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Abstract
This contribution presents a multiscale approach for the analysis of shell structures using Reissner–Mindlin kinematics.
A distinctive feature is that the thickness of the representative volume element (RVE) corresponds to the shell thickness.
The main focus of this paper is on the choice of correct boundary conditions for the RVE. Three different types of boundary
conditions, which fulfil the Hill–Mandel condition, are presented to bridge the two scales. A common feature is the application
of zero-traction boundary conditions at the top and bottom surfaces of the RVE. Furthermore, an internal constraint is used to
reduce the dependency of the stiffness components on the RVE size. The introduced boundary conditions differ mainly in the
application of shear strains and their symmetry requirements on the RVE. The characteristic features are compared by means
of linear-elastic benchmark tests. It is shown that the stress resultants and tangent stiffness components are obtained correctly.
Moreover, the presented approach is verified using different macroscopic shell structures and different mesostructures. Both,
linear and nonlinear small strain examples are compared to analytical values or full-scale solutions and demonstrate a wide
applicability of the present formulation.

Keywords Homogenization · RVE boundary conditions · Reissner–Mindlin shell · FE2

1 Introduction

Novel, highly engineered compositematerials allow the opti-
mal utilisation of specific material properties. For example,
textile-reinforced composite materials can be used for the
design of slender structures, motivating the use of shell
formulations for analysis. The periodicity of the textile rein-
forcement allows for the choice of a representative volume
element (RVE) to describe the meso-structural behaviour.
Because full-scale models, which approximate the entire
structure, are often computationally expensive, the use of a
multiscale method, which determines the effective material
properties, is justified.
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Many different computational homogenization methods
have been developed, extensive overviews can be found, for
example, in [18, 35]. One of them is the FE2 method, which
has beenfirst introducedbyFeyel andChaboche [16]. To each
macroscopic integration point, a separate representative vol-
ume element is related, on which a boundary value problem
has to be solved. The method is computationally expensive
but can be parallelized for the microscale, see e.g. [21], and
further enhanced by an adaptive approach [34]. Generally,
there are two different approaches to computational homog-
enization. The first introduced scheme was the first-order
computational homogenization where only the deformation
gradient is used for scale transition. This has been extended
by additionally using the strain gradient in the framework
of second-order homogenization. The latter aims to capture
size effects on the mesoscopic scale and higher-order defor-
mation modes. The two scales are classically coupled by the
Hill–Mandel condition, which ensures the equality of virtual
work on both scales [24]. Based on this requirement, differ-
ent boundary conditions can be defined. As an alternative to
the Hill–Mandel homogenization, which is widely used, a
homogenization scheme for structural elements based on the
Irving-Kirkwood theory has been proposed recently [31].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-023-02390-z&domain=pdf
http://orcid.org/0000-0001-8371-9253
http://orcid.org/0000-0002-3851-8599
http://orcid.org/0000-0003-1535-0823


796 Computational Mechanics (2024) 73:795–829

The combination of computational homogenization with
structural components on the macroscopic scale is a wide
field of research, see [4, 28] for beam kinematics and [11,
17, 21–23] for shell structures. While [21, 22] consider a
first-order computational homogenization approach, [11, 17,
23] are concerned with second-order approaches. One of
the main characteristics is, that the RVE extends through
the whole thickness of the macroscopic structure. Therefore,
the smaller scale will be referred to as mesoscale instead
of microscale in the following. From the through-thickness
extension of the RVE over the shell thickness an inconsis-
tency arises when investigating shear deformable shells. The
macroscopic shell models, e.g. Reissner–Mindlin kinemat-
ics, assume a zero through-thickness normal stress. However,
this cannot be enforced using the classical RVE boundary
conditions which can be derived from the Hill–Mandel con-
dition. Furthermore, a dependency of the transverse shear
stiffnesses on the RVE size is observed for example in [30].
Thus, a key point is the transfer of strains to the RVE.

While earlier publications validate the homogenization
procedure only by means of complex examples and full-
scale reference solutions [11, 12, 17], more recent pub-
lications focus on RVE benchmarks before investigating
complex examples [22, 31, 38]. Different methods to over-
come the observed inconsistency and length dependency of
the homogenized stiffness components are proposed in the
literature.Heller [22] focuses on the homogenization of sand-
wich composites with comb-like core structures and uses
length-dependent shear correction factors to take the length
dependency of the RVE into account. More recently Hii and
El Said [23] examined aReissner–Mindlin shell for a second-
order homogenization framework. A volumetric constraint
on the fluctuation moment was introduced to correctly apply
the transverse shear strains. Alternatively, Börjesson et al [3]
have introduced an anti-periodic fluctuation field in order to
correct the twisting deformation. Allowing for the correct
deformation modes reduces the length dependency of the
torsional stiffness on the in-plane dimensions of the RVE.

The present work is based on the observations made
by Klarmann et al [28] who has investigated the kine-
matic inconsistency for Timoshenko beams. A volumetric
constraint is introducedwhich reduces the linearmoment dis-
tribution across the RVE. In contrast to Hii and El Said [23]
the constraint accounts for stiffness jumps over the cross-
section. As consequence, the correct shear stiffnesses are
obtained as homogenized values. Incorporation of the stiff-
ness jumps does not affect the homogenization algorithm.
The macroscopic shell strains are applied on the mesoscopic
scale and the homogenized material tangent and stress resul-
tants are returned. Since only standard inputs and outputs are
used, any shell formulation can be used on the macroscopic
scale.

Classically, the mesoscopic scale is analysed using the
finite element method. In this contribution, scaled bound-
ary isogeometric analysis (SBIGA) [8] is employed on the
mesoscopic level so that the term ’FE-SBIGA’would bemore
precise than FE2 for the present approach. However, the pre-
sented boundary conditions are also applicable for classical
finite element discretisations. Isogeometric analysis was first
introduced by Hughes et al [25] and has been applied to
various engineering fields since. Its main advantage is the
combination of modelling and analysis so that the geometri-
cal approximation error can be overcome. This is particularly
advantageous for complex mesostructures, such as textile
reinforcement. In computer-aided design (CAD), solids are
described by surfaces only. However, a three-dimensional
tensor product is needed for the description of volumes [13].
Onepossibility to obtain these is the combination of IGAwith
the concepts of the scaled boundary finite element method
(SBFEM) [36]. The boundaries from the surface descrip-
tion are scaled into one central point, denoted as scaling
centre C . Following the fundamental SBFEM, the equilib-
rium is strongly applied in scaling direction. This leads to
a second-order ordinary differential equation, which can be
solved either analytically or numerically [9]. Alternatively,
the weak form of equilibrium can be enforced in scaling
direction, compare [10], to allow for the analysis of nonlin-
ear problems. Here, the approach for 3D solids presented
in [8] is employed. A bi-variate tensor product is used for
the description of the boundary, while uni-variate B-Splines
approximate the interior of the solid.

The present contribution proposes three different sets of
boundary conditions for the lateral faces of the RVE in the
scope of a first-order Hill–Mandel-based homogenization
method, since the strain transfer between the scales is a key
point in the computational homogenization of structural ele-
ments. Special attention is paid to the correct transfer of the
transversal shear. The three boundary conditions impose dif-
ferent symmetry requirements on the RVE. Futheremore,
they are compared each other and verified on the meso-
scopic and macroscopic scale using analytical solutions or
full-scale references solutions. Particular focus is given to
heterogeneities which do not span the full width of the RVE,
such as textile reinforcement. Internal constraints, based on
the work of Klarmann et al [28], will be introduced for
shell kinematics to overcome the observed kinematic incon-
sistency. Here, the mesostructure is analysed using SBIGA
which allows the use of the exact geometry rather than an
approximation. Furthermore, the three-dimensional nature
of the mesostructure facilitates the employment of three-
dimensional material laws.

The paper is organised as follows. Section2 briefly dis-
cusses the macroscopic Reissner–Mindlin shell kinematics.
On the mesoscopic scale, the scaled boundary isogeometric
analysis is used which is recapitulated in Sect. 3. Section4
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presents the principles of Hill–Mandel-based homogeniza-
tion and discusses the inconsistency concerning the trans-
verse shear. The finite element formulations on both scales
and the nested formulation involving both scales are given
in Sect. 5. Section6 introduces and compares three boundary
conditions for the transfer of the macroscopic strains while
Sect. 7 presents several numerical examples evaluating the
mesoscopic scale and the overall multiscale approach.

2 Shell kinematics

The description of the shell kinematics follows the one in
[21], where B0 is a shell with thickness h in the three-
dimensional Euclidean space. The theory is limited to small
strains, furthermore, inextensibility and zero normal stress in
thickness direction are assumed. The initial reference surface
(at t = 0) of the shell and its boundary are introduced as �0

and �0, respectively. Analogously, the current configuration
of the shell Bt can be described by its reference surface �t

and its boundary�t , compare Fig. 1. A convective coordinate
system ξα , with α = 1, 2, is introduced to describe the shell
surface. Additionally, a thickness coordinate ζ ranging from
− h

2 ≤ ζ ≤ h
2 is defined.

A director vector D is introduced as the unit normal vec-
tor to the reference surface �0. By means of the rotational
parameters ω, the director vector in the current configuration
d is obtained. The inextensibility of the shell is enforced by
|D| = |d| = 1. In the framework of Reissner–Mindlin shell
theory, transversal shear strains are taken into account, for
which d �= n applies. The rotational tensor R can be related
to the rotational parametersω using the Euler-Rodrigues for-
mula, thus d = RD holds.

Any point of the shell can be described by a position vector
on the shell reference surface X(ξα) and x(ξα) for the ini-
tial and current configuration, respectively, and the director
vectors. The relation in both configurations read

�(ξα, ζ ) = X(ξα) + ζ D(ξα) and

φ(ξα, ζ ) = x(ξα) + ζ d(ξα).
(1)

The displacement field u is derived as the difference of the
position vectors in the shell space from Eq. 1 as

u = φ − � = x − X
︸ ︷︷ ︸

u0

+ζ (d − D) . (2)

From the Green-Lagrange strain tensor E = Ei j =
1

2

(

φ,i ·φ, j −�,i ·�, j
)

the shell strains

ε = [ε11 ε22 2ε12 κ11 κ22 2κ12 γ1 γ2
]T

(3)

with the following components can be derived

εαβ = 1

2

(

x,α ·x,β −X,α ·X,β
)

,

καβ = 1

2
(x,α ·d,β +x,β ·d,α −X,α ·D,β −X,β ·D,α ),

γα = x,α ·d − X,α ·D . (4)

The second-order curvaturesραβ are neglected for thin shells.
Here, Greek indices α, β range from 1 to 2 and Latin indices
i, j, k range from 1 to 3. The Einstein summation convention
is employed. Due to the inextensible director field, no normal
strains in thickness direction occur. The shell strains can be
related to the Green-Lagrange strains using the matrix A(ζ )

Fig. 1 Kinematic assumptions of a Reissner–Mindlin shell
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⎢
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2E23

⎤

⎥
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1 0 0 ζ 0 0 0 0
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⎤

⎥

⎥

⎥

⎥
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︸ ︷︷ ︸

A(ζ )

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ε11
ε22
2ε12
κ11
κ22
2κ12
γ1
γ2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (5)

The shifter tensorZ is introduced, which relates the covariant
basis to the local ortho-normal basis system. Its determinant
μ = detZ is employed for the definition of a volume element
dV = μ dζ dA. The internal virtual work can be defined as

δWi =
∫

�0

δεTσ dA, (6)

where

δε = [δε11 δε22 2δε12 δκ11 δκ22 2δκ12 δγ1 δγ2
]T

(7)

denotes thevirtual shell strains. In analogy toEq. 4, the virtual
components are derived as

δεαβ = 1

2

(

δx,α ·x,β +δx,β ·x,α
)

,

δκαβ = 1

2
(δx,α ·d,β +δx,β ·d,α

+ δd,α ·x,β +δd,β ·x,α ),

δγα = δx,α ·d + δd · x,α .

(8)

σ in Eq. 6 denotes the vector of stress resultants, which is

defined as σ = [

n11 n22 n12 m11 m22 m12 q1 q2
]T
. Here,

nαβ are the membrane forces,mαβ the bending moments and
qα denote the shear forces.

Using the matrixA(ζ ) introduced in Eq. 5 the stress resul-
tants can be related to the second Piola-Kirchhoff stress
tensor S,

σ =
∫

ζ

ATSμ dζ. (9)

The weak form of equilibrium reads

g(v, δv) =
∫

�0

(

δεTσ − δvTp
)

dA

−
∫

�0

δvTfdS = 0.
(10)

The displacements u and the rotations ω have been sum-

marised in a vector v = [

u ω
]T
. p denote surface loads and

f are loads acting on the boundary of the shell’s reference
surface.

The Gâteaux derivative, needed for the linearization, reads

Dg(v, δv) · v =
∫

�0

δεTDε + δεT σ dA, (11)

where D denotes the shell material tangent operator. The
linearised shell strainsε are derived similarly to Eq. 8. The
derivation of the linearized virtual shell strains δε can be
found, for example, in [40].

3 Scaled boundary isogeometric analysis

The representative volume element (RVE) describing the
mesostructure is analysed using the scaled boundary isogeo-
metric analysis (SBIGA). In the following, a brief overview
of themethodwill be given. Formore detailed information on
the method and its application to two- and three-dimensional
problems, one is referred to previous works [5, 8].

Any domain in the reference configuration is denoted as
�RV E

0 and can be divided into a number of nsec sections
�RV E

0,s . Each section is defined by its boundary surface�RV E
0,s

parameterized by two parameters 0 ≤ η, ζ ≤ 1, compare
Fig. 2. This boundary description can be obtained directly
from CAD software in terms of Non-Uniform Rational B-
Splines (NURBS). In a numerical context, the bi-variate
NURBS basis functions will be adopted not only for the
description of the geometry but also for the approximation of
the displacement field. To obtain a three-dimensional geom-
etry description, a scaling centre C is introduced. Special
attention has to be paid when the scaling centre C is defined,
as it must be visible from the entire boundary [32]. Here,
star-shaped domains are obtained by manual subdivision.
Algorithms for domain decomposition have been presented
in e.g. [2]. The interior of the solid is described by the scaling
parameter ξ , which runs from the scaling centre C (ξ = 0) to
the boundary (ξ=1), see Fig. 2. The approximation of the dis-
placements in the interior is based on uni-variate B-Splines.

Fig. 2 The three-dimensional RVE domain�RV E
0 (left) and one exem-

plary section �RV E
0,s (right)
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Any point in the domain can be expressed as

X (ξ, η, ζ ) = X̂ + ξ
(

X̃ (η, ζ ) − X̂
)

. (12)

Where X̂ is the position vector of the scaling centre C and
X̃ describes any point on the boundary. Using the position
vector of the boundary control points Xs and NURBS basis
functions describing the boundary Nb (η, ζ ) one can write
X̃ = Nb (η, ζ )Xs .

The Jacobian is defined in a multiplicative manner as

J =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂X1

∂ξ

∂X2

∂ξ

∂X3

∂ξ

∂X1

∂η

∂X2

∂η

∂X3

∂η

∂X1

∂ζ

∂X2

∂ζ

∂X3

∂ζ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
⎡

⎣

1 0 0
0 ξ 0
0 0 ξ

⎤

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

X̃1 − X̂1 X̃2 − X̂2 X̃3 − X̂3

∂ X̃1

∂η

∂ X̃2

∂η

∂ X̃3

∂η

∂ X̃1

∂ζ

∂ X̃2

∂ζ

∂ X̃3

∂ζ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

J(η,ζ )

.

(13)

Thus, a volume element dV in the physical space is defined
as

dV = det J dξ dη dζ, where

det J = ξ2 det J.
(14)

The approximation of the displacement field u with NURBS
basis functions, according to the concepts of isogeometric
analysis, as well as the numerical treatment will be discussed
in Sect. 5.2.

4 Basic principles of homogenization

The kinematics of the macroscopic and the mesoscopic scale
have been introduced. The scales are connected by means
of the Hill–Mandel condition which ensures energetic con-
sistency. Figure 3 exemplary depicts the homogenization
process. The macroscopic shell strains εM in each macro-
scopic integration point (denoted as ’GP’) are applied to a
mesoscopic representative volume element (RVE). The RVE
height h always corresponds to the macroscopic shell thick-
ness, which is one distinctive feature of the homogenization
approach. On themesoscopic scale, the boundary value prob-
lem (’BVP’) on the RVE is solved and the homogenized shell
stress resultants σ and the shell material tangent operator D
are returned to the macroscopic scale.

Fig. 3 First-order homogenization of a shell

4.1 Hill–Mandel condition

The aforementioned Hill–Mandel condition [24] requires the
incremental energetic consistency between the two scales

〈

Pm : δFm 〉 = PM : δFM . (15)

Where the superscripts (•)M and (•)m denote the macro- and
mesoscale, respectively. P denotes the first Piola Kirchhoff
stress tensor and F the deformation gradient.
Generally, the macroscopic values are obtained from the
mesoscopic volume average of the fields on the RVE. How-
ever, in shell theory, the macroscopic stress quantities are
obtained by a through-thickness integration. Therefore, the

brackets 〈•〉 = 1

Am

∫

Vm (•) dV indicate themesoscopicwork

performed in an RVE per unit area of mid-surface [11].
Using Hill’s lemma, Eq. 15 can be rewritten in terms of a
surface integral over the RVE boundary, compare [35],

〈

Pm : δFm 〉− PM : δFM

= 1

Am

∫

�RV E
0

(pm − PMN)(δxm − δFMXm) dA.
(16)

Where pm denotes the stress vector and N is the correspond-
ing normal vector of the surface. xm and Xm are the position
vectors in the current and reference configuration, respec-
tively.
From Eq. 16 three types of boundary conditions can be
derived.

1. Constant traction boundary conditions

pm = PMN on ∂�0. (17)

2. Linear displacement boundary conditions

xm = FMXm on ∂�0. (18)
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3. Periodic boundary conditions

xm
+ − xm

− = FM (Xm+ − Xm−
) on ∂�0. (19)

The periodic boundary conditions apply only for periodic
mesostructures, i.e. the morphology repeats itself in close
proximity to the macroscopic point. For a periodic RVE,
the surface integral is divided into a positive, denoted by
(•)+, and a negative side, denoted by (•)−, where the out-
ward pointing unit normal vectors are equal and opposite
on opposite sides. This implies that each point on the pos-
itive boundary can be uniquely related to a point on the
negative boundary, therefore the opposing boundaries must
be geometrically identical. Section 6 focuses on the chosen
boundary conditions for the RVE.

4.2 Macro-Meso transition

OneRVEoccupies the space [−lx/2, lx/2]×[−ly/2, ly/2]×
[−h/2, h/2] ∈ R

3. For the top and bottom surfaces z =
±h/2, zero-traction boundary conditions are applied. The
macroscopic strains are applied via the lateral surfaces using
boundary conditions fulfilling the Hill–Mandel condition.
Note, that the RVE is defined in the ortho-normal basis sys-
tem ei with coordinates x, y, z while the shell is defined in
the local ortho-normal basis system Ai . The two coordinate
systems are assumed to be equivalent. Thus, the indices of
the shell quantities α, β = 1, 2 in Sect. 2 are replaced by
α, β = x, y without further consequences.

Assuming small strains, the linear displacement and peri-
odic boundary conditions from the Hill–Mandel condition,
following Eqs. 18 and 19, can be expressed by means of
the Green-Lagrange strains. Thus, the relation between pre-
scribed mesoscopic displacements, indicated by ¯(•), of the
lateral surfaces and the macroscopic strains can be written as

⎡

⎢

⎣

ūx

ū y

ūz

⎤

⎥

⎦ =
⎡

⎢

⎣

εxx + zκxx εxy + zκxy
1
2γx

εxy + zκxy εyy + zκyy
1
2γy

1
2γx

1
2γy 0

⎤

⎥

⎦

⎡

⎢

⎣

x

y

z

⎤

⎥

⎦ . (20)

The Green-Lagrange strains from Eq. 5 are expressed by the
shell strains and written in matrix notation. Similar as in [21]
displacements in thickness direction uz are not prescribed,
as for particular membrane and bending modes restraints are
observed. Thus, Eq. 20 can be rewritten as

[

ūx
ū y

]

=
[

εxx + zκxx εxy + zκxy γx
εxy + zκxy εyy + zκyy γy

]

⎡

⎣

x
y
z

⎤

⎦ . (21)

Instead of prescribing the displacements for each control
point, a rotation of the lateral surfaces can be prescribed to

Fig. 4 Deformed RVE due to an applied κxx

apply certain shell strains. For example, the curvature κxx
in Fig. 4 can be either applied as a displacement, following
Eq. 21,

ūx = zκxx x (22)

or as a rotation of the surface about the y-axis

ω̄y = ∂ ūx
∂z

= κxx x . (23)

To apply displacements and rotations to the lateral surfaces
without explicitly prescribing control point displacements a
transtion element, following [27], is employed. It introduces
two additional control points for each lateral surface which
describe the displacement and the rotation of the respec-
tive surface. Using Lagrange multipliers the deformation is
enforced in an integral sense allowing the lateral surface to
deform freely. The numerical treatment of the transition ele-
ment will be presented in Sect. 5.3. Section 6 discusses for
which of the in the following presented boundary conditions
the transition element is used and the implications of its use
on the deformation behaviour.

After the solution of themesoscopic boundary value prob-
lem, thehomogenized stress resultantsσ = [nxx nyy nxy
mxx myy mxy qx qy

]T and the shell material tangent
operator D are returned to the macroscopic scale. For the
linear-elastic, isotropic case Eq. 9 can be written as

σ =
∫

ζ

AT
CAμ dζ

︸ ︷︷ ︸

D

ε =
⎡

⎣

Dm Dmb 0
D
T
mb Db 0
0 0 Ds

⎤

⎦ ε, (24)

where the indices denote membrane (•)m , bending (•)b or
shear (•)s components, or a combination of these. C is
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the continuum material tangent operator. For linear-elastic,
isotropic material behaviour it reads

C =
[

C
3×3
m 0
0 C

2×2
s

]

= E

1 − ν2

⎡

⎢

⎢

⎢

⎢

⎣

1 ν 0 0 0
ν 1 0 0 0
0 0 1−ν

2 0 0
0 0 0 1−ν

2 0
0 0 0 0 1−ν

2

⎤

⎥

⎥

⎥

⎥

⎦

.

(25)

When the mid-surface is used as reference surface, hence
z = 0 when −h/2 ≤ z ≤ h/2, and the shell is assumed to
be plane, the sub-matrices from Eq. 24 can be derived as

Dm = h Cm, Dmb = 0,

Db = h3

12
Cm, Ds = κ h Cs,

(26)

where κ denotes the shear correction factor.

4.3 Shear inconsistency

As has been previously shown by e.g. [17] and [28] a kine-
matic inconsistency arises between the two scales for the
transverse shears. In the following it will be presented for the
shear strain γx , however, similar applies for the y-direction.
From Eq. 21 follows a linear relationship between the dis-
placement ūx and the shear strain γx ,

ūx = γx z. (27)

Furthermore, fromEq. 24 the relation between shear force qx
and shear strainγx can be derived. For linear-elastic, isotropic
material it reads

qx = D11
s γx = Ghs γx , (28)

where G denotes the shear modulus and hs = h κ . This is
in contrast to the three-dimensional RVE, where generally
an interaction between shear force and moments is observed.
Similar as in [28] the two in-plane axes can be simplified
individually as a fully clamped beam when prescribing dis-
placements at the lateral surfaces, compare Fig. 5a. In this
simplification, each axis is considered separately, thus no
interaction between the two directions is taken into account.
In addition, any boundary effects or lateral contraction are
neglected.

Following Eq. 21 an applied transverse shear strain γx
evokes a rotation of the clamped support. From beam anal-
ogy, it becomes obvious that a prescribed displacement
evokes a linear moment distribution in addition to the con-
stant shear distribution. The equivalent statical system and

the force distributions are depicted in Fig. 5b. Furthermore,
the transverse shear strain from shear contribution γx,S and
bendingmoment γx,b are given for the beam. The shear force
results from the addition of both components as

qx =
(

12E I Ghs
(LRV E )2Ghs + 12E I

)

︸ ︷︷ ︸

(D11
s )∗

γx , (29)

where I = h3/12. Comparison of Eq. 28 and Eq. 29 illus-
trates the inconsistency D11

s �= (D11
s )∗. It can be seen that

the RVE length LRV E has a quadratic influence on the shear
stiffness. Since LRV E can be directly related to the bending
moment distribution, compare Fig. 5b, the linear moment
distribution has to be forced to zero using an additional con-
straint.
Enforcing

∫

LRV E
mxx x dx = 0 and

∫

LRV E
myy y dy = 0

(30)

the term 12E I/(LRV E )2 vanishes from Eq. 29 such that
a consistent macro-to-meso-transition is possible. Assum-
ing the principle of superposition, the constraints are two
independent equations to remove (in homogeneous RVEs)
or reduce (in general RVEs) the length dependency of the
resulting shear stiffness on the length of theRVE. The numer-
ical treatment of the additional constraint will be discussed
in Sect. 5.4. Furthermore, an example to show the length
dependent behaviour of the shear stiffness and the effect of
the constraint is given in Appendix B. It is important to note,
that the introduced additional constraints do not affect the
proposed homogenization algorithm.

5 Finite element formulation

5.1 Shell element

Themacroscopic shell is discretised using e = 1, . . . , numel
isoparametric, quadrilateral shell elements [20]. The geom-
etry and the displacements are approximated using bilinear
shape functions

NI (ξ
M , ηM ) = 1

4

(

1 + ξI ξM
) (

1 + ηI ηM
)

with ξI , ηI = ±1.
(31)

ξM , ηM denote the parameter space. The shape func-
tions can be arranged in a shape function matrix NM =
[

N1I, N2I, N3I, N4I
]

. For plane shells, each node I has five
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Fig. 5 a Beam analogy for an RVE b beam undergoing shear deformation, resulting shear force and bending moment distribution

nodal degrees of freedom, three displacements and two rota-

tions, vI = [ux uy uz ωx ωy
]T
I . For intersections, the nodal

degrees of freedom are extended by one additional rotation.
To avoid shear locking aBathe-Dvorkin [15] approach is used
for the interpolation of the shear strains. The interpolation
is inserted into the linearization of the system of equations
which follows from Eqs. 10 and 11

L[g(vh, δvh),vh] = g(vh, δvh) + Dg(vh, δvh) · vh

=
numel
∑

e=1

δvTe [fe + keve] = 0.
(32)

The tangential stiffness matrix and element residuum vector
for the shell are defined as follows

ke =
∫

�0,e

BT
DB + G dA, (33)

fe =
∫

�0,e

BTσ − NMT
p dA −

∫

�0,e

NMT
f dS. (34)

�0,e denotes the shell reference surface for each element e
and �0,e its boundary. The matrices B andG are specified in
[40].

5.2 SB-IGA element

The implementation of the scaled boundary isogeometric
element is briefly outlined in the following, for a more
detailed description one is referred to [8]. Both, the geom-
etry and the displacements are described using the same
NURBSbasis functions. These can be adopted from theCAD
model describing the RVE and can be computed as shown

in [33]. For the boundary they are independent of ξ and read
Rp,q
J (η, ζ ) for J = 1, . . . , nbc boundary control points on

�RV E
0,s . They can be combined in matrix notation as

N[3×3nbc]
b (η, ζ ) = [Rp,q

1 I, . . . , Rp,q
nbc I

]

. (35)

The dimension of the matrix is given as a superscript. It is
[3 × 3 nbc] because three degrees of freedom are assumed
for each control point. p and q denote the polynomial degree
in the respective boundary direction. Similarly, the scaling
direction ξ is approximated using B-Spline basis functions
to allow for the solution of nonlinear problems [6]. They
are denoted as Rr

K (ξ), where r is the polynomial degree in
scaling direction and index K ranges from 1 to ncp. Here,
ncp is the number of control points along each scaling line,
in total nbs = ncp · nbc control points describe each section.
The basis functions can be rewritten in matrix notation

N[3nbc×3nbs ]
s (ξ) =

⎡

⎢

⎣

Rr
1 I . . . Rr

ncp I 0 . . .

0 . . . 0 Rr
1 I . . .

...
. . .

...
...

. . .

⎤

⎥

⎦ . (36)

The consolidated shape function matrix for the mesoscale
reads

Nm(η, ζ, ξ) = Nb(η, ζ )Ns(ξ). (37)

In the following the superscript (•)m will be dropped for
the sake of legibility. The shape function matrix can be used
for the approximation of the displacements and the virtual
displacements
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uh =
nbs
∑

L=1

NL vL = Nvs,

δuh =
nbs
∑

L=1

NL δvL = N δvs .

(38)

Every control point has three degrees of freedom vL =
[

ux uy uz
]T
L which can be assembled in a displacement vec-

tor for each section vs .
In accordancewith [8] the discretised strain–displacement

transformation matrix is written as

B = 1

det J

(

b1NbNs,ξ

+1

ξ

(

b2Nb,ηNs + b3Nb,ζNs
)

)

.

(39)

Using Voigt notation it relates the deformation gradient F to
the displacements via δF = Bδu. (•),ξ denotes the partial
derivative with respect to ξ , similar applies for η and ζ . The
matrices b1,b2 and b3 are dependent on the parameters η and
ζ . The components are defined by the differential operator

D = b1(η, ζ )
∂

∂ξ
+ 1

ξ

(

b2(η, ζ )
∂

∂η
+ b3(η, ζ )

∂

∂ζ

)

(40)

and the inverse jacobian J−1, compare e.g. [8]. The Green-
Lagrange strain and second Piola-Kirchoff stress tensor can
be expressed in Voigt notation as ET = [

Exx Eyy Ezz

2Exy 2Exz 2Eyz
]

and ST = [

Sxx Syy Szz Sxy Sxz Syz
]

.

Following [8] a 6 × 9 matrix F̂ is defined, which contains
the components of F. Thus, the first variation of the Green-
Lagrange strains can be written as δE = F̂δF. Consequently,
the weak form of equilibrium can be expressed as

g
(

uh, δuh
)

=
nsec
∑

s=1

δvTs

[
∫

�RV E
0,s

BTF̂TSdV

−
∫

�RV E
0,s

NTb0 dV

−
∫

∂�RV E
0,s

NTt0dA

]

= 0

=
nsec
∑

s=1

δvTs fs .

(41)

F̂ indicates thematrix notation of the deformation gradient, S
denotes the second Piola-Kirchhoff stress tensor and b0 and
t0 are the volume and surface loads acting on each section,
respectively. Hence, fs is the residuum vector per section.

Consequently, the Gâteaux derivative is obtained as

Dg
(

uh, δuh
)

· uh =
nsec
∑

s=1

δvTs ks vs,

with

ks =
∫

�RV E
0,s

ξ2BT
(

F̂T
CF̂ + Ŝ

)

BdetJ dξ dη dζ (42)

whereC is the consistent tangent modulus, ks is the stiffness
matrix per section s and Ŝ is the secondPiola-Kirchhoff stress
tensor in matrix notation, see [8].

The RVE domain �RV E
0 is decomposed into a number

of nsec sections. The neighbouring boundary surfaces are
assumed to have the same polynomial degree and boundary
control points. For simplicity, the scaling direction is discre-
tised in the same manner, such that pb = pc and nb = nc
applies, if not explicitly stated otherwise. pb = p = q and
pc = r describe the polynomial degree in each boundary and
scaling direction, respectively, whereas nb and nc denote the
number of elements in each boundary direction and scaling
direction, respectively. This discretisation is called conform-
ing. Non-conforming discretisations might be more efficient
but would necessitate a coupling approach. This is out of
the scope of this work, but different approaches have been
discussed in the literature e.g. [1, 7, 14].

Here, standard Gauss quadrature is employed with nGP ≥
(p+1)×(q+1)×(r+1) quadrature points in each direction.
This integration rule is generally not able to integrateNURBS
exactly, however, the induced error vanishes with refinement.
Alternative integration rules are discussed, for example, in
[26]. Different refinement techniques, such as knot insertion
or order elevation can be employed, see [25]. The iterative
Newton–Raphson scheme is employed to obtain the solution.

5.3 Transition element

An alternative to prescribing displacements on the RVE is
the use of a transition element, following the approach in
[27]. As has been briefly shown in Sect. 4.2 the macroscopic
strains can be applied by prescribing the deformation of the
lateral surface. Thus, a two-dimensional transition element is
introduced which will coincide with the cross-section of the
volume model of the RVE, such that xV = xS . The geometry
of the transition element is indicated by a darker shading
in Fig. 6. Here, xV describes the geometry of the volume
in the current configuration and xS is the geometry of the
transition element. The kinematics of the transition element
can be uniquely described by means of a translation uS0 and
a rotationω, where the translation corresponds to a pointXS0

which lies on the surface and on the reference plane of the
volume. Thus, the current and the reference configuration are
related via xS0 = XS0 + uS0. The vector r0 relates any point
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Fig. 6 Kinematic description of
the transition element

XV on the surface to the reference pointXS0 in the reference
configuration byXV = XS0+r0. Any point xS on the surface
in the current configuration reads

xS = xS0 + r = XS0 + uS0 + ω × r0
= xV = XV + uV ,

(43)

where r = ω × r0 is employed. It has to be noted, that while
in the volume formulation each control point is assigned an
individual displacement vectoruV , the kinematics of the tran-
sition element depend on the translation uS0 and the rotation
ω only.uS0 andω are introduced as additional degrees of free-
dom together with two Lagrange parameters λ and μ. Thus,
each transition element consists of 3 × (nbc + 4) degrees of
freedom. The Lagrange parameter are used to enforce the
geometric equivalence. The potential is extended by an addi-
tional term

� = · · · +
∫

�RV E
0

� (xV − xS) dA = 0, (44)

where � = λ + μ × r0. (45)

In this case, the additional constraint is fulfilled in an integral
sense. This means that the cross-section can deform freely
while the constraint is fulfilled on average. Thus, the six
Lagrange parameters, λ and μ, are chosen to be constant
with regard to the cross-section. Fulfilling the constraint in a
point-wise manner would result in the cross-section remain-
ing plane after deformation. Using Eqs. 43 and 45, Eq. 44
can be rewritten as
∫

�RV E
0

(λ + μ × r0) · (xV − XS0 − uS0 − ω × r0) dA. (46)

The variation of the above yields the weak form of equilib-
rium as

g(u, δu) = . . .

+
∫

�RV E
0

δxTV (λ + μ × r0)

+ δuTS0(−λ − μ × r0)

+ δωT (λ × r0 + r0 × (r0 × μ))

+ δλT (xV − XS0 − uS0 − ω × r0)

+ δμT r0 × (xV − XS0 − uS0 − ω × r0) dA = 0

(47)

and accordingly its Gâteaux derivative as

Dg(u, δu) · u = . . .

+
∫

�RV E
0

δxTV (λ − r0 × μ)

+ δuTS0(−λ + r0 × μ)

+ δωT (−r0 × λ + r0 × (r0 × μ))

+ δλT (xV − uS0 + r0 × ω)

+ δμT r0 × (xV − uS0 + r0 × ω) dA.

(48)

Where

δxV = δuV , xV = uV , (49)

δxS0 = δuS0 and xS0 = uS0 (50)

apply. The discretization of the transition element follows
the one on the RVE surface. Thus, the stiffness matrix and
element load vector have to be determined for each section
on which the transition element is applied. To do so, the
unknowns have to be approximated. The Lagrange parame-
ters are chosen to be constant for each cross-section and are
therefore constant for each element. Thus, the shape function
is chosen to be 1. The additional degrees of freedom uS0 and
ω are approximated accordingly.

The remaining degrees of freedom xV , or uV , are approx-
imated using the same NURBS shape functions, which are
used to approximate the RVE-volume, see Eq. 37with ξ = 1.
Again, the superscript (•)m is neglected in the following.

xhV =
nbc
∑

J=1

NJ xV J =
nbc
∑

J=1

NJ (XV J + vJ )

δxhV =
nbc
∑

J=1

NJ δxV J =
nbc
∑

J=1

NJ δvJ

xhV =
nbc
∑

J=1

NJxV J =
nbc
∑

J=1

NJvJ

rh0 =
nbc
∑

J=1

NJXV J − XS0

(51)

The superscript (•)h indicates an approximated value, and
the subscript (•)J denotes a control point value and its corre-
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sponding shape function NJ . nbc is the number of boundary
control points per transition element and corresponds to the
boundary control points of the corresponding section. It has
to be noted, that the additional nodes uS0, ω, λ and μ do not
count into nbc.

Using this approximation one can arrive at the formulation
of a load vector f̃s and stiffness matrix k̃s for each section

f̃s =

⎡

⎢

⎢

⎢

⎢

⎣

fa
fb
fc
fd
fe

⎤

⎥

⎥

⎥

⎥

⎦

=
∫

�RV E
0

⎡

⎢

⎢

⎢

⎢

⎣

NT(λ + μ × rh0)
xhV − XS − uS0 − ω × rh0

rh0(x
h
V − XS − uS0 − ω × rh0)

−λ − μ × rh0
λ × rh0 + rh0 × (rh0 × μ)

⎤

⎥

⎥

⎥

⎥

⎦

dA, (52)

k̃s =

⎡

⎢

⎢

⎢

⎢

⎣

0 kab kac 0 0
kba 0 0 kbd kbe
kca 0 0 kcd kce
0 kdb kdc 0 0
0 keb kec 0 0

⎤

⎥

⎥

⎥

⎥

⎦

=
∫

�RV E
0

⎡

⎢

⎢

⎢

⎢

⎣

0 NT1 NT[rh0]T× 0 0
1N 0 0 −1 [rh0]×

[rh0]×N 0 0 [rh0]T× [rh0]×[rh0]×
0 −1 [rh0]× 0 0
0 [rh0]T× [rh0]×[rh0]× 0 0

⎤

⎥

⎥

⎥

⎥

⎦

dA.

(53)

The integral is applied component-wise and [•]× is used
to denote the skew-symmetric matrix of a vector, which is
defined as

[a]× =
⎡

⎣

0 −a3 a2
a3 0 −a1

−a2 a1 0

⎤

⎦ . (54)

The diagonal entries of the stiffness matrix k̃s are zero,
which indicates that the problem is indefinite, due to the
enforcement of the additional constraint using Lagrange
parameters.
To account for stiffness jumps within heterogeneous cross-
sections the stiffnessmatrix and load vector are scaled.Under
the assumption of linear-elastic material behaviour and small
deformations of the transition element, it is sufficient to con-
sider only the stiffness relating to the normal direction for
scaling purposes. Thus, for the x-direction scaling is car-

ried out using the entry C11 = E

1 − ν2
. Similarly, transition

elements whose normal vector points in the y-direction are
scaled by C22. This procedure evokes jumps in the normal
stress distribution and allows for a uniform boundary defor-
mation. In Fig. 7 the normal stress distribution is exemplary
given for a three-layered RVE with a softer core. Here, the
Lagrange parameters can be interpreted as strain in longi-
tudinal direction λx and a curvature μy about the y-axis.
The assumption of constant Lagrange multipliers for each
cross-section is relaxed so that they only have to be element-
wise constant. The stiffness matrix and force vector are thus
defined as follows

ks = C11k̃s, fs = C11 f̃s . (55)

5.4 Moment reduction constraint

In this section, a volume element is introduced in order to
apply the additional constraint introduced in Sect. 4.3, fol-
lowing the approach in [28]. The moment distribution due
to the applied shear deformation will be enforced to be zero.
From the beam analogy discussed in Sect. 4.3 results a linear
moment distribution over the RVE, compare Fig. 5. The addi-
tional volume elements coincide with the volume elements
used to discretise the RVE. Therefore, scaled boundary iso-
geometric analysis is adopted for these elements also. Again,
linear elastic material behaviour and small deformations are
assumed for this internal constraint. It can be written as

Fig. 7 Normal stress distribution for a layered RVE with softer core
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∫

LRV E
0

∫

�RV E
0

σx (λx + μy · z)dA dL

=
∫

�RV E
0

σx (λx + μy · z)dV = 0,
(56)

where σx describes the x-component of the stress. The same
applies for the component σy , here we restrict ourselves to
the derivation for σx .

Similar to Sect. 5.3 the formulation of the potential can be
extended by one additional term.

� = · · · +
∫

�RV E
0

σx (λx + μy · z)dV

= · · · +
∫

�RV E
0

σxp · �dV = 0
(57)

The equation has been simplified using the position vector

p = [

1 z
]T

and the Lagrange parameters � = [

λx μy
]T
.

The first variation is added to the weak form of equilibrium

g(u, δu) = · · · +
∫

�RV E
0

(δσxp · � + σxp · δ�) dV . (58)

The Gâteaux derivative follows as

Dg(u, δu) · u = . . .

+
∫

�RV E
0

(δσxp · � + σxp · δ�) dV .
(59)

Assuming linear-elastic material behaviour of the additional
volume element the stress in x-direction can be rewritten
using σ = C : ε as

σx = C ε =
nsec
∑

s

nbs
∑

L

CBLvL . (60)

The index L denotes each of the nbs control points of
each section nsec of the domain. (•) indicates the use of
the first row of the material tangent C in Voigt Notation
C = [C11 C12 C13 C14 C15 C16

]

. For the approximation of

the displacements vL = [

ux uy uz
]T
L the same shape func-

tions, as the ones used for approximation of the volume of
the RVE are used, see Eq. 37. The Lagrange parameters
are approximated with shape functions analogously to the
resultingmoment distribution. Again, with reference to beam
analogy in Sect. 4.3, a linearmoment distribution is assumed,
therefore

N� = x . (61)

Using Eq. 58 the element load vector reads

∫

�RV E
0

(δσxp · � + σxp · δ�)dV

=
nsec
∑

s=1

[

δvs
δ�s

]T
[
∫

�RV E
0

BT
C
T
p · �s dV

∫

�RV E
0

pCB vs dV

]

︸ ︷︷ ︸

fs

.
(62)

From the linearization, Eq. 59, the element stiffness matrix
can be derived. Similar to the stiffnessmatrix of the transition
element it has a zero diagonal,

∫

�RV E
0

(δσxp · � + σxp · δ�)dV

=
nsec
∑

s=1

[

δvs
δ�s

]T [
0 kab
kTab 0

]

︸ ︷︷ ︸

ks

[

vs
�s

]

, (63)

where

kab =
∫

�RV E
0

BT
C
T
pTN�dV . (64)

5.5 Micro–Macro transition

The homogenization algorithm follows the approach in [21].
To obtain the linearization of the weak form of the cou-
pled problem the weak forms and their derivatives for
both scales are combined. To each macroscopic integra-
tion point i = 1, . . . , nGP in every macroscopic element
e = 1, . . . , numel an RVE is assigned. External loads are
acting exclusively on the macroscopic scale, therefore the
load terms from Eq. 41 are omitted. The linearization reads

L[G(v, δv),v]
=
∫

�

δεMT
σ M dA + {external loads}

+
∫

�

δεMT
DεM + δεMT

σ M dA

+
numel
∑

e=1

nGP
∑

i=1

[

1

Ai

(
∫

�RV E
0,i

δETS dV

+
∫

�RV E
0,i

δET
CE + δETS dV

)]

.

(65)

Here, the superscript (•)M indicates a macroscopic quan-
tity, for simplicity no superscript for mesoscopic quantities is
used. Integration on themesoscale is carried out over theRVE
volume and averaged over the area of the RVE mid-surface
Ai , see Sect. 4.1. Using Lagrange polynomials and NURBS
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functions for approximation on the macro- and mesoscale,
respectively, the following system of equations is obtained

L[G(vh, δvh),vh]

=
numel
∑

e=1

⎡

⎢

⎢

⎢

⎣

δvM

δV1
...

δVnGP

⎤

⎥

⎥

⎥

⎦

T

e
⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

⎡

⎢

⎢

⎢

⎣

kM (Di ) 0 . . . 0
0 K1 . . . 0
...

...
. . .

...

0 0 . . . KnGP

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

vM

V1
...

VnGP

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

fM (σ i )

F1
...

FnGP

⎤

⎥

⎥

⎥

⎦

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

e

= 0.

(66)

The first row refers to the macroscopic boundary value prob-
lem while all others refer to one boundary value problem
on the mesoscopic scale. Investigation of one mesoscopic
boundary value problem for Gauss point i yields

δVT
i (Ki Vi + Fi ) = 1

Ai

nsec
∑

s=1

δvTs (ksvs + fs) , (67)

where fs and ks are the load vector and stiffness matrix per
section from Eq. 41 and Eq. 42, respectively. nsec denotes
the total number of sections describing the RVE. The meso-
scopic displacement vs is rearranged into a vector va , which
contains the internal displacements, and a vector vb contain-
ing all boundary displacements. These are coupled to the
macroscopic scale using the standard assembly matrix as to
relate va to the macroscopic displacement vector Vi . The
boundary displacements are prescribed in each integration
point i by the corresponding shell strains εM

i . This relation
is determined through a relational matrix As(x, y, z), which
will be further specified in the following section

vs =
[

va
vb

]

=
[

asVi

Asε
M
i

]

, (68)

The virtual and linearized relations are derived accordingly.
kαβ and fα with α, β = a, b are introduced as submatrices

of ks and fs . Consequently, Eq. 67 can be written as

δVT
i (Ki Vi + Fi )

= 1

Ai

nsec
∑

s=1

[

δVi

δεM
i

]T

{[

aTs kaaas aTs kabAs

AT
s kbaas A

T
s kbbAs

]

s

[

Vi

εM
i

]

+
[

aTs fa
AT
s fb

]

s

}

= 1

Ai

[

δVi

δεM
i

]T {[
K L
LT M

] [

Vi

εM
i

]

+
[

Fa

Fb

]}

(69)

Static condensation of the internal degrees of freedom can
be conducted by

Vi = −K−1
(

LεM
i + Fa

)

, (70)

when δVi �= 0 and rigid body motions are eliminated by
appropriate boundary conditions, such thatK−1 exists. Using
Eq. 70, Eq. 69 can be rewritten as

δVT
i (Ki Vi + Fi )

= 1

Ai
δεMT

i

[(

M − LTK−1L
)

εMT

i

+
(

Fb − LTK−1Fa

)]

= δεMT

i

(

DiεM
i + σ i

)

.

(71)

Where the stress resultants and the macroscopic shell mate-
rial tangent are introduced as

σ i = 1

Ai

(

Fb − LTK−1Fa

)

and (72)

Di = 1

Ai

(

M − LTK−1L
)

. (73)

Application of Eq. 71 to Eq. 66 leads to a consistently
linearized homogenization scheme. The mesoscopic con-
tributions Di and σ i for each integration point enter the
macroscopic scale through KM (Di ) and fM (σ i ).

6 Boundary conditions of the representative
volume element

In this section, three sets of boundary conditions for the lat-
eral surfaces of the RVE will be specified. For the top and
bottom face, at z = ±h/2, zero-traction boundary conditions
apply. The xy-plane always corresponds to the reference shell
surface, where lx and ly denote the in-plane dimensions.
These can generally be chosen independently. However, here
lx = ly is chosen for demonstrative purposes. In the follow-
ing, the in-plane dimensions are denoted as LRV E , where
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LRV E = lx = ly applies. As has been derived in Sect. 4.1,
generally three types of boundary conditions evolve from the
Hill–Mandel equation. From Eq. 20 follows a relation which
relates the lateral displacements for every control point to the
macroscopic shell strains εM by means of a relational matrix
AJ (x, y, z)

ūJ = AJ (x, y, z) εM . (74)

The matricesAJ (x, y, z) refer to control points J of the con-
sidered section s and are submatrices ofAs , see Eq. 68. Here,
the matrix As is split into a geometric part Ãs and a part for
the transition element, from Sect. 5.3, Âs , such that

As =
[

ÃT
s Â

T
s

]T
. (75)

Depending on the type of boundary condition, either part
may vanish. The matrix Ãs is specified as

Ãs =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δ1Ã1

...

δJ ÃJ

...

δnbs Ãnbs

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

with

δJ =
{

1 if control point J has fixed DOFs

0 else
.

(76)

Where nbs is the number of total control points per section.
Accordingly, the matrix for the transition element reads

Âs =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δ1Â1

...

δI ÂI

...

δntransÂntrans

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

with

δ j =
{

1 if transition element I has fixed DOFs

0 else
.

(77)

ntrans denotes the number of used transition elements in the
formulation of the boundary conditions.

To avoid rigid body movements an arbitrary node is fixed
in the z-direction for all sets of boundary conditions. The pre-
sented moment reduction constraint from Sect. 5.4 is applied
for all three types of boundary conditions to reduce the length
dependency of the shear stiffness. The necessity of the con-
dition in terms of homogenization of shell structures was
shown in [30].

6.1 Traction boundary conditions

One possibility to apply the shell strains to the RVE is the
use of the presented transition element from Sect. 5.3. The
translation uS0 and the rotation ω of the transition element
are prescribed which implicitly evoke the deformation of the
RVE. Furthermore, the enforcement using Lagrange param-
eters causes constant tractions on the boundaries, which is
shown in Sect. 6.4. Thus, in the following, this type of
boundary conditions will be referred to as ’traction bound-
ary conditions’ (tbc). Note, that this formulation contradicts
the ’classical’ traction boundary conditions from Eq. 17, as
no actual stresses are applied. A plane view of an RVE is
depicted in Fig. 8. The dashed lines indicate the use of the
transition element on all four faces. The translations uS0x and
uS0y are prescribed for each lateral surface, while for each
transition element only the in-plane rotation is prescribed.
The out-of-plane rotation is linked to the opposing transition
element, indicated by a dotted arrow and by the superscript
(•)‖. Note, that in-plane rotation refers to the rotation about
the in-plane axis but evokes and out of plane displacement.
Because all macroscopic shell strains εM are applied using
the transition element Eq. 75 can be written as As = Âs . For
each interface I the relation reads

⎡

⎢

⎢

⎢

⎢

⎣

ūS0x

ūS0y

ω̄x

ω̄y

⎤

⎥

⎥

⎥

⎥

⎦

I

=

⎡

⎢

⎢

⎢

⎢

⎣

x 0 1
2 y 0 0 0 0 0

0 y 1
2 x 0 0 0 0 0

0 0 0 0 −y − 1
2 x 0 −1

0 0 0 x 0 1
2 y 1 0

⎤

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

Atbc
I

εM . (78)

6.2 Shell boundary conditions

The set of boundary conditions which will be referred
to as ’shell boundary conditions’ (sbc) in the following have
been adapted from [21]. Similarly, the out-of-plane displace-

Fig. 8 Plane view of RVE-tbc: Displacements of transition element
prescribed, in-plane rotation prescribed and out-of-plane rotation linked
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ments of the RVE are fixed. However, in contrast to [21]
the in-plane displacements are linked symmetrically. This
adaption has become necessary when investigating prob-
lems, where the inhomogeneities do not span the whole
width of the RVE. Exemplary, an RVE with circular inclu-
sion is deformed by a macroscopic strain εMyy = 0.2. Linear
elastic material behaviour is assumed, where the inclusion
is 100 times stiffer than the surrounding matrix material.
Prescribing the in-plane displacements leads to unphysical
deformations, see Fig. 9b. Relaxing the constraint by link-
ing the in-plane displacements solves that problem, refer to
Fig. 9c. Analogous to [21] the vertical displacement uz is
linked in an anti-symmetric way with respect to the x and y
coordinates, denoted by the superscript (•)×. For the present
type of boundary condition, the transition element is not used.
Therefore, Eq. 75 is simplified as As = Ãs . It reads

[

ūx

ū y

]

J

=
[

x 0 1
2 y x z 0 1

2 y z z 0

0 y 1
2 x 0 y z 1

2 x z 0 z

]

︸ ︷︷ ︸

Asbc
J

εM . (79)

Table 1 gives an overview of the applied boundary and
linking conditions.Additionally, the plane viewof theRVE in
Fig. 10 depicts the applied boundary conditions. For clarity,
the arrows indicating the cross-wise link conditions for ū×

z
have been neglected in this representation.

6.3 Periodic boundary conditions

At last, a set of periodic boundary conditions (pbc) is intro-
duced. Now, the in-plane and out-of-plane displacements

ū‖
x and ū‖

y are linked symmetrically for each lateral sur-
face. Again, the vertical displacement ū×

z is linked in an
anti-symmetric way to avoid rigid body rotations. Table 2
summarizes the boundary and linking conditions. Here, the
shear strains are applied to the RVE by means of the pre-
sented transition element, refer to Sect. 5.3. It is applied to
two vertical faces of the RVE at x = lx/2 and y = ly/2, see
dashed lines in Fig. 11. Using the rotational node the shear
strains can be applied implicitly on the RVE. In contrast to
the traction boundary conditions, the displacement node uS0
of the transition element is not needed. Both matrices from
Eq. 75 have to be defined. For the geometric part, the relation
between macroscopic and mesoscopic values reads

[

ūx

ū y

]

J

=
[

x 0 1
2y x z 0 1

2y z 0 0

0 y 1
2x 0 y z 1

2x z 0 0

]

︸ ︷︷ ︸

Ãpbc
J

εM . (80)

For the transition element, only the rotations are prescribed
via

[

ω̄x

ω̄y

]

I

=
[

0 0 0 0 −y − 1
2 x 0 −1

0 0 0 x 0 1
2 y 1 0

]

︸ ︷︷ ︸

Âpbc
I

εM (81)

The control point displacements uJ are prescribed using the
size of the RVE, which corresponds to the coordinate differ-
ence of the linked control points X = X+ − X−.

Fig. 9 a Perspective view of an RVE with circular inclusion and the plane view of the deformed configuration when εMyy is applied for b the
boundary conditions presented in [21] and c the proposed shell boundary conditions
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Table 1 Boundary conditions
and link conditions for shell
type boundary conditions (sbc)

Control points J on Boundary conditions Link conditions

Face: x = ±lx/2 ūJ = Asbc
J (x, y, z) εM uy(lx/2, y, z) = uy(−lx/2, y, z)

uz(lx/2, y, z) = uz(−lx/2,−y, z)

Face: y = ±ly/2 ūJ = Asbc
J (x, y, z) εM ux (x, ly/2, z) = ux (x,−ly/2, z)

uz(x, ly/2, z) = uz(−x,−ly/2, z)

Fig. 10 Plane view of RVE-sbc: Displacements in the out-of-plane
direction prescribed, displacements in in-plane and vertical direction
linked

6.4 Comparison concerning shear application

One of the main differences between the three boundary con-
ditions is the different application of shear strains to the RVE.
For the case of a linear-elastic, homogeneous RVE (E = 100
[N/mm2], ν = 0.3) with dimensions lx × ly × h = 1× 1× 1
[mm×mm×mm] the analytical shear stress distribution reads

τxz(z) = 3

2

Q

A

(

1 − 4z2

h2

)

= 3

2
κ G γ M

x (1 − 4z2).

(82)

For γ M
x = 0.2 the maximum shear stress takes the value

τxz,max (z = 0) = 3

2
κ G γ M

x = 9.615 [N/mm2]. (83)

Fig. 11 Plane view of RVE-pbc: all displacements linked, in-plane
rotation prescribed using transition element

Here, the shear correction factor for rectangular cross-
sections κ = 5/6 was used. Similarly, the displacement due
to shear strain γ M

x can be derived as

ux =
∫

hRV E
γ (z)dz = 5

4
γ M
x (z − 4

3
z3). (84)

The analytical maximum displacement is obtained as

ux,max (z = ±h/2) = ±0.083 [mm]. (85)

For this example, the deformation and shear stress distri-
butions for γ M

x are presented. However, the same applies
for the deformation due to an applied γ M

y . The scaling cen-
tre for the RVE discretisation lies in the centre of mass. A
discretisation with nc = 2 and nb = 6 elements and poly-
nomial order pc = pb = 4 is chosen. Additionally, the
boundary conditions differ in their symmetry requirements

Table 2 Boundary conditions
and link conditions for periodic
boundary conditions (pbc)

Control points J on Boundary conditions Link conditions

Face: x = ±lx/2 ūJ = Ãpbc
J (x, y, z) εM ux (lx/2, y, z) = ux (−lx/2, y, z)

uy(lx/2, y, z) = uy(−lx/2, y, z)

uz(lx/2, y, z) = uz(−lx/2,−y, z)

Face: y = ±ly/2 ūJ = Ãpbc
J (x, y, z) εM ux (x, ly/2, z) = ux (x,−ly/2, z)

uy(x, ly/2, z) = uy(x,−ly/2, z)

uz(x, ly/2, z) = uz(−x,−ly/2, z)
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on the RVE. Figure 12 compares the symmetry requirements,
deformed mesh and shear stress distribution for the three
different boundary conditions. Traction, shell and periodic
boundary condition correspond the first, second and third
column of Fig. 12, respectively. The first row presents a
plane view of the RVE with two representative inclusions.
These are arranged such that the symmetry requirements of
the boundary conditions are fulfilled. The second row shows
the deformation of the RVE due to an applied shear strain
γ M
x . In the third row the shear stress distribution over the

height of the RVE is plotted. Additionally to the analyt-
ical solution from Eq. 82, the shear stress distribution on
the surface of the RVE (at (x, y) = (0.5, 0)) and inside at
(x, y) = (0.25, 0) are shown. In Fig. 12a the plane-view, the
shear deformation for γ M

x and the shear stress distribution
over the RVE height are depicted for the introduced trac-
tion boundary conditions (tbc). Since the shell strains are
applied only by means of the transition elements on each lat-
eral surface, there are no symmetry requirements for theRVE.
Thus, the inclusionsmay be distributed randomly in theRVE.
Furthermore, using the transition element enforces the defor-
mation in an averaged sense using Langrange multipliers.
Thus, cross-sectional warping is possible, which can be seen
in the deformedmode. Furthermore, the analytical maximum
displacement ux from Eq. 85 is well approximated. Looking
at the shear stress distribution it becomes obvious why the
term traction boundary conditions is justified. On the surface
of the RVE, at (x, y) = (0.5, 0), an almost constant shear
stress distribution is obtained. Closer to the centre of the RVE
the expected shear stress parabola is closely approximated.
Furthermore, the shear stress at the top and bottom surface
of the RVE tends to zero which shows, that the zero-traction
boundary condition is fulfilled.

In Fig. 12b a plane view, the shear deformation and
shear stress distribution are plotted for the shell boundary
conditions. Because the in-plane displacements are linked
symmetrically and the displacements in the thickness direc-
tion are linked in an anti-symmetric way, the mesostructure
must be symmetrical and point symmetrical, as indicated by
the plane view in Fig. 12. By prescribing the out-of-plane
displacement no warping of the cross-section is admissi-
ble. Therefore, a linear displacement distribution of the
cross-section is obtained. The maximum displacement value
corresponds directly to the linear relationship between dis-
placement and shear strain which has been stated in Eq. 27.
The shear stress distribution at the surface and inside the
RVE approximates a parabola, however, the maximum value
is too low, compare Eq. 83. Furthermore, on the surface of
the RVE boundary effects at the top and bottom surface can
be observed. However, towards the centre of the RVE the
approximation of the shear stress parabola becomes better
and the shear stress at z = ±h/2 reduces to zero, which

shows that the zero-traction boundary condition are fulfilled
for the shell boundary conditions.

For the periodic boundary conditions a plane view, the
deformation figure and shear stress distribution are depicted
for the homogeneous linear-elastic RVE, see Fig. 12c. Due to
the linking conditions, again, symmetry and point symmetry
is required. The correct maximum displacement from Eq. 85
is obtained and the boundary conditions allow warping of
the cross-section. The shear stress distribution, both on the
boundary and inside the RVE, takes the expected parabolic
shape and the maximum shear stress from Eq. 83 is obtained.
The current section has been restricted to consideration of
the shear strains, since this is where the most significant
differences between the boundary conditions occur. Never-
theless, the deformationfigures for the remaining shell strains
are exemplarily shown in Appendix A for all three types
of boundary conditions. It can be seen that the deformation
modes are correctly represented regardless of the boundary
conditions.

7 Numerical examples

The developed multiscale approach is implemented in an
extended version of the academic finite element analysis
program FEAP [37]. First, the approach is verified on the
mesoscale comparing the numerical solutions with analyti-
cal values. The three different kinds of boundary conditions
presented in Sect. 6 are compared to each other. Furthermore,
coupled multiscale problems are investigated. Comparisons
are made with analytical and full-scale solutions.

7.1 Verification on themesoscale

The stiffness of the Reissner–Mindlin shell theory was
introduced in Sect. 2 as the shell material tangent D. The
components for the linear-elastic, isotropic case were speci-
fied in Eq. 26. The analytical stiffness components are used
as a reference to verify the numerical method. In a first step,
homogeneous and layeredRVEswith linear-elastic, isotropic
material are considered, because for these the analytical
solutions can be derived. Generally, the scaled boundary iso-
geometric analysis is used for solution of the mesoscopic
boundary value problem. Unless otherwise stated converged
stiffness values are used for comparison. For simplicity the
sections are discretised conforming and using the same poly-
nomial degree and number of elements in boundary and
scaling direction. Thus, pc = pb and nc = nb applies. As a
starting point pc = pb = 3 and nc = nb = 2, 4, 6, 8 is cho-
sen. However, a full convergence study on the mesoscale is
out of the scope of the presentwork. For simplicity the scaling
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Fig. 12 Comparison of symmetry requirements, shear deformation and shear stress distribution for γx = 0.2 for a traction boundary conditions, b
shell boundary conditions and c periodic boundary conditions

centerC is chosen to lie in the centre of mass of each section.
In the following the robustness of the presented approaches
with respect to the length scale of the RVE is examined. The
respective length LRV E is increased by repetition of a single
RVE in both in-plane directions. The stiffness components
are compared for the three different types of boundary con-
ditions.

7.1.1 Homogeneous linear elastic RVE

Tobeginwith, aRVEofdimensions 1×1×1 [mm×mm×mm]
is considered, as depicted in Fig. 13. A linear elastic isotropic
material with Young’s Modulus E = 100 [N/mm2] and
Poisson’s ratio ν = 0.3 is assumed. To investigate the influ-
ence of the length scale of the RVE, the dimensions of
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LRV E = lx = ly are consecutively increased, while the
height is kept constant.

The numerical solution evaluating Eq. 73 yields the zero
entries in Eq. 24. The results for the non-zero entries are sum-
marised in Table 3 for different the boundary conditions. The
traction boundary conditions exhibit a length dependency for
the torsional stiffness D33

b and the shear stiffnesses Ds . For
the homogeneous case D11

s = D22
s holds. The shell boundary

conditions show a length dependent behaviour for the shear
stiffnesses while the periodic boundary conditions directly
yield the analytical values for all components. Figure 14
shows the relation of the obtained numerical stiffness to the
calculated analytical stiffness Dnum/Danalytical for different
RVE lengths. Figure 14a illustrates the length dependency of
the torsional stiffness D33

b for the traction boundary con-
ditions. In Fig. 14b the numerical solution for the shear
stiffness Ds,num = G hs is compared to the analytical value
Ds,analytical = G h resulting in the numerical shear correc-
tion factor κ . For the rectangular cross-section the analytical
value is κre f = 5/6, which is obtained using periodic bound-
ary conditions irrespective of LRV E .

For all three boundary conditions the introduced moment
reduction constraint from Sect. 5.4 is employed. To show the
necessity of the constraint the same example has been inves-
tigated without it. The results are presented in “Appendix B”.

Fig. 13 Exemplary homogeneous RVE of dimensions 1 × 1 × 1

7.1.2 Layered linear elastic RVE

In a next step a layered mesostructure is considered. The
height is kept constant as h = 1 [mm] and the three lay-
ers take equal thickness of hl = 1

3 [mm], compare Fig. 15.
Again, linear elasticmaterial behaviour is assumedwhere the
face sheets have a Young’s modulus E1 = 100 [N/mm2] and
the core is 10 times stiffer with E2 = 1000 [N/mm2]. The
Poisson’s ratio for bothmaterials is ν = 0.3. Using Eq. 24 the
analytical stiffness components for layered microstructures
can be calculated. The shear correction factor is determined
as κre f = 0.625, according to [39]. The non-zero stiff-
ness components from Eq. 24 for the different boundary
conditions are summarised in Table 4. To investigate the
length dependency, again the lengths LRV E = lx = ly are
increased, while h = 1 [mm] is kept constant. The results are
presented in Fig. 16. Figure 16a illustrates the length depen-
dency of the torsional stiffness D33

b using traction boundary
conditions (tbc). In Fig. 16b the shear correction factor is
depicted. Again, a length dependency for traction and shell
boundary conditions is observed.

7.1.3 Shear correction factor for layered RVE

From the observations on the homogeneous and layered RVE
the homogenized stiffness components seem to exhibit no
length dependency using the periodic boundary conditions,
which is desirable in order to minimise the computational
effort. To investigate this further for different layered RVEs
the core fraction ρC and stiffness ratio α is varied and the
shear correction factor κ is obtained numerically using only
periodic boundary conditions. An RVE of dimensions lx ×
ly ×h = 1×1×1 [mm×mm×mm] is used. The height of
the different layers depends on the core fraction ρC , which
describes the ratio between the height of the core and the
total RVE height hC = ρCh. Therefore, the thickness of the
two face layers is given as hL = (h − hC )/2 and the total
height reads h = hC + 2hL . The factor α is introduced to
relate the core and layer stiffnesses to each other by means
of their respective Young’s moduli using EC = αEL . An
analytical solution for the shear correction factor of layered
cross-sections can be found in [39] and is calculated as

Table 3 Comparison of
stiffness components for
different boundary
conditions—homogeneous RVE

Stiffness component Traction b.c. (tbc) Shell b.c. (sbc) Periodic b.c. (pbc)

Dm Exact Exact Exact

Dmb Exact Exact Exact

D11
b ,D22

b ,D12
b Exact Exact Exact

D33
b See Fig. 14a Exact Exact

Ds See Fig. 14b See Fig. 14b Exact
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Fig. 14 Length dependency of the stiffness components D33
b and D11

s = D22
s for different boundary conditions for a homogeneous RVE

Fig. 15 Exemplary layered RVE of dimensions 1 × 1 × 1

κ = 4

9

T 2
1

T2T4
. (86)

The components T1, T2 and T4 are calculated as follows

T1(ρC ) = (1 − ρ3
C ) + ρ3

Cα

T2(ρC ) = (1 − ρC )

α
+ ρC

T3(ρC ) = (1 − ρ2
C )2 + 8

15
α2ρ4

C + 4

3
αρ2

C (1 − ρ2
C )

T4(ρC ) = A(ρC )α + ρCT3

A(ρC ) = (1 − ρC )3

15
(3ρ2

C + 9ρC + 8). (87)

The results for ρC = 0.2, 0.4, 0.6, 0.8 and α =
0.1, 0.5, 10 are given in Fig. 18. The analytical solution
are represented with continuous lines and the numerical
results are depicted with symbols. For all stiffness ratios
α and core fractions ρC very good agreement between the
numerical and analytical solution is obtained. For ρC = 0
and ρC = 1 the cross-section is homogeneous, which has
already been examined in Sect. 7.1.1. Additionally, the val-
ues obtained by the authors of [23] for α = 0.1 and different
core fractions are depicted. For comparison, the boundary
conditions are employed neglecting the stiffness jumps over
the cross-section height. Because the moment reduction con-
straint assumes a homogeneous material, in this case, it is
abbreviated as ’hMRC’. The results are shown in Fig. 18,
indicated by crosses. Good agreement between the results
from [23] and the proposed periodic boundary conditions
neglecting the stiffness jumps can be observed, which indi-
cates that the introduced moment reduction constraint is
comparable to the constraint on the fluctuationmoment intro-
duced by [23]. By incorporating the stiffness jumps across
the thickness h of the RVE, the obtained shear correction
factors lie closer to the analytical solution. The analytical

Table 4 Comparison of
stiffness components for
different boundary
conditions—layered RVE

Stiffness component Traction b.c. (tbc) Shell b.c. (sbc) Periodic b.c. (pbc)

Dm Exact Exact Exact

Dmb Exact Exact Exact

D11
b ,D22

b ,D12
b Exact Exact Exact

D33
b see Fig. 16a Exact Exact

Ds See Fig. 16b See Fig. 16b Exact
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Fig. 16 Length dependency of the stiffness components D33
b and D11

s = D22
s for different boundary conditions for a layered RVE

Fig. 17 Dimensions of a RVE with different core fraction ρC and stiff-
ness ratio α

shear correction factors, as well as the ones obtained by
periodic boundary conditions with and without considering
stiffness jumps are summarized in Table 5. Considering the
stiffness jumps the error between numerical and analytical
solution is neglectable. However, assuming homogeneous
cross-sections for the moment reduction constraint the error
becomes noticeable.

Thus, the presented periodic boundary conditions are able
to correctly calculate all stiffness components D for homo-
geneous and layered RVEs irrespective of LRV E .

7.2 Verification on themacroscale

Four different coupled problems are investigated. On the
macroscale a 5/6-parameter 4-node shell element is used.
Reference solutions are obtained either analytically or by
full-scale models. Displacement-based volume elements
with quadratic Lagrange shape functions are used for com-
parison. If not stated otherwise the same general concepts
for the discretisation and the position of the scaling cen-

ter on the mesoscale apply. It is important to note, that the
thickness of the shell always coincides with the height of
the RVE, therefore hM = hRV E = h. For the examples
with linear-elastic material behaviour the macroscopic mate-
rial parameters were obtained by homogenization of a single
RVE.

7.2.1 Beam

As afirst example, a clampedbeamof length L = 6, 20 [cm],
height h = 1 [cm] and width B = 1 [cm] is examined, com-
pare Fig. 19. It is loaded by a distributed load p = 1 [N/cm].
The clamping is free of constraint forces. Two different
beam lengths, L = 6 [cm] and L = 20 [cm], are exam-
ined, because for the long beam the influence of the shear
stiffness is significantly lower than for the shorter beam.
Three different kinds of mesostructures are considered. Ini-
tially, a homogeneousmesostructure (Fig. 19a) is considered,
in order to investigate the length dependency of the stiff-
ness components on the RVE size and the influence of the
beam length L . Next, the cross-section is reinforced, using
a circular inclusion with radius r = 1.06 [mm], in length
direction of the beam (Fig. 19b) and perpendicular to the
same (Fig. 19c). Figure 19 shows one representative volume
element of dimensions lx = ly = h = 1 [cm], which is also
referred to as unit cell, for each configuration. The macro-
scopic full-scale volumemodel is composed of several RVEs
positioned next to each other. Thus, if the fibre is oriented par-
allel to the y-axis, the distance between their centre axes is
equal to B = 1 [cm].

The vertical tip displacement uz in point A of the beam
is compared. For this example the reinforcement is chosen
to lie within the centre line of the beam, which is physically
meaningless. However, it is considered sufficient since the
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Fig. 18 Shear correction factor
κ for different core fractions ρC
and stiffness ratios α

Table 5 Comparison of shear
correction factors κ for α = 0.1
and different core fractions ρC

ρc κ ||(κ − κre f )/κre f ||
ref pbc pbc-hMRC pbc pbc-hMRC

0.2 0.2437108 0.2437108 0.2371071 7.3261 × 10−8 2.7096 × 10−2

0.4 0.2009883 0.2009884 0.1843120 9.7180 × 10−8 8.2971 × 10−2

0.6 0.2315657 0.2315656 0.2022446 2.0274 × 10−7 1.2662 × 10−1

0.8 0.3525041 0.3525041 0.3022766 3.1180 × 10−8 1.4249 × 10−1

focus is on the different orientation and its implication on
the chosen boundary conditions.

Homogeneous Initially, homogeneousmaterial is assumed to
investigate the influence of the length of the beam L and the
influence of the type of boundary condition. Linear-elastic
material behaviour with Young’s modulus E = 100 [N/cm2]

Fig. 19 Clamped beam subjected to load pwith three different RVEs—
a homogeneous b reinforcement in length direction c reinforcement in
width direction

and Poisson’s ratio ν = 0.3 is employed. The macroscopic
shell is meshed using one element in width direction. In
length direction the number of elements is chosen depending
on the beam length L . For the presented examples numel =
32 · L is chosen. Thus, for L = 6 [cm] numel=192×1 and
for L = 20 [cm] numel=640×1. This leads to very fine
meshes. However, because the present contribution is con-
cerned with the influence of the RVE length LRV E and the
comparison of the three types of boundary conditions, this
fine discretisation is chosen to avoid additional effects from
macroscopic mesh refinement. On the mesoscale the size of
the RVE is chosen as LRV E = 1, 2, 4, 8 [cm] to show the
effect of length dependency. The error of the numerical result
is estimated with respect to the analytical solution, which is
obtained from beam kinematics as

uz = uz,B + uz,S = FL3

3 E I
+ FL

GAs
. (88)

Where F = p · B is the resulting load and As the cross-
sectional shear area of the beam, taking into account the shear
correction factor κ = 5/6.
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The results for the short beam with L = 6 [cm] are
depicted in Fig. 20a. The relative error is plotted versus the
size of the RVE for the three different boundary conditions.
The results are in linewith the observationsmade in Sect. 7.1.
While for traction and shell boundary conditions a length
dependency is observed, the periodic boundary conditions
show good agreement with the analytical solution indepen-
dent of the RVE size.

Similar observations are made for a long beam with L =
20 [cm], see Fig. 20b. Note, that the error is a factor ten
smaller than for the short beam. This is due to the fact, that
the (length dependent) shear stiffness influences the overall
displacement stronger for smaller length to height ratios.

Longitudinal reinforcement The beam is now reinforced
with one longitudinal fibre in length direction of the beam,
as depicted in Fig. 19b. The fibre is assumed to be circular
with a radius of r = 1.06 [mm]. Width and height of the
RVE are initially assumed to be lx = ly = h = 1 [cm].
For matrix and fibre a linear-elastic material behaviour is
assumed, where the fibre is approximately five times stiffer
than the matrix. Thematerial parameters are based on typical
values for concrete and carbon-textile reinforcement and can
be found in Table 6. The macroscopic shell is again discre-
tised using 32 · L × 1 (L × B) elements, which leads to a
converged solution. On the mesoscale the size of the RVE
is chosen as LRV E = 1, 2, 4 to show the effect of length
dependent stiffness components. For LRV E = 1 the RVE
corresponds to the unit cell, for LRV E > 1 the RVE con-
sists of multiple unit cells positioned next to each other. As
before, the maximum vertical tip displacement uz in point A
is observed. As there is no analytical solution for this case
available, a full-scale solution has been calculated using a
standard quadrilateral element with quadratic shape func-
tions. In order to obtain the same boundary conditions with
the volume solution as with the shell solution, three types of

Table 6 Material parameters for
the fibre-reinforced beam

Matrix Fibre

E [N/mm2] 27000 142000

ν [–] 0.2 0.35

boundary conditions are applied. Figure 21 schematically
depicts the boundary conditions. For all cases the length
direction (x-axis) of the beam is fully fixed, whereas the out-
of-plane direction (y-axis) is fixed in only one point of the
beam to allow for transverse deformation. The three options
differ in the boundary conditions for the thickness direction
(z-axis). For option (i), see Fig. 21a, the whole beam is fixed
in thickness direction which yields a lower bound solution.
For case (iii) only the centre axis is fixed in thicknes direc-
tion, compare Fig. 21c. This leads to an upper bound for
the displacement. Because fixing the thickness direction in
the centre axis in (iii) introduces a singularity, for (ii) the
load p is applied additionally in opposite direction at the
fixed edge. This enforces a global equilibrium in thickness
direction, reduces the singularity and gives an intermediate
reference solution, compare Fig. 21b. The beam is discre-
tised using 38,160 and 126,864 elements for L = 6 [cm] and
L = 20 [cm], respectively. For the circumferential direction
of the fibre 16 elements are used. For comparison the average
of the maximum and minimum displacement over the height
is used.

The results are given in Fig. 22.Absolute displacements uz
of the converged mesh are compared for different RVE sizes,
different boundary conditions and the two beam lengths L .
In Fig. 22a the displacement uz for different RVE sizes and
L = 6 [cm] is shown. It can be observed, that all solutions lie
between the upper and lower bound obtained from the full-
scale model. The two reference solutions differ by 0.388%.
The traction and displacement boundary condition exhibit a

Fig. 20 Relative error of the vertical tip displacement for different RVE sizes LRV E and different boundary conditions
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Fig. 21 Full-scale volume model of the longitudinal reinforced beam
with different boundary conditions

length dependency, which is again due to the length depen-
dent shear contribution. The periodic boundary conditions
yield constant results for different RVE sizes.

For the long beam with L = 20, the results are visualized
in Fig. 22b. Here the two reference solutions differ only by
0.067%, because boundary effects at the supports are reduced
over the length of the beam.Again, all solutions lie within the
bounds or in close proximity. Similar as for the homogeneous
example, the length dependency of the traction and displace-
ment boundary condition is smaller, due to the reduced shear
contribution.

Transverse reinforcement As a last example the beam is
now reinforced transversally, see Fig. 19c, to investigate
the influence of the fibre direction on the overall behaviour.
The dimensions of the fibre and RVE are chosen as before.
The same linear-elastic material parameters from Table 6
are used. The macroscopic and mesoscopic meshes remain
unchanged. Similarly, an upper and lower bound reference
solution is calculated using 38,160 and 126,864 elements
for L = 6 [cm] and L = 20 [cm], respectively. In Fig. 23
the vertical displacement uz is plotted for the three differ-
ent boundary conditions and different RVE sizes. Again, all
solutions lie well in between the upper and lower bound solu-
tion. In contrast to the longitudinal reinforcement a slight
length dependent behaviour for the periodic boundary con-

ditions can be observed. Especially for the short beam with
L = 6 [cm], see Fig. 23a. This can be related to the second
additional constraint which reduces the length dependency
of the shear stiffnesses, refer to Sect. 5.4. A linear moment
distribution is assumed, see Fig. 5, which is not correct for
the case of inclusions in the RVE. As long as the inhomo-
geneity stretches over the whole width the shear stiffness in
the respective direction is calculated correctly, e.g. longitu-
dinal reinforcement. The assumption is not sufficient when
the inclusion does not stretch over the whole width. How-
ever, the length dependency is rather small and is considered
neglectable. It should be kept in mind that for larger inclu-
sions and greater stiffness differences between matrix and
fibre the assumption of a linear moment distribution might
not be adequate.

7.2.2 Layered cylindrical shell

Aquarter of a three-layered cylindrical shell is examined, see
Fig. 24. For comparison the same geometrical and material
properties as in [21] are used. The length L = 300 [mm],
the radius R = 100 [mm] and the thickness is given by
h = 1 [mm]. For the layers transversal isotropic material
behaviour is assumed, the material parameters are given as

E1 = 125000 N/mm2 G12 = 4800 N/mm2

E2 = 7400 N/mm2 G23 = 2700 N/mm2

ν12 = 0.34.

(89)

The rotation angle of the layers is [90◦/0◦/90◦], where 0◦
describes the circumferential direction and 90◦ corresponds
to the length direction. The shell is discretised using 16 ele-
ments in each direction. For the multiscale approach each
layer of the RVE is modelled using pc = pb = 4 and
nc = nb = 2.As reference the shell element from [40] is used
with four elements for each layer. Geometrical nonlinearity
is assumed for the macroscopic shell. The displacement uz
is prescribed and the point load F is obtained as reaction
force. The load–displacement curve is depicted in Fig. 25.
Additionally, the results from [21] are given. It can be seen
that the shell formulation as well as the multiscale approach
using periodic and shell boundary conditions are in good
agreement with the results from [21]. Using small RVEs
of dimensions 1 × 1 × 1 [mm×mm×mm] yields sufficient
results. For the traction boundary conditions and a RVE of
dimension 1×1×1 [mm×mm×mm] the obtained response is
too soft. Increasing LRV E consecutively increases the accu-
racy of the solution. The length dependency of the traction
boundary conditions originate from the torsional stiffnesses
D33
b , compare Fig. 16a. The length dependency in shear stiff-

nesses do not influence the macroscopic behaviour due to the
small length to height ratio of the shell.
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Fig. 22 Comparison of vertical tip displacement for different boundary conditions for longitudinal reinforcement of the beam

Fig. 23 Comparison of vertical tip displacement for different boundary conditions for transversal reinforcement of the beam

Fig. 24 Quarter of a cylindrical layered shell

7.2.3 Plate: elasto-plastic material

A plate of dimensions B = L = 100 [cm] and thickness h =
1 [cm] is loaded by a uniformly distributed load p = 0.01

[kN/cm2]. Exploiting the symmetry of the plate only one
quarter is modelled. The boundary conditions are given
in Fig. 26. A small strain elasto-plastic isotropic material
law with E = 210000 [kN/cm2], ν = 0 and yield stress
fy,k = 240 [kN/cm2] is assumed. For comparison the yield
line theory (YLT), which is explained in [41], is used. The
plastic moment of the yield line is determined as

mpl = 1

4
h2 fy,k = 60

kNm

m
. (90)

For a simply supported plate the ultimate load p can be
derived using the principle of virtual displacements, see [41].
Thus, the ultimate load factor λ is written as

λ p = 24
mpl

L2 = 0.144
kN

cm2 , thus

λ = 14.4.
(91)
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Fig. 25 Load–Displacement curve for the layered cylindrical shell

Furthermore, the shell element from [40] is used with a dis-
cretisation of 32×32 elements to model the quarter plate. In
thickness direction seven layers are used. For the multiscale
approach the size of the RVE is chosen as LRV E = h = 1
[cm] and is discretised using polynomial order pc = pb = 3
and nc = nb = 2 elements per direction. The macroscopic
scale is discretised using 4 × 4 shell elements. Figure 27
plots the load factor λ against the displacement uz in point
A, compare Fig. 26. The multiscale approach using periodic
and shell boundary conditions show good agreement with the
shell formulation used as reference. Furthermore, the analyti-

Fig. 26 Geometry and boundary conditions of the plate with elasto-
plastic material behaviour

cal load factor fromyield line theory is closely approximated.
As in the previous example, the traction boundary condition
for RVEs of size 1 × 1 × 1 [cm×cm×cm] underestimate
the solution due to the length dependency in the torsional
stiffness components D33

b .
In Fig. 28a the displacement uz of the reference shell is
depicted for λ = 14.4. Figure 28b shows the von Mises
stress distribution at mid-surface z = 0 and at the boundary
layer z = ±h/2 (Fig. 28c). While at the boundary layer the
yield stress is reached in most regions, the mid-surface has
not reached yield stress yet. However, the region of high-
est stress corresponds to the expected yield line. In Fig. 29
the displacement figure of the macroscopic shell is depicted,
which corresponds to the reference shell, compare Fig. 28a.
For the four corner elements the vonMises stress of the RVE
corresponding to the first integration point is depicted. A
qualitative comparison of the vonMises stresses in the RVEs
to the reference shell at mid and top surface (Fig. 29b, c)
shows good agreement.

7.2.4 Plate: longitudinally reinforced

A plate of dimensions B = L = 50 [cm] and thickness h
= 1 [cm] and longitudinal circular inclusions is loaded by
a uniformly distributed load q = 1 [N/mm2]. The radius
of the inclusion is again r = 1.06 [mm] and the distance
between two centre lines is equal to 1 [cm]. Similar to the
example in Sect. 7.2.1, for simplicity the reinforcement is
positioned vertically centred within the plate. For compari-
son a full-scale model is inspected. The two configurations
are depicted in Fig. 30. To reduce the computational cost
the symmetry of the plate is exploited. The boundary con-
ditions for the plate are given in the Table 7. Boundary
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Fig. 27 Load factor λ versus displacement uz in the centre of the plate

conditions for the full-scale model are applied at z = 0,
where −h/2 ≤ z ≤ h/2. Linear-elastic material behaviour
is used for fibre and matrix, Young’s modulus and Poisson’s
ratio can be taken from Table 6. The vertical displacement
uz at the intersection of the symmetry axes, see Point A in
Fig. 30, is determined. For the full-scale solution the displace-
ment is taken as the average of the displacements at z = h/2
and z = 0. The macroscopic shell is meshed using numel =
22, 42, 82, 162, 322, 642, 1282, 2562, 5122, 10242 elements.
Similar to Sect. 7.2.1 the macroscopic mesh is considerably
refined to examine the macroscopic effects of the RVE and
reduce the effects from macroscopic mesh refinement.The
size of theRVE is varied from LRV E = 1, 2 to 4 [cm].Again,

the RVE can comprise multiple unit cells, for example con-
tains a RVE with LRV E = 4 [cm] four circular inclusions.
The reference solution is obtained using 370,000 quadratic
elements. The circular inclusion is approximated using 16
elements in circumferential direction.

In Fig. 31 the vertical displacement uz is plotted versus
themacroscopic number of elements (numel) which are used
to discretise the shell. In the upper diagram the convergence
for all three types of boundary conditions and different RVE
sizes is shown. In the lower diagram a section is enlarged
which contains the shell and periodic boundary conditions
only. It can be seen, that the shell and periodic boundary con-
ditions yield very similar results. Neither approach shows a

Fig. 28 Contour plot for a the displacement uz [cm] at the boundary layers z = ±h/2 and for the von Mises stress σv [kN/cm2] at b mid-surface
and c top/bottom surface of the reference shell (λ = 14.4)
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Fig. 29 Displacement uz [cm] of the macroscopic shell and von Mises stress σv [kN/cm2] of the RVEs (λ = 14.4)

Fig. 30 Comparison of full-scale model (left) with homogenization approach (right) for plate [29]
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Table 7 Boundary conditions for the plate

Full-scale Macroscale (FE2)

x = 0, y = 0 uz = 0 uz(z = 0) = 0

x = l/2 ux = 0 ux = 0, ωy = 0

y = b/2 uy = 0 uy = 0, ωx = 0

significant length dependency. The traction boundary condi-
tions, however, exhibit severe length dependency and seem
to be unable to predict the correct behaviour. This is caused
by the length dependency in torsional stiffness D33

b which
has already been observed in section 7.1.1, see Fig. 14a.
Furthermore, Fig. 31 shows that the extensive macroscopic

refinement is not necessary. For smaller numbers of macro-
scopic elements sufficiently accurate results can be obtained.
To compare the efficiency of the homogenization approach
to the full-scale model the complexity is used as measure for
the computational effort. Taking into account the sparsity of
the system of equations, e.g. by using the PARDISO solver,
the number of equations can be reduced. The maximal num-

Table 8 Complexity of the different approaches

Full-scale model FE2

O(n2eq ) O(n2eq,M + nGP · n2eq,m)

Fig. 31 Comparison of the
vertical displacement in Point A
for different macroscopic
discretisations
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Fig. 32 Error of the FE2

solution compared to the
complexity for different RVE
sizes

Fig. 33 Error of the FE2

solution compared to the
complexity for different
discretisations of the RVE

ber of n3 operations can be reduced to a complexity of about
O(n2) [19]. For the full-scale model the number of equations
is the total number of equations in the system, while for the
FE2 approach it is the number of equations on the macro-
scopic scale plus the number of equations of the RVE times
the number of Gauss points, see Table 8.

Figure 32 shows the error of the numerical solution to
the full-scale solution and the corresponding complexity.
The black, vertical line indicates the complexity of the full-

scale model. A number of observations can be made. As has
already become apparent from Fig. 31 the traction boundary
conditions do not yield sufficient results and exhibit a strong
length dependency. For the shell boundary conditions a small
length dependency is observed.However, increasing theRVE
size increases mainly the complexity of the problem without
significant improvement in the results. The same observa-
tions can be made for periodic boundary conditions, where
the differences in the quality of the solution are even smaller.

123



Computational Mechanics (2024) 73:795–829 825

For the same complexity the coupled multiscale approach
approximates the reference to about 0.4%, which is a good
result keeping in mind, that full-scale solutions and shell
computations hardly give the same results due to their differ-
ent handling of boundary and loading conditions.

So far not much attention has been paid to the discreti-
sation of the mesoscale. However, the more efficient the
mesoscale is discretised the more efficient the solution of
the coupled problem is carried out. To briefly emphasize the
effect a RVE of size 1× 1× 1 [cm×cm×cm] using periodic
boundary conditions is discretised using polynomial order
p = 3 and nc = nb = 2, 4, 6, 8 elements. Figure 33 shows,
that the overall macroscopic behaviour is not significantly
influenced. Whereas the complexity is approx. 300 times
lower for the coarsest discretisation compared to the finest.

8 Conclusion

A first-order homogenization approach for shell structures
has been presented. The macroscopic scale is discretised
using quadrilateral shell elements while for the RVE scaled
boundary isogeometric analysiswas employed.However, the
approach is not limited to this discretisation technique on
the mesoscopic scale. It was chosen because isogeometric
analysis promises a more accurate geometry description for
complex mesostructures. A comparison regarding efficiency
with other discretisation techniques was out of the scope of
this work. Nevertheless, a more detailed investigation holds
potential in further reducing the computational cost.
Three different sets of boundary conditions were introduced,
which differ in the application of shell strains. These are
either applied by prescribing displacements or by a pre-
scribed rotation of the lateral surface bymeans of a transition
element. Furthermore, a linear moment constraint is used to
reduce the dependency of the transverse shear components
on the RVE size. The assumption of linear moment distri-
bution reaches its limits when the inhomogeneities of the
mesostructure do not span the whole width of the RVE. It
has been shown, that the incorporation of stiffness jumps over
the height of the RVE is an important feature. The present
work focuses on examples with homogeneous, layered or
textile-reinforced RVEs. All heterogeneities are assumed to
be uniformly distributed. Investigations on different meso-
scopic geometries, e.g. with circular inclusions or randomly
distributed heterogeneities, are still open. Furthermore, the
additional constraints are formulated for small strains only,
this could be extended in the future. The three boundary
conditions were verified and differences with regard to their
applicability were shown. On the mesoscale analytical stiff-
ness components were reproduced with sufficient accuracy.
Various macroscopic problems are presented and compared
with full-scale solutions. Overall the periodic boundary con-

ditions yield the best results, as the dependency of the
transverse shear stiffness on the RVE size is reduced effec-
tively and the results are in good agreement with reference
solutions. However, the shell boundary conditions still yield
sufficient results and small length dependency of the stiffness
components, while being less complex compared to the peri-
odic boundary conditions. This is due to the fact that no tran-
sition element is needed for the application of shear strains.
The presented traction boundary conditions still show a large
dependency of the torsional and shear stiffness components
on the chosen RVE size, especially for bending-dominated
problems. This increases the computational effort signifi-
cantly. Nevertheless, the traction boundary conditions are
valuable when investigating non-symmetric mesostructures.
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Appendix A

An homogeneous representative volume element (lx = ly =
h = 1 [mm]) with isotropic, linear elastic material behaviour
(E = 100 [N/mm2], ν = 0.3) is considered. Each macro-
scopic shell strain, with a value of 0.2 in each case, is
applied individually. For all three proposed boundary condi-
tions the corresponding deformation figures are depicted in
Figs. 34,35 and 36. The displacement magnitude is shown as
contour plot, with blue and red indicating the minimum and
maximum displacement, respectively. It can be seen, that the
deformation modes for all membrane strains εα,β and curva-
tures καβ , with α, β = x, y, leads to reasonable deformation
modes.Differences can only be observed regarding the defor-
mation due to applied shear strains γα . The differences are
treated in Sect. 6.4 in more detail.
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Fig. 34 Deformation modes of isotropic, homogeneous representative volume element with traction boundary conditions (tbc)

Fig. 35 Deformation modes of isotropic, homogeneous representative volume element with shell boundary conditions (sbc)
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Fig. 36 Deformation modes of isotropic, homogeneous representative volume element with periodic boundary conditions (pbc)

Appendix B

To underline the necessity of the moment reduction con-
straint introduced in Sect. 5.4which arises from the discussed
inconsistency regarding the applied shear deformation, see
Sect. 4.3, the introductory example from Sect. 7.1.1 is
resumed. There, an homogeneous RVE with dimensions
1 × 1 × 1 [mm×mm×mm] was considered. Again, lin-
ear elastic isotropic material with Young’s Modulus E =
100 [N/mm2] and Poisson’s ratio ν = 0.3 is assumed. Once
more, the dimensions of LRV E = lx = ly are consecutively
increased, while the height is kept constant, to investigate
the influence of the length scale of the RVE. Figure 37
plots the resulting shear correction factor for different RVE
sizes using periodic boundary conditions. The obtained shear
stiffness tends to zero for increasingRVE sizeswhen no addi-
tional constraint is used. Employing the moment reduction
constraint (abbreviated as MRC) leads to a constant shear
correction factor of κ = 5/6 for increasing RVE sizes.
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Fig. 37 Deformation modes of isotropic, homogeneous representative
volume element with periodic boundary conditions (pbc)
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