
Computational Mechanics (2023) 72:765–786
https://doi.org/10.1007/s00466-023-02317-8

ORIG INAL PAPER

Recurrent and convolutional neural networks in structural dynamics:
a modified attention steered encoder–decoder architecture versus
LSTM versus GRU versus TCN topologies to predict the response of
shock wave-loaded plates

Saurabh Balkrishna Tandale1 ·Marcus Stoffel1

Received: 29 April 2022 / Accepted: 8 March 2023 / Published online: 31 March 2023
© The Author(s) 2023

Abstract
The aim of the present study is to analyse and predict the structural deformations occurring during shock tube experiments with
a series of recurrent and temporal convolutional neural networks. The goal is to determine the architecture that can best learn
and predict physically and geometrically nonlinear deformations. For this approach, four different architectures are proposed.
Firstly, the multi-layered long-short term memory is developed followed by the multi-layered gated recurrent unit (GRU).
Both the RNNs allow accounting for history dependent behaviors through their corresponding internal variables. Further, a
multilayered temporal convolutional network is initialized, where the dilated convolution operation is responsible for tracing
the path dependent behavior. In the mentioned architectures a sequence of mechanical data is passed through the network and
a transformation to corresponding displacements is established. These sequences and corresponding deflections belong to a
wide range of strain rates in the dynamic response of structures consisting of steel, aluminum, and copper plates including
geometrical and physical non-linearities. Finally, an encoder–decoder architecture consisting of GRU layers is introducedwith
a modified attention mechanism which showed the best result for predicting the dynamic response. Employing comparative
calculations between the neural network (NN) enhanced predictions and the measurements, the nature of approximation of
each mentioned NN architecture is discussed and the capabilities of these developed surrogate models are demonstrated by
its prediction on validation experiments. These validation experiments have displacement and input data ranges beyond the
range of data used for training the aforementioned models.

Keywords Recurrent neural network · Shock tube experiments · Encoder–decoder · Attention · Temporal convolutional
network · Viscoplasticity

1 Introduction

With recent breakthroughs in deep learning, artificial intel-
ligence has promoted faster solutions of complex numerical
tasks in several fields [1]. The successful employment of
NNs in engineering applications as an alternative to contin-
uum mechanics is well recorded in recent years. The trend
was evident in [2] where the one-dimensional stress states of

B Marcus Stoffel
stoffel@iam.rwth-aachen.de

Saurabh Balkrishna Tandale
tandale@iam.rwth-aachen.de

1 Institute of General Mechanics, RWTH Aachen University,
Aachen, Germany

the metal specimen were approximated using a feed-forward
neural network (FFNN). The problems related to vibration
and stability of the structures were discussed in [3,4]. In [5],
a comparison between the stability of FFNN and a structural
model for high-speed deformations is presented. Heider et
al. [6] proposed an informed graph-based neural network
to investigate frame invariance in anisotropic elastoplastic
materials.AMonteCarlo strategywas also developed to eval-
uate the response statistics of nonlinear structural dynamics
using FFNN and convolutional neural networks (CNNs) in
[7]. Furthermore, due to the compatibility of the NN to sim-
ulate the nonlinear material behavior at the Gaussian points,
the NNs were used as surrogate models in multiscale scenar-
ios to learn history-dependent constitutive laws in [8] where
an FFNN is used to replace the damage model proposed by

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-023-02317-8&domain=pdf

766 Computational Mechanics (2023) 72:765–786

Chaboche [9]. Similarly, in [10,11] the viscoplastic structural
response was learned by an FFNN, and a nonlinear effective
electric constitutive lawwas developed in [12]. Theocaris and
Panagiotopoulos proposed fully connected FFNN to model
kinematic hardening [13] and identify the parameters for
the failure mode of anisotropic materials [14]. A feed for-
ward neural network however, lacks the ability to capture
the loading history by itself and, thus, a modified recurrent
neural network was proposed by Ghavamian and Simone in
[15] to accelerate the 1-D Multiscale Finite Element simula-
tions. Similarly in [16], multidimensional history-dependent
multiscale simulations were successfully performed using
GRU [17] with high-speed gains. Gorji et al. [18] also pro-
posed a combination of GRU and fully connected layers to
predict the 2D plane stress plasticity with anisotropic harden-
ing for arbitrary loading paths. A physics based self-learning
strategywas introduced in [19] to compute viscoplastic struc-
tural response. A data-driven paradigm was introduced in
the studies [20–23] where the material behavior was learned
directly from the experimental data skipping the part of
empirical modeling. In [24], Capuano and Rimoli proposed
smart elements with linear and non-linear elastic behavior
approximating the element stiffness matrix using the FFNN.
This work replaced the need for integration points as the ele-
ment force vector was computed by the forward pass of the
network and the stiffnesswas computed by perturbation tech-
nique. A further enhancement concerning the new Sobolev
training strategy was introduced for stiffness replacement
approach in [25,26]. More recently, model order reduction
with sub-structuring was enhanced with so-called non-linear
meta elements in [27], where the history-dependent response
of the substructures or patches of elements are approximated
through a TRU-Net architecture. Thus, with the context
of neural networks in structural mechanics, five research
directions can be identified namely constitutive modeling,
surrogate modeling, stiffness modeling, multi-scale simula-
tions, and sub-structuring. In the present study, surrogate
modeling is chosen to predict efficiently the time-variant
dynamic response of shock wave-loaded metal plates. In pre-
vious studies of the authors [28], these dynamic responses
were captured using CNNs and a novel modular radial basis
function network (RBFNs). However, in the current study,
the advantage of gated RNNs to trace the path dependency
with its internal variables and the Temporal Convolutional
network with its dilated operation [29–31] is utilized as an
alternate solution to passing time as an additional input as
proposed in [28].

The objective of the present study is to propose an
encoder–decoder architecture comprising of GRU [17] lay-
ers wherein the encoder is responsible for encoding the input
mechanical data in a fixed-length vector. This encoded infor-
mation is used by the decoder to generate the corresponding
displacement sequences. A similar approach was adopted

in [32] to accurately compute the material response. To the
best of the author’s knowledge, the use of the mentioned
architecture to predict displacement sequences in non-linear
structural dynamics is new. The benefit of this approach
will be to predict by neural networks sequences of structural
deformation outside of the training range.

An architecture as used here can be analogously com-
pared with the sequence to sequence machine translation
task. This idea was originally presented in [33] for language
translation and semantic sentence representations. In [34] the
architecturewas enhanced even further by the introduction of
an attention mechanism. The current research addresses the
computational bottleneck of fixed encoded representation for
sequence problems also in dynamics and proposes amodified
attention mechanism that allows the model to softly allocate
probability values for parts of the encoded input sequence
that are relevant for predicting the displacement at the next
time step. This modified approach will be presented along
with multilayered LSTM [35], GRU and TCN models for
predicting the non-linear dynamic response. In comparison
to the state of the literature, the present study proposes the
following developments.

• Gated recurrent units and temporal convolution to pre-
dict history-dependent dynamic responses of shock wave
loaded plate elements.

• An encoder–decoder architecture based on gated RNNs
to predict the nonlinear structural behavior.

• Amodified attentionmechanism to dynamically compute
the relevance of each encoded data point to predict the
displacement at the following time step.

• This strategy allows to predict not only single data points
but entire sequences of structural deformations outside
of the trained data range.

The efficiency of the proposed attention steered encoder–
decoder architecture will be demonstrated by using the
experimental data mentioned in [28,36]. The ability of this
proposed architecture is compared with multilayered LSTM,
GRU and TCN networks especially for the validation exper-
iments and the difference in the learning strategies of the
aforementioned architectures are discussed.

The present research is organized as follows. In Sect. 2,
the details of the experiments are highlighted followed by
the NN formulations and in Sect. 3, the sampling procedure
along with the gated recurrent and temporal convolutional
neural networks are discussed. This builds up an intuition for
an encoder–decoder architecture with gated RNNs followed
by a modified attention mechanism. In Sect. 4, the data pro-
cessing along with the optimization of hyperparameters is
described. In Sect. 5, the results from multilayered LSTM,
GRU, TCN networks, and the encoder–decoder architecture
are presented. Further, the nature of the function approxi-

123

Computational Mechanics (2023) 72:765–786 767

Fig. 1 Experimental setups. a
Experimental setup: plate
specimen copper or steel. b
Experimental setup: plate
specimen aluminum.

mated by all the aforementioned networks is discussed along
with their predictions for validation experiments. Finally, it
is concluded that the proposed encoder–decoder architecture
with attention had the best generalization capability and the
results with a series of validation experiments are presented.

2 Experiments

In the current research, the shock tube experiments [37–
40] are chosen covering a wide range of strain rates in the
dynamic response of structures. It includes complex strain-
rate dependent evolutions of geometrically and physically
non-linear structural deformation. Pressure and deformation
histories are provided to the aforementioned NN models.
In these experiments, to account for different materials and
diameters, two experimental setups are presented in Fig. 1a,
b. Steel, Aluminum, and copper plates are subjected to impul-
sive loadings with different pressure ranges and the inelastic
deformations and vibrations are recorded. The training data
is obtained by the midpoint displacements and the pressure
acting on the plates. The signals are recorded by the mea-
surement technique mentioned in [41]. The experiments are
performed with aluminum plates having 553 mm diameter
and 2 mm thickness as shown in Fig. 1a, while the steel
and copper plates have a diameter of 138 mm with 2 mm
thickness presented in Fig. 1b. The shock tube consists of
a high-pressure chamber (HPC) and a low-pressure cham-
ber (LPC) separated from each other by a membrane. The
LPC has a length of 5.7 m and the length of the HPC can
be arranged in between 1 and 2m as shown in Fig. 1. The
pressure difference between the HPC and the LPC causes
the burst of the membrane resulting in a shock wave. This
wave moves into the LPC and strikes the plate specimen at
the end of the tube. The pressure evolution on the plate spec-
imen during impulsive loading can be varied using different
gases in the HPC. The lighter the gas such as helium, the
faster the shock wave and, hence, the higher the pressure on
the plate specimen. The time-dependent pressure along with
other mechanical quantities mentioned in Sect. 3 are taken as
the input for the training of the NN and the corresponding
midpoint displacement is taken as the output.

2.1 Experimental and computational bottleneck

The Finite Element simulations of shock wave loaded plates
were in accordance with the experiments as reported in [37].
These simulations, however, take a considerable amount of
time to get completed. Thus, to have a faster way for approx-
imating the midpoint displacements of shock wave loaded
plates, a deep convolutional neural network was proposed in
[28]. Although good results were obtained concerning the
training data, the generalizing ability of the model was poor.
In this research, we propose a new surrogate model com-
prising of gated RNNs and temporal convolutional network
which perform efficiently on untrained validation experi-
ments (The range of input values is beyond the range of
training sequences).

The remaining article is dedicated to the development of
a surrogate model which is computationally efficient for pre-
dicting the midpoint displacement.

3 Surrogatemodel for midpoint
displacement prediction

The notation used in the current research is demonstrated
as follows. The pressure acting on the plate is denoted by
p, the stiffness relation s is obtained by dividing Young’s
Modulus by plate diameter, and the wave propagation veloc-
ity is denoted as v. The inclusion of stiffness relation in the
study accounts for the distinct material and geometry of the
plates, while the wave propagation significantly influences
the deformation of shock wave-loaded plates. Additional
inputs could also be utilized to characterize different non-
linear behavior of the materials tested. However, with the
present study we utilize the internal parameters of the gated
recurrent layers to implicitly learn the nonlinear behavior of
different tested materials during the training process. This
generates a nonlinear reduced order set of internal parame-
ters responsible for tracing the nonlinear material response.
For the case of TCN’s, the dilated convolution ensures that
the entire past information is taken into account without any
information leak to encompass the desired path-dependent
behavior. Also, apart from the materials used in the study
if the deformation behavior for completely new materials

123

768 Computational Mechanics (2023) 72:765–786

are need to be investigated then, in such a scenario the net-
work must be re-trained with the corresponding stiffness
relation to produce expected results. Thus, after introducing
the variables, the notations used for sequence identifica-
tion are as follows. The mth sequence is denoted by a
superscript (m), the i th step in a sequence is denoted by
superscript {i}, an input sequence is represented as x(m) =
([p, s, v]{1}, [p, s, v]{2}, ..., [p, s, v]{i}, ...[p, s, v]{I }), simi-
larly the output sequence consisting of the midpoint dis-
placement of a plate as y(m) and finally the mth ordered
pair of input and output variables are represented as follows
[x, y](m). Further, to avoid convergence problems and have
numerical stability we scale the input and the output vari-
ables. For each input and output feature denoted by ζ the
following operation is applied.

ζ n = ζ − ζm

ζd
(1)

where,

ζm = ζmax + ζmin

2
and ζd = ζmax − ζmin

2
(2)

In Eq. (2), ζmax and ζmin represent the maximum and min-
imum values of the feature under consideration and the
operation in Eq. (1) maps the features to have the follow-
ing range [−1, 1]. Thus, the scaled ordered pair of input and
output sequences are represented as [xn, yn](m). The pro-
posed surrogate model which belongs to the class of NNs,
thus non-linearly maps the normalized input sequence to the
corresponding normalized output sequence.

MNN (θ̄) : xn �⇒ ỹn (3)

where, the parameters of the model are given as θ̄ =
{(W1,b1), (W2,b2), (W3,b3), ..., (WL,bL)}. The output
of the surrogate model is essentially an approximation and it
requires tuning the parameters such that the following equa-
tion is minimised.

e = ‖ yn − ỹn‖2 (4)

This process is referred to as training and is discussed
in Sect. 4. Also, for simplicity, we drop the superscript n
corresponding to the scaled variables and agree that only
normalized quantities are provided for training and predic-
tion through the NN. In the following section, the sampling
procedure adopted for training the Neural Networks is pre-
sented.

3.1 Sampling

To train the surrogate models proposed in this section, we
need to collect sequences consisting of pressure, stiffness
relation, and wave propagation velocity. In this research, we
do so by collecting experimental data corresponding to steel,
copper, and aluminum plates. We realize that the experimen-
tal data does not cover all the possible deformation sequences
that can occur and thus, we only work with a subspace of all
possible deformations.

In the following, we now concretely build our sampling
strategy. In this research, we consider experiments that are
carried out over 15,000 time steps. To have a stack of experi-
mental observations we analyze the sequences over 500 time
steps, i.e., the input and the corresponding output vector are
sequences having 500 time steps. These are extracted by
employing a windowing technique, where a window of 500
time-steps is slid over the experimental observations to col-
lect the required training data. Also, to avoid any flow of
redundant information a stride corresponding to 500 steps is
employed during the training process. Thus, a total of 100
sequences were extracted corresponding to the experiments
of the three materials. They were further split into 75 training
and 25 test sequences randomly. It should be noted that the
patterns of both the input and the output sequences show-
cased in the training and test sequences are different. This
helps in analyzing the performance of the trained NN mod-
els on patterns which are not provided during the training
phase. Such a strategy is useful for scenarios where we have
limited number of experiments and where each experiment
consist of large number of time steps. This helps in avoid-
ing extremely long training time and poor prediction abilities
when entire set of experiments were used for training (15,000
time steps). Finally, the proposed models are tested across
a series of validation experiments to determine which model
is best suited for the study. The input sequences are stacked
to form a variable x and the output sequences are stacked
to form y. This procedure is repeated until all the timesteps
in the experiments are covered to generate (x, y)(T), where
T = (1, 2, 3,, N) unequivocally identifies the consid-
ered subspace of experiments. This concludes the sampling
of the training data.

3.2 Neural network formulations

The most fundamental transformation available in neural
networks is termed as the feed-forward or the fully con-
nected transformation [42].With the advent of deep learning,
advanced layers like convolution, recursion have overcome
the aforementioned shortcomings by parameter sharing [43]
and adapting the topology to account for long time dependen-
cies [17,35]. The difficulty of processing sequential data by
fully connected networks can be overcome by using a Recur-

123

Computational Mechanics (2023) 72:765–786 769

rent Neural Network (RNN) [44]. The RNNs make use of
parameter sharing and recursions to keep trace of the mem-
ory while processing path-dependent data. However, there
are couple of drawbacks that are associated with the sim-
ple RNN topology, those being the unstable gradients and
receding memory [35,45]. This led to the development of
gated recurrent neural networks such as the LSTM [35] and
GRU [17]. These gated RNNs form the building block for the
encoder–decoder architecture presented in Sect. 3.3. Further,
since TCNs have showed better performance as compared to
RNNs and with less number of parameters. In the present
study, we develop a multilayered TCN network to compare
its computational accuracy in comparison to othermentioned
recurrent approaches.

3.3 Encoder–decoder architecture

Recurrent layer, Long-Short Term Memory and Gated
Recurrent Unit neural networks are well established for
sequence modeling, language modeling and machine trans-
lation [33,34,46]. In literature, a lot of efforts are undertaken
to push forward recurrent language models with encoder–
decoder architecture [47–49]. In the present study, we
propose an encoder–decoder architecture with an intention
of encoding a variable input sequence denoted as x(m) =
([p, s, v]{1}, [p, s, v]{2}, ..., [p, s, v]{i}, ..., [p, s, v]{I }) into
a fixed-length vector. This will be further processed by the
decoder also comprising of gated recurrent layer and fully
connected layer to generate a variable-length sequence of dis-
placement vector y(m) = (d{1}, d{2}, ...d{i}, ..., d{I }). Thus,
the proposed model can be analogously considered as a
neural mechanical translator that translates the mechanical
quantities mentioned in the sequence x(m) to the corre-
sponding midpoint displacement sequence y(m) of the plate.
Subsequently, the limitation of a fixed-length representation
of the input sequence is addressed [34] and a modified atten-
tion mechanism is presented in the following section which
allows the model to automatically soft search for the relevant
information in the encoded sequence to predict the target
displacement. Like LSTMs/GRUs, CNNs also have the abil-
ity to process sequential data. However, it does not process
input sequences of variable length inherently. This means,
if we initialize a 1D-CNN layer to process 500 timesteps.
An error message will be reported, every time the length of
the sequences are less or more than 500 timesteps. To elabo-
rate further, let us consider a case where the NN is deployed
in a Finite Element simulation to compute the displacement
behavior. Further, let us assume we are at the 100th time-step
and we want to evaluate the solution at 101st time-step. The
RNN based NNs maintain the sequence information through
their internal variables and, hence, they would accept the
internal variables from the previous time-step and the input
at the current time-step to predict the displacement behavior

at the next time-step. However, for the CNN-based encoder–
decoder architecture the entire loading sequence has to be
passed i.e an input tensor with 101 time-steps to predict the
correct displacement at the required 101st time-step. This
implies, the input to the CNN based NNs will increase lin-
early requiring the entire history of sequences to predict
the desired displacement. This would result in a computa-
tional bottleneck and hamper the speed of the simulation.
Hence, although its easier to process and deploy CNN for
encoder–decoder architectures, in the present research we
employ LSTM/GRU cells because of the explicit mainte-
nance of variables learning and following path-dependent
solution incrementally. Since the GRU is a simpler variant of
LSTM and shows comparable performance [50], we adopt it
as the processor for extracting and exchanging information in
the proposed framework. Also, the modified attention based
encoder–decoder architecture consists of GRU and fully con-
nected layers.

3.3.1 GRU based encoder–decoder

The proposed architecture outperformed the computational
graphs mentioned in Fig. 2 especially concerning its pre-
dictions on the validation set (the limit of minimum and
maximum values are beyond the training range), and the
results are presented in Sect. 5. Before moving further, we
highlight a crucial point of the architecture for encoding. As
seen in Fig. 3, the input sequence consisting of I time steps is
processed by the encoder, however, the task of memorizing
the sequences and converting them into a fixed-length rep-
resentation becomes difficult with an increase in sequence
length. This can be a result of providing only the final hid-
den state of the encoder, making it difficult for the decoder
to summarize long input sequences. With the present appli-
cation of explicit dynamic analysis of shock wave-loaded
plates, it becomes essential to process long sequences since
the step size chosen for loading can be very small to main-
tain numerical stability. In a bid to overcome this problem,
we introduce a modified attention mechanism that would
enable the model to predict displacement at a time step i
by automatically searching for the relevant information in
the encoded sequence rather than paying equal attention to
the entire sequence. Thus, in the section below the devel-
opment of attention-based encoder–decoder architecture is
proposed which outperformed all the models presented in
Figs. 2, and 3.

3.3.2 Attention based encoder–decoder architecture

The aim of the present study is to understand the applicability
of the langugage processing topologies for path-dependent
mechanical problems and to compare the performance not
only with the gated recurrent neural networks but also with

123

770 Computational Mechanics (2023) 72:765–786

Fig. 2 Computational graph of
combination of gated recurrent
cells with fully connected layer:
There are several nodes in the
graph corresponding to two
LSTM/GRU(n) layers where ’n’
denotes the number of units of
the cell, dropout and dense
layer. The edges represents the
operands corresponding to the
input vector [p, s, v]{i}, the
state of the cell S{i}, the output
from the LSTM layers as a{i}
and a{i}

1 , the output from dense

layers as ā{i}
1 and the output

vector d̃
{i}

.

Temporal Convolutional network. It is clear from the stud-
ies stated above, that the internal variables of the gated
recurrent layers are able to implicitly trace the evolution of
path-dependent problems. However, the robustness of such
architectures is a topic of ongoing research especially for
mechanical problems. Since the encoder–decoder architec-
ture with attention corresponding to translation problems
were able to function robustly even for unknown input
sequences, the exploration of its ability to handle/translate
mechanical sequences is tested. The following modifications
were applied on the encoder–decoder architecture to comply
with the nonlinear response of the plate vibration.

1. An embedding layer at the interface of the information
transfer between the attention module and the decoder is
replaced by a learnable dense layer.

2. The loss function was changed from a probability driven
categorical cross-entropy to mean squared error.

These modifications are essential and act as cross-road
between language translation and mechanical response pre-

diction. In the proposed model, the encoder comprises of
a GRU layer and is responsible for encoding the source
sequence. Now, instead of passing the output of the encoder
at the last time step I , we introduce modified attention that
soft searches and utilizes the relevant information from the
encoded sequence to decode an output at time step i . Mathe-
matically this algorithm of soft searching is achieved by the
following series of equations:

S{i} = tanh(W s1o(m)
e + W s2h{i−1}

1 + bs) (5)

a{i} = (VS{i} + bv) (6)

α{i} = exp(a{i}
p)

∑l
k=1 exp(a

{k}
p)

(7)

C{i} =
l∑

j=1

(α � o(m)
e)pj (8)

Firstly, a score S{i} between the hidden state of the decoder
GRU layer h{i−1}

1 and the encoded sequence o(m)
e is com-

123

Computational Mechanics (2023) 72:765–786 771

Fig. 3 Computational graph of
employed encoder–decoder: The
GRU transformation
corresponding the encoder is
highlighted by yellow boxes, the
red output at the I th time step of
the encoder is passed to the
decoder where the state variable
h{0}
1 is initialised with it. All the

transformations corresponding
to the decoder are highlighted
with gray boxes and n represents
the number of units of the cell
used. The edges represents the
operands corresponding to the
input vector to the encoder
[p, s, v]{i}, the state of the cell
(h{i}, h{i}

1 , h{i}
2), input to the

decoder d{i}, the output from the
GRU (decoder) layers as o{i}

1

and o{i}
2 , the output from

dropout layer as o{i}
3 and finally

the output vector d̀
{i}

puted following the procedure in [34]. This score is then
passed to an alignment function, which is chosen to be the
fully connected layer as highlighted in Eq. (6). This align-
ment function is responsible for learning and developing a
relationship between the output of the decoder GRU h{i−1}

1
and the mentioned encoded sequence. Further, the parame-
ters (W s1,W s2) ε R

n×n , bs ε R
n ,V ε R

n×t and bv ε R
t ,

where n denotes the number of GRU units(cells) and t = 1
denotes the number of output features, are optimized through
backpropagation along with the entire model to compute a
soft alignment. In the following step, an attention vector α{i}
is computed by Eq. (7) which results in probability α

{i}
q of

the output o{i}
1 aligned to the source x{q}. This is then used

to compute the context vector C{i} which extracts relevant
information from the encoded sequence to predict the output
o{i}
1 . Intuitively, this results in an attention mechanism in the

decoder and relieves the encoder from the burden of sum-
marizing all the information from the source sequence into a
fixed length representation.

Until this point, the implementation of attention in decoder
is similar as employed in the machine translation. In the fol-
lowing step, we introduce the modification of adding a fully
connected layer instead of an embedding layer [51,52] for
processing the input to the decoder. This is expressed as

f {i} = W f y{i−1} + b f , (9)

with free parametersW f εRn×k and b f εRn . This concludes
the inclusion of attention in the decoder. Further, the context
vector C{i} and the vector f {i} are concatenated and provided
as an input to the decoder GRU layer. This is represented by

D1 : [f {i}, C{i}] �→ o{i}
1 . (10)

123

772 Computational Mechanics (2023) 72:765–786

Fig. 4 Computational graph of
attention-based
encoder–decoder: The GRU
transformation corresponding to
the encoder is highlighted by
yellow boxes, the attention
vector is computed by the
transformation of encoded
sequence and the decoder output
at the previous time step to
provide the probability values to
the context vector which
empowers the model with
soft-search ability, the input to
the decoder here is the
concatenation of the output from
the fully connected layer and the
context vector. All the
transformations corresponding
to the decoder are highlighted
with gray boxes and n
represents the number of GRU
cells. The edges represent the
operands corresponding to the
input vector to the encoder
[p, s, v]{i}, the state of the cell
(h{i}, h{i}

1 , h{i}
2), input to the

decoder d{i}, the output from the
GRU (decoder) layers as o{i}

1

and o{i}
2 , the output from

dropout layer as o{i}
3 and finally

the output vector ď
{i}

.

[, ,] [, ,] − [, ,] −
GRU()

n

GRU(n)
−

n

GRU(n)
−

n

GRU(n)
−

−

n

Attention
Context
vector

Fully
Connected

GRU(n)
−

Dropout

Dense

[, ,] [, ,] − [, ,] −

The operatorD1 is responsible for implementing all the oper-
ations that are included in the forward pass of the GRU layer
followed by computing the output and updating its internal
state h{i}

1 = o{i}
1 . Further as seen in Fig. 4, the output is

processed by another GRU layer to enhance the capability
of the model to learn from higher dimensional representa-
tion. The following equation represents this transformation
mathematically:

D2 : o{i}
1 �→ o{i}

2 . (11)

Once, the output is computed, the state of the cell is updated
h{i}
2 = o{i}

2 and this follows the processing through dropout
layer. The dropout layer aims to introduce regularization and
make the network realize patterns in the data. (The working
of the dropout layer is explained in the following section).
Finally, the output o{i}

2 ε R
n is transformed to the space of

the displacement sequence using a fully connected transfor-

mation expressed by

F : o{i}
2 �→ y̌{i}

. (12)

In Eq. (12), the operator F corresponds to the fully con-
nected transformation mentioned with hyperbolic tangent
as the scalar activation function and the output y̌{i}

ε R
t ,

where t = 1 represents the space of the midpoint displace-
ment sequencementioned above. This concludes the forward
pass of the attention-based encoder–decoder architecture as
presented in Fig. 4.With this model, we overcome the bottle-
neck of poor performance of the encoder with longer input
sequences x(m) and the results are presented in Sect. 5. Also,
the adoption of soft search draws parallels to the FEM simu-
lation of such shock wave-loaded plates as modeled in [37].
Since we encode the input sequence with I time steps at once
and decode this information sequentially, suppose we are at

123

Computational Mechanics (2023) 72:765–786 773

time step i − 1 and we want to predict the displacement at
the next time step, then the computed attention weights show
more focus on the input x{i−1} and the loadinghistory as com-
pared to the remaining values of the encoded sequence. This
development through attention-based models is analogous to
the incremental procedure in FEM, where the displacement
at the following step only depends on the input at the current
time step and the previous history information. Also, in the
proposed model the variables [h{i}, h{i}

1 , h{i}
2] correspond to

the internal variables of the encoder and decoder GRU layers
which keep track of the evolution of the sequence. Thus, like
mentioned in the previous sections, they form a reduced non-
linear order reduction of the developed internal variables in a
viscoplastic FEM analysis. The process inherited for training
the proposed model is explained in Sect. 4. Finally, a dropout
regularization technique [53] was implemented to make the
computational graphs mentioned in Figs. 2, 3 and 4 learn
the patterns present in the data rather than memorize the data
itself.

3.4 Temporal convolutional network

The term temporal convolutional network (TCN), represents
a descriptive term for a family of convolutional architectures
and was first introduced in [29]. In the present study, we
adopt the TCN proposed in [30], it has two main character-
istics namely the convolution operation employed is causal
in nature and secondly the network is capable of mapping an
input sequence of an arbitrary length to the corresponding
output having the same length.

For the accomplishment of the two mentioned character-
estics, the 1D convolution operation is employed [54] along
with the padding technique to ensure the length of the output
is the same as the previous layer. The causal condition is sat-
isfied by convolving only with elements from a certain time t
and earlier time steps from the previous layer to generate an
output at time step t . A major disadvantage of such a design
is the need of either a very deep network or a large size of
the filter to cover the entire historic data. This is overcome
by adopting a dilated convolution which enabled an expo-
nentially long receptive field [31]. More formally for a filter
f and input sequence x ε R

n . The dilation operation on an
element e of a sequence at time step t is defined as

H(e) =
s−1∑

i=0

g(i) · xh (13)

where s represents the size of the filter, i represents the
level of the network and h = e − d · i accounts for the path
dependency, where d = 2i in the present study represents the
dilation base. Further, the receptive field of each layer can be
computed through r = (s − 1) · d, while for the complete
residual block the following equation can be used.

r f = 1 + 2 · (s − 1) · Nb ·
(

∑

i

di

)

(14)

where, Nb represents the number of residual blocks. This
gives us a clear indication of how to increase the receptivity
of the layer i.e., either by choosing larger filter size s or
increasing the depth of the network.

The deeper the network, the more important it becomes to
stabilize the initialized model. In the present study, a residual
block is used as proposed in [30]. It introduces a skip connec-
tion which provides an alternate path for the gradients to flow
through the computational graph and enable smooth training
process. The implementation of the residual block follows
[55], and the computational graph employed in this study
can be seen in Fig. 5. The TCN layer consists of one residual
block (Nb = 1), 32 filters, each filter having a size of s = 3.
Since, higher number of residual blocks are recommended
for sequences having large number of time-steps [55]. We
increase the depth of the model by employing higher num-
ber of dilations d = [1, 2, 4, 8, 16, 32, 64]. This ensures that
the receptive field of the model is more than 500 timesteps,
which can be computed from Eq. (14)

4 Data processing and hyperparameter
search

Prior to the training of the models proposed in the article the
parameters are initialised randomly. Our aim is to tune these
free parameters in a way that the NN learns the underlying
function of the data. In order to do so, a loss function is
employed which measures the error ẽ between the predicted
displacement sequence ŷ(m) and the sampled displacement
sequence y(m) in the form

ẽ = 1

N

N∑

m=1

x(m) where, x(m) = 1

l(m)

l(m)
∑

i=1

e{i} and

e{i} =‖ y − ŷ ‖2 (15)

Equation (15) is referred as the mean squared error, where N
denotes the number of sequences used for training and l(m)

denotes the length of them-th sequence. The trainable param-
eters of the computational graphs presented in Sects. 3.3 and
3.4 are optimized on the aforementioned loss function by a
gradient descent optimizer. The optimizer used in research
corresponds to the Adam optimizer [56].

4.1 Implementation details

The entire training process is implemented in Python. An in-
house training algorithm for the modified attention steered

123

774 Computational Mechanics (2023) 72:765–786

Fig. 5 Computational graph
corresponding to temporal
convolutional network. The
residual block is responsible for
processing the history
dependent information through
levels of dilated convolution,
while the integrated Dropout
and Weight Normalization
(WN) account for regularization
of the graph. The input and the
output through the graph are
represented by x (m) and y(m)

Table 1 Neural network hyperparameters

NN architecture employed Number of
hiddenlayers

Number of
GatedRNN or
TCN layers

Number of units Dense and other layers Dropout(%) Epochs

Sequential LSTM 4 2 160 1 15 1988

Sequential GRU 4 2 160 1 15 1143

Encoder–decoder without attention 5 3 128 1 10 4000

Encoder–decoder with attention 7 2 128 4 10 2500

Sequential TCN 3 1 32 3 10 3000

Table 2 Hyperparameter search domain

Variable Search domain

Number of LSTM/GRU layers [1, 2, .., 6]
Number of units [16, 32, ..., 512]
Number of Dense layers [1, 2, .., 5]
Epochs [0, 100, ..., 5000]
Number of units of TCN layers [8, 16, ...128]
Dropout (%) [5, 10, ...40]

encoder–decoder is developed with TensorFlow library [57],
while the remaining proposed models were trained with
Keras library [58]. These computations were performed on a
work station having 64GBRAM,NvidiaGeForceRTX3090
GPU and AMDRyzenTM 7 5800 X CPUwith 16 cores. Both

Table 3 Optimal parameters

NN architecture employed Parameters

Sequential LSTM 309, 281

Sequential GRU 274, 273

Encoder–decoder without attention 232, 961

Encoder–decoder with attention 231, 810

Sequential TCN 61, 409

the neural network training and the predictionwas performed
on the GPU.

4.2 Tuning of hyperparameters

The parameters that cannot be trained by a gradient descent
optimizer are commonly referred to as hyperparameters.

123

Computational Mechanics (2023) 72:765–786 775

Fig. 6 Combination of train-test
measurements and NN
simulations corresponding to
encoder decoder topologies for a
copper plate

Fig. 7 Combination of train-test
measurements and NN
simulations corresponding to
encoder decoder topologies for a
steel plate

123

776 Computational Mechanics (2023) 72:765–786

Fig. 8 Validation measurements
and NN simulations
corresponding to
encoder–decoder topology for a
steel plate

Fig. 9 Combination of train-test
sequences, validation
measurements, and NN
simulations corresponding to
TCN for a steel plate

123

Computational Mechanics (2023) 72:765–786 777

Fig. 10 Validation
measurements and NN
simulations corresponding to
LSTM, and GRU topologies for
a steel plate

These parameters are influential in the training process and
the learning capabilities of the model, thus there is a need
for tuning them. The hyperparameters that we tune in this
research are the size of the LSTM/GRU/TCN cells (n), the
probability of dropout, and the number of gated RNN lay-
ers employed. Considering the experiences collected from
previous studies with respect to the present physical prob-
lem, a maximum dropout rate of 0.4 [26,28] was used for the
research. For the rest, we use typical hyperparameter values,
for instance, the parameters of the Adam optimizer follow
the recommendations mentioned in [56].

Systematic hyperparameter search methods constitute
efficient solutions to find optimal hyperparameter configura-
tions.Hyperparameter search algorithms provide an essential
platform for automating the task of finding out optimal neu-
ral network configurations to achieve efficient performance.
Since, the hyperparameters are usually interdependent and
the effects it has on the model remain problem specific [59],
it has popularized the implementation of search algorithms
like the grid search [60]. Although grid search is effective in
searching through the domain of the hyperparameter range, it
is inefficient in its performance when large number of hyper-
parameters are involved. Random search algorithms [60], as
the name suggests, explores statistically the entire search
space by selecting a random combination of hyperparam-
eter configuration with varying step sizes. This makes them
suitable for hyperparameter-intensive neural networks [60].
However, the computational effort remains high.

In the present study, to utilize the advantages of the random
search algorithm and make the search strategy computation-
ally feasible we employ a Hyperband search algorithm [59].
Hyperband combines efficient exploration and investigation
of suitable architectures and eliminates the requirement of
any additional hyperparameters to be tuned. Independent of
the search algorithm, an early stopping method was intro-
duced which monitors the moving averages of the test-split
sequences, these sequences represent a small subset (30%)
of the training sequences. This results in an increase in the
efficiency of the search strategy employed for the research
problem and merits the choice of the hyperparameters for
further investigations. Finally, the search domain and the
hyperparameters used for successful implementation of the
proposedNNmodels are as shown inTables 1, 2 and 3 respec-
tively.

4.3 Scaling strategy to predict results on validation
experiments

It is well documented that NNs perform efficiently on the
training data and can interpolate accurately within the train-
ing range [61]. In this study, we propose a scaling strategy
that would empower the trained NN to predict data that has
its limits i.e., maximum and minimum value of the dataset
beyond the limits of the training range.

The scaling of the input and the output variables is per-
formed by the linear transformations presented in Eqs. (1)
and (2). This results in the range of the data between [−1, 1]

123

778 Computational Mechanics (2023) 72:765–786

and assists the NN to have a stable training process. In this
study, we refer to the scaled input and output as the variables
being in the normalized range. Once, the network is trained
with desired accuracy and strategy presented in Sect. 4, it is
deployed to make predictions on validation experiments. In
this research, the validation experiments have the maximum
and minimum limits beyond the training range (extrapola-
tion) as mentioned above. Here, we highlight a different way
of handling the validation data. Firstly,we scale the validation
input sequence by computing the Eqs. (1) and (2) followed
by the forward pass through the trained NN. This results
in the output being in the normalized range, thus one must
do an inverse transformation to bring the values back to the
physical range. This is performed by the following inverse
transformation:

ζ = ζ n · ζd + ζm (16)

where, ζm = ζmax + ζmin

2
and ζd = ζmax − ζmin

2
.

(17)

While transforming the output to the physical range for vali-
dation experiments it is important that the approximate range
in the physical range is known to the user using the surrogate
model [25,26], because the scaling variables used for training
the NN has a different operating range and hence utilizing
them would not lead to a correct physical representation of
the displacement sequence. This, means the output from the
NN can be scaled to any physical range provided the patterns
of the input sequence do not starkly differ from the training
sequence and the user through his experience of experiments
can predict an operating range.Wewant to highlight this abil-
ity of the NN i.e., being scalable for learned patterns in the
data enabling it to handle validation sequences having differ-
ent physical ranges. Finally, we would also like to report that
the accuracy of the results in the physical space are highly
dependent on the range of the physical displacement cho-
sen by the user working with the NN model. This puts an
additional requirement on the user to be thorough with the
physical evolution of the dynamic behavior to avoid large
deviations of the results in the physical space when dealing
with sequences having ranges outside of training range.

Adopting this technique along with the proposed mod-
ified attention-based encoder–decoder architecture yielded
the best results over the validation experiments and is pre-
sented in Sect. 5.

5 Results and discussions

All the values of the graph presented below correspond to val-
ues in the physical range. In the experiment with steel plates
the recorded time range is 5 ms, for copper plates it corre-

Fig. 11 Prediction of the encoder–decoder model with and without
Attention over the experimental measurements

sponds to 5.3 ms and for aluminium plates it is 7.7 ms. The
experimental setup for copper and steel plates can be seen in
Fig. 1. Peak pressure was generated at the start of the experi-
ment through the utilization of helium in the HPC to generate
a shock wave. The pressure generated through the experi-
ments along with the stiffness relation and wave propagation
velocity was used to train the computational graphs depicted
in Figs. 2, 3, 4 and 5. Further, to have better visualization
of the results corresponding to the train and test sequences,
we present the result corresponding to only encoder–decoder
topologies (see Figs. 6, 7, 13). An overview of responses of
the other topologies can be seen in Table 5. The predictions
of the NN over the mentioned input sequence for copper are
depicted in Fig. 6.

The RMSE values shown in Table 5 showcase that all the
proposed topologies were able to closely learn the dynamic
response of a viscoplastic nonlinear analysis of a copper
plate. Furthermore, a similar result was observed in Fig. 9
for the prediction of the NN over the pressure sequence used
to dynamically load a steel plate. The interpolation behavior
of these models are examined by splitting the data randomly
to training and testing sets and letting the NN learn through
the training data. The response of the trained NNs on the
test sequences highlights its ability to implicitly learn the
function, instead of memorizing the data itself.

Though all the models learn to approximate the dynamic
response of the shock wave-loaded plate, there is a major dif-
ference in theway inwhich the input information is processed
by the four models. In the computational graphs displayed
in Figs. 2, and 5 the information is processed sequentially
i.e., a transformation is directly learned to map an input
sequence to a corresponding output sequence through the
trained parameters of the NNmodel. However, in the case of

123

Computational Mechanics (2023) 72:765–786 779

Fig. 12 Comparison of the residual of the encoded information between
the time-steps 5.4–6.4ms which corresponds to 500 time-steps and
encoded information between 5.4 and 7.4mswhich corresponds to 1000
time-steps for attention framework

encoder–decoder architecture, the input information is sum-
marized in a fixed-length vector called the context vector,
while the encoder output is discarded. This context vector
aims to encapsulate all the relevant information correspond-
ing to the input sequence, providing a concise representation

of the pressure history used by the decoder to translate it into
a displacement sequence.

To further investigate the effectiveness of the proposed
models, we observe their predictions over validation input
sequences (see Figs. 8, 9, 10, and 14). These experi-
ments have similar data patterns but have different physical
maximum and minimum feature limits. All the validation
sequences are extracted fromexperiments that are completely
anonymous to the trained models and the response to the
input data is evaluated on the entire experiment. This helps
in evaluating the robustness of the surrogate models over
unseen data and assists us in choosing the model performing
the best. It is clear from theFigs. 8, 9, 10 that between the time
range of 5ms to 8.8ms the proposed encoder–decoder model
completely outperforms the other sequential LSTM, GRU
and TCN models, portraying a robust nature of the mechan-
ical translation achieved. The sequential models, though
trainedwith dropout regularization could not achieve a stable
response over the validation input sequence. This highlights
how critical and effective is the information embedded in the
context vector which imbibes the intricate information of the
validation pressure sequence and passes it to the decoder
to generate a stable displacement response. Also, it must
be noted that the current output from the decoder is gen-
erated in parts, with the input information being encoded
every 1 ms to generate the displacement response. Further,
from 8.8 to 10ms the sequential models show improved per-
formance matching the prediction of the decoded sequence.

Fig. 13 Combination of
train-test sequence
measurements and NN
simulations corresponding to
encoder decoder with attention
topology for a steel plate

123

780 Computational Mechanics (2023) 72:765–786

Table 4 Comparable parameters

NN architecture employed Parameters RMSE (Fig. 14)

Sequential LSTM 232, 985 0.60136

Sequential GRU 232, 961 0.421455

Encoder–decoder without attention 232, 961 0.0793

Encoder–decoder with attention 231, 810 0.03553

Sequential TCN 233, 715 0.5445

This can be because of the similarity of the validation and the
training pressure information in the mentioned range, indi-
cating the high sensitivity of the sequential models over the
input sequence. Though, the fixed representation of the con-
text vector has certain advantages as highlighted above. The
same representation can be a hindrance to capturing variable-
length long-term dependencies. Since the encoder–decoder
framework compresses all the information from the input
sequence, the probability of losing credible information with
a long sequence increases naturally affecting the prediction
of the decoder. When the input sequences are small as in the
case of machine translation, the possible information loss is
small and can be restored by the decoder keeping the seman-
tics intact.

However, for the current research problem which is path-
dependent and consists of long historical data the information
loss can become astounding due to the compressed represen-
tation of the context vector, whose dimension is limited by
the hidden state of the GRU encoder. Such a behavior can be
observed in Fig. 11, where the yellow curve corresponds to
the decoded sequence having an input length of 1000 points
which corresponds to a time range of 2ms. To further enhance
the learning capability of the encoder–decoder framework,
we have introduced an attention mechanism to bolster its
capability of encoding the input information.

The concept of Attention has become increasingly pop-
ular in training the NNs with data having super long term
dependencies [34]. This approach works by exploring the
relevant information from the encoder output and its hidden
state at the current time step to generate the prediction at the
next time step. This helps the framework in exploring the
inter-dependencies across the input and output space, which
eventually contributes to recognizing themost influential his-
torical state. The improved response of the framework after
including attention can be seen in Fig. 11 where even after
increasing the length of the encoded sequence we were able
to obtain a stable response from the framework. On the flip
side, if we look at the response of the framework without
attention we can see that due to the increase in the length of
the encoded sequence a compression loss of around 0.75ms
takes place. This can be seen clearly from the yellow curve
where it generates a pattern at 5.25ms which it should have

generated at the time 6ms. This indicates that it uses the
input information from 6ms and it could not retrieve the
information before it. To further investigate this behavior,
we visualize the context vector representation with varying
lengths of the input sequence.

In Fig. 16a, b, the residuals of encoded representations
between the time-steps 5.4–6.4ms and 6.4–7.4ms are com-
paredwith an encoded representationbetween5.4 and7.4ms.
It is evident from both figures that, although the encoded
sequence with more time-steps consist of the input informa-
tion from 5.4 to 7.4ms, the deviation in the time domain
5.4–6.4ms is much higher (RMSE = 0.5490) in compari-
son to the time domain presented in Fig. 16 which has a
RMSE value of 0.1487. This means even though the encoded
sequencewas supposed to contain a combined representation
of the context vector between 5.4 and 7.4ms, it only showed
a representation corresponding to the time range 6.4–7.4ms.
This highlights the information loss that takes place in our
encoder–decoder framework without attention

The context vector representation with attention follows
another principle. It must be noted that because of the
inclusion of the attention mechanism, the context vector is
generated at every time step instead of it being encoded
only once as in the case of our framework without attention.
Such an enhancement empowers the decoder to soft search
the required information from the encoded output and the
decoder output at the current time step to give a prediction at
the following time step. In Fig. 12, the residual of the context
vector representation is portrayed for sequences between the
time-steps 5.4–6.4ms and 5.4–7.4ms. It can be concluded
from the figure that, in comparison to framework without
attention (see Fig. 16a), the model with attention enhances
the ability of the model to retain the encoded information
(RMSE = 0.14877) even though the length of the encoded
sequence increases in comparison to training length. This
results in an effective and a robust model for tackling explicit
dynamic problems.

Another deformation concerning a steel plate is presented
in Fig. 13. It can be observed by comparing the Figs. 6, 7
and 13 that the pressure impulse follows a completely dif-
ferent trend. Since the NNs have an inherent capability to
approximate and learn different patterns from the data, the
pressure information presented in Fig. 13 was used to train
and test the network to learn the corresponding deforma-
tion behavior. It can be observed that, for both the train
and test sequences not only the model with attention was
able to perform the best, but also for the validation data a
stable response was obtained only for the proposed encoder–
decoder framework with attention (see Fig. 14a, b). This is
a further demonstration of the robustness of the framework
including attention for complex nonlinear prediction.

A summary of the performance of all the proposed
five models is presented in Table 5. All the models per-

123

Computational Mechanics (2023) 72:765–786 781

Table 5 Comparison of root mean squarred error (RMSE) between measurements and NN predictions

Measurement and NN prediction LSTM
(Fig. 2)
RMSE

GRU
(Fig. 2)
RMSE

Enc–Dec
without
attention
(Fig. 3)
RMSE

Enc–
Dec with
attention
(Fig. 4)
RMSE

Sequential TCN (Fig. 5)

Deformation (Fig. 6) (T) 0.0178 0.018911 0.0231 0.01188 0.01667

Deformation (Fig. 7)(T) 0.011824 0.02245 0.0011 0.000881 0.0008981

Deformation (Figs. 8, 10, 9)(V) 0.2521 0.2392 0.0316 0.02981 0.2185

Deformation (Fig. 13) (T) 0.0289 0.026 0.00587 0.001391 0.00178

Deformation (Fig. 14) (V) 0.27 0.31 0.0793 0.03536 0.289

The samples corresponding to training and test are indicated by (T), while the validation samples are indicated by (V)

Fig. 14 Analysing the behavior
of the proposed models for
validation measurements

123

782 Computational Mechanics (2023) 72:765–786

Fig. 15 Combination of
train-test sequence
measurements, validation
measurements and NN
simulations corresponding to
encoder decoder with attention
for an aluminium plate

form relatively well on training data as highlighted by the
RMSE values for Figs. 6, 7, 9 and 13 indicating that the
models approximated the required underlying function. A
special mention has to be given for the TCN architecture
which performed either better or on par with the sequential
models initialized with gated recurrent networks with less
parameters. However, the proposed encoder–decoder frame-
work with attention outperforms the remaining models for
its response on validation sequences boasting a minimum
RMSE value of 0.02981 for its response to a steel plate defor-
mation. Further, in Table 4, the RMSE values corresponding
tomodels consisting of similar number of parameters are pre-
sented. Since, the encoder–decoder framework shows better
performance in comparison to other sequential models. We
initialize new sequential models to have similar parameters
as the encoder–decoder framework. The results after training
the models are evaluated on a validation sequence presented
in Fig. 14 to compare and understand whether the stable per-
formance of the attention framework should be attributed to
the number of parameterswithwhich it is enriched or theway
they process information through the architecture. As it can
be seen from Table 4, although the models were freshly ini-
tialized and trained with comparable parameters, the model
with attention framework performed the best for validation
sequence presented in sequence Fig. 14. Also, it is interest-
ing to highlight that the newly initialized and trained LSTM,
GRU and TCN models performed less efficiently than their
counterparts with optimal parameters, which was expected.

In Fig. 15, two aluminium plate deformations, measured
in the large shock tube from Fig. 1 are shown. For the defor-
mation data used for training, a blue displacement curve
highlighted in Fig. 15 is used. An aluminum membrane with
Nitrogen was used in the HPC to generate its response, while
for the validation highlighted by the red curve an aluminum
membrane with Helium was used. The desired deformation
portrayed large deflections, instead of exhibiting oscillations
as in the case of steel and copper plates. The framework with
attention was able to understand and learn the response of
the aluminum plate not only for the train and test sequences
but also for the validation sequence. Further, if we look at
the test sequence highlighted by green font we realise that
no information from this time range is utilized for training
the NNmodel and yet the NN was able to predict the nonlin-
ear evolution in this region. This further reiterates the robust
nature of the proposed framework for predicting different
deformation patterns.

Finally, it must be noted that in the present study the mod-
els approximate both geometrical and physical nonlinearities
through training data and thus belongs to the class of a data-
driven or data-dominant approach. In such a scenario, the
focus is to learn the underlying function through the data or
to learn the patterns present in the data. If the material under
consideration is expected to show different deformation evo-
lution in comparison to Steel, Aluminium and Copper, then
re-training of themodel becomes necessary to efficiently pre-
dict the deformation evolution corresponding to the material.

123

Computational Mechanics (2023) 72:765–786 783

Fig. 16 Analysing the context vector of the encoder–decoder framework

6 Conclusions

In the present study, we evaluated firstly gated RNN mod-
els which include LSTM and GRU cells followed by a
TCN architecture to develop an efficient surrogate model to
learn the mid-point deformation behavior of complex path-
dependent shock wave loaded plates. Secondly, we train
and evaluate an encoder–decoder topology with gated RNNs
(similar to language translation) to understand and explore

the way of approximating sequential mechanical problems.
Subsequently, we enhanced the proposed encoder–decoder
architecture with attention weights (soft-search) to signifi-
cantly improve the generalizing capabilities of the surrogate
model. All the mentioned sequential models were trained,
using the data that was collected experimentally and through
the proposed sampling procedure. Finally, the models were
assessed on training and validation experiments and it was
concluded that the proposed encoder–decoder architecture

123

784 Computational Mechanics (2023) 72:765–786

with attention performed the best for training and validation
experiments.

The proposedmodel showed accurate predictions on train-
ing andvalidation experiments, however, itmust be noted that
this may not be always the case. The accuracy of the trained
surrogate depends on the patterns that it learns through the
training data. Thus, it may be required to retrain the model
in case of learning new patterns of deformation behavior.
The next question that we address is the interpretation of
the developed internal variables in all the proposed models.
Since, the surrogate models learn the deformation behav-
ior for shock wave loaded plates, as long as the model is
accurate the internal variables of the gated RNNs can repro-
duce the nonlinear response and the physical features are
reproduced by the trained model. Furthermore, the attention
weights also intuitively assign a physical resemblance to the
decoderwhich paysmaximumattention to the pressure infor-
mation at the current time step and assists the decoder to
produce the displacement information at the corresponding
time step. This is similar to the Finite ElementMethod where
the displacement is also computed sequentially.

The trained model with attention performs very well
within the training range and interpolates precisely.With this
study,we take a step further and present a simple scaling strat-
egy that empowers the model to predict accurate results for
input beyond the training range. However, it must be noted
that the NN can only predict beyond the training range if the
patterns learned by the network are similar to the expected
displacement behavior. In any other case, it must be required
to retrain the model with new data.

Themain limiting factor of the proposed strategy is that the
NN is trained on specific data patterns and for certain plate
geometries. To circumvent this issue, the current research
consisting of the proposed encoder–decoder framework with
attention could be employed for intelligent stiffness computa-
tion. Since, the implementation in Finite Element framework
also requires understanding the way the NN learns and
behaves on unseen data. The present research, aims towards
providing an explainable learning strategy of the presented
encoder–decoder framework which can be utilized in a more
generalized manner with the Finite Element Method.

Acknowledgements The authors gratefully acknowledge the financial
support provided by Deutsche Forschungsgemeinschaft (DFG: Grant
No. STO 469/17-1).

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521:436–444. https://doi.org/10.1038/nature14539

2. ShakibaM, Parson N, Chen X-G (2016) Modeling the effects of cu
content and deformation variables on the hight-temperature flow
behavior of dilute Al–Fe–Si alloys using an artificial naural net-
work. Materials 9(536):1–13

3. Liu G-R, Xu Y-G, Wu Z-P (2001) Total solution for structural
mechanics problems. Comput Methods Appl Mech Eng 191:989–
1012

4. Waszczyszyn Z, Ziemiański L (2001) Neural networks in mechan-
ics of structures and materials—new results and prospects of
applications. Comput Struct 79:2261–2276

5. Stoffel M, Bamer F, Markert B (2019) Stability of feed forward
artificial neural networks versus nonlinear structuralmodels in high
speed deformations: a critical comparison. Arch Mech 71(2):95–
111. https://doi.org/10.24423/AOM.3091

6. Heider Y, Wang K, Sun W (2020) So(3)-invariance of informed-
graph-based deep neural network for anisotropic elastoplastic
materials. Comput Methods Appl Mech Eng 363:112875. https://
doi.org/10.1016/j.cma.2020.112875

7. ThalerD, StoffelM,Markert B, Bamer F (2021)Machine-learning-
enhanced tail end prediction of structural response statistics in
earthquake engineering. Earthq Eng Struct Dyn. https://doi.org/
10.1002/eqe.3432

8. Hambli R, Katerchi H, Benhamou C-L (2011) Multiscale method-
ology for bone remodelling simulation using coupled finite element
and neural network computation. Biomech Model Mechanobiol.
https://doi.org/10.1007/s10237-010-0222-x

9. Chaboche J-L (1981) Continuous damage mechanics—a tool to
describe phenomena before crack initiation. Nucl EngDes 64:233–
247. https://doi.org/10.1016/0029-5493(81)90007-8

10. StoffelM,Bamer F,Markert B (2019)Neural network based consti-
tutivemodeling of nonlinear viscoplastic structural response.Mech
Res Commun 95:85–88

11. Stoffel M, Bamer F, Markert B (2018) Artificial neural networks
and intelligent finite elements in non-linear structural mechan-
ics. Thin Walled Struct 131:102–106. https://doi.org/10.1016/j.
tws.2018.06.035

12. Lu X, Giovanis DG, Yvonnet J, Papadopoulos V, Detrez F, Bai J
(2019)Adata-driven computational homogenizationmethod based
on neural networks for the nonlinear anisotropic electrical response
of graphene/polymer nanocomposites. ComputMech 64:307–321.
https://doi.org/10.1007/s00466-018-1643-0

13. Theocaris PS, Panagiotopoulos PD (1995) Plasticity including the
Bauschinger effect, studied by a neural network approach. Acta
Mech 113:63–75. https://doi.org/10.1007/BF01212634

14. Theocaris PS, Panagiotopoulos PD (1997) On the parameter iden-
tification problem for failure criteria in anisotropic bodies. Acta
Mech 123:34–56. https://doi.org/10.1007/BF01178399

15. Ghavamian F, Simone A (2019) Accelerating multiscale finite ele-
ment simulations of history-dependent materials using a recurrent
neural network. Comput Methods Appl Mech Eng. https://doi.org/
10.1016/j.cma.2019.112594

16. WuL,NguyenVD,KilingarNG,Noels L (2020)A recurrent neural
network-accelerated multi-scale model for elasto-plastic heteroge-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/nature14539
https://doi.org/10.24423/AOM.3091
https://doi.org/10.1016/j.cma.2020.112875
https://doi.org/10.1016/j.cma.2020.112875
https://doi.org/10.1002/eqe.3432
https://doi.org/10.1002/eqe.3432
https://doi.org/10.1007/s10237-010-0222-x
https://doi.org/10.1016/0029-5493(81)90007-8
https://doi.org/10.1016/j.tws.2018.06.035
https://doi.org/10.1016/j.tws.2018.06.035
https://doi.org/10.1007/s00466-018-1643-0
https://doi.org/10.1007/BF01212634
https://doi.org/10.1007/BF01178399
https://doi.org/10.1016/j.cma.2019.112594
https://doi.org/10.1016/j.cma.2019.112594

Computational Mechanics (2023) 72:765–786 785

neous materials subjected to random cyclic and non-proportional
loading paths. Comput Methods Appl Mech Eng 369:113–234.
https://doi.org/10.1016/j.cma.2020.113234

17. Chung J,GulcehreC,ChoK,BengioY (2014)Empirical evaluation
of gated recurrent neural networks on sequence modeling

18. Gorji MB, Mozaffar M, Heidenreich JN, Cao J, Mohr D (2020)
On the potential of recurrent neural networks for modeling path
dependent plasticity. J Mech Phys Solids 143:103972. https://doi.
org/10.1016/j.jmps.2020.103972

19. Tandale SB, Bamer F, Markert B, Stoffel M (2022) Physics-based
self-learning recurrent neural network enhanced time integra-
tion scheme for computing viscoplastic structural finite element
response. Comput Methods Appl Mech Eng 401:115668. https://
doi.org/10.1016/j.cma.2022.115668

20. Kirchdoerfer T, Ortiz M (2016) Data-driven computational
mechanics. Comput Methods Appl Mech Eng 304:81–101. https://
doi.org/10.1016/j.cma.2016.02.001

21. González D, Chinesta F, Cueto E (2019) Thermodynamically con-
sistent data-driven computational mechanics. Continuum Mech
Thermodyn 31:239–253. https://doi.org/10.1016/j.cma.2016.02.
001

22. Ladevèze P, Néron D, Gerbaud P-W (2019) Data-driven computa-
tion for history-dependent materials. Comptes Rendus Mécanique
347(11):831–844. https://doi.org/10.1016/j.crme.2019.11.008

23. He X, He Q, Chen J-S (2021) Deep autoencoders for physics-
constrained data-driven nonlinear materials modeling. Comput
Methods Appl Mech Eng 385:114034. https://doi.org/10.1016/j.
cma.2021.114034

24. Capuano G, Rimoli JJ (2019) Smart finite elements: a novel
machine learning application. Comput Methods Appl Mech Eng
345:363–381. https://doi.org/10.1016/j.cma.2018.10.046

25. Tandale SB, Markert B, Stoffel M (2022) Smart stiffness com-
putation of one-dimensional finite elements. Mech Res Commun
119:103817. https://doi.org/10.1016/j.mechrescom.2021.103817

26. Tandale SB, Markert B, Stoffel M (2022) Intelligent stiffness com-
putation for plate and beam structures by neural network enhanced
finite element analysis. Int J Numer Methods Eng. https://doi.org/
10.1002/nme.6996

27. Koeppe A, Bamer F, Markert B (2020) An intelligent nonlinear
meta element for elastoplastic continua: deep learning using a
new time-distributed residual u-net architecture. Comput Methods
Appl Mech Eng 366:113088. https://doi.org/10.1016/j.cma.2020.
113088

28. Stoffel M, Gulakala R, Bamer F, Markert B (2020) Artificial neu-
ral networks in structural dynamics: a new modular radial basis
function approach versus convolutional and feedforward topolo-
gies. Comput Methods Appl Mech Eng 364:112989. https://doi.
org/10.1016/j.cma.2020.112989

29. van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O,
Graves A, Kalchbrenner N, Senior AW, Kavukcuoglu K (2016)
Wavenet: a generative model for raw audio. arxiv:1609.03499

30. Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of
generic convolutional and recurrent networks for sequence model-
ing. https://doi.org/10.48550/ARXIV.1803.01271

31. Yu F, Koltun V (2015) Multi-scale context aggregation by dilated
convolutions. https://doi.org/10.48550/ARXIV.1511.07122

32. Wang C, Xu L-Y, Fan J-S (2020) A general deep learning
framework for history-dependent response prediction based on ua-
seq2seq model. Comput Methods Appl Mech Eng 372:113357.
https://doi.org/10.1016/j.cma.2020.113357

33. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learn-
ing with neural networks

34. Bahdanau D, Cho K, Bengio Y (2016) Neural machine translation
by jointly learning to align and translate

35. Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.
1997.9.8.1735

36. Stoffel M (2007) Experimental validation of anisotropic ductile
damage and failure of shock wave-loaded plates. Eur J Mech
A Solids 26(4):592–610. https://doi.org/10.1016/j.euromechsol.
2006.12.002

37. Stoffel M (2004) Evolution of plastic zones in dynamically loaded
plates using different elastic-viscoplastic laws. Int J Solids Struct
41(24):6813–6830. https://doi.org/10.1016/j.ijsolstr.2004.05.060

38. Stoffel M, Schmidt R, Weichert D (2001) Shock wave-loaded
plates. Int J Solids Struct 38(42):7659–7680. https://doi.org/10.
1016/S0020-7683(01)00038-5

39. Stoffel M (2006) Ameasurement technique for shock wave-loaded
structures and its applications. ExpMech46(42):47–55. https://doi.
org/10.1007/s11340-006-5870-5

40. Stoffel M (2005) An experimental method to validate vis-
coplastic constitutive equations in the dynamic response of
plates. Mech Mater 37(12):1210–1222. https://doi.org/10.1016/j.
mechmat.2005.06.001

41. Stoffel M, Schmidt R, Weichert D (1998) Vibrations of viscoplas-
tic plates under impact load; [organised by Aristotle University of
Thessaloniki, Greece; Wessex Institute of Technology, UK]. In:
Jones N (ed) Structures under shock and impact V: fifth inter-
national conference, SUSI 98, held at Thessaloniki, Greece in
June 1998. WIT transactions on the built environment, vol 35, pp
299–308. Computational Mechanics Publications, Southampton.
https://doi.org/10.2495/SU980271

42. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT
Press

43. Wang Z, Li C, Lin P, Rao M, Nie Y, Song W, Qiu Q, Li Y, Yan P,
Strachan JP,GeN,McDonaldN,WuQ,HuM,WuH,WilliamsRS,
XiaQ, Yang JJ (2019) In situ training of feed-forward and recurrent
convolutional memristor networks. Nat Mach Intell 1:434–442

44. Rumelhart DE, Hinton GE,Williams RJ (1986) Learning represen-
tations by back-propagating errors. Nature 323:533–536. https://
doi.org/10.1038/323533a0

45. Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget:
continual prediction with LSTM. Neural Comput 12(10):2451–
2471. https://doi.org/10.1162/089976600300015015

46. Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares
F, Schwenk H, Bengio Y (2014) Learning phrase representations
using RNN encoder–decoder for statistical machine translation

47. Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W,
Krikun M, Cao Y, Gao Q, Macherey K, Klingner J, Shah A, John-
son M, Liu X, Łukasz Kaiser Gouws S, Kato Y, Kudo T, Kazawa
H, Stevens K, Kurian G, Patil N, Wang W, Young C, Smith J,
Riesa J, Rudnick A, Vinyals O, Corrado G, Hughes M, Dean J
(2016) Google’s neural machine translation system: bridging the
gap between human and machine translation

48. Luong M-T, Pham H, Manning CD (2015) Effective approaches to
attention-based neural machine translation

49. Jozefowicz R, Vinyals O, Schuster M, Shazeer N, Wu Y (2016)
Exploring the limits of language modeling

50. Zhang Z, Li M, Lin X, Wang Y, He F (2018) Multistep
speed prediction on traffic networks: A graph convolutional
sequence-to-sequence learning approach with attention mecha-
nism. arxiv:1810.10237

51. Khrulkov V, Hrinchuk O, Mirvakhabova L, Oseledets
IV (2019) Tensorized embedding layers for effi-
cient model compression. CoRR abs/1901.10787
https://arxiv.org/abs/1901.10787arXiv:1901.10787

52. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser L, Polosukhin I (2017) Attention is all you need

123

https://doi.org/10.1016/j.cma.2020.113234
https://doi.org/10.1016/j.jmps.2020.103972
https://doi.org/10.1016/j.jmps.2020.103972
https://doi.org/10.1016/j.cma.2022.115668
https://doi.org/10.1016/j.cma.2022.115668
https://doi.org/10.1016/j.cma.2016.02.001
https://doi.org/10.1016/j.cma.2016.02.001
https://doi.org/10.1016/j.cma.2016.02.001
https://doi.org/10.1016/j.cma.2016.02.001
https://doi.org/10.1016/j.crme.2019.11.008
https://doi.org/10.1016/j.cma.2021.114034
https://doi.org/10.1016/j.cma.2021.114034
https://doi.org/10.1016/j.cma.2018.10.046
https://doi.org/10.1016/j.mechrescom.2021.103817
https://doi.org/10.1002/nme.6996
https://doi.org/10.1002/nme.6996
https://doi.org/10.1016/j.cma.2020.113088
https://doi.org/10.1016/j.cma.2020.113088
https://doi.org/10.1016/j.cma.2020.112989
https://doi.org/10.1016/j.cma.2020.112989
http://arxiv.org/abs/1609.03499
https://doi.org/10.48550/ARXIV.1803.01271
https://doi.org/10.48550/ARXIV.1511.07122
https://doi.org/10.1016/j.cma.2020.113357
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.euromechsol.2006.12.002
https://doi.org/10.1016/j.euromechsol.2006.12.002
https://doi.org/10.1016/j.ijsolstr.2004.05.060
https://doi.org/10.1016/S0020-7683(01)00038-5
https://doi.org/10.1016/S0020-7683(01)00038-5
https://doi.org/10.1007/s11340-006-5870-5
https://doi.org/10.1007/s11340-006-5870-5
https://doi.org/10.1016/j.mechmat.2005.06.001
https://doi.org/10.1016/j.mechmat.2005.06.001
https://doi.org/10.2495/SU980271
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1162/089976600300015015
http://arxiv.org/abs/1810.10237

786 Computational Mechanics (2023) 72:765–786

53. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R (2014) Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res 15(56):1929–1958

54. Long J, Shelhamer E, Darrell T (2014) Fully convolutional
networks for semantic segmentation. https://doi.org/10.48550/
ARXIV.1411.4038

55. Remy P (2020) Temporal convolutional networks for Keras.
GitHub

56. Kingma DP, Ba J (2017) Adam: a method for stochastic optimiza-
tion

57. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Cor-
rado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I,
Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur
M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C,
Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P,
VanhouckeV,VasudevanV,Viégas F,VinyalsO,WardenP,Watten-
berg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale
machine learning on heterogeneous systems. Software available
from https://www.tensorflow.org/

58. Chollet F et al. Keras. https://github.com/fchollet/keras
59. LiL, JamiesonK,DeSalvoG,RostamizadehA,TalwalkarA (2016)

Efficient hyperparameter optimization and infinitely many armed
bandits. arxiv:1603.06560

60. Bergstra J, Bengio Y (2012) Random search for hyper-parameter
optimization. J Mach Learn Res 13:281–305

61. Chen CLP (1996) A rapid supervised learning neural network for
function interpolation and approximation. IEEETransNeuralNetw
7(5):1220–1230. https://doi.org/10.1109/72.536316

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.48550/ARXIV.1411.4038
https://doi.org/10.48550/ARXIV.1411.4038
https://www.tensorflow.org/
https://github.com/fchollet/keras
http://arxiv.org/abs/1603.06560
https://doi.org/10.1109/72.536316

	Recurrent and convolutional neural networks in structural dynamics: a modified attention steered encoder–decoder architecture versus LSTM versus GRU versus TCN topologies to predict the response of shock wave-loaded plates
	Abstract
	1 Introduction
	2 Experiments
	2.1 Experimental and computational bottleneck

	3 Surrogate model for midpoint displacement prediction
	3.1 Sampling
	3.2 Neural network formulations
	3.3 Encoder–decoder architecture
	3.3.1 GRU based encoder–decoder
	3.3.2 Attention based encoder–decoder architecture

	3.4 Temporal convolutional network

	4 Data processing and hyperparameter search
	4.1 Implementation details
	4.2 Tuning of hyperparameters
	4.3 Scaling strategy to predict results on validation experiments

	5 Results and discussions
	6 Conclusions
	Acknowledgements
	References

