
Computational Mechanics (2024) 73:341–364
https://doi.org/10.1007/s00466-023-02370-3

ORIG INAL PAPER

Unstructured surface mesh smoothing method based on deep
reinforcement learning

Nianhua Wang1,2 · Laiping Zhang3 · Xiaogang Deng4

Received: 27 June 2022 / Accepted: 9 July 2023 / Published online: 23 August 2023
© The Author(s) 2023

Abstract
In numerical simulations such as computational fluid dynamics simulations or finite element analyses, mesh quality affects
simulation accuracy directly and significantly. Smoothing is one of the most widely adopted methods to improve unstructured
mesh quality in mesh generation practices. Compared with the optimization-based smoothing method, heuristic smoothing
methods are efficient but yield lower mesh quality. The balance between smoothing efficiency and mesh quality has been
pursued in previous studies. In this paper, we propose a new smoothing method that combines the advantages of the heuristic
Laplacian method and the optimization-based method based on the deep reinforcement learning method under the Deep
Deterministic Policy Gradient framework. Within the framework, the actor artificial neural network predicts the optimal
position of each interior free node with its surrounding ring nodes. At the same time, a critic-network is established and
takes the mesh quality as input and outputs the reward of the action taken by the actor-network. Training of the networks
will maximize the cumulative long-term reward, which ends up maximizing the mesh quality. Training and validation of
the proposed method are presented both on 2-dimensional triangular meshes and 3-dimensional surface meshes, which
demonstrates the efficiency and mesh quality of the proposed method. Finally, numerical simulations on perturbed meshes
and smoothed meshes are carried out and compared which prove the influence of mesh quality on the simulation accuracy.

Keywords Mesh smoothing · Unstructured mesh · Artificial neural network · Deep reinforcement learning · Laplacian
smoothing · Optimization-based smoothing

1 Introduction

Unstructured mesh is popular in numerical simulations such
as computational fluid dynamics (CFD) simulations due to its
flexibility and ease of generation [1, 2]. In finite element anal-
yses (FEA), the unstructured triangular mesh is also widely
used and studied [3]. However, the quality of unstructured
meshes remains a major concern in its applications since
mesh quality affects simulation accuracy directly and signif-
icantly [4–6]. Initial mesh elements generated by automatic

B Nianhua Wang
nhwang@skla.cardc.cn

1 State Key Laboratory of Aerodynamics, China Aerodynamics
Research and Development Center, Mianyang 621000, China

2 Computational Aerodynamics Institute, China Aerodynamics
Research and Development Center, Mianyang 621000, China

3 Unmanned Systems Research Center, National Innovation
Institute of Defense Technology, Beijing 100071, China

4 Academy of Military Sciences, Beijing 100190, China

mesh generators often have poor quality and the mesh opti-
mization process is indispensable [7].

Topological optimization and smoothing are the two most
widely usedmethods to improve unstructuredmesh quality in
mesh generation practices. Topological optimization meth-
ods such as theDelaunay edge/face swap [8, 9] improvemesh
quality by swapping the diagonal of quadrilaterals in which
the Delaunay criterion is violated. Only triangular and tetra-
hedral meshes can be optimized by the Delaunay edge/face
swap and the mesh quality cannot be maximized because
node positions are not changed. Node inserting/deleting and
local mesh reconstruction are other types of topological opti-
mization methods [10–12]. These methods are effective in
extreme cases such as the valence of an interior mesh node
being too large or small.

Unlike topological optimization, smoothing methods
move the interior nodes to their optimal position iteratively
while keeping the topology unchanged. The smoothingmeth-
ods can improve mesh quality substantially because node
position displacement can be relatively large and can be
applied in most cases for all interior nodes.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-023-02370-3&domain=pdf

342 Computational Mechanics (2024) 73:341–364

Smoothing methods mainly include optimization-based
smoothing methods and heuristic smoothing methods. Com-
pared with optimization-based smoothing methods, heuristic
smoothing methods are more efficient but yield lower mesh
quality. The balance between smoothing efficiency andmesh
quality has been pursued in previous studies.

The Laplacian smoothing method [13] is one of the
heuristic methods that move each interior node iteratively to
the arithmetic averaging center of its surrounding neighbor
nodes. Due to its extremely high efficiency and satisfac-
tory mesh quality, the Laplacian method is widely adopted
in mesh generation practices. But the Laplacian smoothing
method may result in some low-quality or even invalid ele-
ments as well as deformation and shrinkage in smoothing 3D
surface meshes [14]. Improvements have been proposed to
avoid these problems and other heuristic methods have been
developed. For example, Zhou [15] proposed the angle-based
smoothing method which iteratively moves the interior free
nodes to adjust the angles of adjacent elements of the free
node. It turned out that the angle-based method generates
higher quality mesh than the Laplacian method. Vartziotis
[14, 16, 17] developed the geometric element transformation
method (GETMe) that transforms poor-quality elements into
regular ones and moves all nodes of an element simultane-
ously thus improving overall quality, which is different from
other node-moving methods.

On the other hand, the optimization-basedmethod [18–20]
defines local or global objective functions such as inverse
shape quality, skewness, etc., and minimizes the objective
function by iterative methods such as the conjugate gradient
solver or the Newton solver and eventually increases mesh
quality after iterations. This method generally generates
meshes with the highest quality at the highest computational
cost.

Recently, due to its good generalization of nonlinear rela-
tions, artificial neural networks (ANN) are widely studied
and applied to multi-disciplines such as solving PDEs [21,
22] and surrogate modeling [23, 24], computational mechan-
ics [25–29], mesh adaptation [30–32] and mesh generation
[33–38]. Application of ANN methods in computation-
intensive fields can improve efficiency significantly while
maintaining reasonable accuracy. The ANN-based mesh
smoothing method (NN-Smoothing) proposed by Guo [38]
predicts the optimal node positions by an ANN, which
was trained by samples extracted from optimization-based
smoothing meshes. The NN-Smoothing method imitates the
optimization-based smoothing method in generating high-
quality meshes while maintaining the high efficiency of the
Laplacian method. In this method, the training samples are
generated, optimized, and normalized by cumbersome man-
ual work. In addition, seven separate neural networks are
trained to handle input with different dimensions.

To eliminate the manual work of preprocessing training
samples, andunify the networks into a single network capable
of dealing with different input dimensions. This paper pro-
poses a new smoothingmethod that combines the advantages
of the heuristic Laplacian method and the optimization-
based method based on the deep reinforcement learning
(DRL) method under the Deep Deterministic Policy Gradi-
ent (DDPG) [39] framework. Within the DDPG framework,
the actor-network predicts the optimal position of each inte-
rior free node with its surrounding ring nodes. At the same
time, a critic-network is established and takes the mesh qual-
ity as input and outputs the reward of the action taken by the
actor-network. Training of the networks will maximize the
cumulative long-term reward, which ends upmaximizing the
mesh quality.

This paper is organized as follows: in Sect. 2, we briefly
review popular mesh quality optimizationmethods including
topological optimization methods and smoothing methods.
The mesh smoothing based on deep reinforcement learning
is illustrated in Sect. 3. Training algorithms and hyperpa-
rameters are studied in Sect. 4. Training, validations, and
comparison between differentmethods on 2-dimensional and
3-dimensional surface meshes will be presented in Sects. 5
and 6. Numerical simulations on smoothed meshes and per-
turbed meshes are carried out and results are compared in
Sect. 7. Finally, conclusions and possible future work of the
method are proposed in Sect. 8.

2 Brief review of unstructuredmesh quality
optimizationmethods

Mesh quality is so important to CFD and FEA numeri-
cal simulations that mesh quality optimization is almost
indispensable, either integrated into themesh generation pro-
cess or carried out afterward. Topological optimization and
smoothing are two major types of mesh quality optimization
methods.

The Delaunay edge swap [8, 9] is one type of topological
optimization that swaps the diagonal of a quadrilateral which
violates the Delaunay criterion. As Fig. 1 shows, pointD lies
in the circumcircle of �ABC , which violates the Delaunay
criterion. Point B also has the same problem. Therefore, an
edge swap is performed in quadrilateral ABCD which diag-
onal AC is replaced by BD. After the edge swap, the thin
triangle �ADC is eliminated thus improving mesh quality.

The Laplacian smoothing method [13] calculates the opti-
mal free node positions (v*) by arithmetic averaging of its
surrounding ring nodes (v1-v5), which can be expressed as
Eq. (1). The smoothing process for a single free node and its
surrounding cells is shown in Fig. 2.

123

Computational Mechanics (2024) 73:341–364 343

Fig. 1 Delaunay edge swap [8, 9]

Fig. 2 Laplacian smoothing

Fig. 3 Angle-based smoothing [15]

x∗ = 1

N

N∑

i=1

xi , y
∗ = 1

N

N∑

i=1

yi (1)

The angle-based smoothing method [15] tries to optimize
the included angle of neighboring cells which share the same
free node by moving the node. As shown in Fig. 3, the free

node, v, is moved to v* to make the included angles α1, α2

to be equal.
Smoothing based on the geometric element transforma-

tion method (GETMe) [14, 16, 17] improves the regularity
and quality of each element by a two-step regularizing
element transformation. Different from other smoothing
methodswhichmove one node each time, theGETMemoves
all nodes of an element simultaneously. Figure 4 shows the
clockwise and counterclockwise two-step transformation of
a triangular element.

Optimization-basedmethod [18–20] improvesmesh qual-
ity byminimizing an objective function that is defined by cer-
tainmesh qualitymetrics, such as inverse aspect ratio, inverse
included angle, inverse shape quality, etc. Linear solvers such
as conjugate gradient or Newton solver are adopted to itera-
tively find the minimum objective function value (Fig. 5).

The neural network-based smoothing (NN-Smoothing)
[38] predicts the optimal node positions with its surround-
ing ring nodes like the Laplacian smoothing by a fully
connected artificial neural network as Fig. 6 shows. By
training with samples extracted from mesh optimized by
optimization-based method, the NN-Smoothing method imi-
tates the optimization-based method in mesh quality while
keeping high efficiency.

3 Deep reinforcement learning-based
smoothing

3.1 Deep reinforcement learning framework

Deep learning based on artificial neural networks is capable
of generalizing any nonlinear relation. Reinforcement learn-
ing is good at observing and exploring the environment and

123

344 Computational Mechanics (2024) 73:341–364

Fig. 4 Triangle geometric transformation using θ = 20 of GETMe smoothing [14]

Fig. 5 Optimization-based smoothing method

providing guidance to complete a certain task. Deep rein-
forcement learning (DRL) combines the strengths of both
generalization and exploration.

Typical DRL algorithm procedures are shown in Fig. 7.
The goal of reinforcement learning is to train an agent to
complete a task within an unknown environment. The agent
receives observations and a reward from the environment and
sends actions to the environment. The reward is a measure
of how successful an action is to complete the task goal.
The policy is a mapping that selects actions based on the
observations from the environment, which could be a func-
tion approximator with tunable parameters, such as a deep
neural network. The learning algorithm continuously updates
the policy parameters based on the actions, observations, and
rewards. The goal of the learning algorithm is to find an opti-
mal policy that maximizes the cumulative reward received
during the task.

(a) Ring nodes of free node (b) Neural network structure

Fig. 6 Neural network-based smoothing method [38]

123

Computational Mechanics (2024) 73:341–364 345

Fig. 7 Schematic graph of DRL

DRL algorithms can be categorized into policy-based and
value-based models. Policy-based methods determine the
action according to a probability and can output continuous
actions, such as the policy gradient method, while value-
basedmethods choose the actionwith the largest value,which
onlyworks in discrete action space, such asDeepQ-Network.

In this paper, a new unstructured mesh smoothing method
based on DRL (DRL-Smoothing) is proposed. We imple-
ment the policy-based Deep Deterministic Policy Gradient
(DDPG) DRL method [39] which works well in continuous
action space to deal with continuous node coordinates. The
DDPG agent can explore the environment and find the opti-
mal strategy to complete the mesh smoothing task. Details
of the DRL-Smoothing method will be discussed in the next
subsection.

3.2 DRL-basedmesh smoothing

To complete themesh smoothing task, we define the environ-
ment, state, action, reward, and policy in theDDPGalgorithm
as follows.

Environment includes the mesh and the dynamics of the
mesh.

Mesh: including all mesh nodes and cell topology infor-
mation.

Dynamics of the mesh: including mesh nodes relocation
and updating functions.

State:
The current free node v and its surrounding ring nodes

(v1–v5) as Fig. 6a shows.
The interior free nodes are selected and smoothed one

by one in the order of storage in one training episode.
And the ring nodes (v1–v2–v3–v4–v5) are constructed in
a clockwise/counter-clockwise way as shown in Fig. 6a. To
eliminate the impact of the absolute location of the nodes
and increase generalizability, normalization is applied to the
coordinates of the ring nodes to transform the ring polygon
into a unit-length box [38] as shown in Fig. 8.

Action:
Predicted the optimal free node position v* as Fig. 6a

shows.
Having the prior knowledge that the Laplacian smoothing

could improve mesh quality, we incorporate the knowledge
by defining the node position as a summation of the Lapla-
cian smoothing node positionwith the action vector

(
ax , ay

)
,

which can be expressed as:

xnew = x∗ + ax

ynew = y∗ + ay
(2)

where (x∗, y∗) are nodepositions calculatedby theLaplacian
smoothing method in Eq. (1).

Reward:
Weighted mesh quality metrics.
The minimum equiangular skewness (Qmin) and the aver-

age equiangular skewness (Qavg) are weighted to construct
the reward function R as shown in Eq. (3).

R = λQmin + (1 − λ)Qavg (3)

Fig. 8 State normalization
process [38]

123

346 Computational Mechanics (2024) 73:341–364

Fig. 9 Critic neural network of the DDPG agent

The equiangular skewness quality (Q) is defined as fol-
lows:

Qi = 1.0 − max

(
θe − θmin

θe
,

θmax − θe

180 − θe

)
(4)

where θe = 60◦ for triangles, θe = 90◦ for quadrilater-
als, θmin and θmax are the minimum and maximum included
angles for a single cell. The range of Q is from 0 to 1.0.
When skewness quality Q = 1.0, the quality is the best and
the corresponding reward should be the largest. When skew-
ness quality Q = 0.0, the quality is the worst and the reward
is the smallest. The influence of the weighted coefficient λ

will be discussed in Sect. 4.2.
In 2-dimensional meshes, when the intersection check

failed or the predicted node locates outside its surrounding
polygon composed of its ring nodes, a penalty of− 1 is given
to the reinforcement learning agent. The geometrical inter-
section check of 2 line segments is simple and will not be
illustrated in this paper.

In the DDPG agent, a critic-network is established to pro-
cess the reward signal and provide guidance to the training
of the actor-network. The critic-network consists of a state
path, an action path, and a concatenation common path. As
Fig. 9 shows, the state path is a 3-layer fully connected (FC)
network, with 64, 16, and 8 neurons in each hidden layer.
The action path is a 1-layer FC network with 8 neurons.
The concatenation path also has 1 FC layer, with 4 neurons.
ReLU activation functions are added with each fully con-
nected layer.

Policy
The actor artificial neural network predicts the optimal

node positions according to its ring nodes. The actor-network
is also called the policy network, which is represented by a
fully connected multilayer perceptron in this paper as shown
in Fig. 10.

Fig. 10 Actor neural network of the DDPG agent

Previouswork [38] established 7 neural networkswith dif-
ferent input dimensions and trained each network separately
to solve the problem of variance of the number of ring nodes.
Meanwhile, training samples and neural networks need to be
established and trained separately for triangular grids and
quadrilateral grids.

In this paper, we fix the input dimension for the actor-
network, only considering a maximum of 8 surrounding ring
nodes. If the number of ring nodes is larger than 8, we use
the Laplacian smoothing for these nodes. Zero-padding is
adopted when the number of ring nodes is less than 8. Thus,
the input dimension is fixed at 16. The influence of the input
dimension of the actor-network and zero-padding strategy
will be discussed in Sect. 4.2. We use 2 fully connected hid-
den layers, with 32 and 16 neurons in each layer. The output
layer consists of 2 neurons that output the action vector (ax ,
ay), optimized node coordinates can be obtained by Eq. (2).
ReLU activation functions are added with each hidden layer
to improve nonlinear generalization, which is shown as fol-
lows:

σ(x) =
{
0, x < 0
x , x ≥ 0

(5)

3.3 Three-dimensional surfacemesh smoothing
based on the DRLmethod

Traditional surface mesh smoothing methods project the free
nodes to the geometry after the relocation of every node,
which is very inefficient. The DRL-Smoothing method can
be applied to 3-dimensional (3D) surface mesh with minor
modifications and only one projection is required.

Like the 2D mesh smoothing, we adopt the same DDPG
framework and extend the state definition, normalization
(Fig. 8), and action definition Eq. (2) to 3D situations. Specif-
ically, a 3D triangle is normalized so that it can be fit into
a unit bounding box, and 3D actions are defined by directly
extending Eq. (2) to 3D. For the actor-network, we use 3 fully
connected hidden layers, with 32, 16 and 16 neurons in each
layer.

123

Computational Mechanics (2024) 73:341–364 347

4 Training algorithm and hyperparameters

4.1 Training algorithm

As an actor-critic agent, the DDPG agent maintains four
artificial neural networks: online actor μ(S), online critic
Q(S, A), target actor μ′(S), and target critic Q′(S, A).

The actor-network takes observation S and outputs the
corresponding action that maximizes the long-term reward.
The critic-network takes observation S and action A as inputs
and outputs the corresponding expectation of the long-term
reward.

The online networks are used and updated in real time,
while the target networks are periodically updated based on
the parameters of the latest online networks to improve sta-
bility. The detailed training algorithm of the DDPG agent is
as follows [39].

123

348 Computational Mechanics (2024) 73:341–364

Fig. 11 General training procedure of the DRL-Smoothing method

The general training procedure is depicted in the flowchart
as shown in Fig. 11.

4.2 Training hyperparameters

In the DDPG algorithm, the update smooth factor τ = 10−3,
the random experience minibatch size is M = 64, the experi-
ence buffer size is R= 106, and the discount factor γ = 0.99.
TheOrnsteinUhlenbeck noisemodel is adopted to encourage
exploration.

We adopt the Adam optimizer with a learning rate = 10–4

for the actor-network, and a learning rate = 5× 10−3 for the
critic-network to improve learning results. L2 regularization
with factor = 10–3 is adopted to avoid overfitting.

To get better training convergence and accumulative
reward, we consider the influence of the weighted coeffi-
cient λ, dimension of the neuron network, input dimension

Table 1 Information of the perturbed training and validation mesh

Information Training mesh Validation mesh

Number of nodes 217

Number of free nodes 169

Number of cells 384

Min. skewness(Qmin) 0.101 0.132

Avg. skewness(Qavg) 0.692 0.695

of the actor-network, activation function, and padding strat-
egy. In this section, we generate a triangular mesh with the
node valence equal to 6 for all nodes and perturb the nodes’
coordinates randomly to establish the training mesh and val-
idation mesh. The initial mesh, the perturbed training mesh,
and the perturbed validation mesh are depicted in Fig. 12,
and information on the mesh is listed in Table 1.

(1) Reward weighted coefficient λ

To determine the weighted coefficient λ in Eq. (3), we fix
the input dimension of the actor-network to be 12 to adapt to
the node valence (V = 6) of the training mesh. We use 2 hid-
den layerswith 32 and16neurons in each layer, and theReLU
activation function is added to each hidden layer. Padding and
Laplacian smoothing is not adopted in this case. We choose
5 different values for λ and compare the training results.
Figure 13 compares the normalized episode reward conver-
gence history. In this figure, the rewards are normalized by
the converged reward to ensure the rewards are comparable
for different weighted coefficients. The figure shows that the
reward convergence history is slightly affected by λ.

To determine the best pre-trained model and its corre-
sponding λ, we validate the pre-trainedmodels with different
λ and smooth the validation mesh for 5 iterations. Table 2
shows the mesh quality after smoothing. The data shows that
the mesh quality improves significantly after smoothing for
all cases. When λ = 1.0, the reward is equal to the minimum

(a) Initial triangular mesh (b) Perturbed training mesh (c) Perturbed validation mesh

Fig. 12 Training and validation mesh for hyperparameters study

123

Computational Mechanics (2024) 73:341–364 349

Fig. 13 Episode reward convergence history of different reward
weighted coefficient λ

Table 2 Validation results when weighted coefficient λ varies

λ Min. skewness (Qmin) Avg. skewness (Qavg)

0.00 0.958 0.981

0.25 0.966 0.986

0.50 0.967 0.987

0.75 0.967 0.986

1.00 0.971 0.988

skewness quality, and the smoothed mesh has the highest
minimum quality and highest average quality. Therefore, we
choose λ = 1.0 in this paper hereafter.

(2) Dimensions of actor-network.

The dimension of the neural network affects the gen-
eralization and accuracy of the network. Overfitting and
underfitting are two common problems in training neural net-
works. A large and deep neural network has good accuracy
but it is hard to converge and more likely to be overfitting,
while a small network may lead to underfitting problems.
To train the best neural network, the dimension of the net-
work is one of the important hyperparameters which should
be carefully dealt with.

In this paper, the input of the actor-network is the 2-
dimensional coordinates of the ring nodes, a fully connected
multilayer perceptron (MLP) is suitable for modeling since
the amount of sample data is moderate.

The optimal dimension of neural networks is always deter-
mined by continuous experiments. It is recommended to start

with a small value such as 1–5 layers and 1–100 neurons, and
then slowly add more layers and neurons if underfitting, and
reduce the number of layers and neurons if overfitting. In
addition, we can also consider introducing batch normaliza-
tion, dropout, regularization, and other methods to reduce
overfitting in the actual process.

To determine the best dimension of the actor-network, we
train and validate the neural networks with different neu-
ral network dimensions on the training and validation mesh
shown in Fig. 12.

We compared 8 cases with different dimensions as Table
3 shows. In these cases, we fix the input dimension of the
actor-network to be 12 to adapt to the node valence (V = 6)
of the training mesh and choose the ReLU activation func-
tion. We change the number of hidden layers and the number
of neurons in each layer. We train different actor-network
and compare episode reward and mesh quality of validation
smoothed mesh. In Table 3, ‘[4, 4, 4, 4]’ means there are
4 hidden layers with 4 neurons for each layer. ‘[32, 8, 4]’
means there are 3 hidden layers with 32, 8, and 4 neurons
respectively.

Figure 14 shows the convergence history of episode
reward. Table 3 shows the training reward when episode =
1000 and the mesh quality for validation smoothed mesh.

In Case 1 and Case 2, we addmore hidden layers from 1 to
4 layers, and only when we reach 4 hidden layers, the neural
network has a better training and validation performance.
In Case 3, we increase the number of neurons in the single
hidden layer from 4 to 8, 16, 32, 64, and up to 128 to achieve
better performance. From these analyses, we can conclude
that adding more hidden layers or adding more neurons will
improve training and validation performance.

Therefore, we add more layers and more neurons to the
actor-network. In Case 4—Case 8, we achieve converged
results with both 2 hidden layers and 3 hidden layers. Table
3 shows the episode reward and the mesh quality for Case
4—Case 8 are very close.However, the convergence histories
differ significantly. Among all the results, Case 5 and Case 8
have the best convergence performance. Given that Case 5 is
less computationally intensive, we use 2 hidden layers with
32 and 16 neurons for each layer like Case 5 in this paper.

(3) Input dimension N and padding strategy.

For triangular mesh, the optimum valence of each interior
free node is 6. For quadrilateral mesh, the optimum valence
is 4. A valence that is larger or smaller than the optimum
value may cause bad mesh quality. In complex meshes, the
node valences are varying for different nodes, previous work
[39] used 7 separate neural networks with different input
dimensions.

In this paper, we use a single network with fixed input
dimension 2*N (for 2Dmesh). For free nodes that have more

123

350 Computational Mechanics (2024) 73:341–364

Table 3 Training episode reward
and the mesh quality for
validation smoothed mesh

Cases Episode reward Validation smoothed
mesh quality

Min. skewness Avg. skewness

1 [4] 0.485(not converged) – –

2 [4, 4, 4, 4] 116.69 0.708 0.905

3 [128] 116.66 0.707 0.905

4 [32, 8] 116.72 0.708 0.905

5 [32, 16] 116.65 0.707 0.905

6 [16, 8, 4] 116.60 0.707 0.905

7 [32, 8, 4] 116.66 0.707 0.905

8 [32, 16, 8] 116.76 0.708 0.905

Case1 Case2 Case3 Case4

Case5 Case6 Case7 Case8

Fig. 14 Training reward convergence history for different network dimensions

than N ring nodes, i.e., the node valence V > N, we adopt the
Laplacian smoothing instead. For free nodes that have less
than N ring nodes, i.e., the node valence V < N, we adopt a
padding strategy to keep the input dimension fixed. Lapla-
cian smoothing and padding will be automatically switched
according to the number of ring nodes.

Zeroes are added if the actual number of ring nodes (node
valence V) is less than N. Then, the padding dimension is D
= 2(N–V) for 2-dimensional cases.

We train different actor-networks with different input
dimensions when N varies from 6 to 10. For the training
mesh in this section, the node valence is V = 6, therefore,
the padding dimension D increases from 0 to 8 accordingly.
Figure 15 compares the episode reward convergence history.
It shows that the converged rewards are close for different
padding dimensions but the robustness of the training pro-
cess decreases when the padding dimension increases.

After training, we validate the actor-networkwith the vali-
dationmesh as shown in Fig. 12c. Table 4 shows the skewness
quality of the mesh smoothed by the actor-network with

Fig. 15 Episode reward convergence history of actor-network with dif-
ferent input dimensions

123

Computational Mechanics (2024) 73:341–364 351

Table 4 Validation results when
the actor-network input
dimension varies

N Actor input dim. Padding dim. (D) Min. Skewness (Qmin) Avg. Skewness (Qavg)

6 12 0 0.956 0.981

7 14 2 0.957 0.982

8 16 4 0.974 0.989

9 18 6 0.972 0.988

10 20 8 0.955 0.980

ReLU LeakyReLU Tanh ELU

Fig. 16 Four types of activation functions considered in this paper

Case1:ReLU Case2: Tanh Case3: Leaky ReLU Case4: ELU

Fig. 17 Training reward convergence history for different activation functions

different input dimensions. As the table shows, when the
padding dimension D < 4, the actor-network performance
is not affected by the padding dimension, and the smoothed
mesh has the highest quality when N = 8. When padding
dimension D > 4, it may cause side effects to the perfor-
mance of the actor-network and the quality of the smoothed
mesh degrades.

For most 2D and 3D surface meshes, the node valence
rarely exceeds 8. Therefore, the input size of the actor-
network is fixed at 16 for 2D meshes and 24 for 3D
meshes respectively. Zero-padding and Laplacian smooth-
ing is switched automatically according to the node valence.

(4) Activation functions.

The activation function is important for nonlinear fitting
and plays an important role in the performance of the neural
network. The ReLU function is widely adopted and can help
to eliminate the gradient disappearance problemand solve the
convergence problem of deep networks. Besides, compared

with sigmoid and tanh,ReLUabandons complex calculations
and increases the speed of operations.

As for this paper, different activation functions can also
be adopted and tested, such as leakyReLU, tanh, and ELU as
shown in Fig. 16.

For the training and validation mesh shown in Fig. 12, we
train the neural networkswith 4different activation functions.
The actor-network consists of 2 hidden layers with 32 and
16 neurons respectively. Figure 17 shows the convergence
history of different activation functions. Table 5 shows the
training episode reward and the mesh quality for validation
smoothed mesh.

The data shows that we can always get converged results
with 4 activation functions. Table 5 shows the difference
in episode reward and mesh quality is very small. Mean-
while, the difference in convergence histories is relatively
more obvious. In terms of computation cost and convergence,
ReLU has the best performance. Therefore, we choose ReLU
as the activation function in this paper.

123

352 Computational Mechanics (2024) 73:341–364

Table 5 Training episode reward
and the mesh quality for
validation smoothed mesh

Cases Episode reward Validation smoothed mesh quality

Min. skewness Avg. skewness

1 ReLU 116.65 0.707 0.905

2 Tanh 116.75 0.708 0.905

3 leakyReLU 116.69 0.707 0.905

4 ELU 116.69 0.708 0.905

(a) Initial regular mesh (b) Perturbed training mesh (c) Smoothed mesh

Fig. 18 Mesh before and after training

Table 6 Information of the initial regular mesh and training mesh

Information Regular mesh Training mesh

Number of nodes 708

Number of free nodes 589

Number of cells 1295

Min. skewness (Qmin) 0.465 0.104

Avg. skewness (Qavg) 0.894 0.612

5 Training and validation cases
on 2-dimensional meshes

5.1 Training cases

We train the DDPG agent with a perturbed mesh in a rect-
angular domain. The perturbed mesh (as shown in Fig. 18b)
is generated by randomly perturbing the interior nodes of
an initial regular triangular mesh (as shown in Fig. 18a). The
information of the initial regular mesh and perturbed training
mesh is illustrated in Table 6.

The smoothed mesh after training is shown in Fig. 18c
which clearly shows that the smoothed mesh recovers regu-
larity. Since only one smoothing iteration is conducted during
the training episode, the smoothed mesh is still worse than
the initial regular mesh.

The episode reward convergence history in Fig. 19 shows
that the training converged within 700 episodes.

Fig. 19 Episode reward convergence history of the training process

Table 7 compares the mesh quality of the mesh optimized
by DDPG training and by the Laplacian smoothing method.
Three smoothing iterations are carried out for this compar-
ison. It shows that mesh skewness quality increases after
training. The DDPG training results are better than Lapla-
cian smoothing for minimum skewness quality (Qmin)while
the average quality (Qavg) is almost equivalent. This demon-
strates the effectiveness of the DDPG training procedure.

123

Computational Mechanics (2024) 73:341–364 353

Table 7 Comparison of mesh
quality of DDPG training results
and the Laplacian smoothing

Quality metric 1-iteration 2-iterations 3-iterations

DDPG Laplacian DDPG Laplacian DDPG Laplacian

Min. skewness (Qmin) 0.310 0.305 0.368 0.362 0.406 0.400

Avg. skewness (Qavg) 0.812 0.813 0.856 0.856 0.872 0.872

Table 8 Information of the initial validation meshes

Validation
case

Num. of free
nodes

Min.
skewness
(Qmin)

Avg.
skewness
(Qavg)

1 3838 0.043 0.711

2 729 0.109 0.723

3 1226 0.125 0.695

4 1839 0.192 0.727

5.2 Validation cases

To validate the pre-trained policy network, we adopt five
cases to further analyze the performance of the DRL-
Smoothing method. The first case is referenced from Ref.
[38], which can represent common FEA simulation meshes.
The other cases represent a 2D cylinder, a 2D NACA0012
airfoil, and a 2D 30P30N three-element airfoil which is com-
monly used in CFD simulations. The number of free nodes
and mesh quality of the initial validation meshes are shown
in Table 8. The minimum equiangular skewness quality of
the 4 initial meshes is smaller than 0.25, a common criterion
to judge the usability of the mesh, which indicates the bad
quality of the initial meshes.

The validation process only uses the actor-network, so the
procedure is very simple and direct, as Fig. 20 shows. Both in
the training and validation process, the free nodes are selected
one by one according to the data storage order of mesh node
coordinates.

Six mesh quality optimization methods introduced in
Sect. 2, including the Laplacian smoothing, the angle-
based smoothing, the GETMe, the NN-Smoothing, the
optimization-based method, and the DRL-Smoothing pro-
posed in this paper are compared in terms of quality and
efficiency. All the methods are implemented in C++ pro-
gramming language tomake sure the time cost is comparable.
We used the optimization-based smoothing method in the
mesquitemesh quality improvement toolkit [20]. The objec-
tive function of the optimization-based smoothing method is
the L1 norm of the aspect ratio gamma quality metric. Since
multi-iterations are required to optimize the initial mesh, we
run the cases from 1 to 10 iterations and check the mesh
quality.

Fig. 20 Validation procedure of the pre-trained actor neural network

Figures 21, 22, 23 and 24 show the initial mesh and mesh
smoothed by theDRL-Smoothingmethod for three iterations
of the four validation cases respectively. All the validation
meshes are more complex than the training mesh, which
proves the robustness and extensibility of the pre-trained pol-
icy network.

Figure 25 shows the comparison of mesh quality for the
six methods when smooth iteration increases from 1 to 10.

We can see from Fig. 25 that the mesh quality reaches the
maximum values when smooth iteration increases to around
4. If more iterations were run, the mesh quality keeps the
same and even degrade in some cases. Since the objective
function of the optimization-based method is the L1 norm of
mesh quality, it has higher average quality than other meth-
ods.

As shown in Table 9, when smooth iteration is around
4, the DRL-Smoothing method generally outputs higher-
quality meshes in all cases compared with the Laplacian
smoothing, the angle-based smoothing, and the GETMe

123

354 Computational Mechanics (2024) 73:341–364

(a) Case1: initial mesh (b) Case1: smoothed mesh

Fig. 21 Validation case 1 for the DRL-Smoothing method

Fig. 22 Validation case 2 for the
DRL-Smoothing method

(a) Case2, 2D Cylinder: initial mesh (b) Case2, 2D Cylinder: smoothed mesh

Fig. 23 Validation case 3 for the
DRL-Smoothing method

(a) Case3, NACA0012: initial mesh (b) Case3, NACA0012: smoothed mesh

(c) Case3, NACA0012: initial mesh (d) Case3, NACA0012: smoothed mesh

123

Computational Mechanics (2024) 73:341–364 355

Fig. 24 Validation case 4 for the
DRL-Smoothing method

(a) Case4, 30P30N: initial mesh (b) Case4, 30P30N: smoothed mesh

(c) Case4, 30P30N: initial mesh (d) Case4, 30P30N: smoothed mesh

smoothing. In general, the performance of the DRL-
Smoothing is similar to the NN-Smoothing method. Except
in case 3, the DRL-Smoothing method is inferior slightly
to the NN-Smoothing in minimum skewness but the average
skewness is almost equivalent to the NN-Smoothingmethod.
This indicates that the actor-network may require further
training on different meshes to increase its generalizability.

Since the time cost of every smoothing iteration is very
small, to calculate the time cost more accurately and consider
the efficiency of the above smoothing methods, we run 100
and 1000 iterations of smoothing for each method with case
4 and count the time cost, which is listed in Table 10. In the
meantime, we also calculate and compare the mesh quality
after 4 and 100 smoothing iterations and the results are listed
in the table. The data shows that mesh quality degrades when
the number of smoothing iterations is too large for all meth-
ods. Even for the optimization-based method, the minimum
skewness also degrades when iteration = 100.

The data shows time cost increases proportionally when
smooth iteration increases. The Laplacianmethod is themost
efficient, while the optimization-based method is the least
efficient. The Laplacian method is 10 × faster than angle-
based smoothing, 50 × faster than NN-Smoothing, DRL-
Smoothing, and GETMe, and nearly 500 × faster than the
optimization-based method.

The DRL-Smoothing is as efficient as the NN-Smoothing
and bothmethods are slightlymore efficient than theGETMe

method. The NN-Smoothing uses seven separate neural net-
works to deal with different numbers of ring nodes, while the
DRL-Smoothing method uses only one actor-network. The
efficiency of the NN-Smoothing and DRL-Smoothing meth-
ods mainly depends on the dimensions of the neural network
which is chosen to be the same as Ref. [38] in this paper.

6 Training and validation cases
on 3-dimensional surfacemeshes

6.1 Training cases

We generate a 3-dimensional triangular surface mesh for a
sphere as shown in Fig. 26a and perturb the nodes to get
the training mesh as shown in Fig. 26b. The mesh after 3
DRL smoothing iterations is shown in Fig. 26c. The result
indicates that the regularity and quality of the smoothedmesh
improve significantly. The mesh information and quality are
listed in Table 11.

6.2 Validation cases

We adopt 4 three-dimensional surface meshes to validate the
DRL-smoothing method. The geometries are downloaded
from the digital shape workbench v5.0 AIM@SHAPE [40]
which represents some commonly used 3D visualization
models.

123

356 Computational Mechanics (2024) 73:341–364

(a) Case1: minimum skewness min()Q (b) Case1: average skewness ()avgQ

(c) Case2: minimum skewness min()Q (d) Case2: average skewness ()avgQ

(e) Case3: minimum skewness min()Q (f) Case3: average skewness ()avgQ

(g) Case4: minimum skewness min()Q (h) Case4: average skewness ()avgQ

Fig. 25 Mesh quality comparison of different smoothing methods with iterations increase from 1 to 10

123

Computational Mechanics (2024) 73:341–364 357

Table 9 Comparison of mesh quality of different smoothing methods
when iteration = 4 for different cases

Methods minimum
skewness
(Qmin)

average
skewness
(Qavg)

Case1 Laplacian 0.265 0.840

Angle-based 0.202 0.813

GETMe 0.292 0.798

NN-Smoothing 0.272 0.841

DRL-Smoothing 0.274 0.841

Optimization-based 0.316 0.843

Case2 Laplacian 0.496 0.833

Angle-based 0.462 0.821

GETMe 0.487 0.817

NN-smoothing 0.510 0.834

DRL-smoothing 0.521 0.832

Optimization-based 0.531 0.839

Case3 Laplacian 0.413 0.793

Angle-based 0.369 0.778

GETMe 0.429 0.781

NN-smoothing 0.447 0.795

DRL-smoothing 0.425 0.793

Optimization-based 0.406 0.804

Case4 Laplacian 0.444 0.834

Angle-based 0.364 0.811

GETMe 0.434 0.822

NN-smoothing 0.458 0.837

DRL-smoothing 0.451 0.833

Optimization-based 0.469 0.847

Figures 27, 28, 29 and 30 show the initial perturbed mesh
and the smoothed mesh after 4 smoothing and projection
iterations. Table 12 shows the mesh quality of the initial
meshes and the smoothed meshes. The results show that the
mesh smoothness and mesh quality of the surface meshes

improve significantly, which demonstrates the extensibility
of the DRL-Smoothing.

Note that the 3D surface mesh smoothing examples are
only used to demonstrate the extensibility of the DRL-
Smoothing method. The DRL-Smoothing cannot accurately
preserve the geometrical features of the 3D shape, such as
sharp corners.

7 Numerical simulations with smoothed
meshes

In this section, we adopt three typical numerical simulation
cases in computational fluid dynamics, i.e., subsonic flow
past theNACA0012 airfoil, transonic flow past the RAE2822
airfoil, and subsonic flow past the 30P30N three-element
airfoil, and validate the numerical results with wind tunnel
experiment data, to demonstrate the usability and effective-
ness of the meshes optimized by the novel DRL-based mesh
smoothing method.

The freestream conditions and mesh parameters of the
three cases are listed in Table 13. The growth rate of the
boundary layer anisotropic quadrilateral mesh is 1.2. To sim-
ulate the boundary layer more accurately, the normal initial
grid spacing on thewall is determined so that the y+ is approx-
imately equal to 2.

Figure 31 shows the meshes optimized with our DRL-
based smoothing method. Table 14 shows the maximum
skewness and average skewness of the 6 meshes which indi-
cates that the regularity and quality improve significantly
after smoothing.

Numerical simulations are carried out by using the in-
house code HyperFLOW [41, 42] developed by the author’s
team. The simulations are based on second-order finite vol-
ume discretization of the Reynolds Averaged Navier–Stokes
(RANS) equation. Inviscid fluxes are discretized with Roe’s
flux difference method and viscous interface gradients are
calculated by the difference of face normal variables [43].
Cell gradient is reconstructed by the cell-based Green-Gauss

Table 10 Comparison of time cost of different smoothing methods

Method Time cost (s) Min. skewness (Qmin) Avg. skewness
(
Qavg

)

Iter = 100 Iter = 1000 Iter = 4 Iter = 100 Iter = 4 Iter = 100

Laplacian 0.008 0.057 0.444 0.078 0.834 0.762

Angle-based 0.070 0.497 0.364 0.039 0.811 0.605

GETMe 0.311 2.945 0.434 0.428 0.822 0.813

NN-Smoothing 0.231 2.234 0.458 0.295 0.837 0.798

DRL-Smoothing 0.219 2.216 0.451 0.001 0.833 0.718

Optimization-based 1.617 24.581 0.469 0.399 0.847 0.855

123

358 Computational Mechanics (2024) 73:341–364

(a) initial regular mesh (b) perturbed training mesh (c) smoothed mesh

Fig. 26 3D triangular surface mesh for DRL training

Table 11 Information of the initial regular mesh, perturbed training
mesh, and smoothed mesh

Information Regular
mesh

Perturbed
mesh

Smoothed
mesh

Number of nodes 114 114 114

Number of free
nodes

114 114 114

Number of cells 224 224 224

Min. Skewness
(Qmin)

0.326 0.053 0.314

Avg. Skewness
(Qavg)

0.587 0.544 0.692

method and the Spalart–Allmaras one equation model is
adopted to consider turbulence.

Figure 32 compares the numerical results on the smoothed
mesh and the perturbed mesh of the lift and drag coefficients
with experimental data of the NACA0012 airfoil. The differ-
ences in the lift curves near the stall attack angles indicate that
the perturbed mesh may lead to an inaccurate prediction of
the stall. Besides, the drag polar curves show that numerical
results on the perturbed mesh over-predict drag significantly.

Figure 33 compares the pressure coefficient (Cp) distri-
bution and Mach contours on the smoothed mesh and the
perturbed mesh of the RAE2822 airfoil. The Cp distribution
on the upper surface of the airfoil shows a clear difference
between the perturbedmesh and the smoothedmesh. And the
isolines in the Mach contours are smoother for the smoothed
mesh, indicating better flow resolution on the smoothed
mesh.

Table 15 compares the force coefficients of CFD numer-
ical results with experimental data. The lift and drag data
show that numerical results on the smoothed mesh are closer

Fig. 27 Validation case 1 for the
DRL-Smoothing method on the
3D surface mesh

(a) Case1, Airplane: initial mesh (b) Case1, Airplane: smoothed mesh

123

Computational Mechanics (2024) 73:341–364 359

Fig. 28 Validation case 2 for the
DRL-Smoothing method on the
3D surface mesh

(a) Case2, Moai statue: initial mesh (b) Case2, Moai statue: smoothed mesh

Fig. 29 Validation case 3 for the
DRL-Smoothing method on the
3D surface mesh

(a) Case3, Elk: initial mesh (b) Case3, Elk: smoothed mesh

Fig. 30 Validation case 4 for the
DRL-Smoothing method on the
3D surface mesh

(a) Case4, Human hand: initial mesh (b) Case4, Human hand: smoothed mesh

123

360 Computational Mechanics (2024) 73:341–364

Table 12 Mesh quality of the
initial meshes and the smoothed
meshes

Cases Initial mesh Smoothed mesh

Min. Skewness
(Qmin)

Avg. Skewness
(Qavg)

Min. Skewness
(Qmin)

Avg. Skewness
(Qavg)

Case1 0.094 0.633 0.212 0.690

Case2 0.056 0.600 0.254 0.726

Case3 0.066 0.559 0.071 0.701

Case4 0.087 0.563 0.127 0.691

Table 13 Freestream conditions andmesh parameters of the three cases

Case Freestream conditions Normal initial
grid spacing

NACA0012 Ma = 0.15, AoA= 0–18 deg,
Rec = 6.0 × 106

9 × 10–6

RAE2822 Ma = 0.734, AoA = 2.79 deg,
Rec = 6.5 × 106

5.1 × 10–6

30P30N Ma = 0.2, AoA = 19 deg,
Rec = 9.0 × 106

2.8 × 10–6

to experimental data. Numerical results on perturbed mesh
over-estimate the drag coefficient but underestimate the lift
coefficient.

Figure 34 compares the pressure coefficient (Cp) distri-
bution of the smoothed mesh and the perturbed mesh of the
30P30N airfoil. In the sub-figures, the flap, the slat, and the
main wing are compared separately. The sub-figures show
that theCFD results agreewellwith experimental data in gen-
eral, and there are slight differences between the perturbed
mesh and the smoothedmesh. Like theRAE2822 airfoil case,
Mach contours in Fig. 35 show that isolines are smoother for
smoothed mesh which is closer to the real physical phenom-
ena.

8 Conclusions and future work

In this paper, a new unstructured mesh smoothing method
based on Deep Reinforcement Learning (DRL-Smoothing)
is proposed. The framework ofDDPG is adopted and adapted
to complete the mesh smoothing task. Different from pre-
vious work training separate neural networks by labeled
data samples, this paper establishes and trains a single

unified actor-network with fixed input dimensions by semi-
supervised reinforcement learning. The DRL-Smoothing
method predicts each interior free node position in the Lapla-
cian smoothing manner, but the training of the actor-network
maximizes the long-term reward thus maximizing mesh
quality. Therefore, the DRL-Smoothing method can output
high-quality mesh while maintaining high efficiency.

Training and validation results on a simple rectangular
domain case show that the pre-trained policy network can
be extended to more complex problems, such as 2D cylin-
der, 2D NACA0012 airfoil, and 2D 30P30N three-element
airfoil mesh optimization. Quality comparisons of the six
mesh smoothing methods show that the DRL-Smoothing
method generally ranks top among the six methods. It out-
performs the Laplacian method and the angle-based method
in all cases while having similar performance to the NN-
Smoothing method in the last two validation cases. Time
cost tests show that the proposed DRL-Smoothing method
is as efficient as the NN-Smoothing method and both meth-
ods are slightly more efficient than the GETMe smoothing
method. Training and validation on 3D surface mesh prove
the extensibility of the DRL-Smoothing method. Numerical
simulations on 2D perturbed meshes and smoothed meshes
are carried out and compared which proves the influence of
mesh quality on the simulation accuracy.

Compared with the previous NN-Smoothing method, the
DRL-Smoothing can achieve similar efficiency and quality
performance and reduce the complexity of coding and repet-
itive manual work of preparing training samples.

Future work could be extending the current method to
quadrilateral mesh and 3D volume mesh smoothing. Includ-
ing mesh nodes further away from the current node may
reduce the number of iterations required to smooth the mesh,
and better smoothing performancemay also be obtained. Fur-
ther investigation is required to verify this. Meanwhile, a
more effective and robust actor-network could be trained by

123

Computational Mechanics (2024) 73:341–364 361

(a) NACA0012, perturbed mesh (b) NACA0012, smoothed mesh

(c) RAE2822, perturbed mesh (d) RAE2822, smoothed mesh

(e) 30P30N, perturbed mesh (f) 30P30N, smoothed mesh

Fig. 31 Perturbed mesh and corresponding smoothed mesh of the three airfoil simulation cases

123

362 Computational Mechanics (2024) 73:341–364

Table 14 Mesh quality of the
perturbed meshes and the
smoothed meshes

Case Min. skewness (Qmin) Avg. skewness (Qavg)

Perturbed Smoothed Perturbed Smoothed

NACA0012 0.114 0.317 0.788 0.954

RAE2822 0.156 0.317 0.792 0.950

30P30N 0.017 0.288 0.797 0.930

(a) lift coefficient (b) drag polar

Fig. 32 Aerodynamic coefficients of NACA0012 under different angles of attack

(a) Pressure distribution (b) Mach contour on perturbed
mesh

(c) Mach contour on
smoothed mesh

Fig. 33 Pressure coefficient distribution and Mach contour of RAE2822 simulation with perturbed and smoothed meshes

Table 15 Comparison of force
coefficients between simulation
and experiment

Cases CL CD Cm

RAE2822 Exp. 0.803 0.0168 − 0.099

CFD Perturbed 0.768 0.0211 − 0.093

CFD Smoothed 0.786 0.0193 − 0.093

123

Computational Mechanics (2024) 73:341–364 363

(a) f lap (b) slat (c) main wing

Fig. 34 Pressure coefficient distribution of 30P30N simulation with perturbed and smoothed meshes

(a) Mach contour on perturbed mesh (b) Mach contour on smoothed mesh

Fig. 35 Mach contour of 30P30N simulation with perturbed and smoothed meshes

using more complicated training meshes and fine-tuning the
hyperparameters of the DRL framework. Investigating the
combination of the r-adaptivity [44] and machine learning
methods in mesh optimization is also worthwhile.

The source code, pre-trained model, the training data,
and the validation data can be accessed at github reposi-
tory(https://github.com/nianhuawong/DRL_Smoothing).

Acknowledgements This work is supported by National Key Project
GJXM92579. The author would like to thank Dr. Yufei Guo for provid-
ing the code of mesh quality improvement and some test cases adopted
in the paper.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Mavriplis DJ (1997) Unstructured grid techniques. AnnuRev Fluid
Mech 29(1):473–514

2. Baker TJ (2005)Mesh generation: Art or science? Prog Aerosp Sci
41(1):29–63

3. Liu WK, Li SF, Park HS (2022) Eighty years of the finite element
method: birth, evolution, and future. Arch Comput Methods Eng
29:4431–4453

4. Katz A, Sankaran V (2011) Mesh quality effects on the accu-
racy of CFD solutions on unstructured meshes. J Comput Phys
230(20):7670–7686

123

https://github.com/nianhuawong/DRL_Smoothing
http://creativecommons.org/licenses/by/4.0/

364 Computational Mechanics (2024) 73:341–364

5. Katz A, Sankaran V (2012) High aspect ratio grid effects on the
accuracyofNavier–Stokes solutions onunstructuredmeshes.Com-
put Fluids 65:66–79

6. Wang N, Li M, Ma R et al (2019) Accuracy analysis of gradient
reconstruction on isotropic unstructured meshes and its effects on
inviscid flow simulation. Adv Aerodyn 1(1):1–31

7. Ho-Le K (1988) Finite element mesh generation methods: a review
and classification. Comput Aided Des 20(1):27–38

8. Weatherill NP, Hassan O (1992) Efficient three-dimensional grid
generation using the Delaunay triangulation. Comput Fluid Dyn
1992:961–968

9. DuQ,WangD (2006) Recent progress in robust and quality Delau-
nay mesh generation. J Comput Appl Math 195(1–2):8–23

10. Turk G (1992) Re-tiling polygonal surfaces. In: Proceedings of
the 19th annual conference on Computer graphics and interactive
techniques, pp 55–64

11. Liu J, Chen YQ, Sun SL (2009) Small polyhedron reconnection
for mesh improvement and its implementation based on advancing
front technique. Int J Numer Meth Eng 79(8):1004–1018

12. Gonzaga de Oliveira SL (2012) A review on Delaunay refinement
techniques. International Conference on Computational Science
and Its Applications, Springer, Berlin, Heidelberg, pp 172–187

13. Field DA (1988) Laplacian smoothing and Delaunay triangula-
tions. Commun Appl Numer Methods 4(6):709–712

14. Vartziotis D, Athanasiadis T, Goudas I et al (2008) Mesh smooth-
ing using the geometric element transformation method. Comput
Methods Appl Mech Eng 197(45–48):3760–3767

15. Zhou T, Shimada K (2000) An angle-based approach to two-
dimensional mesh smoothing. in: Proceedings 9th International
Meshing Roundtable 373–384

16. Vartziotis D, Wipper J (2009) The geometric element trans-
formation method for mixed mesh smoothing. Eng Comput
25(3):287–301

17. Vartziotis D, Wipper J (2012) Fast smoothing of mixed volume
meshes based on the effective geometric element transformation
method. Comput Methods Appl Mech Eng 201:65–81

18. Freitag L, Knupp P, Munson T et al (2002) A comparison of opti-
mization software for mesh shape-quality improvement problems.
in: Proceedings 11th International Meshing Roundtable 29–40

19. Garimella RV, Shashkov MJ, Knupp PM (2002) Optimization of
surface mesh quality using local parametrization. in: Proceedings
11th International Meshing Roundtable 41–52

20. Brewer M, Freitag-Diachin L, Knupp P et al (2003) The mesquite
mesh quality improvement toolkit. in: Proceedings 12th Interna-
tional Meshing Roundtable 239–250

21. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed
neural networks: a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equa-
tions. J Comput Phys 378:686–707

22. Sirignano J, Spiliopoulos K (2018) DGM: a deep learning algo-
rithm for solving partial differential equations. J Comput Phys
375:1339–1364

23. Haghighat E et al (2021) A physics-informed deep learning frame-
work for inversion and surrogate modeling in solid mechanics.
Comput Methods Appl Mech Eng 379:113741

24. Zhu Y, Zabaras N, Koutsourelakis PS et al (2019) Physics-
constraineddeep learning for high-dimensional surrogatemodeling
and uncertainty quantification without labeled data. J Comput Phys
394:56–81

25. Brunton SL, Noack BR, Koumoutsakos P (2020)Machine learning
for fluid mechanics. Annu Rev Fluid Mech 52(1):477–508

26. Singh AP, Medida S, Duraisamy K (2017) Machine learning-
augmented predictive modeling of turbulent separated flows over
airfoils. AIAA J 55(7):2215–2227

27. Bhatnagar S, Afshar Y, Pan S, Duraisamy K, Kaushik S (2019)
Prediction of aerodynamic flow fields using convolutional neural
networks. Comput Mech 64(2):525–545. https://doi.org/10.1007/
s00466-019-01740-0

28. Saha S, Gan Z, Cheng L et al (2021) Hierarchical deep learning
neural network (HiDeNN): an artificial intelligence (AI) frame-
work for computational science and engineering. ComputMethods
Appl Mech Eng 373:113452

29. Zhang L, Cheng L, Li H et al (2021) Hierarchical deep-learning
neural networks: finite elements and beyond. Comput Mech
67(1):207–230

30. Wu TF, Liu X, Wei An et al (2022) A mesh optimization method
using machine learning technique and variational mesh adaptation.
Chin J Aeronaut 35(3):27–41

31. Jiang M, Gallagher B, Mandell N et al (2019) A deep learning
framework for mesh relaxation in arbitrary Lagrangian-Eulerian
simulations. Proceedings of SPIE 111390O

32. Fidkowski KJ, Chen G (2020) Metric-based, goal-oriented mesh
adaptation using machine learning. J Comput Phys 426:109957

33. Wang NH, Lu P, Chang XH et al (2021) Preliminary investigation
on unstructured mesh generation technique based on advancing
front method and machine learning methods. Chin J Theoret Appl
Mech 53(3):740–751 (in Chinese)

34. Wang NH, Lu P, Chang XH et al (2021) Unstructured mesh size
control method based on artificial neural network. Chin J Theoret
Appl Mech 53(10):2682–2691 (in Chinese)

35. Chen X, Li T, Wan Q et al (2022) MGNet: a novel differential
mesh generation method based on unsupervised neural networks.
Eng Comput 38:4409–4421

36. Pan J, Huang J, Wang Y et al (2021) A self-learning finite element
extraction system based on reinforcement learning. Artif Intell Eng
Des Anal Manuf 35(2):1–29

37. Pan J, Huang J, Cheng G et al (2022) Reinforcement learning
for automatic quadrilateral mesh generation: a soft actor-critic
approach. arXiv preprint: 2203.11203

38. Guo YF, Wang CR, Ma Z et al (2022) A new mesh smoothing
method based on a neural network. Comput Mech 69:425–438

39. Lillicrap P, Hunt JJ, Pritzel A et al (2015) Continuous control with
deep reinforcement learning. conference paper, ICLR2016, arXiv
preprint: 1509.02971

40. Digital shape workbench v5.0 AIM@SHAPE http://visionair.ge.
imati.cnr.it/ontologies/shapes/

41. He X, Zhao Z, Ma R et al (2016) Validation of HyperFLOW in
subsonic and transonic flow. Acta Aerodyn Sin 34(2):267–275

42. He X, He XY, He L et al (2015) HyperFLOW: a struc-
tured/unstructured hybrid integrated computational environment
for multi-purpose fluid simulation. Proced Eng 126:645–649

43. WangNH, LiM, Zhang LP (2018) Accuracy analysis and improve-
ment of viscous flux schemes in unstructured second-order finite-
volume discretization. Chin J Theoret Appl Mech 50(3):527–537
(in Chinese)

44. Fidkowski KJ, Darmofal DL (2011) Review of output-based error
estimation and mesh adaptation in computational fluid dynamics.
AIAA J 49(4):673–694

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s00466-019-01740-0
http://visionair.ge.imati.cnr.it/ontologies/shapes/

	Unstructured surface mesh smoothing method based on deep reinforcement learning
	Abstract
	1 Introduction
	2 Brief review of unstructured mesh quality optimization methods
	3 Deep reinforcement learning-based smoothing
	3.1 Deep reinforcement learning framework
	3.2 DRL-based mesh smoothing
	3.3 Three-dimensional surface mesh smoothing based on the DRL method

	4 Training algorithm and hyperparameters
	4.1 Training algorithm
	4.2 Training hyperparameters

	5 Training and validation cases on 2-dimensional meshes
	5.1 Training cases
	5.2 Validation cases

	6 Training and validation cases on 3-dimensional surface meshes
	6.1 Training cases
	6.2 Validation cases

	7 Numerical simulations with smoothed meshes
	8 Conclusions and future work
	Acknowledgements
	References

