes common in other interface-enriched
meshfree methods [33, 36]. In addition, this IM-RKPMwith
interface weak discontinuities can be constructed by kernel
functionswith arbitrary smoothness/roughnesswhile achiev-
ing optimal convergence as demonstrated in the numerical
examples using both Gauss integration and SCNI.

Finally, the effectiveness of the proposed automated
SVM-RK model generation process in conjunction with
the IM-RKPM method is demonstrated through numerical
examples based on test micro-CT images in both 2- and
3-dimensions. Notably, the 3D example shows that the pro-
posed approach is applicable for 3D simulations where the
SVM-RK model precisely represents the geometry of the
inclusion particles, trained based on stacked image slices.

It is worth mentioning that while the present work utilizes
the standard binary SVM library for two-phase materials,
it is possible to explore multi-class SVM algorithms, or
more advanced machine learning algorithms, such as the
convolutional neural network, for multi-phase materials seg-
mentation.
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Fig. 38 Interface conforming gradient smoothing cells’ construction (Perturbation distances are magnified 102 times for mirrored nodes in (a) for
demonstration purpose)

Appendix A: Construction
of interface-conforming gradient smoothing
cells

Since the interface locations are determined by the RK inter-
polated score function in Eq. (40), the outward unit normal
of the interfaces at an interface point x∗

K can be calculated
as follows:

n
(

x∗
K

) � ∇˜S(x)

‖∇˜S(x)‖
∣

∣

∣

∣

x�x∗
K

(52)

To construct interface-conforming gradient smoothing
cells for SCNI domain integration, a mirroring technique is
utilized. For all interface nodes x∗

K ∈ S
I F , the mirrored node

pair
{

x∗+
K , x∗−

K

}

is obtained as follows:

x∗±
K � x∗

K ± ε
⇀
n
(

x∗
K

)

(53)

where ε is a small perturbation number, and the interface

normal
⇀
n
(

x∗
K

)

is defined in Eq. (52). In this work, ε �
10−3� is chosen, where � is the image voxel size. As an
illustration example, mirrored nodes are shown in the black
box in Fig. 38a, and the resulting gradient smoothing cells
are shown in Fig. 38b. Note that these mirrored node pairs
are only used to generate the “interface conforming” Voronoi
cells; they are not the RK nodes, and they don’t carry degrees
of freedom.

This approach allows for the use of conventional tech-
niques, such as Voronoi tessellation, which will result in the
two smoothing cells adjacent to either side of the interface

Fig. 39 Schematic of the 1D bi-material rod problem

having a common boundary along the interface location as
shown in Fig. 38b. In addition, the material class for the
smoothing cells can be assigned according to the centered
mirrored nodes’material classes. As a result, smoothing cells
away from the material interfaces are uniformly arranged,
and the material interfaces are well represented by the adja-
cent two layers of smoothing cells.

Appendix B: Verification of IM-RKPM

Numerical example 1: one-dimensional composite
rod problem

A one-dimensional composite rod with a centered material
interface is fixed at the left and is subjected to a displacement
of 1 on the right end, as demonstrated in Fig. 39. The rod is
also subjected to a polynomial body force up to the third order
b(x) � a0 + a1x + a2x2 + a3x3. The Young’s modulus of the
two sections of the rod are set as E1 � 10000, for x ∈ [0, 5]
and E2 � 1000, for x ∈]5, 10]. The exact solution to this
problem is provided in [33].
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Fig. 40 Case (1) RKPM
approximated solutions
compared to the analytical
solutions

Fig. 41 Case (1) IM-RKPM
approximated solutions
compared to the analytical
solutions

The example is analyzed with two body force cases:
(1)b � 0; (2)b(x) � 25x − 7.5x2 + 0.5x3. The 1D problem
domain is discretized with 11 uniformly distributed nodes,
and the problem is approximated using a linear basis in both
standard RKPM and IM-RKPM with a constant normalized
nodal support size of 2. SCNI and 5-point Gauss integration
are selected as numerical integration methods for case (1)
and case (2), respectively. Figures 40 and 41 demonstrate
the approximated displacement and strain solutions using
RKPM and IM-RKPM for case (1), respectively. The results

show that RKPM strain solution exhibits Gibb’s-like oscil-
lations and fails to reproduce the exact weak discontinuity
at the material interface. On the other hand, IM-RKPM with
SCNI can precisely capture the displacement and strain field
to the machine’s precision. Similar behaviors are observed
for case (2), as illustrated in Figs. 42 and 43, IM-RKPM
significantly reduces the oscillations of the strain solution
and can accurately capture the weak discontinuity across the
material interface.

Fig. 42 Case (2) RKPM
approximated solutions
compared to the analytical
solutions
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Fig. 43 Case (2) IM-RKPM
approximated solutions
compared to the analytical
solutions

Fig. 44 Accuracy of RKPM and
IM-RKPM with different
interface kernels (R: rate of
convergence)

In addition, the convergence behaviors of IM-RKPMwith
the cubic B spline and the power interface kernels and stan-
dard RKPM are investigated in terms of the normalized
displacement and energy error norms as follows with high-
order Gauss quadrature rule:

‖u − uh‖0 �
√

√

√

√

∫

�

(

uexact(x) − uh(x)
)2
d�

∫

�
(uexact(x))2d�

(54)

‖u − uh‖E �
√

∫

�

(

εexact(x) − εh(x)
) · (σ exact(x) − σ h(x)

)

d�
∫

�
εexact(x) · σ exact(x)d�

(55)

As illustrated in Fig. 44, standard RKPM exhibits a subop-
timal convergence rate of 1 for the displacement norms and
0.5 for the energy norm, while the accuracy and convergence
rates are substantially improved in IM-RKPM, restoring the
optimal convergence rates of 2 and 1, independent to the
continuity of the interface kernel functions.

Numerical example 2: 2D circular inclusion
in an infinite plate

An infinite plate with a circular inclusion subjected to a con-
stant dilatational eigenstrain ε∗ � 0.01, as shown in Fig. 45,

Fig. 45 Schematic of the 2D infinite plate with circular inclusion prob-
lem

is analyzed.
The material constants selected for the inclusion mate-

rial are: λ1 � 497.16, μ1 � 390.63, and matrix material
are: λ2 � 656.79, μ2 � 338.35, where λ and μ are Lamé
parameters. Due to the symmetry of the domain and loading
conditions, only the upper right quadrant of the domain is
modeled. The length of each side of the finite quarter domain
is 5, the radius of the circular inclusion is R � 1, and an ana-
lytical displacement field is prescribed on the boundaries.
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Fig. 46 Nodal arrangement and
background integration cells for
Gauss integration

Fig. 47 uhr , εh
rr , εh

θθ approximated using RKPM and IM-RKPM with Gauss integration
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Fig. 48 Accuracy of RKPM and
IM-RKPM with different
interface kernels with Gauss
integration (R: rate of
convergence)

Fig. 49 Nodal arrangement and
conforming strain smoothing
cells for SCNI

The analytical solutions in cylindrical coordinates can be
found in [71].

The example is modeled as a plane strain axisymmetric
problem. Both 5 × 5 Gauss integration and SCNI method
are employed as the numerical integration schemes, and RK
approximation with linear basis and a normalized support
size of 2 are utilized throughout the numerical analysis.
Figure 46 demonstrates an example of domain discretization
and background integration cell arrangement for the Gauss
integration. The approximated radial displacement, radial
strain, and hoop strain solutions using RKPM, IM-RKPM
with cubic B spline interface kernels, and IM-RKPM with
fourth-order power interface kernels, accompanied with 224
non-uniform nodes and 5 × 5 Gauss integration, are plotted
along the line y � x in Fig. 47. Like the 1D composite rod
example, the RKPM solution of the radial strain and hoop
strain are both oscillatory near the interface. IM-RKPM,
on the other hand, effectively alleviates the oscillations in
the strain solutions. In addition, a convergence study is
performed for both RKPM and IM-RKPM with different
interface kernels, and the results are shown in Fig. 48. The
IM-RKPM recovers the optimal convergence rates with the

Gauss domain integration for both smooth and C0 interface
kernels.

Next, the same problem is solved using the computation-
ally efficient SCNI. Figure 49 demonstrates an arrangement
of 211 non-uniformly distributed nodes and conforming
strain smoothing cells for SCNI. The numerical solutions
obtained by RKPM and IM-RKPM with different interface
kernels are plotted in Fig. 50. Similar to the Gauss integra-
tion, the standard RKPMwith SCNI again experiences strain
oscillations near the interface. However, solutions obtained
by the IM-RKPMwith different interface kernel functions are
consistent with the ones obtained with Gauss integration in
Fig. 47. By observing results in the convergence plots shown
in Fig. 51, IM-RKPMwith SCNI has displacement and strain
solutions to converge optimally. These results show that the
proposed IM-RKPM performs well with different selections
of numerical domain integration techniques.
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Fig. 50 uhr , εh
rr , εh

θθ approximated using RKPM and IM-RKPM with SCNI

Fig. 51 Accuracy of RKPM and
IM-RKPM with different
interface kernels with SCNI (R:
rate of convergence)
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