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Abstract

We propose a phase-field model of shear fractures using the deviatoric stress decomposition. This choice allows us to use
general three-dimensional Mohr—Coulomb’s failure function for formulating the relations and evaluating peak and residual
stresses. We apply the model to a few benchmark problems of shear fracture and strain localization and report remarkable
performance. Our model is able to capture conjugate failure modes under biaxial compression test and for the slope stability

problem, a challenging task for most models of geomechanics.
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1 Introduction

The shear failure of brittle materials in compression, also
known as shear bands or localized strains, are one of the
dominant modes of failure in geo-structures. It has recently
emerged as an active research topic due to its interest in struc-
tural geology and engineering. The growing interest stems
from its engineering applications in subsurface energy tech-
nologies, including enhanced geothermal energy systems
where the hydro-shearing technique is aimed to reactivate
and slide the preexisting fracture network to increase the
rock mass permeability [1-4], large-scale CO, sequestration
indeep saline aquifers [5—7], impoundment and level changes
of artificial water reservoirs of hydropower plants [8—11] and
underground natural gas storage facilities [12], where their
mechanics are crucial to understanding the stability of faults
and hence earthquake mechanisms [13—16]. Other engineer-
ing applications include fault and slope stability assessment
[17, 18], or the stability of faults during the groundwater
injection and production operations [19, 20].
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The simulation of shear fracturing processes is a chal-
lenging task. The finite element method (FEM) has been the
dominant numerical method for modeling solids and con-
tinua. Classically, two fundamentally different perspectives
are proposed to study compressive fractures using FEM:

— Discrete fracture models (DFM) that are based on the
classical theory of linear elastic fracture mechanics
(LEFM) founded by Griffith [21] and Irwin [22].

— Smeared fracture models (SFM) that are based on the
classical theory of continuum damage mechanics (CDM)
proposed initially by Kachanov [23].

Each class includes extensive literature dating back to the
1960s that is out of the scope of this text to cover compre-
hensively. Therefore we only point the interested reader to a
few primary studies of each class.

Within the DFM realm, common approaches include
node duplication on fracture interface [24-26], strong dis-
continuity approaches [27-38], and extended finite element
methods (XFEM) [36, 39—47]. These methods require using
geometrical algorithms to trace the fracture propagation,
which has been found very challenging for generic three-
dimensional setups. Such methods are efficient for modeling
single fractures. However, they become quickly impractical
when dealing with complex fracture nucleation and propa-
gation patterns.

As per the SFMs, we can point to continuum damage mod-
els (CDM) [23, 26,48-52], peridynamic models [53-62], and
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phase-field models (PFM) [63—-68], which we discuss next
in more details. While early models showed significant mesh
dependencies, these models have been used to simulate very
complex fracture patterns under realistic conditions. Among
this class, phase-field models have been most attractive in
recent years due to their thermodynamically sound founda-
tions and their ability to model complex fracture patterns.

Phase-field models have been extensively used for model-
ing brittle, cohesive, and ductile Mode-I fracture patterns, in
elastic or poroelastic materials and homogeneous or hetero-
geneous domains [63-78] [see [79], for a detailed review].
Although Lancioni and Royer-Carfagni [98] proposed a
simple extension for shear fractures, the applicability of
phase-field for modeling shear failure remained virtually
untouched until very recently [80-82]. In a detailed study,
Fei and Choo [82] presented a phase-field formulation of
frictional fracture based on Palmer and Rice [83] theory and
using a similar stress decomposition approach to the one
proposed by Hu et al. [89] for tensile cracks. The authors
validated their model on a set of classical problems as well
as various experimental setups [84].

In the present study, we propose a phase field model of
shear failure that adapts the cohesive model of shear frac-
tures proposed by Fei and Choo [82] for deviatoric stress
decomposition (DSD) instead of the proposed contact stress
decomposition (CSD). Hence, we arrive at an alternative
descriptor for the shear fracture orientation (i.e., the a tensor)
which is solely based on the deviatoric strain. We adapt the
crack driving force to be consistent with the DSD decom-
position. The resulting formulation simplifies the damage
criterion since it results in damaging the shear modulus.
Lastly, the proposed model allows us to use the general forms
of the failure functions from the classical plasticity theory and
therefore is not limited to Mohr—Coulomb failure model.

In what follows, we first briefly describe the original
framework based on CSD. We then discuss our generaliza-
tion proposal. Lastly, we use both frameworks to model a set
of benchmark problems.

2 Phase-field method

In this section, we first describe the general phase-field frame-
work for modeling crack propagation in materials. We then
summarize the most recent CSD shear model [82]. Finally,
we discuss our proposed adjustment for better stability.

2.1 Phase-field governing equations
Consider the continua © € R? in D-dimensional space,
depicted in Fig. 1, with its boundary represented as I". The

boundary I' is subjected to Neumann boundary conditions on
I'; and Dirichlet boundary conditions on I';,, where I', UT"; =
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Fig. 1 Domain 2 with boundary I', Dirichlet boundary I';,, and Neu-
mann boundary I';. The discontinuity surface is represented by I'y with
its phase-field diffused representation as y (d)

I'andI',,NI"; = @. The set of discontinuities in the domain is
represented by a discrete surface I';. The crack’s intersection
with the boundary is considered a Neumann-type boundary
condition.

According to the phase-field formulation, the fracture’s
discrete surface I'; is approximated implicitly as a contin-
uous function over a width / using the Allen—Cahn fracture
surface density function y (d) as

1
V() = - (w(d) +12||Vd||2) , with cg = 4/ Jwb)dl
C()l 0
(D

where d is the phase-field variable, with d = 0 presenting
the intact part of the domain while d = 1 expressing a point
on I'y. w(d) is the transition function, also known as the
dissipation function, defined for cohesive cracks as w(d) = d
[85,86],hencecy = %.Accordingly,asurfaceintegral [dsis
approximated using a volume integral as f ds ~ f y(d) dv.

Assuming small deformation kinematics, and given the
displacement field u, the strain field is expressed by & =
(Vu + VuT)/2, and the crack surface density function
y (d), the total energy of a fractured continua, occupying the
domain 2 and bounded by the boundary I', shown in Fig. 1,
is expressed as

Y = _\Ijexternal + LIjinternal + \ijraclure, )

where Werternal ig the work done by the external traction
stress T and body force b, and expressed as

pexternal _ / u-tds +/ u-bdv. (3)
r, g

The fracture energy, i.e., W/74¢#7¢ s the energy dissipated

from the system to create a fracture surface I'y. Given the
energy release rate G, (per unit fracture length), W/7acture jg
expressed as
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q;fracture — gc ds ~ /S;gcy(d) dv. (4)

Ca

The stored internal energy of the system W€/ consists
of the elastic stored energy in the intact part of the domain and
stored energy in the damaged part of the domain, expressed
as

\Ilinternal =f91/f(€,d) dv. (5)

The internal energy density function ¥ (e, d) is defined as
Ve, d) = %0’ : &, which consists of both inactive and
damaged counterparts. For the intact part of continuum, i.e.,
where d = 0, the Cauchy stress tensor o(e,d = 0) is
expressed using Hook’s law as

2
o(e,d=0) = (K—gl,L) eyl +2ue, (6)

where « and p are bulk and shear moduli of the intact mate-
rial, respectively, and ¢, is the volumetric strain, expressed
as g, = tr(e). For the parts of the domain where d > 0, the
Cauchy stress tensor is decomposed into inactive part o/ and
active part 4 as

o(e,d)=a'(e) +0%, d)

7
=o' (&) + gd)é(e) + (1 — g(d)5 (e). 7
The active part of the stress tensor undergoes the damage
process, and g(d) is a degradation function that expresses
the stress transition from bulk (¢) to fracture (6). We will
discuss these in more details in the next sections.
Therefore, there are two solution variables associated with
the phase-field formulation, the standard displacement field u
and the additional phase-field variable d. Taking the variation
of W with respect to u and d, and following the standard weak
to strong form steps of the FEM [87, 88] and phase-field [73,
82, 89], we can arrive at the following governing relations:

V-o(e,d)+b=0, (®)
3gC 22 / _
o (21 v2d — 1) — J(dyH(e) = 0. ©)

The irreversibility of the fracture process is guaranteed with
the local history field of maximum stored shear energy
H™T (e) that allows us to solve the constrained minimization
of Eq. (9) in a straightforward way [67] and avoids unphysical
self-healing. H™ () is defined as follows:

HT(e) = max (H(e)), (10)
s€[0,1]

where ¢ is time. Equation (9) is then rewritten as follows:

3G,
8l

(212v2d - 1) — JH (e) = 0. (11)

Since H > 0, non-negative d is guaranteed and, conse-
quently, the irreversibility of the fracture growth. We define
‘H(e) after describing the stress decomposition approach.

In this work, we use the Lorenz degradation function g(d)
defined as [90, 91]:

(1—d)?

12
(1= d)? + 4Ld(1 + pd) (2

g(d,p) =

where, M = G./(col) and ¢, is the critical crack driving
force at the material’s peak strength, evaluated as ¢, =
—Muw'(0)/g’(0). The damage begins to accumulate as soon
as elastic stored energy exceeds this critical threshold. Here,
we take p = 1.

2.2 Stress decomposition: introduction

The split of the strain energy density into crack driving and
intact components defines the damage mode and fracture pat-
tern. Up to date, two fundamental approaches are available.
The approaches of the first class do not take into account
the local fracture orientation, whereas the second approaches
take into consideration the local crack orientation.

The first group of models includes the isotropic model, the
volumetric and deviatoric decomposition model, the spec-
tral decomposition model, or the anisotropic models. The
isotropic model proposed by Bourdin et al. [64] where the
entire strain energy density is degraded. The volumetric and
deviatoric decomposition model proposed by Amor et al.
[92] splits the strain tensor into its volumetric and deviatoric
components. This approach avoids crack inter-penetration
in composites and masonry structures. The fracture is then
assumed to be driven by volumetric expansion and devia-
toric strains. The spectral decomposition model proposed by
Miehe et al. [67] splits the strain tensor into its principal
components and only tensile components drive the fracture
propagation. The anisotropic models are based on the spectral
decomposition of the strain tensor using other projections,
such as the eigenvalue and eigenvector of the effective stress
tensor [93].

The second group of approaches take into consideration
the local crack orientation. The directional model proposed
by Steinke and Kaliske [94] splits the stress tensor into the
crack driving and persistent components using the fracture
orientation. For each point, a fracture coordinate system is
defined and the fracture orientation is obtained from the max-
imum principal stress direction. Strobl and Seelig [95] and
Strobl and Seelig [96] computed the fracture orientation from
the phase-field gradients. Following this way to compute the
fracture direction, Liu et al. [97] developed a phase field
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model based on micromechanical modeling, i.e., the macro-
scopic fracture is modeled as a collection of microscopic
fractures.

In the following subsections, we describe the contact stress
decomposition (CSD), used satisfactorily to simulate shear
fractures under confining pressures, and lastly we present
our proposal based on the deviatoric stress decomposition
(DSD). Both models do not take into account the local frac-
ture orientation.

2.2.1 Contact stress decomposition (CSD)

Since a compressive fracture behaves like a contact problem,
Fei and Choo [82] proposed a stress decomposition approach
that is closely related to the contact formulation, which we
refer here as CSD. It starts by considering a corotational
coordinate system on the fracture surface with m and n as
tangential and normal vectors to the crack surface, and m
along the direction of sliding. Additionally, let us define & =
(mn 4+ nm)/2.

According to this approach and under the assumption that
the fracture remains closed, i.e., no tensile fracture, the only
stress component that should undergo damage is the shear
stress, and other stress components remain inactive. The bulk
shear stress can be expressed as

T=0:0=UEy, (13)

where ¢, =2 €& :a =2 m-e-n.Consider the contact shear
stress as 7. Then, the inactive stress tensor is expressed as

ol =a(e,d =0) - pney a, (14)

and the active stress tensor as

o =14, where 4 = ney gd)+7 (1 —g(d)).

(15)

Here, 7 is the residual contact stress while the fracture is fully
developed, i.e.,d = 1.

Remark 1 Given the Mohr—Coulomb’s failure function as,
F=|t|—optanp —c =0 (16)

with 0, = n - ¢ - n as to normal stress on the fracture sur-
face, and c and ¢ as cohesion and friction angle of the intact
material, the peak and residual shear stresses are expressed
as

T, =c+o,tan(g), T =c, + oy tan(e,), 17
where ¢, and ¢, are residual friction and cohesion at the fully
developed failure state.

@ Springer

Remark 2 Based on the Mohr—Coulomb failure criterion, the
critical plane for the failure is evaluated at two conjugate
angles 6 = (45° — ¢, /2) [27] with respect to the direc-
tion of the maximum principal stress. However, the authors
only consider 8 = +(45° — ¢,/2) [see [82], Eq. 56]. This
restriction is required otherwise m, n is not uniquely defined.

2.2.2 Our proposal: deviatoric stress decomposition (DSD)

The total strain tensor can be decomposed into volumetric
and deviatoric parts, as € = ¢,1+ e. We can also express the
Cauchy tensor in terms of the mean confining stress p and
the deviatoric stress tensor s as ¢ = — p1+s. Therefore, we
can re-write Hook’s law for the intact part as [98, 99]

o(e,d=0)=—pl+s=«e1+2pue. (18)
Given the equivalent deviatoric (Mises) stress ¢ = (%s :
$)1/2 and the equivalent deviatoric strain &, = (%e :e)l/?

and with some algebra, we can write that
q = 3ue,. (19)
Let us now define the Unit Deviator Tensor o, as

2e
.1

Hook’s law can therefore be expressed as

where oy || = Jag oy =1, (20)

2
o=—-pl+ \/;qaq, where p =«key, g =3ug;. (21)

Equivalent to the CSD, we can describe the compressive
failure in a material as damage in the deviatoric stress com-
ponent. Therefore, the compressive pressure becomes the
inactive part of the stress tensor, i.e.,

ol = —pl =«ke,l, (22)
and active stress is described as

ot = q(e,d)ay, where ¢g(e,d) = g(d)g+(1—g(d))qr,
(23)

where the bulk deviatoric stress is ¢ = 3.

Remark 3 This deviatoric stress decomposition allows us to
leverage the general form of virtually any failure surface that
are described in the classical plasticity theory, including the
Mohr—Coulomb failure function. Given the friction angle ¢
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and cohesion coefficient ¢, the general form of the Mohr—
Coulomb’s failure criterion is expressed as

Here, R js¢ defines the shape of the Mohr—Coulomb’s failure
surface and is expressed as

T 1 T
Ryc = ®+—>+—cos(®+—>tan¢,

1 .
J3cosp - ( 3 3 3
(25)

where O is the Lode angle, evaluated as cos(3®) = (r /q)3.
The invariant 7 is the third invariant of the deviatoric stress
tensor, and is defined as r = (%tr(s3))l/3. Based on this
criterion, we can find the peak and residual Mises stresses as

_ ptang +c

. ptang, +c¢,
Ruc '

r

qp (26)

Rumc
with ¢, and ¢, as the residual values for friction angle and
cohesion at the fully damaged state.

Remark 4 We can easily replace the non-smooth Mohr—
Coulomb surface Ry;¢c with some alternatives [100, 101].
In fact, we can potentially pick any alternative failure func-
tion available for different materials.

2.3 Crack driving force

Given t = pey, and 1, = ptang + ¢ = pel, the crack
driving force relations for CSD is derived as [82]

H = H,+ o @)
where

H; = ‘Epz—;fr, (28)
i = 52 [(2 = 0 = & = 7] 29)

and they showed that this model is consistent with Palmer and
Rice [83] model. Now, for the deviatoric stress decomposi-
tion discussed above, we can revise the crack driving force,
given § =3ue, and G, = (ptang + ¢)/Ruc = 3uel, as

= =2
Hy = I (30)
N U
Hoip = ¢ [@ =80 = @y = 377]. (D)

More details on the derivation of H; and Hg;, for CSD
approach are provided in “Appendix A”.

2.4 Boundary conditions

To have a complete mathematical description of the problem,
we lastly need to describe the boundary conditions. Consid-
ering Fig. 1, the boundary conditions are described as

u=u, on I, (32)
T=0-n=71, on [y, (33)
Vd-n=0, on T, (34)

where u and 7 are prescribed displacement and traction
forces, respectively.

The steps used to solve the problem are detailed in Algo-
rithm 1.

Algorithm 1 Pseudo-code for DSS phase-field model of
shear fractures
w0 d <0
: 00 < Initial stress using an static step
t=0
: for time-steps do
t < t+ At
w'TA! A Update displacement/traction BCs at 1 + At
uo, €9, 00, do < ul), e, 0§, df)
while err > TOL do
du < Solve eq. (8) for displacement increment
10: u < u-+du

A A ol ey

b

11: €,8y,84 < €+ 0

12: a, < /2/3e/¢

13: g < 3upey

14: g < (ptan¢, +¢,)/Ruc

150 0« kel +[g@q + (1 — g@)qr] V2
16: My < (@Gp—dn)*/6n

17: Hiip < max(Hy;,. [ =47 = @p —3r)7] /6m)
18: HY <« Hy + Haip

19: 8d < Solve eq. (9) for d

20:  end while

21: end for

3 Applications to compressive strain
localization

Here, we consider three reference problems of shear frac-
tures, including direct shear test, biaxial compression test,
and slope failure analysis. We show that our model can effec-
tively capture multiple modes of failure concurrently.

3.1 Direct shear test
Our first example is the direct shear test. We simulate the

propagation of a fracture in a long shear apparatus and we
compare our results with analytical solutions and Fei and
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Fig.2 Direct shear test setup.
The domain is 500 mm long, — —_—

100 mm tall, and an initial
10-mm horizontal fracture is
carved in the middle of the left
boundary—red fracture. The S
boundary conditions are: the
bottom boundary is fixed, the

U,=0

U,=0
W 00|

top boundary is displaced

VAR A VAV A Av e Ay A A G G A GV iV GV O GV iV O GV G Gl G GV GV G Gl A 4

horizontally, and the two lateral
boundaries are fixed vertically

Choo’s numerical simulations [82]. The setup of the experi-
ment is plotted in Fig. 2. The domain is 500 mm long, 100 mm
tall, and an initial 10-mm horizontal fracture is carved in the
middle of the left boundary. The boundary conditions are: the
bottom boundary is fixed, the top boundary is displaced hor-
izontally, and the two lateral boundaries are fixed vertically.
We neglect gravity.

The material properties are: shear modulus G = 10 MPa,
Poisson’s ratio v = 0.3, cohesion strength ¢ = 40 kPa, peak
and residual friction angle ¢ = ¢, = 15°, shear fracture
energy G. = 30 J/m?, and fracture’s length-scale [ = 2
mm. As in the previous works of Palmer and Rice [83] and
Fei and Choo [82], we impose the fracture propagation to
be horizontal. Following Fei and Choo’s simulations [82],
we initialize vertical compressive normal stress to 149 kPa,
which results in 7, = 80 kPa and 7, = 40 kPa. We mesh the
domain near the fracture path with a mapped squared mesh
of size [ /4 = 0.5 mm and the remaining domain with a I-mm
free triangular mesh.

The horizontal force—displacement curve is shown in
Fig.3. The agreement of the peak and residual forces pro-
vided by our numerical simulation is very satisfactory.
Theoretically, the peak load, i.e., the peak shear stress times
the width of the specimen, is 40 kN, and the output of our sim-
ulation is 40.387 kN. In the same way, the theoretical residual
load is 20 kN and the output of our simulation is 19.978 kN.
We estimate the fracture energy from the force—displacement
curve, the shaded area in Fig.3. The output of our model
provides a fracture energy equal to 14.6914J, while the the-
oretical value is 15J. Therefore, we report a remarkable
agreement between our simulations and expected theoreti-
cal values. Moreover, we also include in Fig. 3 the numerical
result from the well-known continuous shear deformation
(CSD) model reported in [82]. The agreement between both
models is remarkable, and is a good proof of the proper per-
formance of our proposal.

We analyze the sensitivity of our model to the phase-
field length parameter, /. We run several simulations of the
direct shear test problem for several values of [, ranging
from 1 to 10 mm. Results are depicted in Fig. 4a. The force—
displacement curves for the four values of / confirm that
the model is virtually insensitive to the phase-field length
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— CSD model from [83]

Force (kN /m)

Displacement (mm)

Fig. 3 Horizontal force—displacement curves for the direct shear test.
Points are the output of our numerical simulation

parameter. We check the mesh dependency of our model by
running three problems of the long-shear apparatus problem.
We fix the ratio length scale parameter to mesh size, [/h, to
20 and we run three simulations for three /- and h-values.
Results are plot in Fig. 4b. The curves confirm that the model
is insensible to the mesh size.

We plot the phase-field distribution at three time steps in
Fig.5. The peak load is given for U, = 0.8083 mm, after
this value is reached the phase-field has already emerged
and propagate along the whole fracture, Fig. 5a. Afterward,
the phase-field value intensifies during the softening stage,
Fig. 5b, up to the time the fracture is completely developed,
Fig. 5c. At this time, the domain is split into two parts. The
upper part slips over the bottom one, and the shear stress
between both parts is constant and equal to the residual shear
stress, 7, = 40kPa, resulting in a theoretical horizontal force
of 20kN.
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Fig.4 Force—displacement ( a) (b)
curves for the direct shear test
with several phase_ﬁeld length 45 = l‘nnn 45 | =2 mm, }L = 0.1‘ mm
parameters, /, and mesh sizes, &. | :l =3 mm ) :1 =4 mm ]i =02 mm
a Here the phase-field length 40 i o, 40 F [ S =04
parameter ranges from 1 to 35+ 35+ '%\
10 mm and the mesh size is set A
to 7 = 0.2mm. b Here the ratio ’é\ 307 ’é\ 307
phase—ﬁelq length parameter to E 251 I E 251
mesh size is set to 20 24 X N
% 20+ § 20t
1S5t 15t
10t 10t
5 5 {
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Displacement (m

Fig.5 The evolution of the
phase-field variable at three time
steps for the direct shear test.
The imposed horizontal
displacements, Uy, are: a | mm,
b 2mm, and ¢ 3mm

(a) Uy =1 mm

(b) Uy =2 mm

m) Displacement (mm)

(c) Uy =3 mm

3.2 Biaxial compression test

Our next example is a biaxial compression test. We simulate
a laboratory-size specimen under plane strain, different con-
fining pressures and with different residual friction angles.
This example allows us to show the ability of the model to
simulate the pressure dependence of the peak and residual
strengths. We compare our numerical results with peak and
residual strengths computed with a mechanical equilibrium
model before and after the rupture.

The model setup is shown in Fig. 6a. The domain is 80-mm
wide and 170-mm tall rectangular. The bottom boundary is
supported by rollers, whereas a prescribed vertical displace-
ment is imposed in the top boundary and zero horizontal
displacement in the top middle point. The two lateral bound-
aries are subjected to the confining pressure, p., which is
constant during the experiment.

The material properties are: shear modulus G = 10 MPa,
Poisson’s ratio v = 0.3, cohesion strength ¢ = 40 kPa, peak
friction angle ¢ = 15°, shear fracture energy G. = 30 J/m?,
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Fig.6 Biaxial compression test.

(a) Biaxial model
a The model setup. b Vertical

(b) Vertical force-displacement curves

force—displacement curves for l U
two cases with p. = 200kPa, l \V4 M l
¢ = 20°, and ¢, = 20° and 0° 45
40
L || 35t
—30¢+
g
—_ ~
3 725
P[] P 5 i’
8 s 20
8
= o15F
L l—]
10+
00 00
VAN A A A A eed /77777 0 : : : : : : :
80 mm o 1 2 3 4 5 6 7
Displacement (mm)
and fracture’s length-scale [ = 2 mm. We neglect grav- ' ' iy pe—
ity. In the center of the domain, we add a small inclusion —I =3 mm
with a radius of 1 mm and with 20% higher shear modulus —i= 8 mm

to force the fracture nucleation from the center. We simu-
late three cases of p., 50 kPa, 100 kPa, and 200 kPa, and
repeat each case with three values of the residual friction
angles, ¢, = 20°, 15°, and 0°. These simulations let us check
whether our model captures the pressure dependence of the
peak and residual strengths. We discretize the domain with
a free triangular mesh with size # = 0.2 mm that satisfy
[/h = 10.

We include two typical vertical force—displacement curves
in Fig. 6b. The confining pressure is p. = 200kPa, the peak
friction angle is ¢ = 20°, and we consider two residual fric-
tion angles, ¢, = 20° and 0°. Initially, both vertical forces
change linearly with the imposed vertical displacement until
the peak strength is reached. The peak strength is the same in
both models since they have the same p., ¢, and ¢. Afterward
the fracture propagates suddenly across the domain, reach-
ing both lateral boundaries, and the vertical force suddenly
sinks. Our numerical model is able to capture the fracture
propagation during the transition from the peak to the resid-
ual strengths due to the adaptive time step. Moreover, the
curves evidence that the phase-field model is able to simu-
late the residual strength, which depends on the confining
pressure, the residual friction angle, and the fracture path.

We run several simulations of the biaxial compression
problem for several values of /, ranging from 1 to 10mm.
The force—displacement curves for the four values of / are
included in Fig. 7. As in the previous problem, the curves for
the values of / confirm that the model is virtually insensitive
to the phase-field length parameter.
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o 1 2 3 4 5 6 7
Displacement (mm)

Fig. 7 Force—displacement curves with several phase-field length
parameters, /

The evolution of the phase-field variable for p. =
200kPa, ¢ = 20°, and ¢, = 20°, at three time steps is
shown in Fig. 8. The phase-field is almost zero when the peak
strength is reached, Fig. 8a. In fact, due to the isotropic mate-
rial model and homogeneous stress conditions of the biaxial
test, two equally like fracture paths nucleate. This is consis-
tent with the Mohr—Coulomb model. Nevertheless, only of
the trajectories evolves and result in the final fracture pat-
tern during the sudden decrease in the peak strength, Fig. 8b.
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(a) U, =1,9204 mm

(b) U, =1,9487 mm

(c) U, =2,9896 mm

Fig.8 Biaxial compression test. The evolution of the phase-field variable is plotted at three time steps. The confining pressure is p. = 200kPa, the
peak friction angle is ¢ = 20°, and the residual friction angle ¢ = 20°. The imposed vertical displacements, Uy, are: a 1, 9204 mm, b 1, 9487 mm,

and ¢ 2, 9896 mm

Later, the phase-field variable increases its value along the
fracture path up to the residual peak strength is reached,
Fig. 8c.

We simulate nine cases with several combinations of p,
¢, and ¢, values. We also compute the peak and residual
strengths applying mechanical equilibrium prior and after the
fracture propagation. Given the fracture path, the mechani-
cal equilibrium is illustrated in Fig. 9. The total vertical force
applied on the top boundary is Fy, the total horizontal force
on the left lateral boundary is F, and the tangential and nor-
mal forces on the fracture path are 7 and N respectively. We
suppose the nucleation and fracture propagation is instan-
taneous and the fracture path is a straight line. the angle
between the fracture path and the vertical axis is 6. Then, at
the onset of the fracture propagation, the tangential force on
the fracture is:

L
T =——c+ Ntan¢, (35)
sin &

and once the fracture is fully developed, the tangential force
on the fracture is:

T = N tan ¢,. (36)

The mechanical equilibrium in the vertical direction is
given by:

V —Tcosf — Nsinf =0, 37

and in the horizontal direction:

H + T sinf — Ncosf =0, (38)

where H is:

H = L 39)
= Petane

Solving V from Eq. (37), substituting V in Eq. (38) and
operating, the vertical force at the onset of the fracture prop-
agation V,—peak strength—is:

V. — 1 L-c
P cos —sinftang \sin6

+p

¢ (cosfOtang + sin 9)) , 40)
tan 6
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N\,

N,
o o o

e e

Fig.9 Triaxial experiment. Mechanical equilibrium

and the vertical force once the fracture is fully propagated
V,—residual strength—is:

1

cos — sin 6 tan ¢,

L
(pc— (cosOtang, + sin 9)) . 41
tan 6

V, =

Table 1 Triaxial experiment

We compute V), and V; for the nine simulated cases. The
results are listed in Table 1. The agreement between both
models is remarkable.

3.3 Slope failure analysis

As the last example, we consider the problem of slope failure
analysis reported in [33]. Consider the soil slope shown in
Fig. 10. The domain is 20 m wide and 10m tall, with a slope
1:1 on the left side. A 4 m wide rigid footing is placed on the
crest of the slope. The slope is first subjected to a body force
b = 20 kN/m3, and then these body-force stresses are used
as the initial state for the footing loading step. Displacement
at the bottom edge is fixed in both directions, while for the
right edge, only horizontal displacement is fixed. As the main
loading step, a displacement Uy = 0.3 m is prescribed in the
middle of a rigid foundation, which simulates the effect of a
building imposing a stress on the slope.

The elastic parameters of the soil include £ = 10 MPa
and v = 0.4. The initial friction angle and cohesion are
¢ = 16.7° and ¢ = 40 kPa, with ¢, = 10° and ¢, = 0 kPa
as their respective residual values. The phase-field length
scale parameter is set to / = 200 mm, and the domain
is discretized using a free triangular mesh with mesh-size
20 mm. The resulting mesh roughly has 1M triangles and
500K vertices. The computational time takes about 12h in
our desktop machine with 19-10900 processor with 10 cores
and 20 threads.

Due to the relatively high cohesion and low friction angle,
the shear-band formation for this problem is particularly
interesting. If we plot the evolution of the Mohr—Coulomb’s
failure envelope right before the onset of fractures, as shown
in Fig. 11a, we observe that the failure should onset from
both ends of the footing. This fact has also been reported
by Haghighat and Pietruszczak [38], however, due to the
pre-specification of only one orientation angle (#), the crack
formation from the left side was not captured by Fei and
Choo [82]. Therefore, to perform a comparison, we consider
two cases:

¢ =15° ¢, = 15° ¢ =20° ¢, = 20° ¢ =15° ¢, =0°

Peak stre. Residual stren. Peak stren. Residual stren. Peak stren. Residual stren.

M.Eq. Sim M.Eq. Sim. M.Eq. Sim M.Eq. Sim M.Eq. Sim M.Eq. Sim
pe = 50kPa 15.19 15.15 6.81 7.12 17.30 17.30 8.16 8.24 15.67 15.12 4.00 4.17
pe = 100kPa  22.00 21.94 13.62 14.27 25.46 25.56 16.32 17.04 22.59 21.93 8.00 8.23
pe =200kPa  35.62 34.67 27.23 27.80 41.77 41.48 32.63 33.17 36.45 35.48 16.00 16.30

We list the peak and residual strengths for nine cases in kN. Both strengths are computed with our phase-field model—denoted as Sim.—and using
a mechanical equilibrium—denoted as M. Eq.—prior and after the fracture propagation

@ Springer
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(b)Force-Displacement Plot

(a)Slope Failure Model U
<>
4m
b =20 kN/m3l

Uy =0
Q
10m

Reaction Force [MN/m]
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Fig. 10 Slope failure analysis. a The model setup for the slope failure
analysis. The domain is 20 m wide and 10 m tall, with a slope 1:1. A4m
wide rigid footing is located on the slope’s crest, and is subjected to a
vertical displacement Uy. The boundary conditions are: bottom edge is
fixed in both directions, right edge is fixed horizontally and other faces

(a)Mohr-Coulomb Failure

104

.
-1
-2
-3
4
K3
£

Factor of Safety
W 1.00-1.02

Fig.11 a Mohr—Coulomb failure function plotted right before the onset
of localization. The stress around both corners of the footing appear as
near-failure critical. b—d Mohr—Coulomb’s critical surfaces using limit-

I. Shear band formation only from the right corner of the
footing by suppressing the phase field variable to zero
(d = 0) in the gray region (see Fig. 10).
II. Free shear-band formation, which results in two patterns
from each side followed by coalesces.

are traction free. The grey region highlights the damage-inactive (Case
1) and damage-active (case II) problems. b Force displacement results
measured at the point of loading in the middle of the footing. The plots
show absolute values

(b)F = 0.7MN/m il

Factor of Safety

(d)F = 0.9MN/m

Factor of Safety

M 095-0.97
W 0.97-0.99
@ 099-1.01
01.01-1.03
02103

equilibrium method at different load. F ~ 0.8 MN/m is found as the
critical load, where factor of safety of the slope reaches 1

Additionally, we consider two critical fracture energies of
G, = 10kJ/m? and G, = 5kJ/m?. The final fracture patterns
of these two cases are shown in Figs. 12, 13 and 14.

The evolution of phase-field variable for case I, with G, =
5kJ/m?, are plotted for different loading steps in Fig. 13. The
force—displacement response is plotted in Fig. 10b. As the
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Fig. 12 Damage evolution for the case I slope stability analysis, where the left side is suppressed to have damage development. The plots show the
evolution damage at Uy = 300mm for a G. = 10 kJ/m? and b G. = 5kJ/m?

(a)Uy = 100 mm

(¢)Uy = 200 mm

(b)U, = 150 mm

0.9
0.8
0.7
0.6
0.5

0.4

0.3

0.2

0.1

Fig. 13 Damage evolution for the case I slope stability analysis (G, = 5kJ/m?). In this case, the left side is suppressed to develop damage, therefore
we have a single crack formation from the footing’s right corner. Subplots a—d show the evolution of the damage parameter at different loading

steps

reader can find, the proposed formulation captures the peak
and residual loads as well as the crack patterns accurately,
and the results are consistent with those reported by Fei and
Choo [82]. The failure surface evaluated using phase-field
method and the peak-load is well-aligned with potential fail-
ure surfaces and critical load F' = 0.8 MN/m resulting from
limit-equilibrium analysis of the slope using the GeoStudio
software (see Fig. 11b—d).

Lastly, we run a new set of simulations for case II. The
results are plotted in Fig. 14. As we find, here the model cap-
tures first a shear band formation from the left corner of the
footing. This is in fact expected because of the stress-free sur-
face of the slope creates a more critical failure condition on
the left corner. The propagation of the mode, however, stops

@ Springer

because it is directing to Mohr—Coulomb stable regions of
the domain. Later, the main failure mode initiates and prop-
agates from the right corner, and collides with the first mode
somewhere underneath the footing, which is also consistent
with the results of the limit state theories. A final branch is
then generated and causes the ultimate failure of the slope.
The pick stress, however, does not seem to be very different
from those of Case I, as plotted in Fig. 10b.

4 Concluding remarks

We presented a phase-field model of shear fractures using
deviatoric stress decomposition (DSD). We validated the
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(a)Uyt: 100 mm
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Fig. 14 Damage evolution for the case II slope stability analysis (G- = 5kJ/m?). In this case, the damage can initiate from either side and is
primarily driven by the crack energy. Subplots a—d show the evolution of the damage parameter at different loading steps

model by solving reference problems of shear fractures in
geotechnical engineering. Our model has excellent perfor-
mance. The main advantages of our phase-field approach are:
(1) the model does not require re-meshing, (2) nucleation,
propagation, and fracture path are automatically computed
without the need to track fractures or pre-specify orienta-
tions, and (3) fracture joining and branching do not need
additional algorithms.

For an isotropic Mohr—Coulomb material under homoge-
neous loading, it has been shown that there are two conjugate
surfaces having the same likelihood for shear band formation.
In fact, our model captures this for the biaxial compression
problem without any intervention. This is the same for the
slope stability problem, where our model was able to capture
crack initiation from both corners of the foundation. While
accurate in peak and residual force calculations, we found
that the CSD model of shear fractures is more accurate in
capturing such a transition.

The study was limited to modeling two-dimensional
problems of compressive fracture. However, the proposed
formulation is not limited to any dimensions. Therefore,
we plan to explore three-dimensional models as a follow-
up study. Additionally, pore-fluid consideration is critically
important for modeling failure in geomaterials. This is also
an area that will be considered next. Additional paths include
incorporating rate-and-state friction models that are best
suited for modeling geologic systems, and thermal coupling
that is important for modeling geothermal systems.
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A Crack driving force for deviatoric stress
decomposition

Reminding that g, g, g, denote the bulk and fractured devi-
atoric stresses at peak and residual stages, respectively, and
g=3 ueg, with £, and the deviatoric strain, the crack driv-
ing force during a plastic dissipation process as a result of
frictional sliding can be expressed as

&y
Hslip = /p G _Qr)dgy
&y
&y
= /1) (3,[1,8(1 _ér)dgy
&y
s dr (s~
= on (C] Clp) 3 (q 5117)
N PPN
=g l@-ar-a@-a}. “2)

Since g = g(d)g + (1 — g(d))q,, we will have,

U fa-a
Hsllp = 6M < g(d) ) (('Ip qr) . 43)

We observe that the relations are quite similar to those
reported by Fei and Choo [82] using shear stress split, except
that shear stresses and strains are replaced now with devia-
toric ones and therefore division by 3u instead of .

Noting that total driving energy is expressed as H = H; +
H1ip, re-arranging Eq. (43), we can write

[ R R A

= {H’ 6y Or — } "o ( <@ ) W
Now, one can substitute this relation into the phase field PDE
Eq. (9), and with 1D simplifications, integrate the phase field
relation, as detailed in [82], to arrive at approximate relations
for the evolution of deviatoric stress ¢ as a function damage.
Again, since the phase field PDE Eq. (9) and driving force
Eq. (44) are very similar to those in [82], all the derivations
hold identical and true for the deviatoric stress decomposi-
tion. Finally, by imposing length-scale independency to the
deviatoric stress evolution, one obtains that

|
= — —dqr) . 4
H; 6M(qp qr) (45)

This completes the derivation of crack driving force relations
introduced in Egs. (30) and (31).
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