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Abstract
The main aim of the present work is to investigate the role of the Maxwell stress tensor in the study of active materials.
Despite the importance of this tensor in modeling mechatronic devices used in sophisticated applications, its non–symmetry
still generates controversies in the literature, probably because classical continuum mechanics assumes a symmetric Cauchy
stress, although the sum of Cauchy and Maxwell stresses is non–symmetric. In the framework of generalised continuum
mechanics–a more advanced formalism than the classical one–, each material point has an associated microstructure so that
the micro–rotations of the electric/magnetic dipoles present in real active materials may be simulated. To this end, a modified
total stress formulation, including an angular momentum balance, is developed and implemented into a finite element research
code using a complex–step formulation. It is concluded that generalised mechanics allows for incorporating both symmetric
and non–symmetric contributions of the Maxwell tensor. Consequently, the rotations generated by the electromagnetic field
may be analysed. The influence of the complete Maxwell tensor in a magnetostrictive actuator is studied by several magneto–
mechanical numerical experiments of a Terfenol–D rod encircled by air, and several conclusions are highlighted.

Keywords Finite Element Method · Maxwell stress tensor · Non–symmetry · Generalised Continuum Mechanics ·
Micro–rotations · Magnetostrictive materials

1 Introduction

Active materials, such as piezoelectrics and piezomagnetics,
are used in mechatronic devices due to their inherent abil-
ity to combine mechanical and electromagnetic fields by two
separate couplings: the first can be modelled by constitutive
equations–obtained from thermodynamic potentials–, and
the second by electromagnetic body forces, commonly incor-
porated into the linear momentum balance by the Maxwell
Stress Tensor (MST).
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Physically, the origin of these couplings comes from two
separate interactions, see [27, 31]:

– Short–range forces (local effects) due to interatomic
interactions among material points inside the body that
generate both forces and couples.

– Long–range forces (non–local effects) that emerge from
the interactions between material points and external
fields.

The short–range forces, see [37, 39], are closely related
with the piezoelectric/piezomagnetic constitutive equations,
some reported in [15]. As mentioned, the contribution of
these forces to the linearmomentumbalance is often obtained
from thermodynamic potentials, see [10, 13].

The long–range forces are commonly expressed as the
divergence of the MST for an amenable implementation
in numerical approaches such as the Finite Element (FE)
method.However, theMST is non–symmetric in transversely
isotropicmaterials such as piezoelectrics and piezomagnetics
[25, 34, 37]. This lack of symmetry has generated a compre-
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hensive discussion in the literature since Noether’s theorem
[21] states that the angular momentum must be conserved,
and non–symmetric stress tensors do not automatically fulfil
this condition. For this reason, [31] reported that the non–
symmetric MST does not have physical meaning since it is
caused by the transformation of the electromagnetic long–
range body forces into the short–range divergence of the
MST.

Despite the importance of the MST in modelling mecha-
tronic devices (for instance, for vibrations and noise control),
it should be considered inmany research works, for example,
in [29, 32]. This is due to two main difficulties:

� the non–linearity
� the possible non–symmetry

The first difficulty is nowadays easily overcome by non–
linear algorithms and sophisticated computer codes. But the
second remains unsolved since the proper solution is not clear
from a theoretical point of view, even if it is essential since
theMST skew–symmetric part can generate electromagnetic
torques as argued in [6, 14].

On this ground, two main approaches based on Classical
ContinuumMechanics (CCM)may be found in the literature
to model active materials considering the MST:

(i) Analytically, [1, 2, 19, 37] introduce a symmetric total
stress tensor as the sum of two non–symmetric tensors: a
Cauchy–like stress tensor and the MST itself. FE models
using this total stress are reported in [11, 22, 28, 30, 38].

(ii) The numerical approach from [25] allows us to calculate
electromagnetic torques and forces with a nodal force
method. The torques are expanded into non–local (long–
range) and local (short–range) terms, the latter due to the
MST non–symmetric part.

Although the controversy on theMST non–symmetry was
partially clarified through physical arguments in [19, 37], the
main novelty of the present work is to establish the CCM
limitations (including the use of the MST itself) to model
active materials. For this purpose, a Generalised Contin-
uum Mechanics (GCM) approach based on the Micropolar
Mechanics (MM) theory is developed; see [17] for a gen-
eral description of MM. Roughly, this theory extends CCM
assuming that each material point in the continuum is asso-
ciated with a micro–rigid body and, consequently, three
micro–rotations are incorporated to the FE degrees of free-
dom (dofs).

Based on MM, in the current work both linear and angu-
lar momentum balances are stated, concluding that the MST
holds a skew–symmetric part. Furthermore, the electromag-
netic torque generated by this non–symmetry may only be
studied with MM since, in the framework of CCM, each

Fig. 1 Domain Ω = ΩEM ∪ ΩM ∪ ΩO with boundary Γ and outward
normal ni . The domain is under electromagnetic f EM

i , mechanical trac-
tion ti , couple stress vector mi , and other body forces fi

material point lays in the position of its centre of mass [24].
Then the point only transmits linear momentum to neigh-
bours, not micro–rotations. As demonstrated in [19, 37], the
absence of rotation implies that the MST must be symmetric
for basic CCM.

Finally, and for completeness, a numerical study based
on the FE method is developed to obtain some conclusions
on the influence of the MST using MM. In particular, a
mini–magnetostrictive actuator made out of the transversely
isotropic Terfenol–D material is simulated. Four numerical
experiments are developed, demonstrating that the micro–
rotations can be of the macro order for magnetic fields of
normal levels. Also, regardless of intensity, not all magnetic
fields can produce rotations.

Dynamic effects are not considered in the present work
for simplicity, and for the FE formulation, only themagneto–
mechanical coupling is considered.

For clarity, index notation is used throughout the present
work. Non-symmetric tensors are denoted by (·)i j , with their
symmetric and skew–symmetric parts denoted by (·)(i j) and
(·)[i j], respectively. In addition, the alternating third–order
and identity second–order tensors are denoted by ei jk and δi j .
Finally, the Einstein summation convention is used through-
out the document.

2 Balance equations

Consider a domainΩ = ΩEM ∪ΩM ∪ΩO and its boundaryΓ ,
containing electromagnetic ΩEM , mechanical ΩM and other
ΩO matter, as shown in Fig. 1. The present section states
the balances of linear and angular momentum considering
electromagnetic forces f EM

i ∈ ΩEM , mechanical forces rep-
resented by traction ti and couple stress mi vectors so that
{ti ,mi } ∈ ΩM . Other body forces fi ∈ ΩO are included for
completeness due to long–range effects such as gravitation.

As introduced before, MM considers that each mate-
rial point has an associated microstructure mathematically
represented by a trihedron at each material point C . Con-
sequently, the microstructure is modelled as a rigid body
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adding three micro–rotations θi to the three classical macro–
displacements ui .

For themost general case, the electromagnetic forces f EM
i

are composed of:

– Long–range forces from electromagnetic source: free
electric charge density ρ

f
q and free electric current j fi .

– Short–range forces due to polarisation Pi and magneti-
sation Mi vectors related to the material media.

The vectors ti and mi exclusively represent short–range
forces. The former is the classical traction related to a generic
stress tensorσi j by theCauchy relation of (1) top. The latter is
due to the microstructure, and it is related to the couple stress
tensor τi j of (1) bottom, also by a Cauchy–like relation:

ti = σ j i n j ,

mi = τ j i n j .

(1)

Notice that both σi j and τi j are a priori non–symmetric ten-
sors.

2.1 Electromagnetic forces

Continuum Electrodynamics is founded on a set of four
empirical laws called Maxwell equations [28] expressed as:

Di,i = ρ
f
q ,

Bi,i = 0,

(
E jei jk

)
,i + ∂Bk

∂t
= 0,

(
Hjei jk

)
,i − ∂Dk

∂t
− j fk = 0,

(2)

where Ei , Di , Hi , and Bi denote electric field, electric dis-
placement, magnetic field, and magnetic induction, respec-
tively. In addition, t denotes time and ∂ partial derivative.
The electromagnetic constitutive equations that relate Pi and
Mi vectors are defined as:

Di = Pi + ε0Ei ,

Bi = μ0
(
Hi + Mi

)
,

(3)

where ε0 and μ0 are the vacuum permittivity and permeabil-
ity, respectively.

The balance of linear electromagnetic momentum is
obtained from Poynting’s theorem [28] and in quasi–static
regime is expressed as:

f EM
i = σ EM

ji, j , (4)

where σ EM
ji is the mathematical symbol for the MST. There

exist at least four expressions [9] for f EM
i or σ EM

ji , but the
present work uses:

σ EM
ji = Dj Ei + Bj Hi −

(
DkDk

ε0
+ Bk Bk

μ0

)
δ j i

2
, (5)

According to [39] the previous expression satisfies the elec-
tromagnetic boundary conditions and may be obtained from
a thermodynamic formulation as in [10] or from energy-
momentum considerations as in [8].

Since any tensor may uniquely be decomposed into sym-
metric and skew–symmetric parts, the MST is split into both
by introducing (3) into (5) to give:

σ EM
(i j) = Pj Ei + Pi E j

2
+ μ0

2

(
Mj Hi + Mi Hj

) +

ε0Ei E j + μ0Hi Hj −
(
DkDk

ε0
+ Bk Bk

μ0

)
δi j

2
,

σ EM[ j i] = Pj Ei − Pi E j

2
+ μ0

2

(
Mj Hi − Mi Hj

)
,

(6)

where the second contribution represents the tensor form of
the classical electromagnetic torque.

According to [23], applying the divergence theorem to the
total MST allows to transform the long–range forces f EM

i
into short–range ones by:

t EM
i = σ EM

ji n j , (7)

where t EM
i denotes the Maxwell traction vector.

2.2 Total linear momentum balance

FromNoether’s theorem, the linear momentummust be con-
served since the Lagrangian (function of movement) must
be independent of the origin. Considering both mechanical
and electromagnetic forces, the balance of linear momentum
establishes the relationship between long–range and short–
range forces by:

∫

Γ

(
ti + t EM

i

)
dΓ +

∫

Ω

fi dΩ = 0, (8)

Applying the divergence theorem to the previous first inte-
gral, taking into account (1) top and (7), the local form of (8)
becomes:

(
σ j i + σ EM

ji

)
, j + fi = 0. (9)
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2.3 Total angular momentum balance

Also, from Noether’s theorem, the angular momentum must
be explicitly conserved since the Lagrangian function must
be independent of the measurement angle. Depending on the
material constitution, theMST skew–symmetric partmay be:

� σ EM[i j] = 0, then the angular momentum balance is auto-
matic stated.

� σ EM[i j] �= 0, then the angular momentum balance must be
explicitly guaranteed in the formulation.

With xi denoting the position vector that locates each
material point, for the second case and applying the defi-
nition of angular momentum, the second balance reads:

∫

Γ

[
ei jk xi

(
t j + t EM

j

)
+ mk

]
dΓ +

∫

Ω

ei jk xi f j dΩ = 0.

(10)

Again, the divergence theorem may be applied to the first
term on the left-hand side of (10). Taking into account (1)
bottom and (9), the balance of angular momentum in local
form reads:

τ j i, j + ei jk
(
σ jk + σ EM

jk

) = 0. (11)

3 On the symmetry of theMaxwell tensor

Based on the equations of the previous section, the main
objectives are now: i) to analyse the CCM limitations to
study the MST skew–symmetric part, ii) to formulate a new
approach based onMM to include theMST skew–symmetric
part. To address i), a revision of the different approaches for
the MST is conducted.

3.1 Classical continuummechanics approaches

In the CCM framework, the couple stress tensor and the
micro–rotations are absent: τ j i = θi = 0. In this context,
at least three approaches exist to study the MST in the liter-
ature. The most important approaches are listed to highlight
the absence of rotations.

3.1.1 Rinaldi

This approach was developed in [31] and is grounded on the
lack of physical meaning in the mixture of long– and short–
range forces. Specifically, even though the long–range force
f EM
i (called maxwellian in the reference) may be mathe-

matically expressed as a short–range force t EM
i related with

σ EM
ji , as in (7), the reference argues that (7) is not unique

but “arbitrary to within an additive divergence–less tensor”.
In this context, [20] also discusses the wrong “conceptual
replacement” since t EM

i has no physical sense “unless it is
integrated over a closed surface”.

Rinaldi concludes that the short–range forces must exclu-
sively come from the classical and symmetric Cauchy stress
tensor σC

(i j). Consequently, the linear (9) and angular (11)
balances simplify to:

⎧
⎪⎨

⎪⎩

σC
(i j), j + f EM

i + fi = 0,

ei jkσC
( jk) = 0 ⇒ σC

(i j) = σC
( j i),

(12)

Finally, Rinaldi remarks that f EM
i can only be replaced by

σ EM
ji, j if the electromagnetic torque is added to (12) bottom.

3.1.2 Eringen

This approach reported in [4] modifies the balance of linear
electromagnetic momentum (4) by splitting f EM

i as the sum
of long–range Lorentz f Li and of short–range ponderomotive
f PM
i forces:

f EM
i = f Li + f PM

i = σ EM
(i j), j + σ EM[ j i], j . (13)

Also, Eringen argues that f PM
i only generates angular

momentum, and therefore, it is not included in the linear
momentum (9):

(
σC

( j i) + σ EM
( j i)

)
, j + fi = 0. (14)

3.1.3 Total stress

This approach is the most published: [1, 2, 19, 37]. It is
grounded in the definition of a symmetric total stress σ T

(i j)
as the sum of a non–symmetric and Cauchy–like tensor σi j
plus the MST tensor:

σ T
(i j) = σC

(i j) − σ EM[i j]︸ ︷︷ ︸
σi j

+ σ EM
(i j) + σ EM[i j]︸ ︷︷ ︸

σ EM
i j

= σC
(i j) + σ EM

(i j) . (15)

As argued in [1], this σ T
(i j) includes both long–range (electro-

magnetic) and short–range (mechanical) forces and satisfies
boundary conditions. Along that line, the reference criticised
Rinaldi’s approach for not considering proper boundary con-
ditions. Still within CCM, the linear (9) and angular (11)
balances become:

⎧
⎪⎨

⎪⎩

σ T
(i j), j + fi =

(
σC

(i j) + σ EM
(i j)

)

, j
+ fi = 0,

ei jkσ T
( jk) = 0 ⇒ σC

[i j] = −σ EM[i j] ,

(16)
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Fig. 2 Polarisable body composed of electric dipoles pei defined by two
electric charges q+, q− represented by rigid bodies (zoom): stretching
and rotation of pei under electric field

This approach results in the same set of equations as (13)
of Eringen from the previous subsection.

3.2 Micropolar mechanics

As commented, CCM represents each material point only
by its centre of mass. A more sophisticated formalism such
as MM can better describe the electric and magnetic dipole
rotations at the micro–continuum scale.

Consider the polarisable medium shown in Fig. 2 (the
same arguments hold for magnetisable media) composed of
electric dipoles qi , defined by two electric charges q+, q−.
As observed in the zoom and argued in [7], qi will stretch
and rotate an angle θi upon application of an electric field.
CCM captures the stretch, but a GCM approach such as MM
must be used to study the rotation. Under this approach, the
balances of linear and angular momentum read:

⎧
⎪⎪⎨

⎪⎪⎩

(
σC

(i j) + σC
[ j i] + σ EM

ji

)

, j
+ fi = 0,

τ j i, j + ei jk
(
σC

[ jk] + σ EM[ jk]
)

= 0,

(17)

where σC
[ j i] may be considered null in a first approximation,

see Sect. 4. Notice that with this nullity and according to [18],
σ EM[ jk] is closely related to a parameter called coupling num-
ber, which depends on the microstructure (intrinsic lattice
size scale) of each material.

In conclusion, the current MM approach has several
advantages, allowing to:

– sum the symmetric Cauchy σC
(i j) to the non–symmetric

Maxwell σ EM
ji , since the angular momentum balance is

fulfilled by the additional (17) bottom.
– use the classical constitutive equations of piezoelectrics
and/or piezomagnetics (see Sect. 4) since they are
expressed using only the symmetric part σC

(i j).
– calculate the rotation of the electric/magnetic dipoles,
and from it, the generated electromagnetic torque τ j i ,
relevant for mechatronic devices.

– recover the standard total stressmethod if themicrostruc-
ture is not considered and τ j i = 0.

4 Magnetostrictive governing equations

This section particularises the MM governing equations
for the magnetostrictive problem used in the numerical
experiments of Sect. 6. Seven dofs are considered: three
macro–displacements ui , three micro–rotations θi , and the
scalar magnetic potential ϕ.

The governing equations comprise balance (linear and
angular) momenta, compatibility equations, boundary con-
ditions, and material constitution. For the sake of clarity, this
section summarises all equations.

4.1 Balance equations

The balance equations for the MM approach given in (17)
are rewritten here without the separation into symmetric
and skew-symmetric contributions. In addition, the magnetic
field is balanced by theGauss law, the second of (2) to obtain:

σ j i, j + fi = 0,

τ j i, j − 2σ×
i = 0,

Bi,i = 0

(18)

Assuming σC
[ j i] = 0, the tensor σ j i without the electric

field and the new pseudo-vector σ×
i read:

σ j i = σC
(i j) + Bj Hi − Bk Bk

2μ0
δ j i ,

σ×
i = −1

2
ei jkσ jk,

(19)

where the latter may be expressed in matrix form as:

{σ×
i } = 1

2

⎧
⎨

⎩

B3H2 − B2H3

B1H3 − B3H1

B2H1 − B1H2

⎫
⎬

⎭
. (20)

4.2 Compatibility equations

Again, two compatibility equations must be considered due
to the existence of mechanical and magnetic fields. For the
former, the strain measures–energetically conjugated to σ j i

and τ j i from the first and second (18)–may be obtained
from the additive decomposition of motion shown in Fig. 3.
Then, the total deformation process may be mathematically
represented by the gradient of macro–displacements u j,i

composed of:
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Fig. 3 Micropolar mechanics deformation process, combining
mechanical deformations and dipole micro–rotations, as in Fig. 2

I A mechanical deformation given by γ j i .
II A pure rotation of the microstructure given by the skew–

symmetric tensor Θ j i = −e jikθk .

Unlike the CCMmodel, for which there is only one strain
measure, in theMMframework and as in somebeam theories,
there are two deformation measures:

γ j i = u j,i − ei jkθk, χ j i = θ j,i , (21)

whereχ j i is the gradient ofmicro–rotations.As observed, the
CCM strain measure is recovered without micro–rotations.

The magnetic compatibility equation may be obtained by
applying Helmholtz’s theorem to the last Maxwell law (2)
without electric terms to get:

(
Hjei jk

)
,i = 0 ⇒ Hi = −ϕ,i (22)

4.3 Material constitution

The piezomagnetic constitutive equations used in the numer-
ical experiments of Sect. 6 are presented as a set of four
equations:

σC
(i j) = Ci jkluk,l − eϕ

i jk Hk, σC
[i j] = −C̄i jkleklmθm,

Bi = eϕ
i jku j,k + μi j H j , τi j = C∗

i jklχkl ,

(23)

where Ci jkl , e
ϕ
i jk , μi j and C∗

i jkl are the elastic fourth–order
tensor, piezomagnetic third–order tensor, magnetic perme-
ability second–order tensor and micro–elastic fourth–order
tensor, respectively. Furthermore, a new fourth–order tensor
denoted by C̄i jkl depends on the coupling number, see [18],
assumed to be zero in the present work for simplicity.

Assuming the nine–component Voigt notation of Table 1
and considering that the material is magnetised along the x3

Table 1 Tensorial notation with double indices (·)i j and equivalent
Voigt notation with single indices (·)I
Tensorial 11 22 33 12 21 23 32 31 13

Voigt 1 2 3 4 5 6 7 8 9

direction as shown in Fig. 5, these constitutive tensors may
be expressed in matrix forms as in the Appendix 1. ForC∗

i jkl ,
the two micromechanical material coefficients lt and lb are
the twisting and bending characteristic lengths; see [17].

4.4 Boundary conditions

For this coupled formulation, Dirichlet (essential) ΓD and
Neumann (natural) ΓN boundary conditions are split into
mechanical (Γ u

D, Γ u
N ) and magnetic (Γ

ϕ
D , Γ

ϕ
N ), satisfying:

Γ u
D ∪ Γ u

N = Γ ; Γ u
D ∩ Γ u

N = ∅ ;
Γ

ϕ
D ∪ Γ

ϕ
N = Γ ; Γ

ϕ
D ∩ Γ

ϕ
N = ∅ ;

Denoting by ūi and ϕ̄ the prescribed displacements and
scalar magnetic potential; and by t̄C the prescribed Cauchy
traction, both boundary conditions may be expressed as:

Dirichlet : ui = ūi , ϕ = ϕ̄.

Neumann : ti ni = t̄C , Bini = 0.
(24)

Notice that there are no natural boundary conditions for
the MST since they emerge from the body forces; see (4).

5 Finite element formulation

This section briefly describes the Finite Element (FE) formu-
lation conducted to implement the theoretical MM formu-
lation reported in Sect. 4. In particular, a three-dimensional,
non–linear, and displacement–basedFE equation set is devel-
oped. There are no geometrical non–linearities since small
strain is considered, but the MST introduces material non–
linearities that quadratically depend on the magnetic field, as
shown in (20) top. For this reason, the FE formulation has
two peculiarities:

� It is based on three residuals: linear and angular momen-
tum balances plus magnetic Gauss law, to be explicitly
defined in (28).

� A complex–step formulation with a perturbation param-
eter hn is conducted, as explained in [12, 16, 35].
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5.1 Weak forms

To obtain the weak forms, the balance equations (18) are
multiplied by test functions δui , δθi , δϕ of the dofs and inte-
grated over the whole domain Ω:

∫

Ω

δui
(
σ j i, j + fi

)
dΩ = 0,

∫

Ω

δθi
(
τ j i, j − 2σ×

i

)
dΩ = 0,

∫

Ω

δϕ Bi,i dΩ = 0.

(25)

Applying the divergence theorem to the first term on the
left-hand side of each (25), the final weak forms become:

−
∫

Ω

δui, jσ j i dΩ +
∫

Γ

δui ti dΓ +
∫

Ω

δui fi dΩ = 0,

−
∫

Ω

δθi, jτ j i dΩ +
∫

Γ

δθimi dΓ −
∫

Ω

δθi2σ
×
i dΩ = 0,

−
∫

Ω

δϕ,i Bi dΩ = 0.

(26)

5.2 Discretisations and residuals

In the present FE formulation, eight–noded elements with
standard Lagrange functions N a at node a are used for the
discretisation. In particular, the dofs and their test functions
may be expressed by an isoparametric formulation as:

ui ≈ N a
i I(ūai ), θi ≈ N a

i I(θ̄ai ), ϕ ≈ N a
i I(ϕ̄a

i ),

δui ≈ N a
i I(δūai ), δθi ≈ N a

i I(δθ̄ai ), δϕi ≈ N a
i I(δϕ̄a

i ),

(27)

where I denotes a complex number. The residuals at each
node a are obtained by introducing the discretisations of (27)
in the weak forms of (26) to give:

Ra
ui = −

∫

Ωe

Ba
i JσJ dΩe +

∫

Ωe

N a fi dΩe +
∫

Γe

N ati dΓe,

Ra
θi

= −
∫

Ωe

Ba
i J τJdΩe −

∫

Ωe

N a2σ×
i dΩe+

∫

Γe

N amidΓe,

Ra
ϕ = −

∫

Ωe

Ba
i Bi dΩe,

(28)

where the uppercase subscripts refer to Voigt’s notation of
Table 1 and the matrices Bi J and Bi at each local node a are:

[Ba
J i ] =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

N a
,1 0 0
0 N a

,2 0
0 0 N a

,3
N a

,2 0 0
0 N a

,1 0
0 N a

,3 0
0 0 N a

,2
0 0 N a

,1
N a

,3 0 0

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

, {Ba
i } =

⎧
⎨

⎩

N a
,1

N a
,2

N a
,3

⎫
⎬

⎭
. (29)

5.3 Tangent matrices

The complex–step method easily allows for computing the
multi–coupled tangent matrices. These matrices are the
derivatives of the residuals Ra(ub) for node a in terms of
a generic nodal unknown ub. Then, writing a Taylor series
expansion about ub in terms of an imaginary change of each
dependent variable at node n, one may write:

Ra(ub + i δbnhn) = Ra(ub) + ∂Ra

∂un
(i hn) +

1

2!
∂2Ra

∂u2n
(i hn)2 + 1

3!
∂3Ra

∂u3n
(i hn)3 + · · · ,

(30)

which upon collecting terms, yields:

Ra(ub + i δbnhn) =
[
Ra(ub) − 1

2!
∂2Ra

∂u2n
h2n

]
+

i

[
∂Ra

∂un
hn − 1

3!
∂Ra

∂u3n
h3n

]
+ · · · ,

(31)

For cases where the higher derivatives are well behaved
and using small values hn = 10−40, all residuals and tangent
matrices are computed to full numerical accuracy from:

Ra ≈ 
[Ra(ub + i δbn hn)
]
,

∂Ra

∂un
≈ 1

hn
�[Ra(ub + i δbn hn)

]
.

(32)

This formulation is implemented into the research code
FEAP [36] by using one of its dummy elements; the present
numerical code without micro–rotations is tested against
solutions of the total MST formulation developed in [26]
obtaining perfect agreement. Notice that the multi–coupled
tangent matrix is non–symmetric due to the inclusion of the
MST and, consequently, the FEAP commandUTANmust be
used to invert the tangent matrix.
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Table 2 Terfenol–Dmaterial properties at |H| = 100 [kA/m] from [33]:
Ci j stiffness, e

ϕ
i j piezo-magnetic coupling, μi j magnetic permeability

and lb = lt micromechanical characteristic lengths

Property Value Unit

C11 / C33 / C44 36 / 46.5 / 4.2 [GPa]

C66 / C12 / C13 9.1 / 17.7 / 23.3 [GPa]

eϕ
31 / e

ϕ
33 / e

ϕ
15 −0.31/ 1.99 / 1.39 [N/A·m]

μ11 / μ33 1.02 / 0.38 [N·s2/C2]×10−5

lb / lt 10−5 [m]

6 Numerical experiments

This section presents four numerical experiments to study
the influence of the skew–symmetric part of the MST on the
magneto–mechanical response in a magnetostrictive mate-
rial under magnetic fields. For this purpose and as in [26], a
magnetostrictive rod of length 6 [mm] and diameter 2 [mm]
is simulated. The rod is made out of the alloy Terfenol–D,
with properties listed in Table 2; the order of magnitude for
lb, lt is taken from [3] for the crystal grains ofmanymagnetic
materials.

This alloy presents transversely isotropic planes x1–x2
since themagnetisationM3 is along the x3 axis, see the Fig. 4;
therefore, the planes containing x3 are anisotropic.

The skew–symmetric MST plays an essential role in acti-
vating the rotations as long as two conditions are met:

– Themagnetic field Hi interacts with an anisotropic plane,
not with the transversely isotropic plane.

– The field is oblique to this anisotropic plane.

The idea is to prescribe an Hi that activates the skew–
symmetric term σ×

i of (20), generating couple stresses τ j i
and therefore micro–rotations θi . These rotations are closely
related to the existence of the microstructure, introduced in
the FE model by the lb and lt scale parameters in the third
tensor of the Appendix 1.

For all numerical experiments, the rod geometry is discre-
tised by a FEmesh composed of 3,840 eight–noded elements,
including 6,300 nodal points with seven dofs, as shown in
Fig. 4 left. The mechanical dofs ui and θi are fixed at the rod
bottom, the rest are free. Since the present is a displacement–
based FE formulation, no tractions are prescribed due to the
absence of mechanical forces or pressures.

To prescribe nonuniformmagnetic fields for the first three
experiments with the FE method, a discretised air domain
with dimensions 3×3×6 [mm] wraps the Terfenol–D rod:
the additional mesh of 2,560 elements and 4,200 nodes is
represented in Fig. 4 right. The vacuum permeability of air
is μ0 = 1.256×10−6 [N/A2], and its mechanical dofs from

Fig. 4 Finite elementmesh of theTerfenol–D rod (left) for all numerical
experiments; finite element mesh of air (right) for numerical experi-
ments 1 to 3

Table 3 For Fig. 4 left, definition of external faces by constant coor-
dinates in [mm], and prescribed magnetic potential ϕ in [A] for three
numerical experiments

Face Expr. 1 Expr. 2 Expr. 3

x1 = 1.5 0 − 10 − 10

x1 = −1.5 0 − 10 0

x2 = 1.5 − 10 free free

x2 = −1.5 − 10 free free

x3 = 0 free 0 0

x3 = 6 free 0 0

the coupled FE of Sect. 5 are deactivated so that only one FE
type is used though the analyses for both materials.

In Table 3, the magnetic boundary conditions for the cases
in the next subsections are listed; if no prescription is applied,
the word “free” is indicated.

6.1 Magnetic field in transversely isotropic planes

The quadrupole magnetic field reported in [5] is chosen for
the first three experiments. In the laboratory, the quadrupole
is created by four magnets arranged so thatH varies with the
radial distance in planes x1–x2, but the field is constant along
the x3 axis. The magnetic potential boundary conditions are
sketched in Fig. 5 left and listed in Table 3, producing a
field that curves from one vertical side to the contiguous one
(centre figure): then, H1 ≈ H2 and H3 = 0. The field is
almost axisymmetric, as seen in the figure of the right for H
(smoothed through the whole mesh by the SPSVERBa1 soft-
ware). But the critical domain is the Terfenol–D rod, where
the field is uniform.

The maximum generated H is 22 [kA/m], a value that
could be obtained by a commercial magneto cell under an
electric intensity of only 5 [A].
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Fig. 5 Quadrupole magnetic field. Boundary conditions of magnetic scalar potential ϕ in [A] applied to external vertical sides (left); direction of
the magnetic field lines (centre); contour plot of the resulting magnetic field module in [A/m] (right). External dimensions 3×3×6 [mm]

Table 4 Calculation time (with respect to CCM–w/o) to solve the
numerical experiment of Fig. 5 with three models. Number of Newton–
Raphson iterations and converged residual norm for each experiment

Model Relative # iter. Residual
CPU norm

CCM–w/o 1 1 1.69×10−16

CCM–w 1.5 2 1.82×10−17

GCM 6.3 2 1.82×10−17

Figure 6 shows the resulting contour plots for the three
micro–rotations θi generated inside the rod. As observed in
the figure and expected, the micro–rotations are strictly zero
in the air (green level) since its mechanical rigidity is null.
The order of magnitude inside the Terfenol–D is 10−13 [rad],
not zero but almost numerical noise. This result is logical
since under the quadrupole the magnetic field is contained in
the transversely isotropic planes x1–x2, and no rotations are
activated as it will be demonstrated in (36).

The main shortcoming of the present MM formulation is
the necessary CPU time: Table 4 shows the calculation times
of three models for the current numerical experiment. The
first row is for CCM without Maxwell stress tensor (CCM–
w/o), the second for CCM with total Maxwell stress (CCM–
w), and the third for the present GCM.

All simulations are executed in a dual–core Intel Core i5-
2500T running at 2.3 [GHz]. For the first two models, the FE
element developed in [26] was used with the mesh of Fig. 4.

As observed, theCPU time is substantially higher forMM,
mainly because the three micro–rotations are extra nodal
unknowns. The dofs are the same for the CCM–w/o and
CCM–w models; however, the CPU time differs due to the
non–linearity of theMST, which requires one more Newton–
Raphson iteration. In this context, SPSVERBa1 calculates
for all models the value:

val = ||Rk+1||
||R0|| ≤ tol, (33)

The residuals’ superscripts k + 1 and 0 refer to the current
and the first iterations, respectively. The solution is reached
when val is lower than the computer–dependent tolerance
tol = 10−16.

6.2 Symmetric magnetic field in anisotropic planes

With the previous mesh, the micro–rotations are now studied
with the boundary conditions of Fig. 7 left and of Table 3.
Now H varies in the vertical planes but not in the horizontal
ones. In this way, the magnetic field curves from ϕ = 0 [A]
to all planes but primarily to the vertical ones crossing the
anisotropic planes as in the centre figure.

In Fig. 8, the resulting rotations are plotted. The micro–
rotation θ3 is again only numerical noise (almost zero) since
the only magnetic field to produce this component would be
in the isotropic plane x1–x2 (of the Sect. 6.1 type), but as
mentioned and demonstrated in Sect. 6.4, these fields do not
create micro–rotations. The other two components are six
or seven orders of magnitude higher than those of Sect. 6.1,
thanks to the prevalence of the H3 component; H1 is also
high but only at the edges of x1 constant. The value of θ2 is
almost three times larger than that of θ1 due to the magnetic
field concentration on some of the edges.

In any case, the micro–rotations are still much smaller
than expected for an H partially applied in an anisotropic
plane. There are two reasons for these low values: i) the
perpendicularity of H to the planes x1–x2 in some zones of
the rod, and ii) the symmetry of this field that partially cancels
θ1 and θ2 since the field concentrations at edges of the plane
x1 = 1.5 equilibrates the effect of the other concentrations at
x1 = −1.5, see the Fig. 7 right.

6.3 Nonsymmetric magnetic field in anisotropic
planes

Again, with the quadrupole set, the micro–rotations are par-
tially activated in this experiment. In Fig. 9 left, the boundary
conditions are changed so thatH varies in the vertical planes
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Fig. 6 Terfenol–D rod wrapped by air under the nonuniform magnetic field of Fig. 5. Contour plots of micro–rotations in radians generated by the
skew–symmetric part of the Maxwell stress tensor

Fig. 7 Modified quadrupole magnetic field. Boundary conditions of magnetic scalar potential ϕ in [A] applied to external sides (left); direction of
the magnetic field lines (centre); contour plot of the resulting magnetic field module in [A/m] (right). External dimensions 3×3×6 [mm]

Fig. 8 Terfenol–D rod wrapped by air under a nonuniform magnetic field of Fig. 7. Contour plots of micro–rotations in radians generated by the
skew–symmetric part of the Maxwell stress tensor. In the central figure, only the solid is represented

but now without vertical symmetry. With the prescribed
boundary conditions of Table 3, the magnetic field curves
from the ϕ = −10 [A] face towards all others in the whole
domain.

In Fig. 10, the three rotations are represented: θ1 is still not
activated, but θ2 is already a measurable 0.01◦, and again θ3
is practically zero. The reason for θ2 > θ1 is that most of the
magnetic field curves in the x2–constant vertical plane to the

external face. In addition, the micro–rotation concentrates
close to the face under ϕ =−10 [A] for the same reason, and
any other rotation does not cancel it.

In the central figure of the highest component θ2, only
the Terfenol–D part of the mesh has been represented to
appreciate that the micro–rotation of the solid is uniform in
horizontal planes and non–linear to fulfil the zero boundary
condition at the rod base plus the free movement at the top.
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Fig. 9 Modified quadrupole magnetic field. Boundary conditions of magnetic scalar potential ϕ in [A] applied to external sides (left); direction of
the magnetic field lines (centre); contour plot of the resulting magnetic field module in [A/m] (right). External dimensions 3×3×6 [mm]

Fig. 10 Terfenol–D rod wrapped by air under a nonuniform magnetic field of Fig. 9. Contour plots of micro–rotations in radians generated by the
skew–symmetric part of the Maxwell stress tensor. In the central figure, only the solid is represented

Although appreciable, these micro– rotations are still small
since the magnetic field is primarily parallel (not oblique) to
the vertical anisotropic planes in the central part of the rod.

Figure 11 presents two distributions: the left one relates
the intensity of the magnetic potential up to a value of -
50 [A] (achievable with commercial magnets) against the
maximum θ2 of Fig. 10 centre in absolute value. The trend is
approximately quadratic, producing a substantial 25 increase
in rotations for only five in magnetic potential.

As commented before, the micro–rotations depend on the
micro–scale parameters lb = lt . For this reason and to study
their influence on θ2, the right Fig. 11 plots the order of mag-
nitude of the maximum micro–rotation versus the order of
magnitude of lb. These rotations range from a non–physical
105 for very low lb to an almost zero 10−10 [rad] for very
high lb; the real values given in [3] range from 10−4 to 10−6.

To understand the linearity of the result, consider the equa-
tions that govern the macro–mechanical bending of a beam:

∂Mb

∂x
= mb

Mb = E I
∂φ

∂x

⎫
⎪⎬

⎪⎭
⇒ φ = mb

2E I
x2, (34)

withMb,mb, E , I , andφ denoting bendingmoment,moment
source, Young modulus, second moment of area, and cross–
section rotation in any plane, respectively. The integration of
φ does not conserve constants due to the “cantilever”–type
boundary conditions of Fig. 4.

For the current MM analogy, m is closely related to the
skew–symmetric part of the MST and I to the bending scale
length lb, which can be interpreted as the inertia of the
micro–continuum. Consequently, the maximum of the three
rotations fromFig. 7 (right) inversely depends on lb as in (34),
that is, the lower its value, the higher the micro–rotations and
the relationship is linear.

6.4 Uniform obliquemagnetic field in anisotropic
planes

The objective of the last numerical experiment is to analyse
the influence of a completely oblique magnetic field on the
generation of substantial micro–rotations. The importance
of this study is that, for real materials, the initial magnetisa-
tion direction M3 of the grains can rotate a different amount
under the presence of a variable H, provoking the domain
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Fig. 11 For experiment of
Fig. 9: left: absolute value of
maximum micro–rotation in
plane x1–x3 versus prescribed
magnetic potential; right:
exponent of 10 for
micro–rotation versus same
exponent for microstructure
scale parameter

Fig. 12 Left: Applied magnetic
field H̄ function of the angle α.
The M3 vector denotes the
magnetisation direction of the
Terfenol–D rod. Right:
Maximum micro–rotation in
absolute value in plane x2–x3
versus α

switch phenomena and changing the macroscopic response
of magnetostrictives.

As observed in the left Fig. 12, the numerical experiment
considers the Terfenol–D rod magnetised along x3 under the
action of an oblique and constant magnetic field function
of the variable angle α. A vertical H3 = 22 [kA/m] is first
considered; to study the effect of different directions of the
magnetic field in the plane x2–x3, a rotation with a variable
angle α is calculated:

⎧
⎨

⎩

H̄1

H̄2

H̄3

⎫
⎬

⎭
=
⎡

⎣
1 0 0
0 cosα − sin α

0 sin α cosα

⎤

⎦

⎧
⎨

⎩

0
0
H3

⎫
⎬

⎭
, (35)

Although the present FE is not mixed and, therefore,
first derivatives cannot directly be prescribed, thanks to the
fully nonlinear formulation, the calculated H̄1, H̄2, H̄3 are
introduced in the SPSVERBa1 input as Neumann boundary
conditions. Then, they can be automatically assigned to the
nodal values of the magnetic field during the first iteration.

Figure 12 right plots the calculated maximum micro–
rotation inside the rod in absolute value versus α. As
observed, the micro–rotations are null for both α = 0◦ and
α = 90◦ since the applied magnetic field is parallel (almost

as in Sect. 6.2) and perpendicular (as in Sect. 6.1) to M3.
Increasing α from zero, the micro–rotations increase to a
maximum of 0.0665 [rad] for α = 45◦.

The explanation of this distribution can be found in the
second (18), which can be expanded to:

⎧
⎨

⎩

τ11,1 + τ21,2 + τ31,3
τ12,1 + τ22,2 + τ32,3
τ13,1 + τ23,2 + τ33,3

⎫
⎬

⎭
+
⎧
⎨

⎩

B2 H̄3 − B3 H̄2

B3 H̄1 − B1 H̄3

B1 H̄2 − B2 H̄1

⎫
⎬

⎭
=
⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
,

(36)

where the diagonal entries τi i can be regarded as MM tor-
sional moments and the off–diagonal τi j as MM bending
moments. Consider first that Bi is approximately propor-
tional to Hi (u j,k is very small); then the second and third
entries of the second vector at the left–hand side of (36) are
zero (in this experiment ∀α → H̄1 = 0 and therefore B1 ≈
0). Since from Table 2 μ22 = μ11 = 2.68μ33, the non–zero
components H̄3 and H̄2 of Fig. 12 contribute to the first entry
as:

B2 H̄3 − B3 H̄2 ≈ −4230 sin α cosα (37)
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Fig. 13 Contour plots of micro–rotation θ1 (left), couple stress τ31 (middle) and contribution of skew-symmetric MST from (38) (right) all for
angle α = 45◦ of Fig. 12 left. Deformed meshes magnified by a factor of 50,000

The right–hand side previous equation is maximum at
α = 45◦ and zero at α = 0◦ or 90◦ (vertical or horizontal
H̄ respectively), values that explain the maximum and min-
imums of Fig. 12 right. These two values also explain the
nullity of the micro–rotations of Fig. 6 and, in part, the low
values of Fig. 9, since for these angles, the second vector of
the (36) right–hand side is nil. In these two experiments, the
three equations give the trivial solution τ j i = 0, and without
source, all micro–rotations are zero.

The discussion of (36) is qualitative but not quantitative:
the difficulty lies in finding the distribution of the rotations
inside the Terfenol–D rod, for which the present numeri-
cal method is necessary. Figure 13 shows FE contour plots
(deformed mesh with zoom ×50,000) generated with the
boundary conditions of Fig. 12. In the left figure, a non–
linear distribution is observed due to the clamped fixation of
the rod at the bottom end. The same non–linearity is observed
for the τ31 component of the couple stress in the central fig-
ure, with a non–negligible reaction of 9.1 [N·m] at the fixed
end; the deformed mesh shows a global bending of the rod,
a shape that cannot be produced with, for instance, the CCM
model.

To quantify the influence of the MST skew-symmetric
part, the Fig. 13 right shows a ratio between the Frobenius
norm of σ EM[ j i] and that of σ EM

ji :

N =

√
trace

(
σ EM[i j] σ EM[ j i]

)

√
trace

(
σ EM
i j σ EM

ji

) . (38)

The figure shows that the ratio is approximately constant
since the applied magnetic field is also constant in the bar.
The MST skew–symmetric part is significant given that it
generates about 6% of the total.

One interesting outcome of the present study is that
the mentioned “domain switching” phenomena could be
explained with the micro–rotations and the influence of the

magnetic dipoles’ rotation on the magnetic material proper-
ties. These investigations will be studied in future work.

7 Concluding remarks

The present article has presented a theoretical and numerical
formulation based on the finite element method to inves-
tigate the influence of the non–symmetry of the Maxwell
stress tensor. This tensor contains a skew–symmetric contri-
bution necessary for the study of rotations in non–isotropic
materials; physically, these local rotations arise from the con-
servation of angular momentum.

In the framework of classical continuum mechanics, the
total stress tensor formulation allows for calculating dis-
placements of the center of mass at each material point
but does not calculate rotations. On the contrary, extended
formulations such as the current generalised continuum
mechanics take into account the skew–symmetric part of the
Maxwell tensor, which generates local rotations and couple
stresses.

Numerically, a three-dimensional finite element formu-
lation with seven degrees of freedom (three displacements,
three micro–rotations, and the magnetic scalar potential)
using a complex–step approach for the tangent matrices has
been formulated and implemented in the research finite ele-
ment code FEAP.

Four numerical experiments have been studied to extract
the following consequences:

– The skew–symmetric part of the Maxwell stress tensor
generates both micro–rotations and couple stresses that
depend on i) scale parameters (microsize–dependency)
closely related with the internal structure of the magnetic
materials and ii) orientation of the prescribed magnetic
field.
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– In the classical continuum mechanics framework, the
scale parameters of i) are null and, therefore, there are
no micro–rotations.

– The dependency of ii) could explain the highly non–
linear domain switching mechanisms in magnetostric-
tive/electrostrictive materials since the rotations of the
internal grains change the magnetisation/polarisation of
materials.

– For a magnetic field of 22 [kA/m] and for Terfenol–D
material, the order of magnitude of these micro–rotations
is up to 0.066 radians and its corresponding couple stress
−9 [N·m].

In summary, the skew–symmetric part of theMaxwell ten-
sor is a relevant 6% of the total. Therefore this part should
be considered inmodern and sophisticated electro–magneto–
mechanical devices.
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A constitutive matrices

This appendix reports the matrix forms of the constitutive
equations used in the present work.

[Ci jkl ] =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

C11 C12 C13 0 0 0 0 0 0
C12 C11 C13 0 0 0 0 0 0
C13 C13 C33 0 0 0 0 0 0
0 0 0 C66 C66 0 0 0 0
0 0 0 C66 C66 0 0 0 0
0 0 0 0 0 C44 C44 0 0
0 0 0 0 0 C44 C44 0 0
0 0 0 0 0 0 0 C44 C44

0 0 0 0 0 0 0 C44 C44

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

,

[eϕ
i jk] =

⎡

⎣
0 0 0 0 0 0 0 0 0
0 0 0 0 0 eϕ

15 eϕ
15 0 0

eϕ
31 eϕ

31 eϕ
33 0 0 0 0 eϕ

15 eϕ
15

⎤

⎦ ,

[μi j ] =
⎡

⎣
μ11 0 0
0 μ11 0
0 0 μ33

⎤

⎦ ,

[C∗
i jkl ] =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

C∗
11 0 0 0 0 0 0 0 0
0 C∗

11 0 0 0 0 0 0 0
0 0 C∗

33 0 0 0 0 0 0
0 0 0 C∗

66 0 0 0 0 0
0 0 0 0 C∗

66 0 0 0 0
0 0 0 0 0 C∗

44 0 0 0
0 0 0 0 0 0 C∗

44 0 0
0 0 0 0 0 0 0 C∗

44 0
0 0 0 0 0 0 0 0 C∗

44

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

,

with C∗
11 = C44l2t , C

∗
33 = C66l2t , C

∗
66 = C66l2b and C∗

44 =
C44l2b .
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