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Abstract
Recently, Murthy et al. (Commun Comput Phys 2:23, 2017. http://dx.doi.org/10.4208/cicp.OA-2016-0259 ) and Escande et
al. (Lattice Boltzmann method for wave propagation in elastic solids with a regular lattice: theoretical analysis and validation,
2020. arXiv.doi:1048550/ARXIV.2009.06404. arXiv:2009.06404) adopted the Lattice Boltzmann Method (LBM) to model
the linear elastodynamic behaviour of isotropic solids. The LBM is attractive as an elastodynamic solver because it can
be parallelised readily and lends itself to finely discretised simulations of dynamic effects in continua, allowing transient
phenomena such as wave propagation to be modeled efficiently. This work proposes simple local boundary rules which
approximate the behaviour of Dirichlet and Neumann boundary conditions with an LBM for elastic solids. The boundary rules
are shown to be consistent with the target boundary values in the first order. An empirical convergence study is performed
for the transient tension loading of a rectangular plate, with a Finite Element (FE) simulation being used as a reference.
Additionally, we compare results produced by the LBM for the sudden loading of a stationary crack with an analytical
solution from Freund (Dynamic fracture mechanics. Cambridge Monographs on Mechanics. Cambridge University Press,
Cambridge, 1990. https://doi.org/10.1017/CBO9780511546761).

Keywords Lattice Boltzmann method · Elastodynamics, boundary conditions · Transient solid simulation

1 Introduction

The Lattice Boltzmann Method (LBM) was first estab-
lished as a viable simulation method in the context of fluid
mechanics–in which the LBMs’ distribution functions are
most directly subject to physical interpretation, and tech-
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nologically relevant transient phenomena are commonplace
[2]. However, solid mechanics also features its share of
such phenomena–stress wave superposition and dynamic
overshoots in the displacement under dynamic loading can
result in significantly higher stresses than those predicted by
quasistatic calculations–with far-reaching consequences for
mining and crash-proofing, for example [4]. Since analytical
calculations are often impossible and efficiency is a bottle-
neck for numerical computation in these cases, researchers
have recently begun developing LBM algorithms for the
simulation of solids: Marconi et al. [5] approximated crack
propagation with one such algorithm, and O’Brien et al.
[6] based another on a wave equation for Poisson solids to
modelwave propagation.More recently,Murthy et al. [1] and
Escande et al. [2] extended the solid LBM to the more gen-
eral class of isotropic, linear elastic solids. In the latter work,
a first-order convergence rate was observed [2]. For the static
case, second-order convergent methods for the modelling of
the bulk and boundary behaviour of linear elastic solids were
recently proposed in [7] and [8]. Given further developments,
it may become feasible to perform coupled fluid–structure
simulations using the LBM as both a fluid and a solid solver.
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Thus, the groundwork for LBM-based transient solid sim-
ulations has been laid, but much work remains to be done if
LBM algorithms are to become viable tools for applied solid
mechanics. While efficient, these algorithms are not yet suf-
ficiently stable [2]. Additionally, only rudimentary boundary
conditions–for periodic, free, and fixed boundaries–may be
modelled in the dynamic case at this point [2].

This work takes aim at the latter obstacle. Prototypes for
simple local bounce-back-type boundary rules which may
be used to model arbitrarily valued Dirichlet and Neumann
boundaries in the solid case are presented. While only first
order accuracy can be obtained with these prototypes at
present, they highlight a possible pathway to the consistent
implementation of boundary conditions for solid simulations
with the LBM. Improvements to the stability of the algo-
rithms outlined in [1] and [2], while ultimately necessary for
their viability, are beyond the scope of this work.

Before the formulationof theboundary rules are addressed,
however, Sect. 2 discusses the reformulation of the underly-
ing solid mechanical equations required by the LBM. The
Lamé-Navier equation is restated as a moment chain and
boundary conditions are adjusted consistently with this for-
mulation. Section3 outlines the Lattice Boltzmann Method
for solids briefly, and Sect. 4 presents the novel boundary
rules. In Sect. 5, we perform an empirical convergence study
for a simple example problem, and evaluate the performance
of the LBM algorithm and the boundary rules on one ana-
lytical and one numerical benchmark problem in Sect. 6.
Consistency studies for the LBM algorithm by Murthy et al.
[1] and the boundary rules presented here are included in
the appendix. While the modified boundary rules are eas-
ily generalised to the three-dimensional case, for ease of
visualisation and validation we limit the discussion to two-
dimensional (plane strain) problems here.

2 Amoment chain formulation for linear
elastodynamics

For sufficiently small displacements anddisplacement deriva-
tives (see e.g. [9, p.3]), the Lamé-Navier equation

ρ0d
2
t uα = (λ + μ)dαdβuβ + μdβdβuα + ρ0bα (1)

approximates the temporal and spatial evolution of the dis-
placement u in isotropic, elastic continua [10, p.39]. Here, ρ0
denotes the (reference) density, λ andμ are the Lamé param-
eters, and b is a bulk force per unit mass. The d symbols
indicate the material time derivative (dt (·) = d(·)/dt) and
the spatial derivative in the reference configuration (dα(·) =
d(·)/dxα), respectively. Furthermore, Einstein summation
convention is used. Note that, in contrast to [1], we choose
a presentation in the reference configuration–as is common

in solid mechanics–which simplifies derivations in the fol-
lowing. Of course, the current and reference configurations
coincide in the small strain limit, but it proves convenient
to approach this limit from the reference configuration here.
Furthermore, elasticity implies reversibility,which has impli-
cations for solidmodelling via the LBM. These are discussed
in Sect. 3.

For a solution to be determined on a domain �0 with
boundary ∂�0, initial conditions as well as boundary con-
ditions (BCs) for the displacement (Dirichlet boundary
conditions)

uα(x, t) = u∗
α(x, t), x ∈ ∂�0,u , (2)

with displacement boundary values u∗ and/or for the surface
traction (Neumann boundary conditions)

σαβ(x, t)nβ = t∗α(x, t), x ∈ ∂�0,t , (3)

with traction boundary values t∗ and surface normal n
on regions ∂�0,u and ∂�0,t , respectively, must further be
defined, where ∂�0,u ∪ ∂�0,t = ∂� [11, p.7].

While boundary conditions are easily specified, account-
ing for them in a simulation method is often non-trivial, and
the LBMmakes no exception [12, p.155].Moreover, because
boundary conditions are central to engineering problems–
much of the information relevant to an engineering design
process is contained in boundary conditions–their impor-
tance is hard to overstate.

Note that, where explicit reference is made to the space-
and time dependence of variables, it will be assumed to be
of the form (x, t). For the sake of conciseness, this reference
is omitted unless necessary.

2.1 Amoment chain of conservation laws

As shown by [1] and as demonstrated below, the Lamé-
Navier equation can be restated as a moment chain. This
allows us to use the LBM–which acts as a solver for moment
chains, as detailed in appendix A–to model small-strain elas-
todynamics. Here, in contrast to [1], a presentation in the
reference configuration is chosen

dtρ + dα jα = 0 ,

dt jα + dβ Pαβ = ρ0bα + μ − λ

ρ0
dαρ ,

dt Pαβ + dγ

( μ

ρ0
( jαδβγ + jβδαγ + jγ δβα)

)
= 0 . (4)

In the above, ρ is a linearised approximation of the den-
sity in the current configuration, j is the linear momentum
density, and P a stress tensor (though not the established
Cauchy stress). These variables are outlined in more detail
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below, in equations (5) to (8). In keeping with the formula-
tion in the reference configuration, the spatial derivatives dα

are taken with respect to the reference configuration, and the
time derivatives dt denote material derivatives. However, ρ

is a linearised approximation of the density in the current
configuration, defined (in terms of quantities in the reference
configuration) as

ρ = ρ0(1 − dαuα) . (5)

Meanwhile, j is the linear momentum density in the refer-
ence configuration,

jα = ρ0vα = ρ0dtuα . (6)

As is readily verified by differentiation, the definition of these
first two moments is consistent with the first equation of the
moment chain,

dα jα = dα(ρ0vα) = dα(ρ0dtuα)

= dtdα(ρ0uα) = dt (ρ0dαuα) = −dtρ ,

which models mass conservation. P , meanwhile, denotes a
stress tensor which is generally not equivalent to the estab-
lished Cauchy stress σ . Via the third equation in (4),

−dt Pαβ = dγ

( μ

ρ0
( jαδβγ + jβδαγ + jγ δβα)

)
,

the stress tensors are related by

−dt Pαβ = dt
(
μ(dβuα + dαuβ + dγ uγ δβα)

)

= dt
(
λdγ uγ δαβ + μ(dβuα + dαuβ)

− (λ − μ)dγ uγ δαβ

)

= dt
(
σαβ − (λ − μ)dγ uγ δαβ

)
, (7)

and, assuming an adequate initialisation with Pαβ(x, 0) =
−σαβ(x, 0) + (λ − μ)dγ uγ (x, 0)δαβ ,

Pαβ = −μ(dβuα + dαuβ + dγ uγ δβα)

= −σαβ + (λ − μ)dγ uγ δαβ , (8)

i.e. the stress tensor P is equivalent to a negated Cauchy
stress tensor σ , with an additional displacement derivative
termwith coefficient λ−μ. The latter disappears for Poisson
solids withμ = λ and Poisson’s ratio ν = 1/4, which is why
P is termed the Poisson stress tensor in the following.

With (5), the gradient of ρ can be written as

dαρ = dα(ρ0(1 − dβuβ)) = −ρ0dαdβuβ . (9)

Note that ρ, as defined in (5), can be viewed as a scalar vari-
able encoding information about dilatational strains. This
allows information about these dilatational strains to be
introduced into the linear momentum balance in (4) via the
gradient of ρ, without the displacement u being required.

Finally, substitution of (6), (8), and (9) into the second
equation of the moment chain (4)–which accounts for the
linear momentum balance

dt jα + dβ Pαβ = ρ0bα + μ − λ

ρ0
dαρ ,

⇔ dt (ρ0dtuα) − μdβ(dβuα + dαuβ + dγ uγ δβα)

= ρ0bα + μ − λ

ρ0
(−ρ0dαdβuβ) ,

⇔ ρ0d
2
t uα − μ(dβdβuα + dαdβuβ + dαdγ uγ )

= ρ0bα − (μ − λ)dαdβuβ ,

⇔ ρ0d
2
t uα = (λ + μ)dαdβuβ + μdβdβuα + ρ0bα ,

yields the Lamé-Navier equation

ρ0d
2
t uα = (λ + μ)dαdβuβ + μdβdβuα + ρ0bα .

The presentation in the reference configuration simplifies
the derivations (and the analysis in the following) somewhat:
in contrast to the calculations in [1], there are no convec-
tive terms which need to be eliminated with small-strain
assumptions. Smallness assumptions are only required in the
formulation of the material law, which neglects material and
geometric nonlinearities at the outset.

The first equation of the moment chain (4) is a mass
conservation equation which accounts for the evolution of
the linearised density in the current configuration, ρ. As
discussed in the context of (9), ρ is used to embed infor-
mation about dilatational strains without reference to the
displacements. The second equation accounts for the linear
momentum balance, with the contribution due to the Cauchy
stress σ partially modeled via the Poisson stress P and par-
tially via the gradient of ρ. ρ introduces information about
the non-Poisson contribution to the dilatational strain into
the linear momentum balance. The final equation determines
the evolution of the Poisson stress tensor P . Together, these
equations were shown to be equivalent to the Lamé-Navier
equation, which is commonly used to model the dynamic
behaviour of isotropic solids subject to small strains. As the
LBM acts as a solver for moment chains like (4), it may be
used to tackle isotropic, small-displacement elastodynamics.

The introduction of the Poisson tensor P as in [1] is nec-
essary as the LBM can not account for the Cauchy stress σ

easily: the reasons for this are discussed in Sect. 3.
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2.2 Reformulating the boundary conditions

In accordance with the reformulation of the Lamé-Navier
equation as a moment chain in ρ, j , and P , boundary con-
ditions (BCs) must of course also be rephrased in terms of
these variables. For Dirichlet boundary conditions, this is
comparatively straightforward: with the definition of the lin-
ear momentum density j = ρ0dtu, boundary values in the
linear momentum density j∗ can be obtained from boundary
values in the displacement

jα(x, t) = j∗α (x, t) = ρ0dtu
∗
α(x, t), x ∈ ∂�0,u . (10)

With (8), boundary values in the Poisson stress tensor P∗
couldbe computed fromboundaryvalues in theCauchy stress
tensor σ ∗ and from values of the divergence of the displace-
ment at the boundary, via

Pαβ(x, t) = P∗
αβ(x, t)

= −σ ∗
αβ(x, t) + (λ − μ)dγ uγ (x, t)δαβ , x ∈ ∂�0,t .

However, Neumann boundary conditions enforce boundary
values in the Cauchy stress vector t∗ = σ ∗n rather than the
Cauchy stress tensor σ ∗ directly. Furthermore, the displace-
ment u does not appear in the moment chain (4), and is thus
not directly available in the LBM algorithm.

The latter of these issues could be circumvented by inte-
grating the linearmomentumdensity j = ρ0dtu to obtain the
displacement u. However, the linearised density ρ embeds
information about the displacement divergence via (5),which
can be exploited

dαuα = ρ0 − ρ

ρ0
, (11)

to compute dαuα more efficiently.
Meanwhile, Neumann boundary conditions can be trans-

formed into a coordinate system normal to the boundary with
a rotation matrix T

t∗nα (x, t) = Tβαt
∗
β(x, t) x ∈ ∂�0,t .

The entries of the orthonormal transformation tensor T are
simply given by the normal and tangential vectors en and et

of the boundary, i.e. T1α = enα and T2α = etα for the two-
dimensional case [13, p.28].

For the two-dimensional case, (3) becomes, in this normal
coordinate system

(
σ n
nn σ n

nt
σ n
nt σ n

tt

)(
1
0

)
=

(
t∗nn
t∗nt

)
.

As is apparent, the first column of the Cauchy stress tensor
σ n is fully determined by the Cauchy stress vector that is

prescribed via the boundary condition, i.e.

σ n
nn = t∗nn := σ ∗n

nn ,

σ n
nt = t∗nt := σ ∗n

nt ,

meaning that, with the symmetry of the Cauchy tensor, the
Neumann boundary condition determines all entries of σ n

save for σ n
tt . This remaining entry should remain unaffected

by the Neumann boundary condition. In the boundary rules
suggested in Sect. 4, we extrapolate from (known) values
of σ n

tt (x, t), x ∈ �0\∂�0 within the material domain to
the boundary to obtain an approximation of σ n

tt (x, t), x ∈
∂�0,t–see (23) for details. Thus, we obtain boundary values
for the Cauchy stress σ ∗n in the normal coordinate system.
A subsequent inverse transformation yields boundary values
for σ ∗ in the original (global) coordinate system,

σ ∗
αβ(x, t) = Tαγ σ ∗n

γ ζ (x, t)Tβζ x ∈ ∂�0,t . (12)

Using (8), we finally obtain the desired boundary values for
the Poisson stress tensor P

Pαβ(x, t) = P∗
αβ(x, t)

= −σ ∗
αβ(x, t) + (λ − μ)dγ uγ (x, t)δαβ , x ∈ ∂�0,t .

(13)

where σ ∗ is determined via (12) and the displacement diver-
gence may be obtained from (11). With (10) and (13),
Dirichlet and Neumann boundary conditions for elastody-
namic problems described by the Lamé-Navier equation can
now be stated consistently with the moment chain form in
(4). This completes the reformulation required to make elas-
todynamic problems amenable to solutions with the LBM.

3 The solid LBM in a nutshell

For the sake of compactness, only a brief overview of the
LBMs key features will be given here. An in-depth discus-
sion can be found in [12]. In keeping with [14], we treat
the Lattice Boltzmann algorithm as a numerical solver for
PDEs described by moment chains, independently from any
associations with kinetic theory.1

The algorithm operates on a lattice L consisting of regu-
larly spaced lattice sites x ∈ L ⊂ � (the dark grey points in
Fig. 1) which are in turn connected by lattice links (the light

1 In this view, the distribution functions f̄i with which the LBM works
are merely supplementary variables containing information about the
tensors to be modelled (the linearised density ρ in the current config-
uration, the linear momentum density j , and the Poisson stress P , in
this case).
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Fig. 1 (Part of) a D2Q9 lattice for the LBM

grey lines in the same diagram) [12, p.94]. Furthermore, sev-
eral lattice velocity vectors ci , i ∈ 0, . . . , q − 1 (indicated
by the blue arrows in Fig. 1) cover the distance between any
lattice site x and its neighbours x + cit along a lattice link
i in one time stept [12, p.94]. The simplicity of this spatial
discretisation makes for easy pre- and post-processing.

Generally, LBM discretisations are classed by the dimen-
sion d and the number of lattice velocitiesq, asDdQq lattices.
For ease of visualisation and validation, we only consider
D2Q9 lattices - exemplified in Fig. 1 - here. Note that among
the q = 9 lattice velocities, there is a zero velocity c0 = 0.

TheLBMencapsulates information about the tensors to be
modelled (the linearised density in the current configuration
ρ, the linear momentum density j , and the Poisson stress
P in our case) in distribution functions. On each site of the
lattice, a distribution function vector with one entry f̄i per
lattice velocity ci is introduced [12, p.63]. Here and in the
following, we utilise distribution functions resulting from the
second-order accurate discretisation by He et al. [15], which
is denoted by the overbar ·̄.

In each iteration, the distribution functions f̄i at each
lattice site are locally relaxed toward the value of the equilib-
rium distribution function f eqi [12, p.64], and a contribution
due to a source term is added [12, p.239]. The choice of
equilibrium distribution function determines the PDE mod-
elled by the LBM algorithm - as shown in appendix A, the
equilibrium distribution function by Murthy et al. [1]

f eqi = wi

(
ρ + 1

c2s
ciα jα

+ 1

2c4s
(Pαβ − ρc2s δαβ)(ciαciβ − c2s δαβ)

)
(14)

may be used to recover the Lamé-Navier equation. Here,
cs = √

μ/ρ0 denotes the speed of shear waves, and wi is a
lattice weight associated with lattice link i [2].

In the solid LBM algorithm by Murthy et al. [1] and
Escande et al. [2], a BGK collision operator with relaxation

time τ̄ is utilised. Together with the contribution due to the
source term ψi , this results in the following expression for
the post-collision (i.e., post-relaxation) distribution functions
[12, p.239]

f̄ coli = f̄i − t

τ̄
( f̄i − f eqi ) + t

(
1 − t

2τ̄

)
ψi . (15)

The locality of this collision step makes parallelisation rela-
tively easy [12, p.579], contributing to the efficiency which
makes the LBM attractive as a PDE solver.

The source term

ψi = 1

c2s
wi ciαS

FD
α , (16)

meanwhile, is used to model bulk forces, where

SFDα = ρ0bα + μ − λ

ρ0
dFDα ρ , (17)

accounts both for the volumetric loads b and the part of the
material law not contained in the Poisson stress tensor [2]
- recall the moment chain (4). The finite difference stencil
used to evaluate the gradient of ρ–denoted by dFDα ρ above–
must at least be second-order accurate for the LB algorithm
to be second-order consistent with the targetmoment chain in
the bulk, as demonstrated in appendix A. The source term is
crucial for P-wavemodelling in non-Poisson solids: theLamé
constant λ does not appear in the equilibrium distribution
function by Murthy et al. [1]; the source term ensures that
the correct dilatational wave speed cd = √

(λ + 2μ)/ρ0 is
recovered.

The post-collision distribution functions are subsequently
propagated to neighbouring lattice sites along the associated
lattice velocities ci in the streaming step [12, p.66]

f̄i (x + cit, t + t) = f̄ coli . (18)

Together, the collision and streaming steps define the Lattice
Boltzmann equation

f̄i (x + cit, t + t) =
f̄i − t

τ̄
( f̄i − f eqi ) + t

(
1 − t

2τ̄

)
ψi , (19)

which describes the evolution of the distribution functions
on the lattice [12, p.239]. From the distribution functions, the
desired tensors may finally be post-processed as moments

ρ =
∑
i

f̄i ,

jα =
∑
i

f̄i ciα + 1

2
t SFDα ,
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Pαβ =
∑
i

f̄i ciαciβ . (20)

Appendix A uses the method suggested by Farag et al. [14]
to demonstrate that the resulting algorithm is consistent with
the target equations (4) up to the second order. Note that,
to obtain second-order consistency, the bulk force term SFD

in (20) must be evaluated at time t + t for an iteration
starting at time t . Despite ρ influencing SFD via (17), this is
unproblematic. ρ(x, t + t) may be computed via the first
equation in (4), and subsequently used to compute SFD(x, t+
t) for use in the second moment.

In contrast to the fluid LBM (see e.g. [14]), the solid LBM
algorithm outlined above models the stress tensor σ (see
equation (8)) entirely via the equilibrium moments. This is
because the momentum transfer described by the Cauchy
stress σ is non-dissipative and reversible in elastic solids, in
contrast to the Navier–Stokes fluid case, where viscous terms
play a role [12, p.6].

On account of this reversibility, the non-dissipative, non-
viscous limit τ̄ → t/2+ (from above) of the LBM (see
e.g. [12, p.65,101]) is of interest for linear elastic solid mod-
elling. As simulations with τ̄ = t/2 (and no damping) are
unstable, τ̄ = 0.55t is chosen in keeping with [2]. In con-
trast to the fluid case, τ̄ is treated as a numerical parameter
and does not determine the evolution of the stress tensor.

The introduction of the Poisson tensor P as in [1] is nec-
essary as the LBM can not account for the Cauchy stress σ

directly without significant structural changes: the terms of
the third-order moment Q (which determines the evolution
of the secondmoment) that are affected by the isotropy defect
in a D2Q9 lattice are inconsistent with an evolution equation
for the Cauchy stress, i.e.

QAAA =
∑
i

ci Aci Aci A f eqi =
∑
i

(x

t

)2
ci A f eqi

= 3c2s j̄A = 3
μ

ρ0
jA 	= λ + 2μ

ρ0
jA ,

where summation over the latin index A is not implied.
However, QAAA = jA(λ + 2μ)/ρ0 must hold for dtσαβ −
dγ Qαβγ = 0 to hold for all α and β. Therefore, σ can not
be modelled directly as a moment, unless modifications are
made to the equilibrium distribution function and the wave
speed cs .

Note that the displacement u is not required at any point in
the LBM algorithm outlined above (it is also not required at
any stage in the boundary rules discussed below). If displace-
ments are required for postprocessing, theymay be computed
from the linear momentum density j by numerical integra-
tion, e.g.

Fig. 2 Lattice-conforming boundary (dotted line) with lattice veloci-
ties leading out of the domain (blue) and lattice velocities for which
distribution functions are missing (red) for a boundary lattice site at x

uα(x, t + t) =
uα(x, t) + 1

ρ0
jα(x, t + t)t + O(t2) .

Of course, higher-order integration is also possible.
The operations constituting the LB algorithm–the local

relaxation in the collision step (15), the simple memory swap
in the streaming step (18), and the local array operations in the
moment computation (20) can be evaluated very efficiently,
which makes the LBM attractive from a computational point
of view.

4 Local boundary rules for the solid LBM

While the LBE accounts for the evolution of the distribu-
tion functions in the interior of the lattice, the collision and
streaming steps leave somedistribution functions in thevicin-
ity of the boundary ∂�0 ⊂ �0 undefined. As illustrated in
Fig. 2, these need to be ‘streamed’ from across the bound-
ary to each boundary lattice site x ∈ ∂L , i.e. each lattice
site with lattice links crossing the boundary [12, p.165]. For
convenience, let the set of boundary lattice sites ∂L ⊂ L be
divided into ∂Lu and ∂Lt depending on whether the nearby
boundary is subject to Dirichlet or Neumann boundary val-
ues, respectively.2

Specifying the missing distribution functions in accor-
dance with the boundary conditions of the underlying PDE is
a non-trivial task: while boundary conditions are formulated
in terms of the tensors appearing in the moment chain (ρ, j ,
P), a boundary rule specification with respect to f̄i is sought
[12, p.155]. Furthermore, the number of unknown distribu-
tion functions f̄i at some x ∈ ∂L is sometimes higher than the
number of boundary condition equations available to specify

2 Distinctions between boundaries can also be made on a link-by-link
basis (as is done in the numerical experiments in Sect. 6), but this text
uses the simpler site-by-site approach to simplify explanations.
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them, leaving boundary rules for the LBMunder-determined.
An example in the D2Q9 case are Dirichlet boundary con-
ditions (10) at a straight boundary as in Fig. 2, with three
unknown distribution functions but two entries of j∗ deter-
mined as boundary values. Conversely, boundary rules might
also be over-determined, as in the case of a concave boundary
with, for example, only one missing distribution function.

As a first step, Escande et al. [2] appropriated the popular
bounce-back [12, p.175] and anti-bounce-back [12, p.200]
rules from the fluid case, to model lattice-conforming fixed
and free boundaries respectively. In the scope of this work,
these rules are extended, to approximate the behaviour in the
vicinity of boundaries with arbitrary Dirichlet and Neumann
boundary conditions.

The modified bounce-back rule

f̄ī (x, t + t) = f̄ coli − 2

c2s
wi ciα j

∗
α , (21)

first reverses the direction ofmotion for the post-collision dis-
tribution functions f̄ coli (x, t) which would be streamed out
of the bulk: the missing distribution functions f̄ī (x, t + t)
for directions ī are set to the values of the post-collision dis-
tribution functions f̄ coli (x, t) associated with the opposite
direction i . Then, a term depending on the linear momentum
density boundary values j∗ is subtracted, and the distribu-
tion functions are sent back into the interior of the lattice,
in direction ī . The distribution function f̄5̄(x, t + t) =
f̄7(x, t + t) in Fig. 2, for example, is set to the value of
the post-collision distribution function f̄ col5 (x, t), minus the
boundary value term 2

c2s
w5c5α j∗α .

The required boundary values in the linear momentum
density j∗ can be obtained from Dirichlet boundary values
in the displacement u∗ via (10). As these are typically known
a priori, the necessary differentiation can be performed ana-
lytically.

In appendices B and C, the simple bounce-back rule sug-
gested by Escande et al. [2] and extended here is shown to
replicate the target behaviour at the boundary (10) with first-
order accuracy.

The modified anti-bounce-back boundary rule - used here
to model Neumann boundaries - operates similarly. The
sign of the post-collision distribution function f̄ coli (x, t) at
x ∈ ∂Lt is first inverted and a contribution depending on
the linearised density ρ∗ in the current configuration and the
Poisson stress P∗ at the boundary is added, before the distri-
bution functions are sent back into the direction whence they
came

f̄ī (x, t + t) = − f̄ coli + 2wi

(
ρ∗

+ 1

2c4s
(P∗

αβ − ρ∗c2s δαβ)(ciαciβ − c2s δαβ)
)

. (22)

While Escande et al. [2] extrapolate ρ and P normal to the
boundary, we use (13) to determine boundary values in the
Poisson stress tensor P∗ fromNeumann boundary conditions
on the Cauchy traction vector t∗. The entry of the Cauchy
stress at the boundary σ ∗n

tt which is left undetermined by
the boundary conditions in a normal coordinate system, is
extrapolated along the current lattice link i to xbd = x +
1
2 cit ,

σ ∗n
tt = σ n

tt (x
bd, t)

= 1

2

(
3σ n

tt (x, t) − σ n
tt (x − cit, t)

)
+ O(t2) . (23)

Similarly, the linearised density in the current configuration
at the boundary, ρ∗–for which there are no boundary values–
is similarly extrapolated to the boundary along the current
lattice link i

ρ∗ = ρ(xbd, t)

= 1

2

(
3ρ(x, t) − ρ(x − cit, t)

)
+ O(t2) .

Figure 2 indicates, using i = 1 as an example, how the
location of the boundary lattice site x, neighbouring lattice
site x−cit , and boundary site xbd = x+ 1

2 cit are defined
in the lattice-conforming case.

The consistency study in appendices B and C indicates
that themodified anti-bounce-back boundary rule (22) repro-
duces the desired boundary values in the Poisson stress P∗,
and thus, by (12) and (13), the desired Cauchy traction t∗
with first-order accuracy.

5 Empirical convergence study

As demonstrated in appendix A, the LBM by Murthy et al.
[1] should act as a second-order solver for solid-mechanical
problems written in the moment chain form discussed in
Sect. 2. The analysis in appendix C, meanwhile, suggests
that the simple boundary rules suggested in Sect. 4 should
enforce Dirichlet and Neumann boundary values with first-
order accuracy, respectively.

In this section, an empirical mesh refinement study is
performed to investigate the convergence rate of the LBM
algorithm outlined above on a simple example problem.

To this end, we consider thematerial domain and load case
illustrated in Fig. 3: the rectangular region with side length
l is subjected to a plane strain state, the upper and lower
boundaries being loaded with a traction of t∗ in their respec-
tive normal directions. Note that the variables used here are
non-dimensionalised, with uref = 10−3l (arbitrary units).
The traction is increased linearly from t∗ = 0.0μuref/l at
time t = 0.0l/cs to t∗ ≈ 4.385μuref/l at t = 1.155l/cs , and
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Fig. 3 Square domain subjected to an in-plane tension load

subsequently held at this level until the end of the simulation
at t = 2.281l/cs . The left and right sides of the domain are
stress-free, i.e. subject to homogeneous Neumann boundary
conditions. The material to be simulated is characterised by
c2d/c

2
s ≈ 2.769 and ν ≈ 0.2174, which is typical for certain

types of concretes and glasses [16].
LatticeBoltzmann simulations are run for a range of lattice

spacings x ∈ [0.003125, 0.05]l, i.e. x ∈ [1/320, 1/20]l.
In each case, the time step is determined to satisfy the lattice
isotropy conditions via [12, p.64]

1√
3

x

t
= cs .

A relaxation time of τ̄ = 0.55t is chosen, as in [2]. In
the absence of analytical solutions, the convergence study is
performed relative to a solution of a high-fidelity FEM simu-
lation for the resulting displacement fields. The FE analyses
were run using the FEAP FE program (see e.g. [17]). For the
FEM simulations, we use bilinear shape functions, a regu-
lar mesh consisting of quadratic elements, an element edge
length ofxFEM ≈ 0.001563l, and an explicit central differ-
ence integrator with time step tFEM ≈ 3.956 × 10−4l/cs .
Convergence rates for elastodynamic FEM simulation can
be quite low–examples with linear or superlinear conver-
gence, even for geometrically simple problems, can be found,
see e.g. [18]. However, fourth-order convergence has been
observed for the FEM in similar well-behaved, regularly dis-
cretised elastodynamic problems [18]. Furthermore, the FE
solution does not change appreciably, relative to the error
between LBM and FEM solutions, upon further refinement.
We therefore assume that the displacement field computed

Fig. 4 x2-components of dimensionless displacements at the top right
corner post-processed from LBM (shades of gray) and FE (red) simula-
tions of the square plane strain domain used for the convergence study.
Simulations with 320, 160, 80, 40, and 20 lattice sites along an edge
were used for the LBM, while the higher-fidelity FEM reference simu-
lation is shown for comparison. The time values for which convergence
studies were performed are shown as dashed lines

by the FEM with this discretisation is sufficiently indistinct
from the exact solution for use in the convergence study.

Figure4 illustrates the tensile response of the plane strain
domain as predicted by the FEM and the LBM: the x2-
displacement values at the top right corner (x1 = x2 = 0.5l)
are postprocessed from simulation runs with the LBM at
different discretisations, as well as from the higher-fidelity
reference FEM solution.

In both simulations, the displacement first increases grad-
ually, then peaks (with the LBM yielding a slightly higher
peak value), and then oscillates around the static solution.
As dissipation is not considered in linear elastic theory,
the oscillation would continue indefinitely if there were no
artificial numerical damping. This behaviour is apparent in
the first three dynamic overshoots in the displacement until
t ≈ 4l/cs . Both simulations are initially in acceptable agree-
ment, with a disparity that decreases as the lattice used for the
LB simulation runs is refined. At some point, however, insta-
bilities in the LB algorithm (whichwere already noted by [2])
cause the solution to diverge. For the higher-fidelity simula-
tions, instabilities appear earlier in time, but after a similar
number of time-steps. In appendixD, a series of contour plots
of the displacement magnitude are shown to highlight how
instabilities arise near the corners of the simulated domain.
While this instability ultimately needs to be addressed in the
further development of the method, this is beyond the scope
of the current work.

As the oscillations exhibited by the plane strain domain
continue indefinitely with little change to their amplitude or
frequency, almost all of the mechanical behaviour of interest
is captured by simulations of the first transient overshoot. In
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Fig. 5 Convergence study for several times t during the LBM simula-
tion of a quadratic domain. The Euclidean norm of the error over the
displacement field e/uref (non-dimensionalised and normalisedwith the
number of evaluation points) is plotted over the non-dimensionalised
lattice spacing x/l

the following, attention will thus be confined to this interval,
t ∈ [0, 2.5]l/cs .

Amean errorwith respect to the reference solution is com-
puted over the displacement field obtained via the LBM for
eachdiscretisation, at times t ≈ {0.5775, 1.155, 1.703, 2.281}l/cs
(noted as dashed lines in Fig. 4). The resulting convergence
plot in Fig. 5 shows that the LBM solution converges linearly
toward the reference FE solution. Eventually, instabilities
cause a reduction in the rate of convergence, as already
noted by [2]. This indicates that the LBM by Murthy et al.
[1] and the boundary rules presented here capture the tran-
sient behaviour of the Lamé-Navier equation and the chosen
boundary values as suggested in the consistency studies in
appendices A and C, though improvements must be made
to the stability of the method. Furthermore, higher-order
convergence would be desirable to achieve higher accuracy
with a coarser discretisation. To achieve this with bounce-
back-type boundary rules, the error terms in equations (C20)
and (C21) in appendix C would have to be eliminated. How-
ever, the grid refinement study and the consistency studies in
appendices A and C indicate that solid-mechanical bound-
ary rules can be modeled consistently via bounce-back-type
boundary rules. Furthermore, the additional linear momen-
tum density source suggested by Murthy et al. - see (4) -
seems to model the non-Poisson part of the material law suc-
cessfully in this application. Despite the linear convergence
rate and the eventual instabilities, the relative error of the
LBM relative to the FEM solution can be reduced below
0.1% with moderate mesh refinement.

The LBM simulations for the convergence study outlined
above were run using an in-house Python code. These sim-
ulations runs result in a slightly lower runtime than explicit
FEAP simulations with an equivalent discretisation: an FEM
simulation run with x ≈ 6.250 × 103 l took 49 seconds
on a Intel (R) Core(TM) i5-8500 CPU @ 3.00GHz, while
the equivalent LBM simulation required only 24 seconds on
the same hardware, with the same time step being used for
both. A detailed performance benchmarking study would be
necessary to investigate relative runtime advantages further,
but the rough preliminary comparison is encouraging.

6 Numerical and analytical examples

This section considers two further benchmark examples to
illustrate how the LBM can be used to approach elastody-
namic problems. A dynamically tension-loaded rectangular
domain with a circular hole is modeled first. In the latter
example, results produced by the LBM are compared against
an analytical solution for the sudden loading of a finite crack.
In both cases, moderately coarse discretisations are used to
investigate whether the LB algorithm and the boundary rules
suggested above produce acceptable results at low resolution
– and thus at low computational cost.

6.1 Tension loading of a rectangular domain with a
circular hole

Firstly, we consider a rectangular domain (side length l) with
a central circular hole (radius r = 0.133l), as illustrated
in Fig. 6. This domain is subjected to a plane strain state,
the upper and lower boundaries being loaded with a trac-
tion of t∗ in their respective normal directions. Note that
at the boundary of the circular hole, the condition for the
determinacy of Neumann boundary conditions–discussed at
the end of appendix C–is not met everywhere. The exam-
ple serves to broadly illustrate the behaviour of the solid
LBM in this scenario. Again, all variables used here are non-
dimensionalised, with uref = 10−3l (arbitrary units).

The traction is increased linearly from t∗ = 0.0μuref/l at
time t = 0.0l/cs to t∗ = 5.0μuref/l at t = 1.0l/cs , and sub-
sequently held at this level until the end of the simulation at
t = 2.0l/cs . The left and right sides of the rectangle aswell as
the circular hole are stress-free, i.e. subject to homogeneous
Neumann boundary conditions.

To describe the simulated material, we use both param-
eters corresponding to a Poisson solid (c2d/c

2
s = 3.0, ν =

0.25) and a non-Poisson solid (c2d/c
2
s = 2.8, ν = 0.2̄).

The former is often encountered in seismological wave mod-
elling [6] and the latter is typical for certain concretes and
glasses [16].
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Fig. 6 Square domainwith circular hole subjected to an in-plane tension
load

Fig. 7 x2-components of dimensionless displacements at P1 post-
processed from LBM (blue) and FE (red) simulations of a Poisson-
and non-Poisson solid under tension loading

LBM and FEM simulations with lattice spacing/element
size x = 0.0125l and time step t ≈ 7.217 × 10−3l/cs
are compared qualitatively.

After the simulation run, the x2-component u2 of the dis-
placement at the point P1 = (−0.5l + x/2, 0.5l − x/2)
in the top-left corner and the x1-component u1 of the dis-
placement at the point P2 = (−0.15l + x/2,x/2) near
the hole are post-processed from the linear momentum den-
sity j . These points are chosen as they yield relatively high
displacements that vary comparatively strongly in time.

Figure 7 plots the vertical displacement (u2) predicted at
P1 by the LBM and the FEM for the Poisson case in blue, and
the non-Poisson case in red. The reference results produced
by the FEM are displayed as dotted lines, while the continu-
ous curves indicate the LBM’s prognosis. As is apparent in
the figure, the LBMand the FEMare in acceptable agreement

Fig. 8 x1-components of dimensionless displacements at P2 postpro-
cessed from LBM (blue) and FE (red) simulations of a Poisson- and a
non-Poisson solid under tension loading

throughout the simulation, in view of the moderate discreti-
sation.

Similarly, Fig. 8 visualises the change of horizontal dis-
placement (u1) at P2 computed via theLBMand the FEM.As
above, the displacements are in decent agreement through-
out the simulation. Interestingly, the LBM seems to predict
a slightly lower and later peak in the displacement u1.

The displacements shown in Figs. 7 and 8 for Poisson and
non-Poisson material parameters reveal a slight difference in
the displacement amplitude due to the differing ratio of shear
and volumetric stiffnesses. As is apparent, both the LBM and
the FEM predict similar magnitudes for this effect.

Finally, the deformation predicted by the LBM and FEM
simulations at t = 1.5l/cs is visualised in Fig. 9, for the
non-Poisson solid with c2d/c

2
s = 2.8. A contour plot for the

vertical displacements u2 is superimposed on thewarped sur-
face indicating the current configuration as determined by the
FEM. The position of lattice sites in the current configuration
is indicated by black dots. The agreement in the computed
displacements throughout the simulated domain is apparent.

The agreement between the two simulation methods in
this example is generally encouraging. The LBM and the
FEM produce a very similar qualitative behaviour and the
error in the displacement fields remains in the low single-
digit percentage range, despite the underdeterminacy issues
arising from the non-lattice-conforming interior boundary.
Though instabilities are a common issue with the BGK-
LBM [2], the transient LBM simulations here remain stable
for a sufficiently long duration to capture the transient over-
shoots in the displacement of the dynamically loaded solid.
However, further development in non-lattice conforming
boundary conditions is necessary, as is apparent via the off-
set in the peaks of the postprocessed displacements, which
appears to a considerably lesser extent in the example with
lattice-conforming boundaries considered in Sect. 5.

123



Computational Mechanics (2024) 73:317–339 327

Fig. 9 Deformed configurations predicted at t = 1.5l/cs by FEM and
LBM simulations. A contour plot for the vertical displacement u2 is
superimposed on the warped FEM domain, while the lattice sites of the
LBM simulation are indicated by black dots. The deformation is scaled
by a factor of 20

6.2 Sudden loading of a stationary crack

In the second numerical example, the LBM is used to treat a
problem of dynamic fracture mechanics: the square cross-
section in Fig. 10 with side length l = 4.0lc and free
boundaries features a stationary crack of length lc. The finite
material domain modelled here is sufficiently large for our
purposes: no Pwaves reflected by the exterior boundaries can
return to and influence the crack within the simulated time.
We non-dimensionalised this problem with lref = lc = 1.0
(arbitrary units). Here, we use the dilatational wave speed
cd for non-dimensionalisation, as it determines the time of
arrival of the P waves which are most characteristic for this
problem.

The crack is oriented in the y-direction and centred at the
origin (0l/lc, 0l/lc). Both crack faces are suddenly loaded

Fig. 10 Square domain with a crack (length lc) subjected to tensile
crack face traction. Side length not to scale

Fig. 11 Cylindrical coordinate system at the crack tip and definition of
the displacement. Adapted from [10, p.71]

with a traction t∗ = 0.009615μuref/l in their negative nor-
mal directions at time t = 0.0l/cd , and the traction remains
constant until the end of the simulation at t = 2.0l/cd . The
LBM is used to simulate the consequences of this sudden
so-called ‘mode I’ loading of the crack for a non-Poisson
solid with c2d/c

2
s = 2.769, ν = 0.2174. A spatial discretisa-

tion with x = 0.01lc is chosen, leading to a time-step of
t ≈ 2.669 × 10−3l/cd . We again use a relaxation time of
τ̄ = 0.55t .

Following the simulation, the x1-component of theCauchy
stress σ11 at a point P1 = (0.0lc, 0.52lc) just in front of one
of the crack tips is evaluated via the second moment (20) and
the formula relating the Poisson and Cauchy tensors (8). The
result is used to calculate the mode I stress intensity factor
KI for each time step via [19, 74]

KI = lim
r→0

σ11(r , ϕ)
√
2πr . (24)

Here, r is the distance from the crack tip to P1 and ϕ = 0
the angle with which P1 is offset from the crack plane (see
Fig. 11).

The results are compared to the exact analytical solution
from Freund [3, p.117], which yields

K 0
I = 2t∗

√
1 − 2ν

1 − ν

√
cd t

π
, (25)

for the mode-I stress intensity factor from t = 0.0lc/cd to
t = 1.0lc/cd , i.e. until the first dilatational waves scattered
by one crack tip arrive at the other [3, p.119]. The stress
intensity factor from t = lc/cd to t = 2lc/cd (i.e., until the
dilatational waves return to the other crack tip once more) is
given by the nested integral [3, p.122]

K 1
I = K 0

I + 2t∗F+(0)

π

√
2lc
π

· ·
∫ t

lc

a
Im

(√
t

lc
− η

√
a − η

a + η

cr + η

cr − η

1

η
exp

(
· ·

1

π

∫ b

a
arctan

(
4ξ2

√
(ξ2 − a2)(b2 − ξ2)

(b2 − 2ξ2)2

)
· ·

2η

ξ2 − η2
dξ

)
dη

)
, (26)

123



328 Computational Mechanics (2024) 73:317–339

Fig. 12 Mode-I stress intensity factor postprocessed from the LBM
simulation of a non-Poisson solid with a shock-loaded crack at P1 =
(0.005, 0.52), compared with an analytical solution calculated using
the Wiener-Hopf method. Stress intensity factor normalised with the
quasistatic solution Ks

I = t∗
√

πlc/2

with a = 1/cd and b = 1/cs . cr = 1/c is the inverse of
the Rayleigh (surface) wave speed. In contrast to [3, p.83],
where an approximation is used, we compute c via the roots
of the equation [20]

0 =
(
2 −

( c

cs

)2)2 − 4

√(
1 −

( c

cd

)2)(
1 −

( c

cs

)2)
.

The meaning of the function F+(ξ) is explained in [3, p.90].
Here, it suffices to know that it assumes the value of F+(0) ≈
0.8774 in (26).

Crucially, the inner and outer integrands feature poles at
ξ = η and η = cr , respectively. Since the integrands are
sufficiently well-behaved and change sign as the variable of
integration crosses the pole, Cauchy principal values exist
[3, p.122]. Here, we evaluate (26) using a trapezoidal rule
with an adaptive integration step near the poles, and we
integrate around the inner singularity ξ = η along a small
semi-circular contour in the upper complex half-plane. A tol-
erance of 2 × 10−5 at the singularities seems sufficient for
convergence. A lower tolerance does not visibly change the
computed analytical solution. The MATLAB script for the
evaluation of the Cauchy principal value integrals is provided
with the supplementary material (Online Resource 1).

The numerically integrated analytical solution for KI is
plotted against the results postprocessed from the LBM sim-
ulation run at P1 in Fig. 12. The analytical solution is not
exact after t = 2lc/cd , and the plot is continuedwith a dashed
line. The exact solution, however, is expected to deviate only
slightly from this dashed line [3, p.123]. The LBM produces
results that generally agree well with the analytical solution
and a reference FE calculation: the stress intensity factor rises
steeply initially, with the rate of change decreasing gradually.

After t = lc
cd

the solutions both behave almost linearly in time
as stress waves from the other end of the crack arrive, with
a notable uptick just before t = 2 lc

cd
due to the arrival of

Rayleigh surface waves [21]. KI then levels off. The LBM
(with the modified boundary rules) and the FEM produce a
smoother behaviour than the exact solution.

However, the solution produced by the LBM captures
key aspects of the behaviour in the vicinity of the crack tip
roughly as well as the FEM, both qualitatively and quanti-
tatively. The proposed computation of the Cauchy stress σ

via Poisson stress P and density in the current configura-
tion ρ (see (8)) appears to work as desired in this example.
Encouragingly, the simulation remains stable in the con-
sidered interval despite the discontinuous loading and the
singular stress field in the vicinity of the crack tip.

7 Conclusions

In this work, local boundary rules for the LBM algorithm
by Murthy et al. [1] and Escande et al. [2] were proposed.
These approximate the behaviour of Dirichlet and Neumann
boundary conditions with first-order accuracy.

In Sect. 2, the Lamé-Navier equation and the associated
boundary conditions were first rephrased in moment chain
form. In contrast to the presentation chosen by Murthy et al.
[1], the reformulation was performed in the reference config-
uration. The relationship between the Poisson stress tensor P
appearing in this moment chain and the established Cauchy
stress tensorσ was explored, and a convenient formula for the
calculation of one from the other derived. Section3 then very
briefly outlined the Lattice BoltzmannMethod for solids, and
Sect. 4 presented the boundary rules used to model arbitrar-
ily valued Dirichlet and Neumann boundary conditions. In
Sect. 5, an empirical convergence study was performed for
a simple benchmark example, showing linear convergence
towards a high-fidelity FEM reference solution. In Sect. 6
two further examples–featuring a circular hole and a finite
crack, respectively–were considered to illustrate the applica-
tion of the LBM to elastodynamic problems. In appendix A,
the LBM proposed by Murthy et al. [1] was shown to act
as a second-order Crank-Nicolson scheme for the moment
chain formulated in Sect. 2; in appendixC the simple bounce-
back and anti-bounce-back rules were shown to replicate the
desired boundary values with formal first-order accuracy.

While only first-order accuracy could be achieved here,
the results indicate that solid-mechanical (Dirichlet andNeu-
mann) boundary conditions can be modeled consistently
via bounce-back-type boundary rules in the LB algorithm
by Murthy et al. [1]. Despite the linear convergence rate
and the eventual instabilities, the relative error of the LBM
solution could be reduced below 0.1% with moderate mesh
refinement, which is satisfactory for many engineering appli-

123



Computational Mechanics (2024) 73:317–339 329

cations. Further improvements must be made to the stability
of the method, as only finite-time simulations are possible
to date. This issue is especially pronounced for material
parameters which deviate significantly for the Poisson case
(λ = μ), as highlighted by [2]. Simulations of incom-
pressible or nearly incompressible materials are therefore
impossible currently. Furthermore, higher-order convergence
would be desirable to achieve higher accuracy at lower res-
olutions.

Beyond this, the algorithm outlined here only facilitates
the modelling of materially and geometrically linear solid
behaviour. For an extension to the nonlinear regime, nonlin-
ear terms in thematerial lawmust be accounted for. This may
be challenging, as nonlinear terms can not easily be modeled
via the third equation of the moment chain (4). As a first
approach, source terms could be used to account for non-
linear terms in the material law, but depending on the finite
difference stencils required to this end, this may interfere
with the computational efficiency of the LBM.

On the other hand, the LBM seems promising as an
elastodynamic solver: because the interaction betweenneigh-
bouring lattice sites in the streaming step is linear, and
the nonlinear behaviour enters the local collision step [12,
p.55], the LBM can be implemented efficiently and paral-
lelised easily. In particular, the LBM lends itself tomodelling
dynamic phenomena which call for fine spatial and temporal
resolutions–an area of application in which computational
efficiency becomes crucial. As discussed in Sect. 5, our in-
house Python implementation required half the simulation
time of an equivalently discretised explicit FE simulation
using FEAP for a simple example problem.While a thorough
performance study would be necessary to asses the relative
performance of the LBM in detail, the preliminary results are
encouraging. Furthermore, spatially discretising - ‘meshing’
- a material domain is comparatively easy. If the solid LBM
can be turned into a practicable simulation method, much
time might be saved in engineering design processes.

The numerical solutions to the dynamic example problems
considered here are generally encouraging: the solid LBMby
Murthy et al. [1] and the boundary rules presented here are
able to consistentlymodel elastodynamicproblemsdescribed
by the Lamé-Navier equation and Dirichlet and Neumann
boundary conditions.

However, a need for further development is apparent in
several key areas. Firstly, the stability of the method must
be improved. Schemes with multiple relaxation times [12,
p.407] andmulti-reflection boundary rules [22] seempromis-
ing first places to start. Second-order accurate boundary rules
could further improve the accuracy of themethod. A possible
approach to implement these may be to derive bounce-back-
type boundary rules which eliminate the error terms arising
in the consistency study in appendix C. Finally, extensions to
material nonlinearity and large deformations are desirable.

If these shortcomings are addressed, however, fascinating
areas of application beckon: the LBM could be used to study
stresses caused by the propagation, reflection, and superposi-
tion of waves under highly dynamic loading. Crashproofing
and mining are fields that might benefit from such studies. If
an extension to the nonlinear regime can be achieved, sim-
ulations of polymer components (such as seals and tires) or
tissue (such as muscle) under transient loads further become
feasible. Here, also, the LBM might be useful on account
of its efficiency and ease of parallelisation. The formulation
in the reference configuration chosen here circumvents one
key obstacle in the extension to the geometrically nonlinear
regime: a formulation with respect to material rather than
spatial coordinates means that no re-discretisation is neces-
sary to deal with the large topological changes thatmay occur
at finite strains.

Supplementary information

The MATLAB script for the evaluation of the analytical
solution from [3, p.117] is provided with the supplementary
material (Online Resource 1).
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Appendix A: The LBM as a solver for moment
chains

In line with [14], we perform a consistency study (based on
Taylor expansions) to demonstrate that the BGK-LB scheme
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outlined above recovers the desiredmoment chain in the limit
as t → 0.

To simplify the analysis, a notational shorthand will be
introduced here: Moments are denoted as N�, their tenso-
rial order as a left-hand superscript, and the term of which the
moment is taken as a right-hand superscript. A set of indices
[α] = α1, . . . , αN will concisely be written in square brack-
ets. Additionally, the dyadic product of the velocity vector
ci taken N − 1 times is denoted via a dyadic power operator
⊗N in the superscript3. The N -th moment of f̄i can then for
example be written as

N�
f̄
[α] =

∑
i

c⊗N

i[α] f̄i .

In line with the second-order accurate discretisation of
[15], the distribution functions f̄i are defined as

f̄i = fi + t

2τ
( fi − f eqi )− t

2
ψi = fi + t

2τ
f neqi − t

2
ψi ,

(A1)

in terms of the first-order distribution functions fi , the
moments of which are

∑
i

fi = ρ ,
∑
i

ciα fi = jα , and
∑
i

ciαciβ fi = Pαβ .

The post-collision distribution function is written in terms of
the first-order accurate discretisation as

f̄ coli = f̄i (x, t) − 2t

2τ + t

(
f̄i (x, t) − f eqi (x, t)

)

+ 2τ

2τ + t
ψi (x, t)t = fi − t

2τ
f neqi + t

2
ψi .

As in [14], terms evaluated at x − cit in the stream-
ing step are related to spatial derivatives at x via a Taylor
expansion. In order to establish a relation to the field vari-
ables to be simulated, the moments of the resulting equations
are then taken. Firstly, the Taylor expansion of f̄ coli at some
neighbouring point x − cit of lattice point x, yields, with
x − cit = x + cīt and ci = −cī [14]:

f̄ coli (x−cit, t)= f̄ coli (x, t) +
∞∑
k=1

(−t)k

k! (ciαdα)k f̄ coli (x, t) .

The N -th moments of the above are then taken to move the
discussion to moment space

N�
f̄ col

[α] (x − cit, t) =
∑
i

c⊗N

i[α] f̄
col
i (x, t)

3 The dyadic power operator is defined such that c⊗
1

i = ci , c
⊗2

i =
ci ⊗ ci , c

⊗2

i = ci ⊗ ci ⊗ ci , etc..

+
∑
i

c⊗N

i[α]
∞∑
k=1

(−t)k

k! (ciβdβ)k f̄ coli (x, t).

Notice that the first term on the right hand side is simply the
N -th moment of f̄ coli , while in the second term, (ciβdβ)k can
be expanded to yield

N�
f̄ col

[α] (x − cit, t) = N�
f̄ col

[α] (x, t)

+
∞∑
k=1

(−t)k

k!
∑
i

c⊗N

i[α] ⊗ c⊗k

i[β]dβ1 · · · dβk f̄ coli (x, t).

The k-th term of the (Taylor) series
∑∞

k=1(· · ·) can thus be
written via k derivatives dβ1 · · · dβk of the N + k-th moment∑

i c
⊗N+k

iα f coli (x, t)

N�
f̄ col

[α] (x − cit, t) = N�
f̄ col

[α] (x, t)

+
∞∑
k=1

(−t)k

k! dβ1 · · · dβk
N+k�

f̄ col

[α,β](x, t). (A2)

Additionally, it will be convenient in the derivation to note
the N -th moment of the streaming relation (18), which yields

N�
f̄
[α](x, t + t) = N�

f̄ col

[α] (x − cit, t) . (A3)

Farag et al. [14] introduced an approximation for higher-
order moments in terms of lower-order moments, which is
outlined below. The N + 2-th moment can be expressed via
the N + 1-th moment, enabling a second-order truncation
using only one higher-order moment. For this, consider (A2)
for the N + 1-th moment

N+1�
f̄ col

[α] (x − cit, t) = N+1�
f̄ col

[α] (x, t)

+
∞∑
k=1

(−t)k

k! dβ1 · · · dβk
N+1+k�

f̄ col

[α,β](x, t),

and truncate after the first derivative term

N+1�
f̄ col

[α] (x − cit, t) = N+1�
f̄ col

[α] (x, t)

−tdβ1
N+2�

f̄ col

[α],β1(x, t) + O(t2).

Rearranging yields

tdβ1
N+2�

f̄ col

[α],β1(x, t) = N+1�
f̄ col

[α] (x, t)

−N+1�
f̄ col

[α] (x − cit, t) + O(t2).
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The second term on the right hand side can be simplified
using the moments of the streaming relation (A3) to yield

tdβ1
N+2�

f̄ col

[α],β1(x, t) = N+1�
f̄ col

[α] (x, t)

−N+1�
f̄
[α](x, t + t) + O(t2). (A4)

Equation (A2) is truncated after the second term

N�
f̄ col

[α] (x − cit, t) = N�
f̄ col

[α] (x, t)

+
2∑

k=1

(−t)k

k! dβ1 · · · dβk
N+k�

f̄ col

[α,β](x, t) + O(t3)

= N�
f̄ col

[α] (x, t) − tdβ1
N+1�

f̄ col

[α],β1(x, t)

+ t2

2
dβ1dβ2

N+2�
f̄ col

[α],β1,β2(x, t) + O(t3) .

and (A4) canbe substituted into t2
2 dβ1dβ2

N+2�
f̄ col

[α],β1,β2(x, t).
Note that the β1 in (A4) becomes β2 here, and terms are rear-
ranged for convenience. This yields,

N�
f̄ col

[α] (x − cit, t) − N�
f̄ col

[α] (x, t)

= −tdβ1
N+1�

f̄ col

[α],β1(x, t) + t

2
dβ1

(
N+1�

f̄ col

[α],β1(x, t)

− N+1�
f̄
[α],β1(x, t + t)

)
+ O(t3)

= −t

2
dβ1

(
N+1�

f̄ col

[α],β1(x, t) + N+1�
f̄
[α],β1(x, t + t)

)

+ O(t3) . (A5)

In (A5), the N -th moment of the streaming relation (A3)
can again be used for simplification. Additionally, the results
may be expressed in terms of the moments of the first-order
distribution function N� f = N�, as these are the tensors to
be modeled. The moments of the second-order distribution
functions N� f̄ can be stated in terms of these as

N�
f̄
[α] = N�

f
[α] + t

2

(1
τ

N�
f neq

[α] − N SFD[α]
)

,

meaning that (A3) becomes

N�
f̄ col

[α] (x − cit, t) = N�
f
[α](x, t + t)

+ t

2

(1
τ

N�
f neq

[α] (x, t + t) − N SFD[α](x, t + t)
)

.

(A6)

Meanwhile, the moments of the modified post-collision
distribution functions f̄ coli at (x, t) and the modified distri-
bution functions f̄i at (x, t + t) - both of which appear on

the right in (A5) - are given in terms of the original distribu-
tion functions as

N�
f̄
[α](x, t + t) = N�

f
[α](x, t + t)

+ t

2

(1
τ

N�
f neq

[α] (x, t + t) − N SFD[α](x, t + t)
)

,

and

N�
f̄ col

[α] (x, t) = N�
f
[α](x, t) − t

2

(1
τ

N�
f neq

[α] (x, t)

− N SFD[α](x, t)
)

. (A7)

Their sum - which appears in the bracket in (A5) - is given
by

N�
f̄ col

[α] (x, t) + N�
f̄
[α](x, t + t)

= N�
f
[α](x, t + t) + N�

f
[α](x, t)

+ t

2

(1
τ

N�
f neq

[α] (x, t + t) − N SFD[α](x, t + t)
)

− t

2

(1
τ

N�
f neq

[α] (x, t) − N SFD[α](x, t)
)

,

which–with first-order accuracy–is equivalent to

N�
f̄ col

[α] (x, t) + N�
f̄
[α](x, t + t) = N�

f
[α](x, t + t)

+N�
f
[α](x, t) + O(t2).

For the N + 1-th moment, this can be substituted into (A5)

N�
f̄ col

[α] (x − cit, t) − N�
f̄ col

[α] (x, t)

= −t

2
dβ1

(
N+1�

f̄ col

[α],β1(x, t) + N+1�
f̄
[α],β1(x, t + t)

)

+ O(t3)

= −t

2
dβ1

(
N+1�

f
[α],β1(x, t + t) + N+1�

f
[α],β1(x, t)

)

+ O(t3) .

With the moments of the modified streaming relation (A6)
and the modified post-collision distribution functions (A7),
this becomes

N�
f
[α](x, t + t) − N�

f
[α](x, t)

+ t

2

(1
τ

N�
f neq

[α] (x, t + t) − N SFD[α](x, t + t)
)

+ t

2

(1
τ

N�
f neq

[α] (x, t) − N SFD[α](x, t)
)

= −t

2
dβ1

(
N+1�

f
[α],β1(x, t + t)

+ N+1�
f
[α],β1(x, t)

)
+ O(t3) .
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Rearranging yields

N�
f
[α](x, t + t) − N�

f
[α](x, t)

= −t

2

(1
τ

N�
f neq

[α] (x, t + t) − N SFD[α](x, t + t)
)

− t

2

(1
τ

N�
f neq

[α] (x, t) − N SFD[α] (x, t)
)

− t

2
dβ1

(
N+1�

f
[α],β1(x, t + t)

+ N+1�
f
[α],β1(x, t)

)
+ O(t3)

= t

2

(
− dβ1

N+1�
f
[α],β1(x, t + t)

− 1

τ

N�
f neq

[α] (x, t + t) + N SFD[α](x, t + t)
)

+ t

2

(
− dβ1

N+1�
f
[α],β1(x, t) − 1

τ

N�
f neq

[α] (x, t)

+ N SFD[α](x, t)
)

+ O(t3) ,

which is equivalent to

1

t

(
N�

f
[α](x, t + t) − N�

f
[α](x, t)

)

= 1

2

(
− dβ1

N+1�
f
[α,β](x, t + t) − 1

τ

N�
f neq

[α] (x, t + t)

+ N SFD[α] (x, t + t)
)

+ 1

2

(
− dβ1

N+1�
f
[α],β1 (x, t) − 1

τ

N�
f neq

[α] (x, t)

+ N SFD[α] (x, t)
)

+ O(t2) .

As outlined in appendix B, the moments of f neqi vanish in
the non-dissipative limit. We are left with a second-order
Crank-Nicolson scheme for a moment chain such as the one
given in (4)–assuming the forcing terms computed via finite
differences replicate their continuous equivalentswith at least
second-order accuracy.

Substituting the macroscopic moments (20) and source
terms (17) yields

1

t

(
ρ(x, t + t) − ρ(x, t)

)
= 1

2

(
− dα jα(x, t + t)

− dα jα(x, t)
)

+ O(t2) , (A8)

for the zeroth,

1

t

(
jα(x, t + t) − jα(x, t)

)
= 1

2

(
− dβ Pαβ(x, t + t)

+ ρ0bα(x, t + t) + N SFDα (x, t + t)
)

+ 1

2

(
− dβ Pαβ(x, t) + ρ0bα(x, t) + N SFDα (x, t)

)

+ O(t2) , (A9)

for the first, and

1

t

(
Pαβ(x, t+t)−Pαβ(x, t)

)
=1

2

(
− dγ Qαβγ (x, t + t)

)

+ 1

2

(
− dγ Qαβγ (x, t)

)
+ O(t2) , (A10)

for the secondmoment. For the sake of conciseness, we intro-
duce Q to denote the third moment

Qαβγ = μ

ρ0
( jαδβγ + jβδαγ + jγ δβα) ,

in (A10).
The non-Poisson component of the material law is imple-

mented via a finite difference term in the second of the three
equations in the chain. We use a second-order accurate cen-
tral finite difference scheme to approximate the derivative
appearing here, i.e.

1SFDα = μ − λ

ρ0
dFDα ρ = μ − λ

ρ0
dαρ + O(x2) .

With acoustic scaling, i.e. x ∼ t , we have

1SFDα = μ − λ

ρ0
dαρ + O(t2) .

We therefore have, for the evolution equation for the first
moment,

1

t

(
jα(x, t + t) − jα(x, t)

)
= 1

2

(
− dβ Pαβ(x, t + t)

+ ρ0bα(x, t + t) + N Sα(x, t + t)
)

+ 1

2

(
− dβ Pαβ(x, t) + ρ0bα(x, t) + N Sα(x, t)

)

+ O(t2) , (A11)

i.e. a second-order leading error.
Notice that the discrete evolution equations for the density

in the current configuration (A8), themomentumdensity con-
figuration (A11), and the Poisson stress tensor (A10) amount
to second-order Crank-Nicolson schemes for the target equa-
tions. In the limit ast → 0 the BGK-LBM byMurthy et al.
[1] therefore reproduces the continuous equivalent relations

dtρ + dα jα = 0 + O(t2) ,

dt jα + dβ Pαβ = ρ0bα + μ − λ

ρ0
dαρ + O(t2) ,

dt Pαβ + dγ Qαβγ = 0 + O(t2) ,

which, as discussed above, is equivalent to the Lamé-Navier
equations.
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Appendix B: Distribution function expansion

Below, a consistency study based on Taylor expansions is
performed to investigate the behaviour of boundary rules.
Here, the terms evaluated at x + cit or t + t in the Lat-
tice Boltzmann equation are related to terms at x and t via
Taylor expansions. The resulting partial differential equa-
tion is solved to obtain a second-order expansion of the
non-equilibrium distribution function f neqi in terms of the
equilibrium distribution function f eqi . The latter is known
in terms of the moments appearing in the moment chain (4).
This allows a relation to be established between the boundary
rules, which are formulated in terms of distribution functions
f̄i , and the target boundary conditions, which are formulated
in terms of the moments (20).

To this end, the streaming relation is expanded

f̄i (x, t+t) = f̄ coli (x, t)+
∑
k

(−t)k

k! (ciαdα)k f̄ coli (x, t) ,

and the first-order distribution functions (A1) are substituted
on both sides

f eqi (x, t + t) +
(
1 + t

2τ

)
f neqi (x, t + t)

− t

2
ψi (x, t + t)

= f eqi +
(
1 − t

2τ

)
f neqi + t

2
ψi +

∑
k

(−t)k

k! (ciαdα)k

(
f eqi +

(
1 − t

2τ

)
f neqi + t

2
ψi

)
.

This can be rearranged to yield

(
f eqi (x, t+t)− f eqi (x, t)

)
+

(
f neqi (x, t+t)− f neqi (x, t)

)

+ t

2τ

(
f neqi (x, t + t) + f neqi (x, t)

)

− t

2

(
ψi (x, t + t) + ψi (x, t)

)

=
∑
k

(−t)k

k! (ciαdα)k f eqi (x, t) +
(
1 − t

2τ

)

∑
k

(−t)k

k! (ciαdα)k f neqi (x, t)

+ t

2

∑
k

(−t)k

k! (ciαdα)kψi (x, t)

and related to the behaviour at (x, t) via Taylor expansions.
To arbitrary order, this yields

∑
k

tk

k! d(k)
t f eqi +

∑
k

tk

k! d(k)
t f neqi + t

τ
f neqi

+ t

2τ

∑
k

tk

k! d(k)
t f neqi − ψit − t

2

∑
k

tk

k! d(k)
t ψi

=
∑
k

(−t)k

k! (ciαdα)k f eqi +
(
1 − t

2τ

)

∑
k

(−t)k

k! (ciαdα)k f neqi + t

2

∑
k

(−t)k

k! (ciαdα)kψi ,

or, when rearranged,

t

τ
f neqi +

(
1 + t

2τ

) ∑
k

tk

k! dkt f neqi −
(
1 − t

2τ

)

∑
k

(−t)k

k! (ciαdα)k f neqi

= −
∑
k

tk

k! dkt f eqi +
∑
k

(−t)k

k! (ciαdα)k f eqi + ψit

+ t

2

∑
k

tk

k! dkt ψi + t

2

∑
k

(−t)k

k! (ciαdα)kψi .

Up terms of second order int , this partial differential equa-
tion for f neqi is solved in terms of f eqi and ψi by

f neqi = −τdt f
eq
i − τciαdα f eqi + τψi + O(t2) . (B12)

The second-order distribution function f̄i can therefore be
written as

f̄i = f eqi +
(
1 + t

2τ

)(
− τdt f

eq
i − τciαdα f eqi + τψi

)

−t

2
ψi + O(t2),

and the post-collision distribution functions become

f̄ coli = f eqi +
(
1 − t

2τ

)(
− τdt f

eq
i − τciαdα f eqi + τψi

)

+t

2
ψi + O(t2).

With [14]

τ̄ = τ
(
1 + t

2τ

)
, and τ = τ̄

(
1 − t

2τ̄

)
,

we have

f̄i = f eqi − τ̄dt f
eq
i − τ̄ciαdα f eqi + τ̄

(
1− t

2τ̄

)
ψi +O(t2) ,

and

f̄ coli = f eqi − (τ̄ − t)dt f
eq
i − (τ̄ − t)ciαdα f eqi

123



334 Computational Mechanics (2024) 73:317–339

+τ̄
(
1 − t

2τ̄

)
ψi + O(t2).

Note that, on account of (B12), the moments of f neqi
become, with second order accuracy

N�
f neq

[α] = −τ
(
dt

N�[α] + dβ
N�[α]β − N S[α]

) + O(t2) ,

which vanishes in the absence of dissipative terms.

Appendix C: Analysis of boundary conditions

The first-order bounce-back

f̄ī (x, t) = f̄ coli (x, t − t) − 2

c2s
wi ciα j

∗
α , (C13)

and anti-bounce-back

f̄ī (x, t) = − f̄ coli (x, t − t) + 2wi

(
ρbd

+ 1

2c4s
(P∗

αβ − ρbdc2s δαβ)(ciαciβ − c2s δαβ)
)

.

(C14)

boundary rules can generally be written as

f̄ī (x, t) = ± f̄ coli (x, t − t) ∓ 2wi Bi ,

or

f̄ī (x, t) ∓ f̄ coli (x, t − t) = ∓2wi Bi , (C15)

where Bi denotes the term enforcing the relevant boundary
values. The sums and differences of the distribution func-
tions appearing in (C15) can be thought of as isolating some
among the coupled terms in the distribution functions which
contain information about the moments with regard to which
the boundary conditions are formulated. In the following
analysis, these sums and differences are discussed, and the
resulting behaviour of the boundary rules in moment space
is analysed.

Appendix C.1: Information filtering

With wī = wi , and cīα = −ciα , we have

f eq
ī

=wi

(
ρ− 1

c2s
ciα jα+ 1

2c4s
(Pαβ−ρc2s δαβ)(ciαciβ−c2s δαβ)

)
,

and

ψī = − 1

c2s
wi ciαSα = −ψi ,

and thus

f̄ī = f eq
ī

− τ̄dt f
eq
ī

+ τ̄ciαdα f eq
ī

− τ̄
(
1− t

2τ̄

)
ψi +O(t2) ,

and

f̄ coli = f eqi − (τ̄ − t)dt f
eq
i − (τ̄ − t)ciαdα f eqi

+τ̄
(
1 − t

2τ̄

)
ψi + O(t2).

Therefore, the distribution function difference appearing
in the bounce-back rule (C13) yields

f̄ī (x, t) − f̄ coli (x, t − t)

=
(
f eq
ī

(x, t) − f eqi (x, t − t)
)

− τ̄
(
dt f

eq
ī

(x, t)

− dt f
eq
i (x, t − t)

)

+ τ̄
(
ciαdα f eq

ī
(x, t) + ciαdα f eqi (x, t − t)

)

− τ̄
(
1 − t

2τ̄

)(
ψi (x, t) + ψi (x, t − t)

)

− t
(
dt f

eq
i (x, t − t) + ciαdα f eqi (x, t − t)

)

+ O(t2) , (C16)

and the sum appearing in the anti-bounce-back rule (C14)
becomes

f̄ī (x, t) + f̄ coli (x, t − t)

=
(
f eq
ī

(x, t) + f eqi (x, t − t)
)

− τ̄
(
dt f

eq
ī

(x, t) + dt f
eq
i (x, t − t)

)

+ τ̄
(
ciαdα f eq

ī
(x, t) − ciαdα f eqi (x, t − t)

)

− τ̄
(
1 − t

2τ̄

)(
ψi (x, t) − ψi (x, t − t)

)

+ t
(
dt f

eq
i (x, t − t) + ciαdα f eqi (x, t − t)

)

+ O(t2) . (C17)

With f (t)− f (t−t) = tdt f (t)+O(t2) and f (t)+
f (t − t) = 2 f (t) − t f (t) + O(t2), the difference of
the equilibrium distribution functions can be written in terms
of the moments as

f eq
ī

(x, t) − f eqi (x, t − t)

= wi

(
ρ(x, t) − 1

c2s
ciα jα(x, t) + 1

2c4s
(Pαβ(x, t)

− ρ(x, t)c2s δαβ)(ciαciβ − c2s δαβ)
)

− wi

(
ρ(x, t − t) + 1

c2s
ciα jα(x, t − t)
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+ 1

2c4s
(Pαβ(x, t − t)

− ρ(x, t − t)c2s δαβ)(ciαciβ − c2s δαβ)
)

= wi

(
dtρ(x, t)t − 2

1

c2s
ciα jα(x, t)

+ 1

c2s
ciαdt jα(x, t)t

+ 1

2c4s
(dt Pαβ(x, t) − dtρ(x, t)c2s δαβ)(ciαciβ

− c2s δαβ)t
)

+ O(t2) .

Similarly, their sum becomes

f eq
ī

(x, t) + f eqi (x, t − t)

= wi

(
ρ(x, t) − 1

c2s
ciα jα(x, t) + 1

2c4s
(Pαβ(x, t)

− ρ(x, t)c2s δαβ)(ciαciβ − c2s δαβ)
)

+ wi

(
ρ(x, t − t) + 1

c2s
ciα jα(x, t − t)

+ 1

2c4s
(Pαβ(x, t − t)

− ρ(x, t − t)c2s δαβ)(ciαciβ − c2s δαβ)
)

= wi

(
2ρ(x, t) − dtρ(x, t)t − 1

c2s
ciαdt jα(x, t)t

+ 2
1

2c4s
(Pαβ(x, t) − ρ(x, t)c2s δαβ)(ciαciβ − c2s δαβ)

− 1

2c4s
(dt Pαβ(x, t) − dtρ(x, t)c2s δαβ)(ciαciβ

− c2s δαβ)t
)

+ O(t2) .

Similar relations hold for the time-derivatives

dt f
eq
ī

(x, t) − dt f
eq
i (x, t − t)

= wi

(
d2t ρ(x, t)t − 2

1

c2s
ciαdt jα(x, t)

+ 1

c2s
ciαd

2
t jα(x, t)t

+ 1

2c4s
(d2t Pαβ(x, t) − d2t ρ(x, t)c2s δαβ)(ciαciβ

− c2s δαβ)t
)

+ O(t2) ,

dt f
eq
ī

(x, t) + dt f
eq
i (x, t − t)

= wi

(
2dtρ(x, t) − d2t ρ(x, t)t − 1

c2s
ciαd

2
t jα(x, t)t

+ 2
1

2c4s
(dt Pαβ(x, t) − dtρ(x, t)c2s δαβ)(ciαciβ − c2s δαβ)

− 1

2c4s
(d2t Pαβ(x, t) − d2t ρ(x, t)c2s δαβ)(ciαciβ

− c2s δαβ)t
)

+ O(t2) ,

and the spatial derivatives

ciαdα f eq
ī

(x, t) − ciαdα f eqi (x, t − t)

= wi

(
ciαdαdtρ(x, t)t − 2

1

c2s
ciαciβdα jβ(x, t)

+ 1

c2s
ciαciβdαdt jβ(x, t)t

+ 1

2c4s
ciαdα(dt Pβγ (x, t) − dtρ(x, t)c2s δβγ )(ciβciγ

− c2s δβγ )t
)

+ O(t2) ,

ciαdα f eq
ī

(x, t) + ciαdα f eqi (x, t − t)

= wi

(
2ciαdαρ(x, t) − ciαdαdtρ(x, t)t

− 1

c2s
ciαciβdtdα jβ(x, t)t

+ 2
1

2c4s
ciαdα(Pβγ (x, t) − ρ(x, t)c2s δβγ )(ciβciγ − c2s δβγ )

− 1

2c4s
ciαdα(dt Pβγ (x, t) − dtρ(x, t)c2s δβγ )(ciβciγ

− c2s δβγ )t
)

+ O(t2) .

Appendix C.2: Dirchlet boundary conditions

The relations outlined above can be substituted into (C16) to
obtain

f̄ī (x, t) − f̄ coli (x, t − t)

=wi

(
dtρ(x, t)t−2

1

c2s
ciα jα(x, t)+ 1

c2s
ciαdt jα(x, t)t

+ 1

2c4s
(dt Pαβ(x, t)−dtρ(x, t)c2s δαβ)(ciαciβ−c2s δαβ)t

)

− τ̄wi

(
− 2

1

c2s
ciαdt jα(x, t)

)

+ τ̄wi

(
2ciαdαρ(x, t) + 2

1

2c4s
ciαdα(Pβγ (x, t)

− ρ(x, t)c2s δβγ )(ciβciγ − c2s δβγ )
)

− τ̄
(
1 − t

2τ̄

)(
2ψi (x, t)

)

− twi

(
dtρ(x, t) + 1

c2s
ciαdt jα(x, t)

+ 1

2c4s
(dt Pαβ(x, t) − dtρ(x, t)c2s δαβ)(ciαciβ − c2s δαβ)

)
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− twi

(
ciαdαρ(x, t) + 1

c2s
ciαciβdα jβ(x, t)

+ 1

2c4s
(ciαdαPβγ (x, t)

− ciαdαρ(x, t)c2s δβγ )

(ciβciγ − c2s δβγ )
)

+ O(t2) ,

where the order of appearance of the terms is retained for
convenience. Further simplification yields

f̄ī (x, t) − f̄ coli (x, t − t)

= −2wi
1

c2s
ciα jα(x, t) − twi

1

c2s
ciαciβdα jβ(x, t)

+ 2τ̄wi
1

c2s
ciαdt jα(x, t)

+ (2τ̄ − t)wi

(
ciαdαρ(x, t) + 1

2c4s
ciαdα(Pβγ (x, t)

− ρ(x, t)c2s δβγ )(ciβciγ − c2s δβγ )
)

− (2τ̄ − t)ψi (x, t) + O(t2) . (C18)

Substitution into the first-order bounce-back rule

f̄ī (x, t) − f̄ coli (x, t − t) = − 2

c2s
wi ciα j

∗
α ,

yields

− 2

c2s
wi ciα j

∗
α = −2wi

1

c2s
ciα jα(x, t) (C19)

− twi
1

c2s
ciαciβdα jβ(x, t)

+ 2τ̄wi
1

c2s
ciαdt jα(x, t)

+ (2τ̄ − t)wi

(
ciαdαρ(x, t) + 1

2c4s
ciαdα(Pβγ (x, t)

− ρ(x, t)c2s δβγ )(ciβciγ − c2s δβγ )
)

− (2τ̄ − t)ψi (x, t) + O(t2) . (C20)

We therefore obtain, with first-order accuracy

− ciα j
∗
α = −ciα jα(x, t) − 1

2
tciαciβdα jβ(x, t) + O(t) .

The terms on the right hand-side amount to a second-order
spatial Taylor expansion of the term ciα jα to the boundary,
at x + 1

2 cit . On the left hand side, ciα j∗α is an equivalent
term, but with the prescribed boundary value j∗ = ρ0dtu∗,
i.e.

ciα j
∗
α = ciα jα(x + 1

2
cit, t) + O(t) .

For a boundary lattice site with two or more lattice links
crossing the boundary in linearly independent directions i ,
two independent, consistent conditions are imposed on the
linear momentum density j modeled by the LBM at the
boundary in the vicinity of the boundary lattice site. This
suffices to (consistently) determine the linear momentum
density at the boundary, with first-order accuracy, for D2Q9
lattices. The consistency study thus indicates that the unmod-
ifiedbounce-back rule is consistentwith the desiredboundary
values at x + 1

2 cit , with first-order accuracy. Note that, as
long as only first-order accuracy is required, this boundary
rule can also be used for non-lattice conforming boundaries.

Second-order accuracy with a bounce-back boundary rule
could be achieved if the rule were modified so as to cancel
the linear terms in t which were neglected in (C20).

Appendix C.3: Neumann boundary conditions

The analysis is analogous for the case of Neumann bound-
aries. The relations derived in appendixC.1 canbe substituted
into (C17) to yield

f̄ī (x, t) + f̄ coli (x, t − t)

= wi

(
2ρ(x, t) − dtρ(x, t)t − 1

c2s
ciαdt jα(x, t)t

+ 2
1

2c4s
(Pαβ(x, t) − ρ(x, t)c2s δαβ)(ciαciβ − c2s δαβ)

− 1

2c4s
(dt Pαβ(x, t) − dtρ(x, t)c2s δαβ)(ciαciβ

− c2s δαβ)t
)

− τ̄wi

(
2dtρ(x, t) + 2

1

2c4s
(dt Pαβ(x, t)

− dtρ(x, t)c2s δαβ)(ciαciβ − c2s δαβ)
)

+ τ̄wi

(
− 2

1

c2s
ciαciβdα jβ(x, t)

)

+ twi

(
dtρ(x, t) + 1

c2s
ciαdt jα(x, t) + 1

2c4s
(dt Pαβ(x, t)

− dtρ(x, t)c2s δαβ)(ciαciβ − c2s δαβ)
)

+ twi

(
ciαdαρ(x, t) + 1

c2s
ciαciβdα jβ(x, t)

+ 1

2c4s
(ciαdαPβγ (x, t) − ciαdαρ(x, t)c2s δβγ )(ciβciγ

− c2s δβγ )
)

+ O(t2) .

Again, the order of the terms is left unchanged for conve-
nience. Upon simplification, this becomes

f̄ī (x, t) + f̄ coli (x, t − t)
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= wi

(
2ρ(x, t) + 2

1

2c4s
(Pαβ(x, t) − ρ(x, t)c2s δαβ)

(ciαciβ − c2s δαβ)
)

+ twi

(
ciαdαρ(x, t) + 1

2c4s
(ciαdαPβγ (x, t)

− ciαdαρ(x, t)c2s δβγ )(ciβciγ − c2s δβγ )
)

− 2τ̄wi

(
dtρ(x, t) + 1

2c4s
(dt Pαβ(x, t) − dtρ(x, t)c2s δαβ)

(ciαciβ − c2s δαβ)
)

+ (t − 2τ̄ )wi
1

c2s
ciαciβdα jβ(x, t) + O(t2) .

Substitution into the first-order anti-bounce-back rule

f̄ī (x, t) + f̄ coli (x, t − t)

= 2wi

(
ρbd + 1

2c4s
(P∗

αβ

− ρbdc2s δαβ)(ciαciβ − c2s δαβ)
)

.

yields

2wi

(
ρbd + 1

2c4s
(P∗

αβ − ρbdc2s δαβ)(ciαciβ − c2s δαβ)
)

= wi

(
2ρ(x, t) + 2

1

2c4s
(Pαβ(x, t)

− ρ(x, t)c2s δαβ)(ciαciβ − c2s δαβ)
)

+ twi

(
ciαdαρ(x, t) + 1

2c4s
(ciαdαPβγ (x, t)

− ciαdαρ(x, t)c2s δβγ )(ciβciγ − c2s δβγ )
)

− 2τ̄wi

(
dtρ(x, t) + 1

2c4s
(dt Pαβ(x, t)

− dtρ(x, t)c2s δαβ)(ciαciβ − c2s δαβ)
)

+ (t − 2τ̄ )wi
1

c2s
ciαciβdα jβ(x, t) + O(t2) . (C21)

Thus, with a first-order accuracy

2wi

(
ρbd + 1

2c4s
(P∗

αβ − ρbdc2s δαβ)(ciαciβ − c2s δαβ)
)

= wi

(
2ρ(x, t) + 2

1

2c4s
(Pαβ(x, t) − ρ(x, t)c2s δαβ)

(ciαciβ − c2s δαβ)
)

+ twi

(
ciαdαρ(x, t) + 1

2c4s
(ciαdαPβγ (x, t)

− ciαdαρ(x, t)c2s δβγ )(ciβciγ − c2s δβγ )
)

+ O(t) ,

and, by an argument analogous to that made in the bounce-
back case

(
ρbd + 1

2c4s
(P∗

αβ − ρbdc2s δαβ)(ciαciβ − c2s δαβ)
)

=
(

ρ

(
x + 1

2
cit, t

)
+ 1

2c4s
(Pαβ

(
x + 1

2
cit, t

)

−ρ

(
x + 1

2
cit, t

)
c2s δαβ)(ciαciβ−c2s δαβ)

)
+O(t) .

The prescribed value for ρbd is determined by linear extrap-
olation

ρbd = 1

2
(3ρ(x, t) − ρ(x − cit, t))

= ρ

(
x + 1

2
cit, t

)
+ O(t2),

which implies

1

2c4s
P∗

αβ(ciαciβ − c2s δαβ) = 1

2c4s
Pαβ

(
x + 1

2
cit, t

)

(ciαciβ − c2s δαβ) + O(t), (C22)

as the density terms cancel. In two dimensions, P features
three independent components due to its symmetry. In a
coordinate system normal to the boundary, one of these is
determined by extrapolation similarly to the density bound-
ary values

Pn,bd
22 = 1

2
(3Pn

22(x, t) − Pn
22(x − cit, t))

= Pn
22

(
x + 1

2
cit, t

)
+ O(t2).

For the anti-bounce-back rule (C14) to be consistent with
the prescribed boundary values in the first order, (C22) must
impose three independent, consistent conditions on the com-
ponents of P . At a boundary lattice site with lattice links i
crossing the boundary, the dyadic products ci⊗ci must form
a basis in the space of symmetric second-order tensors for
this to be the case. Note that this condition is satisfied at
a boundary lattice site in a D2Q9 lattice, whenever at least
three adjacent lattice links cross the boundary.

Second-order accuracy with an anti-bounce-back bound-
ary rule could be achieved if the rule were modified so as to
cancel the linear terms in t which were neglected in (C21).

Appendix D: Evolution of instabilities

Figure13 shows the evolution of the displacement magni-
tude |u| in the top left corner of the plane strain domain
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Fig. 13 Contour plot of the displacement magnitude |u| in the top left corner for the example outlined in Sect. 5, at several points in time. It is
apparent that instabilities originate near the corner of the rectangular plane strain domain. On grounds of symmetry, only one corner of the domain
is shown

investigated in Sect. 5. Instabilities originate near the corner
of the domain. As instabilities of this kind already appear
in the LB algorithm in the absence of boundaries (see [2]),
the source of the instabilities exhibited here is difficult to
ascertain. The repeated reflection of incident waves at cor-
ners with Neumann boundaries produces waves with short
wavelength, which were found in [2] to provoke instabili-
ties in the LB algorithm proposed in [1]. Alternatively, the
boundary conditions proposed in this work may introduce a
separate source of instabilities. While instabilities in the LB
algorithm must be investigated in detail and eventually elim-
inated for elastodynamic LBM simulations to be viable for
application, this is beyond the scope of the present investi-
gation.
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