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Abstract
In this paper we model the size-effects of metamaterial beams under bending with the aid of the relaxed micromorphic
continuum. We analyze first the size-dependent bending stiffness of heterogeneous fully discretized metamaterial beams
subjected to pure bending loads. Two equivalent loading schemes are introduced which lead to a constant moment along the
beam length with no shear force. The relaxed micromorphic model is employed then to retrieve the size-effects. We present
a procedure for the determination of the material parameters of the relaxed micromorphic model based on the fact that the
model operates between two well-defined scales. These scales are given by linear elasticity with micro and macro elasticity
tensors which bound the relaxed micromorphic continuum from above and below, respectively. The micro elasticity tensor is
specified as the maximum possible stiffness that is exhibited by the assumed metamaterial while the macro elasticity tensor
is given by standard periodic first-order homogenization. For the identification of the micro elasticity tensor, two different
approaches are shown which rely on affine and non-affine Dirichlet boundary conditions of candidate unit cell variants with
the possible stiffest response. The consistent coupling condition is shown to allow the model to act on the whole intended
range between macro and micro elasticity tensors for both loading cases. We fit the relaxed micromorphic model against the
fully resolved metamaterial solution by controlling the curvature magnitude after linking it with the specimen’s size. The
obtained parameters of the relaxed micromorphic model are tested for two additional loading scenarios.

Keywords Size-effects · Consistent coupling condition · Metamaterials · Relaxed micromorphic model · Generalized
continua · Homogenization

1 Introduction

Mechanical metamaterials are unconventional materials with
exotic mechanical properties that are governed by the geom-
etry of the complex underlying microstructure rather than by
the properties of the constituting materials [34, 44, 62, 122,
124]. They can be optimized to obtain the intended mechani-
cal properties to fit the wanted functionality [111]. However,
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mechanical metamaterials typically reveal size-effect phe-
nomena and therefore the classical Cauchy–Boltzmann the-
ory and first-order homogenization methods are incapable
to describe such mechanical behavior. Generalized continua
are enhanced continua that can model these size-effects
as a homogeneous continuum without accounting for the
detailed microstructure. The enhancement can be achieved
by expanding the kinematics to contain additional degrees of
freedom, e.g. the classical micromorphic theory [31, 32, 49,
71, 77, 110] and the Cosserat theory [9, 24, 63, 76, 78, 114],
or by accounting for higher-grade differential operators in
the energy functional, e.g. gradient elasticity models [5, 11–
13, 30, 33, 43, 72, 102, 119]. However, the identification of
the material parameters of these models is not trivial and in
general remains unsolved. Different schemes were presented
for the homogenization of the heterogeneous fully resolved
microstructures into the Cosserat continuum in [9, 37, 47,
84], different variants of the gradient elasticity continuum
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in [2, 3, 16, 51, 60, 99, 104, 116–118, 120] and the classi-
cal Eringen–Mindlin micromorphic continuum in [8, 20, 35,
46, 93–95, 125], however, without leading to a universally
accepted answer. Mainly two approaches are employed for
the determination of higher-order homogenized properties,
which are asymptotic expansion methods, see e. g. [15, 22]
(also in combinationwith fast Fourier transformmethods, see
[65, 112]) and heuristic approaches relying upon the ad-hoc
definition of modified kinematic boundary conditions on the
microscale compared to first-order problems, see [19, 43].
Among the latter, quadratic boundary conditions have been
applied and analyzed to a large extent, see e. g. [14, 35, 36,
38, 58, 59, 113], in the field of homogenization towards sec-
ond gradient continua and classical micromorphic continua.
However, several problematic issues are described in the lit-
erature for this choice. Indeed, this natural extension does
not lead to vanishing effective higher-order moduli when a
homogeneous RVE or unit cell is homogenized. Moreover,
when scale separation holds, Cauchy theory is also not a
priori recovered, cf. [8]. To correct some of these spuri-
ous effects, additional microstructure-dependent body forces
along with quadratic boundary conditions have been intro-
duced [73, 123]. Even though the presented results agree
well with results from asymptotic homogenization, there
remain artifacts for the special case of soft inclusions in
a hard matrix material, for which the higher-order proper-
ties diverge. An alternative formulation has been proposed
in [47] by averaging solely over microheterogeneities in a
homogenization scheme from a Cauchy continuum tomicro-
morphicmedia. Note that [113] stated that a quartic boundary
condition would be necessary for fully describing the mod-
uli in a micromorphic theory. A harmonic decomposition
is recently applied to the governing equations and used to
interpret the relatedmodes on themicro-scale in [48]. A vari-
ational approach is presented for the homogenization from
a Cauchy continuum on the lower scale towards a second
gradient or micromorphic continuum on the macro-scale in
[8, 39], respectively. In their approach, as in other theories,
the microscopic displacement is decomposed into a homo-
geneous and a fluctuation part. However, in contrast to other
theories involving a heuristic definition of boundary condi-
tions, the homogeneous part of the deformation arises here
from a variational approach.

With an enhancement of the description on the microlevel
[116] presents a homogenization procedure from metamate-
rial unit cell structuresmodeled using beam-lattice structures
on the micro-scale to a second gradient linear elastic model
on the macro-scale. Similar to [38], zero energy modes are
observed for the higher-order moduli. In [99], a homogeniza-
tion strategy for higher-order continua is presented which
scales from a second-order continuum on the meso-scale to
second- and third-order continua on the macro-scale under
application of Isogeometric Analysis (IGA) and thereby also

enhances the micro-scale continuum. Further developments
in the context ofmultiphysical applications are e.g. discussed
in [115].

In the field of asymptotic expansion homogenization and
especially homogenization of metamaterials, the authors in
[4] have used asymptotic homogenization for the analysis
of different unit cells in the framework of metamaterials.
They exploited insight on the beam bending problem with
a focus on the observable size-effects. In [2], metamaterials
with honeycomb microstructure are analyzed in the frame-
work of asymptotic expansion homogenization. The work
[3] presents a straight forward computational scheme for the
determination of effective moduli through comparison with
microstructure simulations. Here, themodel is chosen apriori
and does not originate from a homogenization strategy.

Numerical and analytical solutions have been compared
on a 3D structure for different deformation modes in [119]
and pointed out the necessity of wedge and double trac-
tion forces for a correct overlap of both solutions. In [117],
mechanical metamaterials are analyzed by means of asymp-
totic expansion with an eye on appearing size-effects, which
could only be detected for shear and torsion modes.

The relaxed micromorphic model considered by us is a
generalized continuummodel that allows in principle to cap-
ture size-effects and to describe band gaps phenomena in
the dynamical case, see for example [6, 18, 25, 28, 67–70,
88, 90, 90, 91]. This model has been introduced in [40, 79]
and its well-posedness for the static and dynamic problems
has been proved in [80, 82]. In [55] the regularity of the
model was investigated. Being amicromorphic model, it fea-
tures the classical translational degrees of freedom u : B ∈
R
3 → R

3 as well as a non-symmetric micro-distortion field
P : B ∈ R

3 → R
3×3. Compared to the classical micro-

morphic approach, the assumed strain energy is drastically
simplified; notably, the curvature part (derivatives ofP) inter-
venes only through CurlP, so that solutions are found in
H1(B) × H(curl,B) for the pair (u,P). Using only the Curl
of P has some decisive advantages. It generates "bounded
stiffness" [85–87, 89] for arbitrary large characteristic length
(arbitrary small samples), in opposition to all strain gradient,
Cosserat-micropolar or classical micromorphic approaches.
Moreover, the appearing length-scale independent elasticity
tensors Ce and Cmicro are related by a Reuss-like homoge-
nization formula as function of the uniquely known elasticity
tensor Cmacro from classical periodic homogenization. It
remains therefore to determine Cmicro, which happens to be
the largest observable stiffness in the model (such an identi-
fication does not exist for the classical micromorphic model
or other variants of it). As it turns out, the relaxed micromor-
phic model interpolates between twowell-defined scales: the
classical continuum scales of macroscopic elasticity, whose
stiffness is given by Cmacro and a microscopic scale, with
stiffness Cmicro. The role of the characteristic length Lc > 0

123



Computational Mechanics (2023) 72:1091–1113 1093

is then to scale correctly with the size of the specimen and to
describe the interaction between the two scales. For Lc → 0
we recover macroscopic elasticity (complete scale separa-
tion, stiffness Cmacro) and for Lc → ∞ (zoom into the
microstructure) we obtain the microscopic scale (stiffness
Cmicro).

In this contribution, we want to explore the possibilities
that this unique interpretation of the relaxed micromorphic
model provides. We consider an architected material (hard
matrix with soft inclusions). The determination of Cmacro is
a standard identification in periodic homogenization theory.
The identification ofCmicro will be guided by the largest stiff-
ness idea alluded to above. Therefore, we consider a bending
test of slender metamaterial beams. The size-dependent
bending was analyzed by means of other enriched models
such as strain gradient, Cosserat-micropolar and other con-
tinua in [4, 7, 45, 50–52, 61, 64, 66, 121]. Modeling the
mechanical behavior of many metamaterials was achieved
for a variety of applications using generalized continua in [1,
23, 27, 29, 42, 83, 96, 101, 103, 108, 109].

In this work the size-effects of metamaterial beams
with fully discretized microstructure are analyzed. After-
ward, we employ the relaxed micromorphic continuum
to describe these size-effects without accounting for the
detailed microstructure. The material parameters and ade-
quate boundary conditions of the micro-distortion field P
should be identified in order to establish a simplified fitting
procedure on the fully resolved metamaterial beams. The so-
called consistent coupling condition (applied on theDirichlet
boundary for u) allows the relaxed micromorphic to operate
on the whole scale between Cmacro and Cmicro which is of
pivotal importance for a correct identification of its mate-
rial parameters. However, an alternative loading by a normal
linear traction (applied moment), which delivers exactly the
same results for the fully resolved metamaterial, achieves
consistent results aswell for the relaxedmicromorphicmodel
when the consistent coupling condition is imposed via the
penalty approach on the part of the boundary where the trac-
tion is set.

In a previous attempt [81]Cmicro was supposed to be given
by the Löwner matrix supremum C

Löwner
micro of elasticity ten-

sors appearing under affine Dirichlet conditions on the unit
cell level. From the results in the present paper it inspires
that CLöwner

micro is too soft, when compared with the appearing
stiffness in the bending regime. Here, we extend our under-
standing of Cmicro towards all scenarios, notably including
non-affine Dirichlet conditions. We limit our consideration
to the planar case, in which the isotropic curvature energy in
terms of CurlP has only one free parameter.

The outline of the paper is as follows: in Sect. 2.1
we recall the energy functional of the relaxed micromor-
phic model, define the material parameters, and introduce
the strong forms with the associated boundary conditions

obtained by the energy minimization. We present briefly in
Sect. 2.2 the main aspects of the construction of H(curl,B)-
conforming finite elements. The size-effects of the heteroge-
neous microstructured metamaterial beams are investigated
in Sect. 3 for two loading caseswhich lead to the same results.
In Sect. 4we determine thematerial parameters of the relaxed
micromorphic model and discuss the boundary condition for
symmetric and non-symmetric force stresses. We then fit the
relaxed micromorphic model solution to the microstructured
metamaterial solution by calibrating the curvature in Sect. 5.
In Sect. 6, the relaxed micromorphic model is shown to be
capable of handling two loading scenarios in addition to pure
bending. Finally, we provide our conclusions and outlook in
Sect. 7.

2 The relaxedmicromorphic model and its
discretization

2.1 The relaxedmicromorphic model

The relaxed micromorphic model (RMM) is an enriched
continuum model. The kinematics of each material point is
determined, similar to the general micromorphic theory [32,
71, 110], by a displacement vector u : B ⊆ R

3 → R
3 and a

non-symmetric micro-distortion field P : B ⊆ R
3 → R

3×3.
The displacement and the micro-distortion fields are defined
for the static case by minimizing the energy functional

�(u,P) =
∫
B
W (∇u,P,CurlP) − f · u dV

−
∫

∂Bt

t · u dA −→ min, (1)

with (u,P) ∈ H1(B) × H(curl,B). The vector f describes
the applied body force. The vector t is the traction vector
acting on the boundary ∂Bt ⊂ ∂B. The elastic energy density
W reads

W (∇u,P,CurlP) = 1

2
(sym[∇u − P] : Ce : sym[∇u − P]

+ sym P : Cmicro : sym P

+ skew[∇u − P] : Cc : skew[∇u − P]
+ μ L2c Curl P : L : Curl P).

(2)

Here, Cmicro,Ce > 0 are fourth-order positive definite stan-
dard elasticity tensors, Cc ≥ 0 is a fourth-order positive
semi-definite rotational coupling tensor, L is a positive defi-
nite fourth-order tensor acting on non-symmetric arguments,
Lc ≥ 0 is the characteristic length parameter and μ is a
shear modulus for dimensional consistency. The characteris-
tic length parameter is related to the size of themicrostructure
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and determines its influence on the macroscopic mechani-
cal behavior. The characteristic length allows to scale the
number of considered unit cells keeping all remaining param-
eters of the model scale-independent where the macro-scale
with Cmacro and the micro-scale with Cmicro are retrieved
for Lc → 0 and Lc → ∞, respectively, if suitable bound-
ary conditions are applied, see [81, 100]. The macro-scale
elasticity tensor Cmacro associated with Lc → 0 can be
defined by the standard first-order periodic homogenization
(the scale separation holds) while the micro-scale elasticity
tensorCmicro associated with Lc → ∞ represents the stiffest
extrapolated response (zooming in the microstructure). The
constitutive coefficients are assumed constant with the fol-
lowing symmetries

(Cmicro)i jkl = (Cmicro)kli j = (Cmicro) j ikl ,

(Cc)i jkl = (Cc)kli j ,

(Ce)i jkl = (Ce)kli j = (Ce) j ikl ,

(L)i jkl = (L)kli j ,

(3)

where Cmicro and Ce are connected to Cmacro through a
Reuss-like homogenization relation [17]

C
−1
macro = C

−1
micro + C

−1
e

⇒ Ce = Cmicro(Cmicro − Cmacro)
−1

Cmacro. (4)

The variation of the potential with respect to the displace-
ment yields the weak form

δu� =
∫
B

{Ce : sym[∇u − P] + Cc : skew[∇u − P]︸ ︷︷ ︸
=: σ

} : ∇δu

− f · δu dV −
∫
∂Bt

t · δu dA = 0,

(5)

which leads, using integration by parts and employing the
divergence theorem, to

δu� =
∫
B
{div σ + f } · δu dV = 0 , (6)

where σ is the non-symmetric force stress tensor (symmetric
ifCc ≡ 0 which is permitted). In a similar way, the variation
of the potential with respect to the micro-distortion field P
leads to the weak form

δP� =
∫
B
{σ − Cmicro : sym P︸ ︷︷ ︸

=: σmicro

} : δP

−μ L2
c(L : CurlP)︸ ︷︷ ︸

=: m
: Curl δP dV = 0, (7)

which can be rewritten, using integration by parts and apply-
ing Stokes’ theorem, as

δP� =
∫
B
{σ − σmicro − Curlm} : δP dV

+
∫

∂B
{

3∑
i=1

(
mi × δPi

)
· n} dA = 0, (8)

where the stress measurements σmicro and m are the micro-
and moment stresses, respectively, n is the outward unit
normal vector on the boundary, and mi and δPi are the
row vectors of the related second-order tensors. The strong
form of the relaxed micromorphic model with the associated
boundary conditions read

div σ + f = 0 on B, (9a)

u = u on ∂Bu , (9b)

t = σ · n on ∂Bt , (9c)

σ − σmicro − Curlm = 0 on B , (9d)
3∑

i=1

Pi × n = tP on ∂BP , (9e)

3∑
i=1

mi × n = 0 on ∂Bm , (9f)

where ∂BP ∩ ∂Bm = ∂Bu ∩ ∂Bt = ∅ and ∂BP ∪ ∂Bm =
∂Bu ∪ ∂Bt = ∂B. The strong form represents a generalized
balance of linear momentum (force balance) and a general-
ized balance of angular momentum (moment balance). For
more details regarding derivations of the boundary condi-
tions, the reader is referred to [100].

An additional dependence between the displacement field
and the micro-distortion field on the boundary was proposed
in [81] and subsequently considered in [26, 85, 86, 105]. This
so-called consistent coupling condition is defined by

P · τ = ∇u · τ ⇔ Pi × n = ∇ui × n

for i = 1, 2, 3 on ∂BP = ∂Bu, (10)

where τ is the tangential vector on the boundary and Pi

and ∇ui are the row-vectors of the associated tensors. How-
ever, we can extend this relative boundary condition to parts
of ∂Bm by enforcing the consistent coupling condition on
∂Bm̂ ⊆ ∂Bm via a penalty approach as

� ⇐ � +
∫

∂Bm̂

κ1

2

3∑
i=1

||(Pi − ∇ui ) × n)||2 dA, (11)

where κ1 is the penalty parameter.
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The micro-distortion field has the following general form
for the three-dimensional case

P =
⎛
⎝ (P1)T

(P2)T

(P3)T

⎞
⎠ =

⎛
⎝ P11 P12 P13

P21 P22 P23
P31 P32 P33

⎞
⎠ with

Pi =
⎛
⎝ Pi1

Pi2
Pi3

⎞
⎠ for i = 1, 2, 3. (12)

We let the Curl operator act on the row vectors of the micro-
distortion field P as

CurlP =
⎛
⎝ (curlP1)T

(curlP2)T

(curlP3)T

⎞
⎠

=
⎛
⎝ P13,2 − P12,3 P11,3 − P13,1 P12,1 − P11,2

P23,2 − P22,3 P21,3 − P23,1 P22,1 − P21,2
P33,2 − P32,3 P31,3 − P33,1 P32,1 − P31,2

⎞
⎠ . (13)

2.2 H1(B) × H(curl,B)-conforming finite element
in 2D

Different finite element formulations of the relaxed micro-
morphic model were introduced for the plane strain case in
[97, 98, 100], antiplane shear in [105] and 3D case in [106,
107]. For the two-dimensional case, themicro-distortionfield
has only four non-vanishing components, which are in the
plane, and its Curl operator is reduced to only two compo-
nents out of the plane, namely (CurlP)13 and (CurlP)23,

P =
⎛
⎝ (P1)T

(P2)T

0T

⎞
⎠ =

⎛
⎝ P11 P12 0

P21 P22 0
0 0 0

⎞
⎠ and

Curl P =
⎛
⎝0 0 P12,1 − P11,2
0 0 P22,1 − P21,2
0 0 0

⎞
⎠ . (14)

It has been shown in [100] that H1(B) × H(curl,B)

elements obtain the discontinuous solution of the micro-
distortion field while the standard nodal H1(B) × H1(B)

elements are unable to capture the jumps. Therefore, transi-
tion zones emerge for H1(B)× H1(B) elements which need
to be resolved by distinctly refining the mesh in contrast to
H1(B) × H(curl,B) elements which exhibit faster conver-
gences rates.

We demonstrate briefly the main aspects of the finite
element formulation of a quadrilateral element (u,P) ∈
H1(B) × H(curl,B) shown in Fig. 1. The finite element,
denoted as Q2NQ2, utilizes Lagrange-type shape functions
of the second-order for the displacement field, denoted as

ξ

η

1 2

34

5

6

7

8
9

1

3

2

4

8

7

6 5

910

11

12

Fig. 1 Q2NQ2 element. Black dots represent the displacement nodes.
Red arrows and crosses indicate the edge and inner vectorial dofs,
respectively, of the micro-distortion field used in Nédélec formulation

Q2. The suitable finite element space for themicro-distortion
field is known as Nédélec space, see [74, 75]. In this work,
we choose the Nédélec space of first-kind and second-order,
denoted as NQ2. Nédélec formulation uses vectorial shape
functions that satisfy the tangential continuity at element
interfaces.General reviews about the edge elements are avail-
able in [54, 92]. For more details regarding the derivation of
shape functions and the FEM-implementation aspects, the
reader is referred to [100].

The Q2NQ2 element uses 9 nodes for the discretization
of the displacement field u. The geometry and the displace-
ment field are approximated employing the related quadratic
scalar shape functions Nu

I defined in the parameter space
with natural coordinates ξ = {ξ, η} by

Xh =
9∑

I=1

Nu
I (ξ) X I , uh =

9∑
I=1

Nu
I (ξ) duI , (15)

whereX I are the coordinates of the displacement node I and
duI are its displacement degrees of freedom. The deformation
gradient is obtained then in physical space by

∇uh =
9∑

I=1

duI ⊗ ∇Nu
I (ξ), with ∇Nu

I (ξ) = J−T · ∇ξ N
u
I ,

(16)

where J = ∂X
∂ξ

is the Jacobian, ∇ and ∇ξ are the gradient
operators to X and ξ , respectively. The micro-distortion field
P is approximated by the vectorial dofs dP

I presenting its
tangential components at the location I = 1, . . . , 12. The
micro-distortion field and its Curl operator are interpolated
as

Ph =
12∑
I=1

dP
I ⊗ ψ2

I , CurlPh =
12∑
I=1

dP
I ⊗ curlψ2

I . (17)
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The non-vanishing components of the Curl operator of the
micro-distortion field for the 2D case are obtained by

[
curl2D P1h
curl2D P2h

]
=

12∑
I=1

dPI curl2D ψ2
I =

[ ∑12
I=1(d

P
I )1 curl2D ψ2

I∑12
I=1(d

P
I )2 curl2D ψ2

I

]
.

(18)

The simulations presented in this paper are performed
withinAceGenandAceFEMprograms.The interested reader
is referred to [56, 57].

3 Reference study: size-effects of
metamaterial specimens subjected to
bending

We investigate here the size-effect phenomena of an assumed
metamaterial with fully resolved microstructure. The size-
effect phenomena will be analyzed via the effective bending
stiffness of beams subjected to pure bending. According to
the elementary beam theory, the moment is linked to the
curvature by M(x) = D(x)κ(x), where D(x) and κ(x) are
the bending stiffness and the curvature at a position x along
the beam. For a constant bending moment M along the beam
length, we assume an effective flexural rigidity D and an
effective curvature κ so that we obtain

D = M

κ
. (19)

We design in the following two beams subjected to a van-
ishing shear force and a constant moment along the length
L , see Fig. 2. For the first loading case a rotation θ is applied
on the right end while a moment load is enforced for the sec-
ond loading case instead. A deflection equation w(x), which
will be fitted later to the heterogeneous beams, featuring an
effective constant curvature reads

w(x) = κ

2
(x2 − L2) satisfying w(L) = 0,

and
dw(0)

dx
= 0 , (20)

A2Dmetamaterial is consideredwith a unit cell consisting
of a square with an edge length l = 1.9 × 10−2 m and a
circular inclusion at its center with a diameter of d = 1.2 ×
10−2 m, see Fig. 3. Both matrix and inclusion are isotropic
linear elastic with the material parameters shown in Table 1.
The inclusion is 20 times softer than the matrix. A standard
triangular finite element with quadratic shape functions (T2)
is used for this analysis. The specimens are considered with
dimensions H × L = n l×12 n l so that the length is always
twelve times the height where n is the number of unit cells
in the height direction, see Fig. 3.

The boundary condition of the beam models in Fig. 2 are
passed on the 2D metamaterial as shown in Fig. 4. For the
first loading case we rotate the right edge in plane through
a given displacement in x-direction as a linear function of
y-coordinates while for the second loading case a moment is
applied on the right edge bymeans of a traction in x-direction
as a linear function of y-coordinates. The left boundary for
both loading cases is fixed in x-direction and free to move
in y-direction. Furthermore, we fix the middle point on the
right edge in y-direction.We intend by introducing these two
loading cases to prove that they deliver identical results for
the microstructured metamaterial beams. This equivalence
should then be demonstrated as well by the relaxed micro-
morphic model when appropriate boundary conditions are
set. Furthermore, we assume κ = 1 and t = 109 N/m.

After solving the fully resolved microstructure, the effec-
tive curvature κ is obtained by the following least square
minimization

nnode∑
I

((duI )2 − w(X I ))
2 → min, (21)

which leads, considering Eq.20, to

κ =
∑nnode

I (duI )2
(X I )

2
1−L2

2

∑nnode
I

(
(X I )

2
1−L2)

2

)2 , (22)

where X I and duI are the coordinates and the displacement
degrees of freedom at node I . The bending stiffness can
be calculated following Eq.19 where the moment M can
be calculated using the nodes reactions on the left or right
edges. Alternatively, the bending stiffness can be calculated
by means of the maximum deflection at the left edge of the
beam. We obtain from Eqs. 19 and 20 substituting x = 0 and
considering w(0) = wFEM(0) since the deflection’s fluctua-
tion of the heterogeneous solution is small compared to the
maximum deflection

D = − ML2

2wFEM(0)
, (23)

where wFEM(0) is the deflection of the FEM solution aver-
aged over the left edge (x = 0). Calculating the bending
stiffness using Eqs. 19 or 23 delivers the same result which
we tested numerically.

The effective material properties of the large specimens
can be obtained by the standard computational periodic first-
order homogenization produced by a unit cell with periodic
boundary condition which is identified asCmacro in Sect. 4.1.
As we will show later the macro elasticity tensor Cmacro is
not isotropic and shows cubic symmetry. The size-effects
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Fig. 2 The beam models,
compare Fig. 4

L L

M = tH2

6

θ = κL

x

y

x

y

x

y

x

y

Case 2 (applied moment)Case 1 (applied rotation)

Table 1 Material parameters of
the assumed metamaterial

Young’s modulus: E (GPa) Poisson’s ratio: ν λ (GPa) μ (GPa)

Matrix 70 0.333 52.35 26.25

Inclusion 3.5 0.333 2.62 1.31

d

l

l

L = 12 l (32 · 103 finite elements, 130 · 103 dofs)

L = 24 l (128 · 103 finite elements, 513 · 103 dofs)

L = 36 l (287 · 103 finite elements, 115 · 104 dofs)

L = 48 l (510 · 103 finite elements, 205 · 104 dofs)

L = 60 l (800 · 103 finite elements, 320 · 104 dofs)

H = l

H = 2l

H = 3l

H = 4l

H = 5l

Fig. 3 Illustration shows the geometry of the specimens for n = 1, 2, 3, 4, 5 with the assumed unit cell. The number of finite elements with degrees
of freedom (dofs) are shown in parentheses
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x

y

x

y

ux = 0 ux = 0
ux = −κLy

t

tx = −2ty/H

−t

Case 2 (applied traction)Case 1 (applied displacement)

L L

Fig. 4 The boundary conditions of the fully resolved metamaterial shown exemplarily for n = 2 (H × L = 2 l × 24 l)

n = 1

n = 2
n = 3

n = 5

case 1 (applied displacement)
case 2 (applied traction)

0.02 0.04 0.06 0.08 0.10
0.0

0.5

1.0

1.5

2.0

Fig. 5 The normalized bending stiffness varying the beam size H×L =
n l × 12 n l

are shown via the so-called normalized bending stiffness
D/Dmacro plotted in Fig. 5 which relates the actual stiffness
of the fully discretizedmetamaterial to the one obtained from
homogenized linear elasticity with Cmacro which reads ana-
lytically

Dmacro = Emacro H3

12 (1 − ν2macro)
. (24)

The normalized bending stiffness approaches the value
one when we increase the specimen size. Applying a rotation
(loading case 1) or amoment (loading case 2) leads to similar
results as expected.

4 Size-effects of the relaxedmicromorphic
continuum subjected to pure bending

The previous size-effects exhibited by the fully resolved het-
erogeneous material should be reproduced by the relaxed
micromorphic model. However, the boundary conditions and
material parameters identification are not obvious.

4.1 Identification ofCmacro

The macro elasticity tensor Cmacro corresponds to the case
Lc → 0 equivalent to large values of n where the macro
homogeneous response is expected. A unit cell with periodic

boundary conditions should be used, see for example [126].
The geometry of the unit cell has no role for this standard
analysis. Our analysis shows that Cmacro has the cubic sym-
metry property for our assumed metamaterial and it reads in
Voigt notation

Cmacro =
⎛
⎝ 2μmacro + λmacro λmacro 0

λmacro 2μmacro + λmacro 0
0 0 μ∗

macro

⎞
⎠ , (25)

where three parameters need to be defined. We obtain by our
standard numerical analysis

Cmacro =
⎛
⎝47.86 17.61 0
17.61 47.86 0
0 0 9.98

⎞
⎠ [GPa]

⇒
λmacro = 17.61 GPa
μmacro = 15.13 GPa
μ∗
macro = 9.98 GPa

. (26)

4.2 Identification ofCmicro (first approach)

The micro elasticity tensor Cmicro in the relaxed micromor-
phic model is identified as the maximum stiffness on the
micro-scale which must exhibit the cubic symmetry similar
to Cmacro according to the extended Neumanns’s principle
[81]. In order to achieve stiff estimates for Cmicro we apply
first affine Dirichlet boundary conditions. Furthermore, we
have to choose unit cells which preserve the cubic symmetry
under the applied Dirichlet boundary conditions. However,
different variants of unit cells must be investigated for the
affine Dirichlet boundary conditions. For each choice of a
unit cell i = 1, . . . , r with the affine Dirichlet boundary con-
ditions, we obtain the corresponding apparent stiffness tensor
denoted as CD

i . The positive definite micro elasticity tensor
will be set as the least upper bound of the apparent stiffness
of the microstructure measured in the energy norm following
the Löwner matrix supremum problem, see for details [81].

For the assumed metamaterial, four different variants of
the unit cell are suitable, see Fig. 6,which lead to the elasticity
tensors CD

i , i = 1, . . . , 4 with the cubic symmetry property
as intended. The results are summarized in Table 2.
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Fig. 6 The possible choices of
the unit cells with cubic
symmetry. The edge length of
the unit cell equals to l for (1)
and (2) and

√
2 l for (3) and (4)

L

H

(1) (2) (3) (4)

Table 2 The elasticity parameters of the unit cells in Fig. 6 under affine
Dirichlet boundary conditions

Unit cell λi (GPa) μi (GPa) μ∗
i (GPa)

1 18.26 15.34 14.61

2 20.15 15.83 14.44

3 19.25 15.54 13.19

4 19.56 15.66 12.68

The elasticity parameters define elasticity tensors which exhibit cubic
symmetry similar to Cmacro

The micro elasticity tensorCLöwner
micro is defined then by the

Löwner matrix supremum problem as

ε̃ : CLöwner
micro : ε̃ ≥ ε̃ : CD

i : ε̃ where

i = 1, . . . , 4 , ∀ε̃ ∈ Sym(3). (27)

which turns for the cubic symmetry case to the following one
written in Voigt notation

(
ε̃11
ε̃22
2ε̃12

)
:
⎛
⎜⎝

2μLöwner
micro + λLöwner

micro λLöwner
micro 0

λLöwner
micro 2μLöwner

micro + λLöwner
micro 0

0 0 (μ∗)Löwner
micro

⎞
⎟⎠ :

(
ε̃11
ε̃22
2ε̃12

)
≥

(
ε̃11
ε̃22
2ε̃12

)
:
⎛
⎝ 2μi + λi λi 0

λi 2μi + λi 0
0 0 μ∗

i

⎞
⎠ :

(
ε̃11
ε̃22
2ε̃12

)

for i = 1, . . . , 4 , ∀
(

ε̃11
ε̃22
ε̃12

)
∈ R

3 .

(28)

The solution of the previous problem reads

(μ∗)Löwner
micro ≥ max

i
{μ∗

i }, μLöwner
micro ≥ max

i
{μi },

λLöwner
micro + μLöwner

micro ≥ max
i

{μi + λi }, (29)

for i = 1, . . . , 4. We take therefore (see Table 2)

(μ∗)Löwner
micro := μ∗

1 = 14.61GPa,

μLöwner
micro := μ2 = 15.83GPa,

λLöwner
micro := μ2 + λ2 − μLöwner

micro = 20.15GPa ,

(30)

and thus

C
Löwner
micro :=

⎛
⎝ 51.81 20.15 0
20.15 51.81 0
0 0 14.61

⎞
⎠ [GPa]. (31)

However, the previous estimatewill serve as a lower bound
for Cmicro. In Fig. 7, we show the size-effect of the fully
resolved metamaterial beams and the linear elasticity solu-
tionswith different elasticity tensors: (I)Cmacro, (II)CLöwner

micro ,
(III) Cmatrix of the homogeneous isotropic matrix, and (IV)
CVoigt which is isotropic and obtained by the equal strain
assumption CVoigt = φmatrixCmatrix + φinclusionCinclusion

where φmatrix and φinclusion are the volume fractions of the
matrix and inclusion, respectively, which leads to λVoigt =
36.77GPa and μVoigt = 18.44GPa. The calculated value for
C

Löwner
micro is too soft compared to the microstructured beams

and even linear elasticity with CVoigt is softer than the solu-
tion of the fully resolved metamaterial beam for n = 1. This
can be explained by the fact that the typical bending mode,
e.g. due to a pure bending moment as in the paper, cannot
be mapped with affine Dirichlet Boundary conditions. Here,
a "Voigt bound" for higher modes (not for affine deforma-
tions) would be required, which, to our knowledge, does not
exist. Note that the tensor Cmicro, although appearing in the
relaxed micromorphic model and in the classical micromor-
phic model, does not have the same meaning in the latter,
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Fig. 7 The normalized bending
stiffness varying the beam size
H × L = n l × 12 n l compared
to the ones obtained by linear
elasticity with different elasticity
tensors shown in Sect. 4.2 n = 1

n = 2 n = 5

0.02 0.04 0.06 0.08 0.10
0.0

0.5

1.0

1.5

2.0

Fig. 8 Illustration shows the
procedure used to calculate β

Cmicro = β Cmacro

Cinclusion

Cmatrix

energetically equivalent
xx

yy

u = u on ∂Bu = u on ∂B

Fig. 9 The values of the
parameter β calculated for
different unit cells. Unit cell (a)
provides the stiffest flexural
stiffness with β = 1.64

β = 1.64

(a)

β = 0.53

(b)

β = 0.53

(c)

β = 1.63

(d)

β = 1.22

(e)

β = 0.9

(f)

which is related to the bounded stiffness property of the for-
mer. Since Cmatrix represents the largest stiffness, we may

relate Cmicro to the matrix stiffness Cmatrix and introduce a
scalar α ≥ 1 so that we haveCmicro := αC

Löwner
micro .We define

an upper limit for Cmicro as

ε̃ : Cmatrix : ε̃ ≥ ε̃ : Cmicro : ε̃

= ε̃ : αC
Löwner
micro : ε̃, ∀ε̃ ∈ Sym(3). (32)
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β = 1.64

β = 1.16

β = 1.07

β = 1.03

1.75

Fig. 10 The parameter β converges to the value one when increasing
the size of a cluster of unit cells (n × n) shown exemplarily for type (a)
in Fig. 9. We also show the extrapolated value β = 1.75

Fig. 11 The normalized bending stiffness varying the beam size H ×
L = n l ×12 n l compared to the ones obtained by linear elasticity with
different elasticity tensors shown in Sect. 4.3

By introducing Eq.32 we keep the anisotropic symme-
try property of Cmicro while the elasticity tensor Cmatrix is
isotropic. We obtain then

μ∗
matrix = μmatrix ≥ α(μ∗)Löwner

micro , μmatrix ≥ αμLöwner
micro ,

λmatrix + μmatrix ≥ α(λLöwner
micro + μLöwner

micro ), (33)

which leads to

α ∈ [1,min(
μ∗
matrix

(μ∗)Löwner
micro

,
μmatrix

μLöwner
micro

,
μmatrix + λmatrix

μLöwner
micro + λLöwner

micro

)]
= [1, 1.66]. (34)

Figure7 shows that linear elasticity with Cmicro = 1.66
C

Löwner
micro is stiffer than the fully resolved metamateriel for

n = 1 and therefore it is a valid choice. However, assuming
Cmicro = Cmatrix does not break the extended Neumann’s
principle. We will investigate later numerically the conse-
quences of the different choices for Cmicro.

4.3 Identification ofCmicro (second approach)

The affine Dirichlet boundary conditions are unable to cap-
ture the size-effects as we have shown in Sect. 4.2. In order
to estimate the stiffness Cmicro for the relaxed micromorphic
model we choose in the following approach the most simple
ansatz

Cmicro = β Cmacro with β > 1. (35)

In general, the size dependency cannot be modeled by a sin-
gle scalar β alone, of course. We introduce this numerical
study to get a first estimate. The parameter β is determined
via the energy equivalence of a heterogeneous microstruc-
tured domain and an equivalent homogeneous domain with
the same dimensions governed by linear elasticity with elas-
ticity tensor Cmicro = β Cmacro, see Fig. 8. We consider here
a higher-order deformationmodewhich is the bendingmode.
The bendingmode is enforced by applying non-affineDirich-
let boundary conditions on the whole boundary. They are
derived from the analytical solution of the pure bending prob-
lem of the homogeneous problem in [86]

u = u = κ

2

⎛
⎝ −2 xy

λmacro

2μmacro + λmacro
y2 + x2

⎞
⎠ on ∂B, (36)

which leads to a constant curvature κ for the homogeneous
case with no shear strain and one active stress component σ11

ε = sym∇u =
⎛
⎝−κ y 0

0
λmacroκ y

2μmacro + λmacro

⎞
⎠ ,

σ =
⎛
⎝

−4μmacro(μmacro + λmacro)βκ y

2μmacro + λmacro
0

0 0

⎞
⎠ . (37)

We search for the stiffest possible component on the
microstructure under flexural deformationmode (highest val-
ues ofβ) by investigating different arrangements of unit cells.
Six different arrangements were considered, see Fig. 9. The
largest obtained value is β = 1.64. Increasing the size of
the arrangements of the unit cells, considered in Fig. 9, we
retrieve the macro property where β converges to the value
one as it should. This behavior is shown examplarily for unit
cell (a) in Fig. 10.

The choiceCmicro = 1.64Cmacro guarantees that a homo-
geneous continuumwith elasticity tensorCmicro = 1.64Cmacro

is stiffer than the fully discretized metamaterial. In Fig. 11,
we show the size-effect of the fully resolved metamate-
rial beams and the linear elasticity solutions with elasticity
tensors Cmicro = 1.64Cmacro and Cmacro. The upper limit
Cmicro = 1.64Cmacro is slightly stiffer than the relatively
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Fig. 12 The boundary value problems of the homogeneous relaxed micromorphic model for both loading cases. These boundary value problems
are equivalent to the two cases of the heterogeneous metamaterial shown in Fig. 4. The upper and lower edges are traction-free

Fig. 13 The normalized bending stiffness obtained by the relaxed
micromorphic model for both loading cases assumingCc = 0 (μc = 0)
while varying the characteristic length Lc. Sufficient BCs indicate to
apply the consistent coupling condition on the left and right edges, see
Fig. 12. Removing the consistent coupling condition on left or right
edge is considered as insufficient and leads to no size-effect

stiffest metamaterial beam (n = 1) which confirms its
validity. However, to provide a better fitting, we extrapolate
Cmicro = 1.75Cmacro as an improved upper bound. Unique
identification of the micro elasticity tensorCmicro remains an
open question for future works.

4.4 Identification ofCe

The elasticity tensor Ce is calculated via the micro–macro
Reuss-like homogenization formula

C
−1
macro = C

−1
micro + C

−1
e

⇒ Ce = Cmicro(Cmicro − Cmacro)
−1

Cmacro. (38)

The obtained elasticity tensor Ce is automatically positive
definite since Cmicro > Cmacro and has cubic symmetry
property. However, no obvious physical interpretation can
be assigned to the tensor Ce.

4.5 The boundary conditions of themicro-distortion
field

The boundary conditions (BCs) of the micro-distortion field
are key components for the relaxed micromorphic model.
The boundary conditions should be chosen in a way that

induces a curvature in the model, i.e. CurlP �= 0. Other-
wise, insufficient boundary condition of the micro-distortion
field can cause unwanted behavior of the relaxed micro-
morphic model. This behavior is represented by showing no
size-effects or not reaching the intended upper limit (linear
elasticity with Cmicro) for Lc → ∞.

4.5.1 Symmetric force stress case

We assume here Cc = 0 which causes symmetric force
stress σ and symmetric Curlm because Eq.9d becomes
symmetric. We test the sufficiency of the boundary condi-
tion by comparing the solution of the relaxed micromorphic
model for varied values of the characteristic length with
the solutions obtained by the standard linear elasticity with
elasticity tensors Cmicro and Cmacro. More specifically, the
relaxed micromorphic model should reproduce linear elas-
ticity with elasticity tensors Cmicro and Cmacro for Lc → ∞
and Lc → 0, respectively, see [26, 85–87, 89, 100].

We design a test by fixing the geometry H×L = 2 l×24 l
with assumingCmicro = 1.75Cmacro and settingμ = μmacro.
The boundary conditions of the displacement field are taken
similar to the ones applied on the fully resolved metama-
terials in Fig. 4. For the first case with applied rotation, the
consistent coupling condition is applied on the right and left
edges via a penalty approach, see Fig. 12. Indeed, applying
the consistent coupling condition on the Dirichlet boundary
of the displacement field is adequate to fulfill the theoret-
ical limits of the relaxed micromorphic model. Removing
the consistent coupling condition on left or right edges leads
to vanishing curvature and turns the relaxed micromorphic
model into standard linear elasticity with Cmacro. The pre-
vious behavior is demonstrated in Fig. 13. The exact same
behavior is observed for the second loading casewith applied
traction if we apply the consistent coupling condition on the
boundary corresponding to the first loading case, see Fig. 12.
Consequently, the relaxed micromorphic model results in
consistent results for both loading cases, see Fig. 13.

4.5.2 Non-symmetric force stress case

Here, we assume Cc = 2μcII where II is the fourth order
identity tensor and μc is the Cosserat couple modulus acting
as a spring constant between the skew-symmetric parts of∇u
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and P. We study the influence of varying the Cosserat couple
modulus μc ∈ [0, 0.01, 0.1, 1] ∗ μmacro considering differ-
ent scenarios of the boundary condition of P. The geometry
and the remaining material parameters are taken as for the
symmetric case, see Sect. 4.5.1.

In Fig. 14, we show the normalized bending stiffness for
the cases (a) the consistent coupling condition is applied
either on the left or right edge, (b) no consistent boundary
condition is considered and (c) the consistent coupling con-
dition is applied on both left and right edges. Size-effects are
noticed even if the consistent coupling condition is not placed
on the right and left edges simultaneously which is not the
case for the symmetric force case (μc = 0). Increasing the
Cosserat couplemodulusμc raises the stiffness of the relaxed
micromorphicmodel closer to linear elasticitywithCmicro for
Lc → ∞ and even reach it inFig. 14a.However, it is not guar-
anteed that the relaxed micromorphic model achieves linear
elasticity with Cmicro for Lc → ∞, see Fig. 14b. The results
of enforcing the consistent coupling condition on both left
and right edges are equivalent for the symmetric and non-
symmetric cases in Figs. 13 and 14c, respectively, and the
Cosserat couple modulus has no influence.

4.5.3 Cosserat limit, special case of a skew-symmetric
micro-distortion field

For the case of Cmicro → ∞, the micro-distortion field P
must be skew-symmetric and the Cosserat model is recov-
ered, c.f. [10, 21, 41, 53].We investigate here the influence of
different scenarios of the boundary conditions for the micro-
distortion field P similar to Sect. 4.5.2: (a) the consistent
coupling condition is applied on either the left or right edge,
(b) without enforcing the consistent boundary condition and
(c) the consistent coupling condition is applied on both left
and right edges for Cmicro = 1000Cmacro. Different values
of the Cosserat couple modulus μc are assumed for varied
values of the characteristic length Lc in Fig. 16. Our analy-
sis shows that when the consistent coupling condition is not
applied at both right and left ends, large values of Lc result
in a beam that does not bend (Fig. 15), causing a nonphysi-
cal bending stiffness. This highlights the crucial role of the
consistent coupling condition, not just in the relaxed micro-
morphic model, but also in the Cosserat case. Hence due to
the bending stiffness issue, we have opted to show the relative
total energy �/�macro for this analysis alternatively.

Wenotice that linear elasticitywith elasticity tensorCmicro

is recognized as an upper limit only when the consistent
coupling condition is enforced on both left and right edges
in Fig. 16c. Weak size-effects are noticed when the consis-
tent coupling condition is not enforced, Fig. 16a, b. While
size-effects are prompted only for non-vanishing Cosserat
couple modulus μc �= 0 for cases (a) and (b), enforcing the
consistent coupling condition on both left and right edges

simultaneously allows the model to act on the intended
theoretical range with no influence of the Cosserat couple
modulus μc which is well known for the Cosserat model.
This can be explained by the fact that the skew-symmetric
part of the micro-distortion field is the same as the skew-
symmetric part of the gradient of the displacement, see [86],
which is the case for both the relaxed micromorphic contin-
uum in Fig. 14c and the Cosserat model in Fig. 16c.

4.6 Scaling of the curvature

The curvature for the 2D case is isotropic because CurlP
is reduced to a vector. Therefore, the curvature will be con-
trolled by only one parameterwith assuming thatL = II is the
fourth order identity tensor. Since the parameters μ and Lc

should be set constant independent of the specimen size, the
curvature is modified by incorporating the size of the beams
through the number n. Figure5 shows that stiffer response is
observed for smaller values of the number n (n = 1 is the
stiffest). The relaxed micromorphic model exhibits stiffer
response for bigger values of the characteristic length Lc

(inversely proportional to n), see for example Fig. 13. There-
fore, we replace the last term in Eq.2 by

1

2
μ

(
Lc

n

)2

CurlP : CurlP, (39)

where n denotes the number of unit cells in the second-
direction. Hence, for a constant Lc smaller values are
obtained for the term Lc/n by increasing the beam size
(increasing n) which reproduces the intended size-effects
(smaller is stiffer). This modification is not ad hoc, but fol-
lows from a rigorous scaling argument, c.f. [81] and applies
as such to higher-gradient models or the classical micromor-
phic model as well. Note that the shear modulus μ appears
for dimensional reasons and is a priori not related to the shear
moduli appearing in Cmacro or Cmicro.

5 Final calibration

Now, we provide an identification scheme for the scale-
independent material parameters of the relaxed micromor-
phic model. The boundary conditions of the micro-distortion
field are determined in order to guarantee the intended behav-
ior of the relaxed micromorphic model and the influence of
the characteristic length Lc for both loading cases. For this
calibrationwe assume symmetric force stress, i.e.Cc = 0. As
we discussed in Sects. 4.2, 4.3 and 4.5.3, different choices can
be made for Cmicro, e.g. Cmicro = 1.66CLöwner

micro , Cmicro =
Cmatrix, Cmicro = 1.75Cmacro and Cmicro = 1000Cmacro.
Considering Cmicro = 10,000Cmacro yield similar results to
Cmicro = 1000Cmacro, as expected, which can be explained
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Fig. 14 The normalized bending stiffness obtained by the relaxed micromorphic model for both loading cases with non-symmetric force stress and
with varying the characteristic length Lc. Different scenarios are investigated for the boundary conditions of the micro-distortion field

Fig. 15 The deformed beams for the case Cmicro = 1000Cmacro ”Cosserat type” with Lc = 1000m and μc = 2μmacro. Bending of the beam can
only be induced when the consistent coupling condition is applied on both its left and right ends
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Fig. 16 The relative total energy obtained by the relaxed micro-
morphic model for both loading cases with non-symmetric force
stress and with varying the characteristic length Lc. Here, we assume
Cmicro = 1000Cmacro leading to a skew-symmetric micro-distortion

field which retrieves the Cosserat model since the curvature expres-
sion is then equivalent with the Cosserat framework, see [41]. Different
scenarios are investigated for the boundary conditions of the micro-
distortion field

by the fact that we are operating in a range close to the lower
boundCmacro. For each choice ofCmicro, the curvature should
be calibrated by means of Lc and μ. Without loss of general-
ity, we can always assume the shearmodulusμ = μmacro and
then the characteristic length Lc should be selected in order to
capture the size-effects of the fully discretized metamaterial,
Fig. 17. Alternatively, the characteristic length Lc can be set
in advance, e.g. Lc = l, and then the shear modulusμ should
be calibrated, see Fig. 18 and Eq.39. The decisive quantity is
the productμL2

c . Since the Cosserat curvature coincides with
the curvature expression of the relaxed micromorphic model
[41], one would expect that using similar values for μL2

c is
a sensible choice. As Figs. 17d and 18d show, this is not the
case. For a rough Cosserat fit different orders of magnitude
for μL2

c have to be taken which are getting arbitrary. Fur-
thermore, the data points can be fitted also with a Cosserat
type model but it should be remarked that the unbounded
stiffness (beyond n = 1) leads to a sensitive identification

of the parameters. The same problem would appear by using
second gradient or the classical micromorphic theories.

6 Validation: further numerical examples

This study assesses the obtained material parameters of the
relaxed micromorphic model for two additional loading sce-
narios apart from the pure bending. The fully discretized
metamaterial samples considered have the dimensions and
material parameters as outlined before in Sect. 3. In the
relaxed micromorphic model, we consider the symmetric
casewhereμc = 0.Themacro-scale elasticity tensor,Cmacro,
is defined in Sect. 4.1 and the curvature is scaled to the speci-
men’s size using Eq.39 under the assumption ofμ = μmacro.
Themicro-scale elasticity tensorwill be determined using the
same four different assumptions outlined in Sect. 5.
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Fig. 17 The normalized bending stiffness varying the beam size
H × L = n l × 12 n l obtained by the fully discretized metamate-
rial and the relaxed micromorphic model. We analyze here different

choices for Cmicro with varying Lc and fixing μ = μmacro. Assum-
ing Cmicro = 10,000Cmacro yields the same results as in (d)

6.1 Simple shearing

The boundary conditions are derived from the solution of an
infinite stripe under simple shear in [85]

u = u =
(
ay
0

)
on ∂B, (40)

which leads to the following strain and stress tensors for the
homogeneous macro-elasticity case

ε =
(

0 a/2
a/2 0

)
, σ =

(
0 a μ∗

macro
a μ∗

macro 0

)
. (41)

The boundary value problems for the relaxed micromor-
phic model and the reference full detailed metamaterial are
depicted in Fig. 19. Dirichlet boundary condition for the dis-
placement field and the consistent coupling condition must
be satisfied over the entire boundary.

The size-effect is analyzed through the relative shear force
T

Tmacro
, which is shown in Fig. 20. Themacro-scale shear force

is given by Tmacro = a μ∗
macro L . The shear response of the

assumed metamaterial is less influenced by its size com-
pared to its response to bending. We notice that the choices
Cmicro = 1.66 C

Löwner
micro and Cmicro = 1.75Cmacro deliver

close results for the bending in Fig. 17 but different results
for the simple shear in Fig. 20 which can be explained by
their different anisotropy properties.

6.2 Cantilever under traction load

In this setup, the right edge of themetamaterial is fixed in both
directions while a constant traction of ty = t is applied in the
y-direction on the left side. The boundary value problems for
both the fully discretizedmetamaterial and the relaxedmicro-
morphic model are depicted in Fig. 21. The micro elasticity
can be recovered for large values of Lc when a consistent
coupling condition is applied to the entire boundary. How-
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Fig. 18 The normalized bending stiffness varying the beam size
H × L = n l×12 n l obtained by the fully discretized metamaterial and
the relaxed micromorphic model. We analyze here different choices for

Cmicro with varying μ and fixing Lc = l. The results are equivalent for
both loading cases. The relaxed micromorphic model shows bounded
stiffness given by Cmicro in contrast to the Cosserat model

Fig. 19 The geometry of the boundary value problem (shear) shown for n = 2 for the fully discretized metamaterial and the homogeneous relaxed
micrmorphic continuum

ever, for small values of Lc, a boundary layer is created at
the upper and lower edges, requiring a fine mesh. This issue
can be resolved by partially applying the consistent boundary
condition, (∇u · τ )y = (P · τ )y .

The equivalent beam model of the assumed cantilever,
with the deformed shape illustrated for n = 2, is displayed
in Fig. 22. The cantilever is subjected to a constant shear force
Fy = t H and a linear moment that is zero on the left end
and maximum on the right end M = Fy x .

The size-effect is analyzed by determining the inverse of
the relative maximum displacement, expressed as wmacro(0)

w(0) .

This calculation is illustrated in Fig. 23. The macro-scale
displacement is calculated using the formula wmacro(0) =
4(1−ν2macro)Fy L

3

EmacroH3 . The results of both the fully discretizedmeta-
material and the relaxed micromorphic model show good
agreement, as the dominant size-effect is bending. However,
if consistent boundary conditions are not applied across the
entire boundary, agreement is not achieved.
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Fig. 20 The relative shear force varying the specimen’s size H × L for different choices of Cmicro

Fig. 21 The geometry of the boundary value problem shown for n = 2 for the fully discretized metamaterial and the homogeneous relaxed
micrmorphic continuum

Fig. 22 The beam model of the cantilever and the deformed shape for H × L = 2 l × 24 l
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Fig. 23 The inverse of the relative deflection at the free end of the cantilever (x = 0) for varying the specimen’s size H × L for different choices
of Cmicro

7 Conclusions

We introduced the relaxed micromorphic model with a brief
description of the suitable tangential-conforming finite ele-
ment formulation. We studied the size-effect phenomena of
fully resolved beams under bending. We have shown that
applying a rotation (via a given displacement) or moment
(applied traction) on the fully discretized metamaterial leads
to similar results which we should get as well when we
use the relaxed micromorphic model. We defined the macro
elasticity tensor Cmacro by means of the standard peri-
odic homogenization corresponding to large specimens. The
micro elasticity tensor is connected to the stiffest possible
response of the assumed metamaterial. We introduced an
approach to defining Cmicro which is based on the least
upper bound of the apparent stiffness of the microstruc-
ture measured in the energy norm following the Löwner
matrix supremum problem where different variants of unit
cells are considered under the affine Dirichlet boundary
conditions. However, the flexural deformation mode is not
captured by affine Dirichlet boundary conditions and the
resulting elasticity tensor is much softer than the bent fully
resolved metamaterial beams. Therefore, we scaled up the
resulting elasticity tensor keeping its anisotropic cubic sym-

metry. Another procedure is tested to identify the micro
elasticity tensor by non-affine boundary conditions (bend-
ing) on the unit cell or cluster of unit cells with the possible
largest flexural rigidity. The boundary conditions were inves-
tigated for both loading cases (rotation or moment) for the
symmetric and non-symmetric force stress. The consistent
coupling boundary condition permits the model to work on
the whole intended range bounded by linear elasticity with
micro and macro elasticity tensors from above and below,
respectively. We scaled the curvature measurement, which
is isotropic in 2D, to account for the beam’s size where a
final fitting is conducted to decide the values of characteris-
tic length and the shear modulus associated with the Curl of
the micro-distortion field. The relaxed micromorphic model
delivers successfully the size-effects in a consistent manner
for both loading cases. Finally, the relaxed micromorphic
model was tested for two loading scenarios apart from pure
bending with the consistent boundary condition applied on
the entire boundary, highlighting its importance. Good agree-
ment was obtained, however, the unique identification of
the micro-elasticity tensor remains an open topic for future
improvement. We established that the micro-elasticity tensor
Cmicro must be stiffer than the apparent stiffness under the
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affine Dirichlet boundary conditions, but not stiffer than the
homogeneous matrix.
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