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Abstract
A new computational framework is developed in this paper for investigating the time-dependent behaviour of concrete
including creep, shrinkage and cracking. The developed model aims to explain certain aspects of the time-dependent cracking
and creep of concrete that cannot be captured using homogeneous models. The model is based on the scaled boundary finite
element method, and it is coupled with a quadtree decomposition algorithm which converts digital images of concrete meso-
structures into meshes. Concrete is treated as a two-phase composite which consists of elastic aggregates and mortar that is
subjected to time-dependent deformation. The basic creep behaviour is treated as viscoelastic, which is modelled based on a
rate-type rheological model corresponding to a Kelvin chain. Drying creep is modelled using a viscous unit which depends on
the stress level, and drying shrinkage is stress independent. Both drying creep and drying shrinkage are related to the internal
humidity. The humidity distribution within concrete is determined using a diffusion analysis. The moisture movement within
mortar is governed by a nonlinear diffusion equation, whereas the aggregates are assumed impermeable. The cracking of
concrete is explicitly modelled on the meso-scale through coupling of the continuum damage model for cracking within the
mortar phase, and the cohesive zone model for debonding between aggregates and mortar. The proposed model is verified
by simulating well-documented experimental studies in the literature. The capability of the proposed model in simulating the
time-dependent behaviour of concrete and capturing the crack patterns has also been demonstrated.
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1 Introduction

Concrete undergoes time-dependent deformationmainly due
to creep and shrinkage, which affects the performance and
the design life of concrete structures. Both creep and shrink-
age are complex phenomena that are not fully understood
yet. Creep represents the continuous increase of deformation
under sustained load and for concrete it is generally divided
into basic creep and drying creep. Basic creep represents the
time-dependent strain developed in a sealed specimen or one
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that is in hygral equilibrium with the ambient environment.
Drying creep is the additional strain developed in a specimen
that is subjected to simultaneous drying environment, this is
also known as the Pickett effect. Several well acceptedmech-
anisms were proposed for creep including the seepage theory
[1], viscous flow [2], and themicroprestress-solidification [3]
theory. Shrinkage represents the change in volume measured
on a load free specimen as a result of drying shrinkage and
autogenous shrinkage. For normal strength concrete, the lat-
ter one is negligible and total shrinkage is assumed to be equal
to the drying shrinkage only which is taken as the strain mea-
sured in a specimen that is exposed to a drying environment
[4, 5]. Drying shrinkage is commonly associated with mech-
anisms include capillary pressure, surface tension, disjoining
pressure and interlayer water movement [6, 7]. Both drying
creep and drying shrinkage developwith the presence of a dry
atmosphere which is typical under service conditions. Crack-
ing is also commonly seen in concrete structures over time.
These cracks can be caused by external loading, or by the
time-dependent deformation, especially shrinkage, in inter-
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nally or externally restrained structural members. Cracking
of concrete increases its permeability, making it more sus-
ceptible to sulfate [8] and chloride attacks [9, 10].

Macro-scale models are typically used for concrete and
they consider it as a homogeneous material. Extensive exper-
imental research on creep and shrinkage of concrete has been
conducted. A collection of the experimental data in the lit-
erature can be found in Hubler et al. [11]. By calibrating
experimental data, empirical creep and shrinkage models
have been developed in design codes, such as the ACI model
[4], fibmodel [12] and B4model [13] and they allow the pre-
diction of creep and shrinkage from a simple formula. For
drying creep and drying shrinkage, these design code mod-
els adopted a sectional approach, in which only the mean
effects of drying over the cross section of the structural mem-
ber are considered. Both drying creep and drying shrinkage
are assumed to be uniformly distributed within the section.
Other more sophisticated models have also been proposed to
model drying creep and drying shrinkage [3, 14–17]. Exten-
sive applications of creep and shrinkagemodels for structural
analysis have beenmade in the past, including on plane speci-
mens [18, 19], beamsandgirders [20–22] andothermembers.

Concrete is a composite consisting of cement paste, fine
aggregates and coarse aggregates. The time-dependent defor-
mation observed in concrete is well accepted to originate
from the cement paste and it is restrained by the presence of
aggregates. The restraint depends on properties of the aggre-
gates, such as their elastic modulus, content, distribution,
shape etc. This restraintmechanismwhich is essential for pre-
dicting creep and shrinkage of concrete cannot be explicitly
captured by homogeneousmodels. Attempts have beenmade
to simulate creep and shrinkage using composite homogeni-
sation models [23–26]. These models were developed by
making some simplified assumptions on the distribution of
aggregates, and they allow the prediction of the deformation
of concrete based on thematerial properties and volume frac-
tion of the constituents.Nevertheless, the randomdistribution
of the aggregates, their size gradation and shape cannot be
explicitly modelled.

Meso-scale modelling of concrete has become increas-
ingly popular in recent years due to its capability to explicitly
model the different components of concrete. On the meso-
scale, concrete is typically treated as a composite of mortar
and coarse aggregates. The interfacial transition zone (ITZ)
may also be considered with meso-scale models which is a
thin layer (around 50μm) of porous region formed around
the aggregates due to wall effect [27, 28]. One key step
of meso-scale modelling is the acquisition of the concrete
meso-structure. Due to difficulty of obtaining the internal
structure of concrete, numerically generated meso-structures
have been adopted bymost of the studies which was obtained
by making certain simplified assumptions regarding to the
aggregate shape, size, distribution and etc [29, 30]. Alter-

natively, the internal structure of concrete may be obtained
from X-ray microCT scanning, which can be used to run
direct image analysis [31, 32].

Most of the existing meso-scale models of concrete
focused on simulating its crack pattern under load [29, 33]
without the consideration of the time-dependent deforma-
tion. Continuum models based on the finite element method
(FEM) are adopted by most of the studies in which the
concrete meso-structure is discretised into finite elements
with different material properties and constitutive relations
assigned to them. The ITZ has been typically modelled as
either a thin lay of elements [32, 34] or through cohesive
zone models [35, 36]. Other than FEM, discrete modelling
approaches such as the beam lattice model [37, 38] and the
lattice discrete particlemodel [39] have also been proposed in
which the concrete meso-structure is characterised by a grid
of beam elements. A comprehensive review of these studies
can be found in Thilakarathna et al. [40]. Investigations have
been made in recent years to model individual aspects of
the time-dependent behaviour of concrete, including creep
[41–43], shrinkage and shrinkage induced tensile cracking
[38, 44, 45]. However, only limited attempts [35, 46, 47]
have been made to integrate creep, shrinkage and cracking
into a single model. Idiart et al. [35] extended the meso-
scale model developed by López et al. [30] to simulate the
time-dependent behaviour of concrete. The model accounts
for creep using a viscoelastic Maxwell chain and shrinkage
as an additional stress-independent strain. The cracking of
the mortar phase and ITZ is captured using a cohesive zone
model. Despite that cohesive zone models are commonly
adopted for ITZ modelling, they may not be suitable for the
modelling of cracks within the mortar phase due to their
mesh dependency. Havlásek and Jirásek [46] investigated the
relation between ultimate shrinkage and the ambient relative
humidity using a meso-scale hygro-mechanical model. The
creep and shrinkage strain components are modelled using
the Microprestress-Solidification theory [3], and cracking of
mortar is captured using a scalar damage model. However,
the debonding of ITZ has not been accounted for in this study.
Another meso-scale hygro-mechanical model is proposed by
Ožbolt et al [47]. Themodel accounts for basic creep, shrink-
age and cracking. Drying creep was not considered as it is
assumed to be caused by the interaction between damage and
the time-dependent strain components only, and the debond-
ing of ITZ was not considered either.

Most meso-scale studies have been carried out based on
FEMasmentioned above.Meshes generated based onDelau-
nay triangulationhavebeen adoptedbymany studies [35, 47].
However, it can be difficult and time consuming to generate
a quality mesh especially when the meso-structure contains
aggregates with a large quantity and irregular shapes. To sim-
plify themesh generation procedure, a uniformfinite element
mesh was adopted by many studies [32, 42]. Similar proce-
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dures have also been adopted in typical beam lattice models
for the generation of lattice structure [31, 38]. Another pow-
erful tool capable of running meso-scale analysis that has
not been fully utilised for this purpose is the scaled boundary
finite elementmethod (SBFEM). The SBFEM is a continuum
based semi-analytical numerical method developed by Song
and Wolf [48]. The model can be coupled with a fast and
automatic quadtree decomposition algorithm that converts
digital images of concrete meso-structures into meshes [49].
The generated quadtree meshes cannot be directly analysed
using FEM due to the presence of hanging nodes. However,
the SBFEM is highly complementary with quadtree meshes
due to its ability to handle polygonal elements with arbitrary
number of sides.By couplingSBFEMwith the quadtree algo-
rithm, this method serves as a more efficient alternative for
the meso-scale analysis of concrete.

In previous works by the authors, a novel simplified two-
scale model based on SBFEM was proposed to predict the
creep [50, 51] and shrinkage [52] of concrete from the cement
paste scale. The two-scale refers to the mortar scale which
consists of cement paste and fine aggregates, and the con-
crete scale which consists of mortar and coarse aggregates.
The model was simplified in a sense that drying of the spec-
imens were not explicitly modelled. Instead drying creep
and drying shrinkage were assumed to be uniform within
the structure. In the present study, a more advanced and
integrated hygro-mechanical model based on 2D SBFEM
formulation is proposed to account for the coupled effects of
basic creep, drying creep, drying shrinkage, aging and crack-
ing simultaneously. The non-uniform internal humidity field
within the concrete specimen or member is also considered.
In this study, we will focus on the concrete scale. The coarse
aggregates are assumed to be elastic, whereas the mortar
is subjected to time-dependent deformation including creep
and shrinkage. The basic creep response is assumed to be
viscoelastic with aging which is simulated using a rate-type
Kelvin chain model with time-dependent model parameters.
Drying shrinkage and drying creep are addressed using the
model proposed by Bažant and Chern [14], in which drying
shrinkage is directly linked to the humidity and drying creep
is linked to both humidity and stress. The moisture move-
ment in cementitious material is assumed to be driven by a
non-linear diffusion equation developed by Bažant and Naj-
jar [53], which leads to the humidity distribution within the
structure. In addition to the time-dependent strain compo-
nents, cracking and softening of mortar under tensile load is
accounted for through an isotropic damage model. The mod-
elling of the time-dependent deformation and damage are
combined through the use of an effective stress approach.
The debonding of ITZ is considered through the cohesive
zone model.

In the following sections, the constitutive relations of the
materials on the meso-scale are presented in Sect. 2. After-

wards, the image-based mesh generation and the SBFEM
formulation are introduced in Sect. 3. For clarity, section 4
provides a summary of the overall solution procedure for the
present hygro-mechanical model. Then in Sect. 5, numeri-
cal examples are carried out to demonstrate the capability of
the proposed model. Finally, this paper is concluded with a
summary of the presented findings.

2 Constitutive relations

2.1 Time-dependent strain components

The proposed meso-scale model accounts for deformation
caused by mechanical loading, as well as the change of
moisture conditions. Aggregates are assumed to be linear
elastic, whereas themortar matrix is assumed to exhibit time-
dependent deformation. The total strain in the mortar matrix
ε(t) at a given time t is assumed to be the sum of instanta-
neous strain εins(t), basic creep strain εbc(t), drying creep
εdc(t) and shrinkage strain εsh(t) as expressed in Eq. (1).

ε(t) = εins(t) + εbc(t) + εdc(t) + εsh(t) (1)

The rheological model used to simulate the time-dependent
deformation of mortar is shown in Fig. 1. The deformation
of the rheological model is assumed to be controlled by an
effective stress σ̄ . The mortar matrix is assumed to be lin-
ear under compression. In this case, the effective stress σ̄

is equivalent to the nominal stress σ . Under tension, mortar
undergoes cracking which is captured using a scalar damage
model. In this case, the effective stress becomes larger than
the actual stress, leading to larger deformation of the entire
rheological model as compared to the linear case. Alterna-
tively, the other approach of incorporating damage into a
creep analysis of concrete rely on the use of nonlinear vis-
coelastic models like the modified principle of superposition
[54]. This approach yields a rheological model with stress-
dependent spring and dashpot constants and it was used in
past studies by the authors [21, 55] for the creep analysis of
reinforced concrete beams. Nevertheless, it assumes recov-
erable strain at unloading, which is not a characteristic of
the drying creep component of concrete. More details of the
damage model is presented in Sect. 2.3.

There are four strain components involved in the rheolog-
ical model as shown in Fig. 1. For conciseness, these strain
components are categorised into viscoelastic strain εve(t) and
moisture induced strain εmis(t). The viscoelastic strain εve(t)
consists of the elastic strain εe(t) and basic creep εbc(t).
The viscoelastic behaviour is modelled using a Kelvin chain
model consisting of a spring and a number of Kelvin units.
The constants of the springs and dashpots vary with time
due to aging. The moisture induced strain εmis(t) consists
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of drying creep εdc(t) and shrinkage εsh(t). Drying creep is
treated as viscous andmodelled using a dashpot unit. Shrink-
age is described with a stress-independent unit. The detailed
formulations of these strain components are presented in the
subsequent sections.

2.1.1 Viscoelasticity

Following the principal of superposition, the stress and strain
relation of a viscoelastic material is expressed as

εve(t) =
∫ t

0
J (t, t ′)dσ(t ′) (2)

where J (t, t ′) is the compliance function that describes the
strain at time t caused by a sustained unit stress σ applied at
time t ′. The following formof compliance function is adopted
in this study [50]

J (t, t ′) = 1

E(t ′)
+ c1 ln (1 + c2(t − t ′))

E(t ′)
(3)

where c1 and c2 are constants to be fitted against experimen-
tal data and E(t ′) is the elastic modulus at loading age. A
rate type formulation is adopted to facilitate time-stepping
analysis. Following the concepts of continuous retardation
spectrum [56], the fitted compliance function is approxi-
mated with a Dirichlet series corresponding to a Kelvin chain
model (see Fig. 1). The Kelvin chain model is then con-
verted into an incremental form following the exponential
algorithm proposed by Yu et al. [57]. For a given time incre-
ment �tk = tk+1 − tk , the incremental stress–strain relation
is expressed as

�εve,k = 1

E ′′
ve,k

�σ̄k + �ε′′
ve,k (4)

where E ′′
ve,k is the incremental pseudomodulus for viscoelas-

ticity and �ε′′
ve,k is the strain increment due to basic creep,

expressed as

E ′′
ve,k =

⎛
⎝ 1

E0,k+1/2
+

M∑
μ=1

1 − λμ,k

Eμ,k+1/2

⎞
⎠

−1

(5)

�ε′′
ve,k =

M∑
μ=1

(1 − βμ,k)γμ,k (6)

The stiffness moduli of the Kelvin chain E0,k+1/2 and
Eμ,k+1/2 are evaluated at the middle of each time step tk+1/2

to account for aging, βμ,k and λμ,k are factors that need to
be evaluated for every Kelvin unit, γμ is the internal variable
that needs to be updated at the end of every time step as

γμ,k+1 = λμ,k

Eμ,k+1/2
�σ̄k + βμ,kγμ,k (7)

2.1.2 Moisture induced strain

Following the work of Bažant and Chern [14], the rate of
moisture induced strain ε̇mis is directly linked to the humidity
rate ḣ, expressed as

ε̇mis =
[
−ε∞

s gsh(te)
dkh
dh

(
1 + r σ̄ sgn(ḣ)

)]
ḣ (8)

where ε∞
s is the ultimate free shrinkage at zero humidity,

gsh(te) characterises the reduction of shrinkage due to hydra-
tion and aging. It is defined as the ratio of the elastic modulus
at the start of drying t0 over the elastic modulus at the hydra-
tion time te

gsh(te) = E(t0)

E(te)
(9)

The hydration time te depends on the moisture condition and
its formulation will be discussed later in Sect. 2.2, kh is a
function that defines the relation between the normalised
shrinkage and humidity. Under typical environmental con-
ditions where the humidity is generally above 50%, function
kh exhibits an approximately inverse linear relationship to the
humidity with the expression of kh = 1− h. By substituting
this into Eq. (8), it can be simplified to

ε̇mis = [
kshgsh(te)

(
1 + r σ̄ sgn(ḣ)

)]
ḣ (10)

in which ksh is the shrinkage ratio defined as the shrinkage
strain developed per percentage of humidity drop. Equation
(10) may be rearranged to represent the drying shrinkage
εsh (the stress-independent part) and drying creep εdc (the
stress-dependent part) component respectively, expressed as

ε̇sh = kshgsh(te)ḣ (11)

ε̇dc = kshgsh(te)r σ̄ sgn(ḣ)ḣ (12)

By assuming the factor gsh(te) to be a constant within each
time step, the incremental shrinkage strain �ε′′

sh,k can be
simply derived from Eq.(11) as

�ε′′
sh,k = kshgsh,k+1/2�hk (13)

where gsh,k+1/2 is evaluated at the middle of each time step
tk+1/2. For drying creep (Eq. 12), its rate form is directly
related to the stress which is equivalent to a dashpot unit
(see Fig. 1) with viscosity of η = (kshgsh(te)rsign(ḣ)ḣ)−1.
The incremental formulation of drying creep strain may be
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Fig. 1 Illustration of the constitutive model

determined by integration over the time step as

�εdc,k =
∫ te,k+1

te,k
kshgsh(te)r σ̄ sgn

(
ḣ
)
ḣ dte (14)

= 1

E ′′
dc,k

�σ̄k + �ε′′
dc,k (15)

where E ′′
dc,k is the incremental pseudo modulus for drying

creep and�ε′′
dc,k is the incremental drying creep strain. They

are expressed as

E ′′
dc,k = 1

2
kshgsh,k+1/2r sgn (�hk)�hk (16)

�ε′′
dc,k = kshgsh,k+1/2r sgn (�hk)�hk (17)

2.1.3 Integrated incremental formulation

Theoverall incremental stress–strain relationmaybeobtained
by summing and rearranging Eqs. (4), (13) and (15), which
leads to

�σ̄k = E ′′
k

(
�εk − �ε′′

k

)
(18)

where E ′′
k and �ε′′

k are the overall incremental pseudo mod-
ulus and incremental strain respectively, expressed as

E ′′
k =

(
1

E ′′
ve,k

+ 1

E ′′
dc,k

)−1

(19)

�ε′′
k = �ε′′

ve,k + �ε′′
sh,k + �ε′′

dc,k (20)

2.2 Aging and hygral effects

The mortar phase undergoes a continuous aging process that
leads to an increase of its elastic modulus and tensile strength
over time. Their variation is assumed to take the following
form [12]:

E(t) = [βcc(t)]0.5E(28) (21)

ft (t) = βcc(t) ft (28) (22)

βcc(t) = exp

{
s ·

[
1 −

(
28

t

)0.5
]}

(23)

where s is a constant that governs the magnitude of aging.
In order to account for the effect of humidity on the aging

and viscoelastic process, Bažant [58] proposed the introduc-
tion of a hydration time te and a reduced time tr respectively.
The hydration time te replaces the actual time in Eqs. (21)
to (23), and the reduced time tr is used in the incremental
form which replaces the actual incremental time used in the
computation of the factors βμ,k and λμ,k . They are adopted
in this work as follows [58]

te =
∫ t

0
βeh(h)dt ′ βeh(h) = 1

1 + [αe(1 − h)]4 (24)

tr =
∫ t

0
βrh(h)dt ′ βrh(h) = αr + (1 − αr )h

2 (25)

where βeh characterises the effect humidity on aging, and
βch characterises the the effects of humidity on basic creep;
αe and αr are material constants that can be calibrated from
experimental data. Following the trapezoidal rule, the incre-
mental form of the hydration time �te,k and reduced time
�tr ,k may be derived as

�te,k = βeh(hk) + βeh(hk+1)

2
�tk (26)

�tr ,k = βrh(hk) + βrh(hk+1)

2
�tk (27)

2.3 Continuum damagemodel

2.3.1 Damage criterion

As mentioned in Sect. 2.1, the instantaneous stress–strain
relation of mortar in compression is taken as linear elastic
with aging material properties. In tension it is nonlinear due
to cracking. In the present study, a continuum isotropic scalar
damagemodel is adopted tomodel cracking, with the follow-
ing stress–strain relation [59]

123



1196 Computational Mechanics (2023) 72:1191–1214

Fig. 2 Stress–strain diagram with exponential softening

σ = (1 − ω)σ̄ = (1 − ω)Dε (28)

where ω is a variable that characterises the degree of damage
or stiffness reduction. By rearranging this equation, we can
see that Hooke’s law still applies for a damaged material,
except that it links between the effective stress and the strain.
The effective stress σ̄ is expressed as

σ̄ = σ

1 − ω
(29)

The damage variableω takes values between 0 when undam-
aged to 1 when completely damaged. The damage evolution
is assumed to follow a typical exponential softening curve
[60] (see Fig. 2)

ω =
{

0 if κ ≤ ε0

1 − ε0
κ
exp

(
− κ−ε0

ε f −ε0

)
if ε0 < κ

(30)

where ε0 = ft/E is the limit elastic strain under uniaxial ten-
sion which changes with time due to aging, ε f is a parameter
that affects the softening response and κ = max{ε̃(t) : t =
0, . . . , tk} is the maximum equivalent strain reached in the
loading history assuming irrecoverable damage in tension.
The equivalent strain ε̃ adopted here is based on the Rank-
ine’s criterion of maximum principal stress

ε̃ = 1

E
max

I=1,2,3
〈σ̄I 〉 (31)

where E is the elastic modulus and 〈σ̄I 〉 denotes the positive
parts of the effective principal stress. In the case of unloading
or reloading, the stress–strain relation follows a linear func-
tion between the origin and the point on the stress–strain
diagram corresponding to the maximum equivalent strain κ .

2.3.2 Non-local damage regularisation

It is well accepted that local continuum damage models are
sensitive to the domain discretisation. To circumvent this

issue, the integral-type non-local damage model [60] or the
crack band model [61] have been typically adopted. The
former approach is adopted in this study which is based
on replacing a state variable with its non-local counter-
part through weighted averaging over a given space. In this
approach, a local field f (x) in a domain V can be replaced
by a non-local field f̄ (x) as

f̄ (x) =
∫
V

α(x, ξ) f (ξ)dξ (32)

where α(x, ξ) is a non-local weight function, defined as

α(x, ξ) = α0(||x − ξ ||)∫
V α0(||x − ξ ||)dξ (33)

α0 is a monotonically decreasing non-negative weight func-
tion of the distance r = ||x − ξ || from each point in
consideration. A truncated quartic polynomial function [60]
is adopted here:

α0(r) =
〈
1 − r2

R2

〉2
(34)

in which R is the interaction radius corresponds to the largest
distance from point ξ that affects the non-local average at
point x .

2.3.3 Damage with agingmaterial properties

The continuum damage model has been typically applied to
cementitiousmaterial for short-termanalysis. Since themate-
rial properties do not varymuch in a short period, the damage
evolution is governed by a static stress–strain curve as pre-
sented inSect. 2.3.1.However, in a time-dependent long-term
analysis, such an assumption no longer holds due to aging.
As described in Sect. 2.2, both the elasticmodulus and tensile
strength of the mortar increase with time. In the context of
incremental analysis, it is assumed that all the parameters are
constant within each time step with their values evaluated at
the middle of the time step. For two consecutive time steps k
and k+1, the stress–strain relation for amortar specimen that
has not been previously loaded is assumed to be governed by
its elastic modulus and tensile strength at the middle of these
two time steps respectively as shown in Fig. 3a.

In the casewhen themortar has beenpreviously loaded,we
assume that both the stress and damage state of the material
remain unchanged due to aging when moving from time step
k to k+1. Figure3b illustrates the load path of themortar that
carries load from a previous time step.When a change of load
happens at time step k + 1, it follows the same aging stress–
strain curve presented inFig. 3a except that the curve has been
shifted horizontally to coincide with its previous stress and
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damage state. In this case, the maximum equivalent strain
at the current time step κk cannot be simply adapted from
the previous step. Based on the assumption that the damage
state does not change due to aging when moving to a new
time step, the starting position of the maximum equivalent
strain at time step k+1 is determined from the damage index
at the previous time step ωk by rearranging Eq. (30) as

κk+1 = (ε f ,k+1 − ε0,k+1)

W

⎛
⎝ ε0,k+1 exp

(
ε0,k+1

ε f ,k+1−ε0,k+1

)

(1 − ωk)(ε f ,k+1 − ε0,k+1)

⎞
⎠ (35)

where W ( ) is the Lambert W function. It can also be seen
from Fig. 3b that when the material is unloaded back to
a stress-free state, it still carries some residual strain. The
equivalent strain ε̃k for an aging material is still determined
using Eq. (31) except that the constant elastic modulus is
replaced with the one at the middle of the current time step
Ek+1/2.

2.4 Cohesive zonemodel

The cohesive zone model is used to simulate the debond-
ing of the ITZ. The model was first developed by Dugdale
[62] and later applied to concrete by Hillerborg [63]. It is a
phenomenological model in which the crack opening is char-
acterised with a softening traction-separation law that starts
once the maximum tensile stress of the material is reached.
The model follows an exponential softening as shown in
Fig. 4a and described in Eq. (36) [50].

σ(ζ ) =
{
Kpenζ ζ < λcr = ft/Kpen

ft e
− ft (ζ−λcr )

G f otherwise
(36)

where G f is the critical fracture energy, Kpen is a large
penalty stiffness that minimises the crack opening before
reaching ft and ζ = max{λ(t) : t = 0, . . . , tk} is the
maximum value of the equivalent crack opening λ in the
loading history. The equivalent crack opening λ is defined
as a function of the normal displacements un and tangential
displacements ut [64, 65]

λ =
√
u2n + u2t (37)

The normal traction Tn and tangential traction Tt are
expressed as a function of the normal crack opening un and
tangential crack opening ut respectively as

Tt = ∂�

∂ut
= σ(ζ )

ut
ζ

(38)

Tn = ∂�

∂un
= σ(ζ )

un
ζ

(39)

Similar to the damage model, the traction-separation law
also needs to be adjusted to account for aging, which can also
influence the critical fracture energy G f . Due to the lack of
research on the variation of G f for cementitious materials
over time, in the present study, it is assumed to follow the
change of the tensile strength over time following Eq. (22).
Figure4b illustrates the load path of the traction separation
law that carries load from a previous time step. When loaded
at different ages, the traction separation law is assumed to
behave following the same concept as in the damage model
in which we assume that the stress state and damage level
do not change during aging. For ITZ, the damage level is
determined as the reduction of secant stiffness with respect
to the initial penalty stiffness.

2.5 Moisture diffusion

Problems involving moisture or temperature field are typi-
cally modelled using diffusion equations. In this study, the
non-linear moisture diffusion equation proposed by Bažant
and Najjar [53, 66] is adopted to determine the moisture
profile within a concrete meso-structure. The governing dif-
ferential equation for moisture transport of cementitious
materials is expressed as

ḣ = ∇ · [C(h)∇h] (40)

where C(h) is the moisture diffusivity that depends on the
pore relative humidity and ∇ is the differential operator. The
dependency of C(h) on humidity is expressed as

C(h) = C1

⎛
⎜⎝α0 + 1 − α0

1 +
(

1−h
1−hc

)r
⎞
⎟⎠ (41)

where C1 is the diffusivity when fully saturated, α0 is the
ratio ofC(0)/C1 (approximately), hc is the humidity atwhich
C(hc) = [C(0) + C(1)]/2, and r is a parameter that affects
the shape of the diffusivity curve. This expression has been
adopted inmany past studies [18, 46, 67], and it has also been
recommended by the fib model code [12].

3 Hygro-mechanical time-dependent
analysis using SBFEM

3.1 Concrete meso-structure and quadtreemesh
generation

In the present study, the concrete meso-structures used for
the analysis are numerically generated. They are generated
based on a take-and-place algorithm presented in Guo et al.
[68]. The aggregates are assumed to be in circular shape. The
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Fig. 3 Stress–strain diagram with aging material properties

Fig. 4 Traction-separation law under different loading conditions

size distribution of aggregates is assumed to follow Fuller’s
grading curve.

As highlighted in the introduction section, most of the
existing meso-scale studies were carried out on meshes con-
sisting of a uniform element size or elements with similar
sizes (from Delaunay triangulartion). Such an approach lim-
its the scale of the analysis as large meso-structures would be
discretised into meshes containing a substantial number of
elements. In this study, a quadtree decomposition algorithm
is adopted for image-based mesh generation which is a pow-
erful alternative for the meshing of composite domains such
as concrete meso-structures in 2D [49]. It is based on the
recursive subdivision of cells into four smaller ones of equal
size until only one material exists in one cell. The generated
quadtree meshes contain hanging nodes between adjacent
cells of different sizes which cannot be modelled directly by
traditional FEM. Modifications are needed to enforce their
compatibility in FEM which is typically achieved by fur-
ther decomposing the cells next to the hanging nodes into
smaller triangular and quadrilateral elements [69, 70]. How-
ever, the SBFEM serves as an efficient alternative to solve
this problem. The quadtree cells can be directly modelled

using SBFEM due to its ability to handle arbitrarily sided
polygons. The adopted hierarchical quadtree meshes consist
of elements of different sizes which reduces the elements
needed for computation comparing to the algorithms adopted
by existingmeso-scale studies. In addition, the quadtreemesh
contains only six uniquepatterns and all the quadtree cells in a
mesh can be generated by scaling and rotating these six cells.
This feature makes the analysis of quadtree meshes using
SBFEM computationally more efficient, as the information
of the six unique cells can be pre-computed and quickly
retrieved during the analysis. The concept of quadtree mesh
generation algorithm outlined in this section may also be
applied for 3D problems. For more details of the quadtree
algorithm and its coupling with SBFEM, see Saputra et al.
[49].

3.2 Geometry representation

Unlike in FEMwhere the integral over an element is approx-
imated using Gaussian quadrature, an SBFEM element is
integrated analytically along the radial direction and approx-
imated by polynomials in the circumferential direction. The
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modelling of an arbitrary n-sided polygonal element in
SBFEM has been illustrated by Song [71] and it has also
been presented in a previous work by the authors [50], so
only a brief introduction is provided here.

For each polygonal element, a scaling centre is defined
such that it is visible to every point on the boundary. The
boundary of a polygon is discretised using line elements with
shape function [N (η)] and natural coordinates −1 ≤ η ≤ 1.
The surface of the polygonal element which consists of mul-
tiple triangular sectors is obtained by scaling the discretised
boundary towards the scaling centre along the radial direc-
tion. A radial coordinate ξ is introduced, with ξ = 0 at the
scaling centre and ξ = 1 at the boundary. TheCartesian coor-
dinates of an arbitrary point (x, y) within a triangular sector
are expressed as

x = ξ [N (η)]{x}y = ξ [N (η)]{y} (42)

where {x} = [x1 x2 · · · xM ]T and {y} = [y1 y2 · · · yM ]T are
the nodal coordinate vectors of an M-node line element, and
[N (η)] = [N1(η) N2(η) · · · NM (η)] is the corresponding
one dimensional shape function.

3.3 SBFEM formulation for diffusion

3.3.1 Diffusion equation

The detailed derivation of SBFEM for linear diffusion was
originally presented by Song and Wolf [72]. In the present
study, it is extended to solve for nonlinear diffusion problems.
Since most of the formulations remain unchanged, only the
essential steps are presented here for brevity.

The governing equation for nonlinear diffusion takes the
following form in two-dimension:

{Lh}T{q} + {ḣ} = 0 (43)

where {Lh} is the differential operator

{Lh}T =
{

∂
∂x

∂
∂ y

}
(44)

and {q} is the flux vector related to humidity h as

{q} = −[κh]{Lh}h (45)

with the isotropic diffusion matrix [κh] that depends on the
humidity

[κh] =
[
C(h) 0
0 C(h)

]
(46)

3.3.2 General solution

The humidity field h(ξ, η) at any point along the circumfer-
ence may be interpolated as

h(ξ, η) = [Nh(η)]{h(ξ)} (47)

By applying the weighted residual method to the govern-
ing equation in the circumferential direction η, the SBFEM
equation for diffusion in terms of h(ξ) is expressed as

[
E0

]
ξ2{h(ξ)},ξξ +

([
E0

]
−

[
E1

]
+

[
E1

]T)
ξ{h(ξ)},ξ

−
[
E2

]
{h(ξ)} − ξ2 [M0] {ḣ(ξ)} = 0 (48)

where {},ξ and {},ξξ denote the first and second order deriva-
tives of a variable with respect to ξ respectively.

[
E0

]
,
[
E1

]
,[

E2
]
and

[
M0

]
in Eq. (48) are the coefficient matrices,

expressed as:

[
E0

]
=

∑
e

∫ +1

−1

[
B1

]T [κ]
[
B1

]
|J |dη (49)

[
E1

]
=

∑
e

∫ +1

−1

[
B2

]T [κ]
[
B1

]
|J |dη (50)

[
E2

]
=

∑
e

∫ +1

−1

[
B2

]T [κ]
[
B2

]
|J |dη (51)

[
M0

]
=

∑
e

∫ +1

−1
[N ]T [N ]|J |dη (52)

in which
[
B1

]
and

[
B2

]
are the SBFEM strain-displacement

matrices. The steady state of Eq. (48) can be transformed into
a set of first-order ordinary differential equations with twice
the number of unknowns as

ξ

[ {h(ξ)}
{Q(ξ)}

]
,ξ

= −[Z ]
[ {h(ξ)}
{Q(ξ)}

]
(53)

where [Z ] is a Hamiltonian matrix

[Z ] =
[ [

E0
]−1 [

E1
]T − [

E0
]−1

[
E1

] [
E0

]−1 [
E1

]T − [
E2

] − [
E1

] [
E0

]−1

]
(54)

and {Q(ξ)} is the internal nodal flux

{Q(ξ)} =
[
E0

]
ξ{u(ξ)},ξ +

[
E1

]
{u(ξ)} (55)

A block diagonal Schur decomposition of [Z ] is then per-
formed, which results in

[Z ]
[[�11] [�12]
[�21] [�22]

]
=

[[�11] [�12]
[�21] [�22]

] [[Sn]
[Sp]

]
(56)
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where [Sn] and [Sp] are upper triangular matrices that con-
tain eigenvalues with negative and positive real parts along
the diagonal respectively. For bounded domains, only [Sn]
leads to finite humidity at the scaling centre. The variables
[�11] and [�12] are transformation matrices that correspond
to the humidity, whereas the variables [�21] and [�22] are
transformation matrices that correspond to the flux. The gen-
eral solutions for humidity and flux vector are then derived
as

{h(ξ)} = [�11]ξ−[Sn]{cn} (57)

{Q(ξ)} = [�21]ξ−[Sn]{cn} (58)

where the integration constants cn are determined by the
nodal humidity on the boundary {h} = {h(ξ = 1)} as

{cn} = [�11]−1{h} (59)

The steady state stiffness matrix [K ] can then be obtained by
substituting Eq. (59) into Eq. (58) and set ξ = 1, which is
expressed as

[K ] = [�21][�11]−1 (60)

3.3.3 Shape function

By substituting Eq. (59) into Eq. (57), the humidity field
along the radial direction is expressed as

{h(ξ)} = [�11]ξ−[Sn][�11]−1{h} (61)

By substituting Eq. (61) in Eq. (47), the humidity field at any
point within the element can be interpolated as

{h(ξ, η)} = [N�]{h} (62)

where [N�] is the scaled boundary shape function, expressed
as

[N�] = [Nh][�11]ξ−[Sn][�11]−1 (63)

3.3.4 Governing equation for diffusion

The diffusion equation of an SBFEM element takes the same
form as the standard FEM, expressed as

[K ]{h} + [M]{ḣ} = 0 (64)

where [K ] is the stiffness matrix and [M] is the mass matrix
with unit density. The formulation for stiffness matrix has
been derived in Eq. (60). The mass matrix is formulated as

[M] = [�11]−T [m][�11]−1 (65)

where [m] satisfies the Lyapunov equation

([I ] − [Sn])[m] + [m]([I ] − [Sn])
= [�11]T[M0][�11] (66)

The time derivation in Eq. (64) shall be discretised in order to
run incremental analysis. For time step �tk = tk+1 − tk , the
diffusion equation in Eq. (64) is approximated using finite
differences and the backward Euler method as

[M]
( {h}k+1 − {h}k

�tk

)
+ [K ]k+1{h}k+1 = 0 (67)

The backward Euler method is adopted here as it was found
to be unconditionally stable. For clarity, Eq. (67) can then
be rearranged to separate the humidity field at different time
steps as

(
[K ]k+1 + [M]

�tk

)
{h}k+1 =

( [M]
�t

)
{h}k (68)

3.4 SBFEM formulation for displacement

3.4.1 General solution

Similar to the humidity field, the displacement field u(ξ, η)

at any point within an SBFEM element is interpolated as

{u(ξ, η)} = [Nu]{u(ξ)} (69)

where [Nu(η)] is the shape function for displacement. The
SBFEM equation for displacement shares the same form as
the steady state diffusion equation, expressed as

[
E0

]
ξ2{u(ξ)},ξξ +

([
E0

]
−

[
E1

]
+

[
E1

]T)
ξ{u(ξ)},ξ

−
[
E2

]
{u(ξ)} = 0 (70)

For displacement problems, the diffusion matrix [κh] in Eqs.
(49) to (51) is replaced with the elasticity matrix [D]. The
SBFEM equation for displacement in Eq. (70) can be solved
following the same procedures presented in Eqs. (53) to (63).
The general solutions appeared in Eqs. (57) and (58) in this
case are for the displacement {u(ξ)} and internal force vector
{q(ξ)} respectively. The stiffnessmatrix formulation remains
the same as presented in Eq. (60)
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3.4.2 Shape function and B-matrix of SBFEM elements

For displacement problems, the strain–displacement rela-
tionship is governed by

{ε} = [Lu]{u} [Lu]T =
[

∂
∂x 0 ∂

∂ y

0 ∂
∂ y

∂
∂x

]
(71)

where [Lu] is the differential operator for displacement and
its expression in terms of the scaled boundary coordinate
system takes the following form.

[Lu] = [b1] ∂

∂ξ
+ [b2]1

ξ

∂

∂η
(72)

where [b1] and [b2] are matrices that depend on the geometry
of the elements only. By substituting Eqs. (69) and (72) into
Eq. (71), the strain field is expressed as

{ε} =[B]{u} (73)

[B] =
(
−[B1][�11][Sn] + [B2][�11]

)
ξ−[Sn]−[I ][�11]−1

(74)

where [B] is equivalent to the B-matrix in FEM, [B1] and
[B2] are the SBFEM strain–displacement matrices.

3.4.3 Governing equation for time-dependent
displacement

The incremental SBFEM formulation is derived from Eq.
(18) by applying the principal of virtual work. It shares the
same form as the one presented by the authors for the sim-
ulation of creep and shrinkage [50–52]. For an undamaged
SBFEM element, the incremental force-displacement rela-
tion at a given time step k with time increment of �tk =
tk+1 − tk is given as

[K ]k{�u}k = {�Fext }k + {�F ′′}k (75)

where [K ]k is the stiffness matrix as expressed in Eq. (60). In
this case, the coefficient matrices in Eqs. (49) to (51) that are
used to construct the stiffness matrix is formulated using the
pseudo modulus E ′′

k (see Eq. (19)) instead of [κ]. {�Fext }k
is the external load vector, and {�F ′′}k is the equivalent load
vector due to time-dependent strain components, expressed
as

{
�F ′′}

k =
∫

�

[B][D]k+1/2{�ε′′}kd� (76)

From the above equation, [B] is the strain–displacement
matrix, [D]k+1/2 is the material constitutive matrix evalu-
ated at the middle of each time step. For two-dimensional

problems, d� is expressed as

d� = |J |ξdξdη (77)

The equations presented above shares the same form as
the ones presented by the authors for the simulation of creep
and shrinkage [50–52], except that the formulation has been
extended in the present study to explicitly account for dry-
ing creep. In addition, the variation of the prescribed strain
{�ε′′}k within an SBFEM element was approximated by a
polynomial function in previous works. However, due to the
complexity of the problem in this study, it is assumed that
{�ε′′}k is a constant within each element and it is evaluated
at the scaling centre of each element.

3.5 SBFEM formulation for coupled time-dependent
deformation and damage

Previous works conducted by the third author accounted for
damage using SBFEM [73]. Here, the same concepts are
used and further extended to cover damage in structures that
undergo time-dependent deformations. Due to the complex-
ity of the problem, the damage index ω is assumed to be
uniformwithin each element. Such an approach significantly
simplifies the formulation and it is justified as long as suf-
ficiently fine elements are used. By combining Eqs. (18)
and (29), the total force-displacement relation for coupled
isotropic damage and time-dependent deformation analysis
is formulated as

(1 − ωk)

k∑
i=1

[K ]i {�u}i = {Fext }k

+(1 − ωk){F̄ ′′}k (78)

where the external load vector {Fext }k and effective equiv-
alent load vector {F̄ ′′}k are obtained by summing their
incremental values up to time step k

{Fext }k =
k∑

i=1

{�Fext }i (79)

{F̄ ′′}k =
k∑

i=1

{�F̄ ′′}i (80)

The term ’effective’ depicts variables formulated using
undamaged material properties, and {�F̄ ′′} is determined
following Eq. (76). To facilitate time-stepping analysis, Eq.
(78) needs to be converted into an incremental form. For a
small time step, the incremental force-displacement relation
is linearised as

[Kdmg]k{�u}k = {Fext }k + (1 − ωk){F̄ ′′}k
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−(1 − ωk−1){F̄int }k−1 (81)

where [Kdmg]k is the stiffness matrix used for the iterative
procedures and the tangent stiffness is adopted typically.
{F̄int }k−1 is the effective internal load vector at step k − 1
with expression of

{F̄int }k−1 =
k−1∑
i=1

{�F̄int }i =
k−1∑
i=1

[K ]i {�u}i (82)

Newton-Raphson iterative procedures are used to solve the
nonlinear problem. Due to complexity of the derivation of
the tangent stiffness matrix and the computational cost asso-
ciated with its formulation at every time step and iteration,
the secant stiffness matrix is adopted for the iterative proce-
dures in this study. At step k, the secant stiffness matrix for
each element can be formulated as

[Ksec]k = (1 − ωk)[K ]k (83)

The secant stiffness matrix can be quickly computed in
each iteration by directly scaling the pre-computed stiffness
matrix.

3.6 Interface elements

Interface elements are used to accommodate the cohesive
zone model which is used to simulate the debonding of the
ITZ. A secant modulus approach is also used for the interface
elements. Their secant stiffness matrix Kz is assembled as

[Kz]k =
∫

[Bz]T[R]T[Dz]k[R][Bz]dη (84)

where [Dz]k+1/2 is the material’s secant stiffness evaluated
at the middle of each time step following Sect. 2.4, [R] is the
rotation matrix that transforms the vectors from global coor-
dinate system to local coordinate system and [Bz] is the shape
function matrix. Their formulations can be found in Zhang
et al. [50]. The internal load vector of interface elements at
any time step k is expressed as

{Fint,z}k =
∫

[Bz]
[
Tt Tn

]T
k dη (85)

The Newton-Cotes integration scheme is adopted in the
formulation of the interface elements because the standard
Gaussian integration scheme leads to spurious oscillations
when a high penalty stiffness is used [74].

4 Solution procedure

As mentioned in Section. 3.1, a two-dimensional quadtree
mesh only has six unique cell patterns. For each material that
could appear in the meso-scale analysis, a set of six master
cells is defined by considering the cells to have a unit edge
length and a unit Young’s modulus. The stiffness matrix [K ],
and mass matrix [M] can be pre-computed for each master
cell and each material type before the analysis. Other impor-
tant matrices including

[
B1

]
,
[
B2

]
, [Sn] and [�11] can also

be pre-computed to speed up the formulation of the equiva-
lent load vector {�F ′′}k . During the analysis, these matrices
can be quickly retrieved and scaled to account for cells with
different side length and material properties.

The present hygro-mechanical model carries out analysis
on two layers including the hygral layer which deter-
mines the distribution of humidity within a structure and
a mechanical layer which determines the deformation due
to time-dependent behaviour. For clarity, the computational
procedures involved in the two layers are presented sepa-
rately.

4.1 Hygral layer

Box 1 shows the procedures for the analysis of moisture
movement. Due to the dependence of the stiffness matrix
on diffusivity C(h), iterations are carried out (see steps b to
f). In each iteration, the stiffness matrix [K ] of each element
is updated based on the current humidity at the scaling centre
and the respective diffusivity C(h). A residual vector Rh is
defined by rearranging Eq. (68) as

Rh =
(

[K ]k+1 + [M]
�tk

)
{h}k+1 −

( [M]
�tk

)
{h}k (86)

and the iterations stop once the norm of the residual vector
|R| is smaller than a tolerance value Rh,tol

4.2 Mechanical layer

Box 2 shows the procedures for analysis of the time-
dependent deformation. This is again a nonlinear problem
that requires iterations due to material damage and ITZ
debonding. Steps a to f are computed only once at the begin-
ning of each time step. The iterations happen between steps
h to k. The damage index ωk is updated every iteration from
which the secant stiffness and residual load vector are deter-
mined. The residual load vector for SBFEM elements Ru,e

and interface elements Ru,z are determined as

Ru,e = {Fext }k + (1 − ωk){F̄ ′′}k − (1 − ωk){F̄int }k (87)

Ru,z = {Fext }k − {Fint,z}k (88)
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Box 1 Computational procedure for hygral layer
1. Initialise the humidity {h}1 and diffusivity C(h1) Eq. (41)
2. For time step k = 1 : n with time increment of �tk = tk+1 − tk
a. Construct the stiffness matrix [K ] and the mass matrix [M] Eqs. (60, 65)
b. Solve for humidity field {h}k+1 Eq. (68)
c. Compute the humidity at the scaling centre of each element and update the diffusivity C(hk) Eqs. (63, 41)
d. Update stiffness matrix [K ] based on the current diffusivity C(hk) Eq. (60)
e. Determine the residual vector Rh Eq. (86)
f. Check for convergence. If |Rh |> Rh,tol , return to step b, else, go to the next time step

Similar to the hygral layer, the iterations stop once the
norm of the residual vector |Ru | is smaller than the tolerance
value Ru,tol . After convergence is attained, the internal vari-
ables γμ,k are updated, which will be used in the subsequent
time step to compute the incremental strain due to basic creep
�ε′′

ve,k+1.

5 Numerical examples

This section starts with a numerical example that simu-
lates the experiment by Bažant and Xi [75]. This example
aims to demonstrate the capability of the proposed model
in modelling drying creep with account of changes in the
humidity distribution over time. This is followed by the
simulation of the experiment by Idiart et al. [76] which
demonstrates the capability of the proposed model in cap-
turing shrinkage-induced cracks in concrete that is subjected
to uniform drying. This section concludes with a numeri-
cal simulation of the differential drying of a concrete slab.
The effect of boundary conditions and aggregate size on
shrinkage-induced cracks are investigated through a para-
metric study.

5.1 Simulation of drying creep

Bažant andXi [75] carried out a set of experiments to demon-
strate that both drying creep and microcracking contribute
to the apparent strain measured on drying creep specimens.
The experimental setup of Bažant and Xi [75] is illustrated
in Fig. 5 which includes testing of specimens under eccen-
tric loads. The equivalent stress distributions of the eccentric
loads have also been shown in the figure. The specimens
testedwere square prismswith lengthof 406.4mmand sideof
101.6mm. Two load eccentricities were considered, a small
one of 5.3mm and a large one of 24.6mm. For each set of
tests, sealed and unsealed specimens were tested. The sealed
specimens undergo basic creep only, whereas the unsealed
specimens undergo basic creep, drying creep and drying
shrinkage. For these specimens, drying was only allowed in
one dimension that is on two of the opposite side surfaces.
The specimens loaded with small eccentricity were under
compression, whereas the specimens that were loaded with

large eccentricity were subjected to tension on the left side
that is less than the tensile capacity of concrete ft . Nev-
ertheless, this tensile stress when combined with internal
restrained shrinkage and differential drying can cause micro-
cracking that can be simulated with the proposed meso-scale
model, but cannot be captured using macro-scale homoge-
neous models. The environmental humidity was kept at 50%
throughout the experiment.

The concrete used for the test was made from weight ratio
of water: cement: sand: gravel = 0.5:1.0:2.5:3.0. The coarse
aggregates used for the mix have a maximum size of 19mm.
Based on themix proportion and the typical weight density of
the materials, the proportion of mortar and coarse aggregates
for the meso-scale analysis is estimated to be 61.1% and
38.9% respectively. The concrete meso-structure generated
for the analysis is shown in Fig. 6 which is represented by an
imagewith a resolution of 4096 by 1024 pixels. The quadtree
decomposition criteria is set to give element sizes between
1 pixel and 42 pixels. The produced quadtree mesh contains
488,209 elements with a total number of 553,712 nodes. A
small section of the quadtree mesh is presented in Fig. 6.
The ratio of the number of elements generated to the total
number of pixels is around 11.6%. An overall fine mesh is
adopted in this study for the convergence and accuracy of the
simulation because the crack pattern is not known a priori and
it propagates or change with time due to the time-dependent
deformations. It should be noted that the SBFEM approach
allows for adaptive local mesh refinement without the need
to regenerate the entire mesh [77], which can further reduce
the computational cost. However, this feature of the SBFEM
approach is not adopted in this study.

The material parameters adopted for the meso-scale anal-
ysis are shown in Table 1. For an ideal validation of the
proposed model, all of the input parameters should be
obtained or calibrated from experimental data on the same or
similar mortar mix. However, due to the lack of experimen-
tal data on mortar, some of the parameters adopted in this
example are back calibrated in a way that they give a good fit
against the experimental results of the concrete specimens.
In existing meso-scale studies, the elastic modulus of mortar
is well accepted to be in the range of 20–30 GPa, whereas
the aggregates have an elastic modulus of 60–70GPa [29, 35,
46]. The Poisson’s ratio of both mortar and aggregates are
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Box 2 Computational procedure for mechanical layer
1. Initialise the internal variables γμ,1 and damage index ω1
2. For time step k = 1 : n with time increment of �tk = tk+1 − tk
a. Determine the incremental hydration time �te,k and the incremental reduced time �tr ,k Eqs. (24, 25)
b. Compute the elastic modulus Ek+1/2 and the tensile strength ft,k+1/2 Eqs. (21, 22)
c. Determine the incremental pseudo modulus for basic creep E ′′

ve,kand drying creep E ′′
dc,k Eqs. (5, 16)

d. Determine the incremental strain due to basic creep�ε′′
ve,k , shrinkage �ε′′

sh,k and drying creep
�ε′′

dc,k

Eqs. (6, 13, 17)

e. Determine the overall incremental pseudo modulus E ′′
k and incremental strain �ε′′

k Eqs. (19, 20)
f. Construct the stiffness matrix [K ]k and the effective equivalent load vector {�F̄ ′′}k Eqs. (60, 76)
g. Initialise the incremental displacement {�u}k
h. Solve for {δu}k and update the displacement vector {�u}k = {�u}k + {δu}k Eq. (81)
i. Update the damage index ωk and the secant stiffness matrix [Ksec]k Eqs. (30, 83)
j. Determine the residual load vector Ru Eqs. (87, 88)
k. Check for convergence. If |Ru |> Ru,tol , return to step i, else go to the next time step
l. Update the internal variables γμ,k+1 Eq. (7)

Fig. 5 Experimental set up of
Bažant and Xi [75]

commonly assumed to be 0.2 [35, 43]. The aging coefficient
s is adopted from Zhang et al. [51] which was calibrated for
a similar mortar mix. The coefficients that relate moisture to
hydration and creep are adopted fromBažant and Chern [14].
The basic creep properties of mortar are calibrated such that
the simulated deflection agrees well with the experimental
results. The validity of meso-scale models for the predic-
tion of basic creep of concrete from mortar has already been
demonstrated in a previous work by the authors [51] through
comparison with accompanied experimental program. Both
drying creep and drying shrinkage are related to the humid-
ity which is obtained from the nonlinear diffusion analysis.
For diffusion, the parameters α0, hc and r take the values
from the fib model [12]. C1 is back calculated from that
of the concrete which is estimated based on the fib model
[12]. A simple formula based on the proportion of mortar is

adopted to determineC1 for mortar assuming that aggregates
are impermeable. For parameters relating drying shrinkage
and drying creep, ksh is estimated based on the shrinkage
results presented in [78]. Due to the lack of relevant data,
the parameter r governing drying creep is back calibrated to
ensure a good agreement between the simulation and exper-
imental results. For damage parameters, the tensile strength
of mortar is assumed to be 10% the compressive strength of
typical mortar mixes and the remaining damage parameters
are back calibrated. The tensile strength and fracture energy
of the ITZ are assumed to be ft = 1.5 MPa and Gc = 0.01
N/mm following [46]. It should be noted that due to the fact
that some of the parameters are not adopted from relevant
experiment data, the comparison between test and numerical
results as shown subsequently is not a quantitative validation
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Fig. 6 Generated concrete meso-structure

of the model. It is rather a qualitative verification of its ability
to predict a physical response that was obtained in tests.

In the work of Bažant and Xi [75], eccentric loads were
applied through pins at the two ends of the specimen with
steel plates attached between the specimen and the pins for
load transfer. Since the exact dimensions of the plates were
not reported, we assume that the eccentric point load is trans-
ferred to the entire section of the specimen at the edges,which
is simulated through a linearly distributed load on the top and
bottom surfaces. The simulated results under sealed condi-
tion (basic creep only) along with the experimental results
are shown in Fig. 7. Figure7a shows the results under load
with small eccentricity and Fig. 7b shows the results under
loadwith large eccentricity. The calibratedmodel parameters
for basic creep is able to replicate the test results under both
loading scenarios as observed from the figure.

For the specimens that are subjected to drying, all the time-
dependent strain components need to be considered in the
simulation, including basic creep, drying creep and shrink-
age. The last two are directly related to the internal humidity.
Figure8 shows the simulated change of humidity over time
in the mortar phase. Mortar is assumed to be in fully humid
condition at the start of drying and aggregates are assumed
to be impermeable. After 1 day, it can be observed from the
figure that drying only occurred close to the exposed surfaces

Table 1 Adopted parameters for mortar and aggregates in Example 1

Component Mortar Aggregate

Elasticity

E 22.3 GPa 60 GPa

v 0.2 0.2

Aging and moisture effect

s 0.378

αe 5

αr 0.1

Basic creep

c1 0.325

c2 0.8205

Shrinkage and drying creep

ksh 20 × 10−6

r 0.061

Damage

ft 5 MPa

ε f − ε0 1 × 10−2

R 1mm

Diffusion

α0 0.05

hc 0.8

r 15

C1 46

and the majority of the mortar remains fully humid. Drying
propagates to the interior of the specimen over time and the
centre of the specimen reaches a humidity of around 75%
after 200 days of simulation. Please notice that the humidity
at the surface is equal to the external relative humidity of
50%.

The effect of damage caused by tension at the meso-scale
was found to be insignificant for the specimen thatwas loaded
with small eccentricity. Figure9a shows the damage level of
the mortar phase at 200 days after loading for the specimen
that was loaded with large eccentricity. It can be observed
that cracking is more significant on the left edge. This is due
to the combined effects of the eccentric load and differential
drying. Concrete is subjected to differential shrinkage due to
the non-uniformdistribution of humidity. Shrinkage is higher
on the surface of the specimen than the interior, which intro-
duces large tensile stress on the surface and cracking. When
these tensile stresses are combined with eccentric loading,
the cracking pattern becomes different at the two edges of
the specimen. In the examined case, cracking is more severe
at the left edge.Most of the observed cracks are surface cracks
that are developed between the exposed surface and the outer
layer of aggregates, and they are generally perpendicular to
the drying surface. On the left edge, some of the cracks are
also observed to penetrate further into the specimen. It can be

123



1206 Computational Mechanics (2023) 72:1191–1214

0.001 0.01 0.1 1 10 100 1000
0.00

0.05

0.10

0.15

Time(days)

De
fle

ct
io

n
(m

m
)

Test result
Simulated result

(a) Load with small eccentricity

0.001 0.01 0.1 1 10 100 1000
0.00

0.05

0.10

0.15

Time(days)

De
fle

ct
io

n
(m

m
)

Test result
Simulated result
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Fig. 7 Mid-span deflection over time under sealed condition

Fig. 8 Internal humidity after 1, 10 and 200 days of drying

seen that cracks generally propagate next to the aggregates
which restrain the shrinkage deformation ofmortar and intro-
duce stress concentrations. Figure9b shows the decohesion
of the ITZ in the deformed meso-structure. Only minor ITZ
decohesion is observed on the left side of the specimen. The
above observations were not reported in the tests, and in gen-
eral, they can hardly be measured.

Figure10 shows the comparison between simulated and
measured mid-span deflections when the specimens are sub-
jected to drying. A good agreement is obtained for the
specimen loaded under small eccentricity. For the specimen
loadedwith large eccentricity, good correlations are observed
up to about 40 days. After that, the rate of the increase of
deflection over time observed from the experimental results

decreases which leads to some minor difference between
the simulated and test results. Nevertheless, an overall good
agreement is obtained.

It should be noted the presented study is in 2Dwhich is not
accurately representative of real concrete specimens. Con-
crete specimens and aggregates are generally 3D in nature
which can affect the stress field and damage pattern. It has
been demonstrated in previous works by the authors [51, 52]
that the use of 2D meso-scale models is sufficient for the
prediction of creep and shrinkage strain in typical labora-
tory size concrete specimens that are loaded in one direction
only as the out-of-plain restraint is generally small. This
was shown through good comparison between simulated and
measured responses. However, the accuracy of 2D simula-
tions in predicting crack patterns and humidity distribution
requires further validation. Nevertheless, the present model
serves as ameaningful tool for clarifying the effect of various
factors on the time-dependent response, and as a basis for the
development of 3D models in the future.

5.2 Simulation of shrinkage-induced cracks under
uniform drying

The experimental program of Idiart et al. [76] is used for this
simulation. The experiment involves testing of 2mm thin
plate of cementitious composite subjected to drying. The
plate is made of cement paste with cylindrical aggregates
made from stainless steel. The cement paste was made with a
water-to-cement ratio of 0.5 and the specimens were allowed
to dry after 28 days of wet curing. The crack patterns were
recorded at the end of the drying period and were reported
in the study. The exact positions of the aggregates have also
been given which allows a qualitative comparison with the
experimental results.

The idea of using thin samples in the tests was to simulate
uniform drying scenario which in turn produces 2D crack-
patterns. Under uniform drying, shrinkage induced cracks
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Fig. 9 Fracture of concrete under large eccentric load (t = 200 days)

Fig. 10 Mid-span deflection
over time under drying condition

0.001 0.01 0.1 1 10 100 1000
0.00

0.05

0.10

0.15

0.20

Time(days)

De
fle

ct
io

n
(m

m
)

Simulated result
Test result

(a) Load with small eccentricity

0.001 0.01 0.1 1 10 100 1000
0.00

0.05

0.10

0.15

0.20

Time (days)

De
fle

ct
io

n
(m

m
)

Test result
Simulated result

(b) Load with large eccentricity

develop as a result of the restraint caused by the aggregates.
The environmental humidity started at 100% and was gradu-
ally decreased to 60% humidity over the course of 7 days and
then kept constant for an additional 31 days. Due to the spec-
imens being very thin, we can safely assume that the internal
humidity of the specimen follows that of the environment.
The gradual decrease of humidity was not specified in the
study, and so it is assumed to take the shape of Fig. 11 with
a drying rate of 1% per hour between the various humidity
levels.

The experiment considered two aggregate distributions
with 10% and 35% aggregate volume fraction respectively.
In addition, four different sizes of the sample are considered
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Fig. 11 Humidity evolution
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Fig. 12 Cementitious composite used in the experiment of Idiart et al.
[76]

with edge length of 21.5mm, 32.4mm, 43.3mm and 65mm.
The aggregate sizes were scaled along with the samples with
diameters of 2mm, 3mm, 4mm and 6mm respectively, to
ensure a uniform geometry on the meso-scale. The distri-
bution of aggregates adopted by the experiment [76] are
shown in Fig. 12. Digital images with a resolution of 2048
by 2048 pixels are generated to represent the adopted meso-
structures. The quadtree decomposition criteria is again set
to give element sizes between 1 and 42 pixels. The produced
quadtreemesh contains 291094 elements with a total number
of 300574 nodes for the meso-structure with 10% aggregate
volume fraction, and 363880 elementswith 394694 nodes for
the meso-structure with 35% aggregate volume fraction. The
ratio of the number of elements generated to the total num-
ber of pixels is 6.9% and 8.7% for the two meso-structures
respectively. Similar to the previous example, a fine mesh is
adopted here to ensure the damage zone is accurately cap-
tured.

The crack patterns were reported for meso-structures with
2mm and 10% aggregates, 6mm and 10% aggregates, and
4mm and 35% aggregates. Despite that the specimens were
thin and the humidity was carefully controlled, a uniform
crack pattern across the thickness was not obtained in the
tests. Two types of crack patterns were reported, includ-
ing middle-section cracks and through-going cracks. In the
present study, because of the 2D characteristics of the model,
the simulated results are compared with the measured cracks
at middle-section.

The material properties adopted in this example are sum-
marised in Table 2. The elastic properties of cement paste
and steel aggregates are adopted from Idiart et al. [76]. The
parameters related to the time-dependent deformation are
calibrated from experimental data reported in Zhang et al.
[51] for a similar type ofmix. Due to the lack of relevant data,
the damage parameters are calibrated such that the computed
cracks patterns agree reasonably well with the measured
cracks. It is worth noting that the crack path is mainly gov-
erned by the elastic properties of the steel aggregates and

Table 2 Adopted parameters for cement paste and steel aggregates -
Idiart’s experiment

Component Paste Aggregate

Elasticity

E 12.5 GPa 200 GPa

v 0.2 0.3

Aging and moisture effect

s 0.394

αe 5

αr 0.1

Basic creep

c1 0.617

c2 0.161

Shrinkage and drying creep

ksh 69 × 10−6

r 0.03

Damage

ft 4 MPa

ε f − ε0 1.2 × 10−2

R 0.2mm

the time-dependent properties of cement paste, whereas the
damage parameters mainly affect the length of the developed
cracks. It was found that the predicted response will only
slightly change with varying the input damage parameters
within the logical range, which provides a level of valida-
tion to the proposed model. Figure13 shows the comparison
between computed andmeasured crack patterns. In the simu-
lated results, crackpatterns are presentedusingdamage levels
and they are manifested as a band of damaged region. It can
be seen that the simulated crack patterns agree reasonably
well with the measured crack patterns. It should be noted
that an exact prediction of the crack patterns is very diffi-
cult considering that cement paste is a highly heterogeneous
material.

5.3 Simulation of shrinkage-induced cracks under
differential drying

In this example, a concrete specimen subjected to differential
drying is considered in order to simulate real scenarios in con-
struction where only the upper surface is typically exposed
to the environment. Under this condition, shrinkage-induced
cracks develop due to the combined effect of aggregate
restraint and differential drying. A parametric study is car-
ried out to investigate the effect of various parameters on
shrinkage-induced cracking. A component of a concrete slab
with thickness of 100mm by 200mm length is considered.
For brevity, we will consider the same concrete mix and
material properties as adopted in Sect. 5.1. However, typical
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Fig. 13 Comparison between computed damage level and measured crack pattern for meso-structures with 10% 2mm aggregates (left), 10% 6mm
aggregates (middle) and 35% 4mm aggregates (right)

Fig. 14 Generated meso-structure for Example 3

10mm grade aggregates in compliance with the Australian
Standard AS2758.0 [79] is used. All the aggregates are
assumed to be circular. Drying of the slab is only allowed
on the top surface, while all the other surfaces are assumed
to be impermeable. The simulations are run for 200 days and
there is no external loading on the slab considered.

The effect of ambient humidity is investigated first. The
generated digital image of concrete meso-structure is shown

in Fig. 14 with a resolution of 1024 by 2048 pixels. The
quadtree decomposition criteria is set to be the same as previ-
ous examples. Three constant environmental humidity levels
are considered, including 30%, 50% and 70%. The slab is
supported on the bottom surface against vertical movement
and only one point is restrained in the horizontal direction.
The simulated crack patterns under the three different cases
are shown in Fig. 15. Only the top 30mm of the slabs are
presented in the figure as no damage is observed in the inner
part of the slab. It can be clearly observed from the figure that
a lower environmental humidity leads to more pronounced
cracking. This can be attributed to the higher tensile stress
induced on the drying surface as a result of the steeper humid-
ity gradient between the exposed surface and the interior of
the slab. It can be seen that for the case with 30% humidity,
a more severe crack pattern is observed in which the cracks
penetrated deeper inside the slab and cracks between aggre-
gates start to develop.

In the second part, the effect of aggregate size on
shrinkage-induced cracking is investigated. Three concrete
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Fig. 15 Simulated crack pattern
under various environmental
humidity (top: 30%, middle:
50%, bottom: 70%)

meso-structures are generated containing aggregates with
uniform sizes of 5mm, 10mm and 15mm respectively while
keeping the overall aggregate content unchanged. The slab
is subjected to an environmental humidity of 50%. Fig-
ure16 shows the simulated crack pattern on the top 30mm
of the slabs with different aggregate sizes. More cracks are
observed in the concrete with smaller aggregate. This can be
attributed to the increase of the quantity of aggregates which
created more locations with stress concentrations for cracks
to develop.On the other hand, concretewith larger aggregates
is observed to have wider damaged zone or in other words
larger cracks. A similar observation has also been made in
the numerical study by Grassl et al. [80].

Another simulation is carried out here to investigate the
effect of horizontal restraint on shrinkage-induced cracks.
In addition to the restraint on the bottom surface, the slab
is restrained from horizontal movement on the left and right
surface in this case. The slab is subjected to an environmental
humidity of 50%. The simulated crack patterns in this case
are shown in Fig. 17. When the slab is restrained from hor-
izontal movements, one localised cracking path is observed
in addition to the typical surface cracks observed in Fig. 15.
This is due to the tensile stress introduced in the horizontal
direction as a result of the structural restraint. In this case,
the debonding of the ITZ is also clearly visible especially
around the localised crack as shown in Fig. 18. As already
highlighted in the first numerical example, the observations
obtained from this example are qualitative ones due to the
2D nature of the proposed model.

6 Conclusions

An SBFEM based 2D meso-scale hygro-mechanical model
has been presented in this paper for the modelling of the
time-dependent behaviour of concrete. The model takes dig-
ital images of concrete meso-structures as input and converts

them into meshes through a quadtree decomposition algo-
rithm that is compatible with SBFEM analysis. Concrete is
treated as a two-phase composite consisting of aggregates
and mortar, and the ITZ between mortar and aggregates are
modelled using the cohesive zone model.

The model accounts for basic creep, drying creep, drying
shrinkage and cracking. Basic creep is treated as viscoelastic,
and it is modelled using a rate-type Kelvin chain model. Dry-
ing creep is modelled using a viscous unit which depends on
the current stress level. Both drying creep and drying shrink-
age are related to the internal humidity level. The internal
humidity distribution within the concrete meso-structure is
obtained from a diffusion analysis in which moisture move-
ment in mortar is governed by a nonlinear diffusion equation
and aggregates are assumed to be impermeable. Cracking of
concrete on themeso-scale ismodelled through the combina-
tion of a continuum damagemodel for mortar, and a cohesive
zone model for the ITZ.

The capability of the proposed model in predicting the
time-dependent deformations and cracking patterns was ver-
ified through comparison with experimental observations
from the literature. A parametric study was also carried out
which demonstrated the effect of ambient humidity, aggre-
gate size and restraining condition on the development of
shrinkage-induced cracks in a concrete specimen subjected
to differential drying. It was found that an increase of aggre-
gate size reduces the number of surface cracks observed,
but it generates larger cracks. Given the capability of the
proposed model, it serves as an effective tool for the simula-
tion and understanding of the time-dependent behaviour and
cracking of concrete under various realistic conditions, i.e.
variable loading and variable drying condition. The model
may also serve as a powerful tool to examine the role of
various components of concrete and their properties on the
time-dependent behaviour of concrete, which can assist in
the optimisation of concrete mix for serviceability.
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Fig. 16 Simulated crack pattern
under various aggregate sizes
(top: 5mm, middle: 10mm,
bottom: 15mm)

Fig. 17 Simulated crack pattern
under 50% humidity and
restrained horizontal movement

Fig. 18 Simulated ITZ
debonding under 50% humidity
and restrained horizontal
movement

In futureworks, the proposedmeso-scale hygro-mechanical
mode will be extended to simulate the time-dependent
behaviour on 3D concrete specimens in which a more accu-
rate representation of the humidity and damage fields can be

obtained. The model will also be coupled with an adaptive
mesh refinement technique to reduce the computational cost.
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