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Abstract
Fracture of materials with rate-dependent mechanical behaviour, e.g. polymers, is a highly complex process. For an adequate
modelling, the coupling between rate-dependent stiffness, dissipative mechanisms present in the bulk material and crack
driving force has to be accounted for in an appropriatemanner. In addition, the resistance against crack propagation can depend
on rate of deformation. In this contribution, an energetic phase-field model of rate-dependent fracture at finite deformation
is presented. For the deformation of the bulk material, a formulation of finite viscoelasticity is adopted with strain energy
densities of Ogden type assumed. The unified formulation allows to study different expressions for the fracture driving force.
Furthermore, a possibly rate-dependent toughness is incorporated. Themodel is calibrated using experimental results from the
literature for an elastomer and predictions are qualitatively and quantitatively validated against experimental data. Predictive
capabilities of the model are studied for monotonic loads as well as creep fracture. Symmetrical and asymmetrical crack
patterns are discussed and the influence of a dissipative fracture driving force contribution is analysed. It is shown that,
different from ductile fracture of metals, such a driving force is not required for an adequate simulation of experimentally
observable crack paths and is not favourable for the description of failure in viscoelastic rubbery polymers. Furthermore, the
influence of a rate-dependent toughness is discussed by means of a numerical study. From a phenomenological point of view,
it is demonstrated that rate-dependency of resistance against crack propagation can be an essential ingredient for the model
when specific effects such as rate-dependent brittle-to-ductile transitions shall be described.

Keywords Phase-field · Fracture · Elastomers · Rate-dependent fracture toughness · Viscoelasticity · Dissipation · Finite
deformation

1 Introduction

The mechanical behaviour of many engineering materials
depends on rate of deformation. For example, the response
of polymers can be much more stiff or brittle when the load-
ing rate is increased, see [1,2]. The same applies for natural
materials such as cheese [3] or confections [4]. In order to
reduce experimental effort for design and testing of engineer-
ing products as well as for the optimisation of production
processes of foods, the computational modelling and simu-
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lation of crack phenomena in rate-dependent materials is of
increasing interest.

For the modelling of crack phenomena, the phase-field
approach to fracture has become a well-established con-
cept. Different from classical finite element approaches (FE),
it enables to simulate crack growth without the need for
remeshing. Furthermore, complex crack patterns that are not
a priori known can be simulated in a straightforward man-
ner, which especially makes the concept attractive compared
to alternative approaches such as Cohesive zone elements
[5] or the Extended-finite-element-method (X-FEM) [6]. The
phase-field fracture approach goes back to the variational for-
mulation of brittle fracture of Francfort and Marigo [7], who
recast the Griffith criterion [8] for crack propagation into a
variational setting. Bourdin et al. [9,10] introduced a diffuse
crack representation by means of the phase-field variable,
which continuously varies from the intact to the fully broken
material state. In other words, cracks are no longer seen as
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sharp discontinuities, but approximated over a finite length
scale �c. Making use of this smeared crack representation,
a regularisation of the pseudo-energy functional is carried
out. One key feature of this fundamental work of Bourdin is
the �-convergence of the regularised functional against the
sharp discontinuity model when the length scale �c tends to
zero, i.e. �c → 0.

Based upon the diffuse crack representation introduced
in [9], numerous models of fracture have been proposed.
Not for all of these models, an underlaying pseudo-energy
functional can be provided, from which the governing dif-
ferential equations can be derived by means of variational
arguments. Moreover, even if, �-convergence for �c → 0 is
not necessarily preserved. Nevertheless, thesemodels, which
are based on the smeared description of crack topology,
are typically referred to as phase-field models of fracture.
Furthermore, although a lack of �-convergence is undesir-
able from a theoretical point of view, many of these models
enable to take several possibly complex influencing factors
into account, e.g. fatigue effects [11–13] or concentration of
hydrostatic stress [14,15], and have proven of value. Mod-
els of brittle fracture that include several advancements with
respect to the fundamental work [9] have been proposed
within both the infinitesimal strain regime [16–20] as well
as for finite deformation [21–23]. Very recently, the phase-
field approach to fracture also is combined with machine
learning and data-driven approaches [24–28]. Furthermore,
fracture phase-field modelling has been advanced towards
elasto-plastic materials, see [29] for an overview on several
approaches within the infinitesimal strain setting. For the
performance of these ductile fracture models, the descrip-
tion of interaction between inelastic dissipative mechanisms
and crack growth has revealed crucial. In particular, in the
absence of an adequate coupling, crack patterns that are
experimentally observed in metals, for instance, can not be
reproduced, see e.g. [30, Fig. 14]. Different manners of intro-
ducing such a coupling are proposed, includingnon-energetic
ductile fracture driving forces based on accumulated plastic
strain [31,32], and an enhanced degradation function which,
in addition to the phase-field variable, depends on plastic
deformation and results in a distinct plastic contribution to
the fracture driving force [30,33]. Furthermore, instead of a
fracture driving force related to inelastic mechanisms, degra-
dation of fracture toughness depending on equivalent plastic
strain is introduced [34]. Several other phase-field models of
ductile fracture are based upon a pseudo-energy functional
in which both elastically stored energy and a plastic quan-
tity, which is referred to as plastic work or plastic energy, are
assumed to degrade upon fracture. Depending on the specific
formulation, the plastic contribution to free energy actually
corresponds to hardening terms [35,36] or accumulated plas-
tic dissipation [37–39].

More recently, the approach is combined with rate-de-
pendent models for the deformation of the bulk material.
A first phase-field fracture model for viscoelastic solids is
proposed by Schänzel [32], where a non-energetic fracture
driving force based on a generalised principal stress crite-
rion is adopted. Alternative driving forces based on energetic
or thermodynamic arguments are introduced by Shen et al.
[40] as well as Liu et al. [41] within the kinematically linear
regime and by Loew et al. [42,43] within the linear vis-
coelasticity framework [44] at finite deformation. In these
models, a viscous dissipative contribution is incorporated
into the degraded free energy and thus enters fracture driving
force. Different from the aforementioned models, only equi-
librium and over-stress parts of the strain energy density are
assumed to promote crack propagation by Yin and Kaliske
[45], who combined the phase-field approach to fracture with
amodel of finite viscoelasticity [46].Recently, similar formu-
lations are adopted byBrighenti et al. [47] based on statistical
mechanics-based equations for the response of the bulkmate-
rial, and in [48] where the rate- and temperature-dependent
behaviour of polymer nanocomposites is investigated. In
some of these models based on either non-energetic or
energetically motivated driving forces [32,42], the viscos-
ity assumed for the evolution of phase-field that originally is
solely numerically motivated, cf. [17,18], is understood as a
material parameter and identified from experimental data. In
the recent work of Dammaß et al. [49,50], a unified energetic
phase-field model for fracture of viscoelastic solids has been
presented in the kinematically linear regime. Depending on
the specific choice of the degradation functions and model
parameters, respectively, the modelling approaches of [40],
[42,43] or [45,47] are retained as limiting cases of the present
model and by means of representative numerical studies, the
coupling between viscous effects and fracture is analysed.

Compared to the rate-dependent behaviour of the bulk
material, less efforts have been devoted to the study of strain
rate-dependent resistance against fracture. Miehe et al. [31]
suggested a phenomenological ansatz for the rate-dependent
toughness in order to investigate the brittle-to-ductile fracture
mode transition observed in the Kalthoff–Winkler experi-
ment, i.e. for shear-loaded metals. Yin et al. [51] assumed
the toughness of a linear elastic material to depend on
rate of deformation. In their formulation, dissipation due to
crack formation is incorporated into the free energy so that
additional stress contributions are obtained from the rate-
dependent fracture toughness. In these two models [31,51],
rate-independent models for the deformation of the bulk
are considered. To the best of the authors’ knowledge, so
far, there are no phase-field models that consider both a
rate-dependent toughness and a model of rate-dependent
deformation of the bulk.

In the present contribution, a thermodynamically consis-
tent phase-field model of fracture of materials with rate-
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Fig. 1 Modular structure and flexibility of the proposed model for rate-dependent fracture phenomena

dependent behaviour is presented. For this purpose, the
previously introduced pseudo-energy functional [50], which
consists of the free energy that includes a contribution related
to viscous dissipative mechanisms, and the fracture contribu-
tion is advanced towards the finite viscoelasticity setting of
Reese and Govindjee [46]. Depending on the specific choice
of the model parameters, the modelling approaches of [40],
[42,43] or [45,47] can be retained as limiting cases. Based on
experimental data for anEthylenePropyleneDieneMonomer
(EPDM) rubber from the literature [42], the model parame-
ters for the response of the bulk and the fracture behaviour
are identified and model predictions are qualitatively and
quantitatively verified on experimental results. In doing so,
two assumptions for the fracture driving force, i.e. whether
there shall be a contribution related to viscous dissipation
or not, are investigated. With the aim of studying the possi-
ble influence of such a driving force component on the crack
path, an asymmetrical setup is studied in addition to the sym-
metrical ones considered in recent publications, e.g. [42,45].
Furthermore, based on experimental evidence on strain rate-
dependent fracture toughness, cf. [3,52,53], and motivated
from a phenomenological point of view, a rate-dependent
resistance against fracture is introduced. A numerical study
on the coupling between rate-dependent resistance against
crack propagation and viscoelastic bulk response is then per-
formed. An overview on the structure of the proposed unified
model is given in Fig. 1.

The paper proceeds as follows. In Sect. 2, the proposed
phase-field model of fracture in rate-dependent materials
at finite deformation is presented and its thermodynamic
consistency is proven. Subsequently, in Sect. 3, algorithmic
aspects are addressed. In Sect. 4, the model parameterization
is described and various numerical examples serve for vali-
dation and analysis of the model. A short summary and an
outlook regarding the future work is given in Sect. 5. In the
Appendix, information on the tangent for the local Newton
iteration and the global material tangent is given.

Within this paper, italic symbols are used for scalar
quantities (d, Ψ ) and bold italic symbols for vectors (u).

For Second-order tensors, bold non-italic letters (T, τ) are
used, whereas fourth-order tensors are written in Blackboard
bold (C).

2 Phase-field formulation

In this section, the phase-field model of fracture in mate-
rials with rate-dependent behaviour is presented. At first,
the general energetic formulation of fracture in viscoelastic
materials derived in [50] is extended to the finite deformation
setting. Subsequently, the specific constitutive assumptions
are outlined and the rate-dependent fracture toughness is
introduced. Finally, governing equations are provided and
thermodynamic consistency is proven.

2.1 Pseudo-energy functional

Diffuse crack representation Motivated by the fundamental
work of Bourdin [9], cracks are described in a diffusemanner
by means of the fracture phase-field variable

d : Ω0 × [0, t] → [0, 1], (X, t) �→ d(X, t) (1)

which continuously varies from the intact (d = 0) to the
fully broken (d = 1) material state. Figure 2 illustrates the
concept of diffuse crack representation. Using this variable,
following Miehe et al. [17], a functional

Fig. 2 Diffuse representation of a crackwithin a domain that undergoes
finite deformation
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γ�c = 1

4 �c

(
d2 + 4 �2c ∇Xd · ∇Xd

)
(2)

can be defined,1 in which the length scale parameter �c con-
trols the characteristic width of the diffuse crack. The Nabla
operator with respect to the reference coordinate is given by

∇X ◦ =
N∑

K=1

eK

(
∂ ◦

∂ X K

)
, (3)

with eK denoting K -th basis vector of theCartesian reference
coordinate frame. This functional γ�c can be understood as a
crack surface density, which has been discussed in [16,17,31,
56] based on geometrical arguments. With this functional at
hand, the density of rate of dissipation due to crack evolution
is defined as

Φ̇fr = γ̇�c Gc, (4)

which refers to a volume element of the reference or unde-
formed configuration Ω0 ⊂ R

N of the N -dimensional
domain under consideration. The parameter Gc > 0 quan-
tifies the resistance of the material against fracture. This
definition of Φ̇fr is conceptionally similar to the hypothesis
of Griffith [8] who assumed the increase of dissipation due
to crack growth, which is referred to as surface energy, to be
proportional to the increment of crack surface. As a conse-
quence, in analogy to the proportionality constant of classical
fracture mechanics, Gc is referred to as fracture toughness in
this work, which is line with e.g. [34,51,57]. Nevertheless,
it has to be noted that in the context of the proposed model
and other approaches that do not guarantee �-convergence,
Gc in general does not exactly correspond to the toughness
or critical energy release rate according to the sharp crack
description, which correlates with stress intensity factors of
classical fracture mechanics. Instead, Gc rather has to be seen
as a measure of resistance against fracture that is valid within
the diffuse framework. Classically,Gc is assumed to be a con-
stant, so that the density of dissipation due to crack evolution,
which can be referred to as density of fracture-pseudo energy,
can be written as

Φfr = γ�c Gc. (5)

However, Gc can explicitly depend on the position in space in
heterogeneous materials [58,59]. Furthermore, in the recent
literature on phase-field modelling of fracture, Gc is assumed
to change during fatigue life, see e.g. [12], or due to plas-
tic deformation [34,60]. In these cases, the fracture-pseudo

1 For the functional γ�c , several choices possible, see e.g. [54]. The
expression adopted here typically is referred to as AT-2 model—with
reference to the work of Ambrosio and Tortorelli [55].

energy can not be assumed to be proportional to γ�c . Instead,
in order to determine Φfr, the process history has to be
accounted for. In the following, the phase-field framework is
set up for which Gc = const. is assumed, first. Subsequently,
the model is extended to account for a fracture toughness that
depends on rate of deformation in Sect. 2.4.

Pseudo-energy functional For a domain Ω0 affected by
cracks that are represented by means of the phase-field vari-
able d, the pseudo-energy functional

Π�c = Π sd
�c

+ Π fr
�c

=
∫

Ω0

Ψ + Φfr dV (6)

can be defined,2 which consists of the stored free energy
Π sd

�c
, with its density with respect to the reference configura-

tion denoted by Ψ , and the fracture pseudo-energy Π fr
�c
with

its density given by Φfr, which can be assumed to remain
apparently stored within the material.

In the phase-field setting, the decrease of free energy due
to fracture is expressed by means of the degradation function

g : [0, 1] → [0, 1], d �→ g(d) (7)

which has to fulfil the conditions

g(d = 0) = 1, g(d = 1) = 0,

∂g

∂d
≤ 0,

∂g

∂d

∣∣∣∣
d=1

= 0.
(8)

Bymeans of g(d), the degraded reference free energy density
can be written as

Ψ = g(d) ψ , (9)

with the virtually undamaged density of free energy, i.e. the
amount of free energy that would be stored in the material in
the absence of damage, denoted by ψ .

Generalisation for inelastic material response Following the
previous work [50] and similar to phase-field fracturemodels
for elasto-plastic materials, the free energy density

Ψ = gst(d) ψ st + βvi gvi(d) ψvi =: Ψ st + Ψ vi (10)

is assumed to be additively decomposed into two essential
ingredients.3 Naturally, the first one is the effectively stored
strain energy Ψ st. In addition, in order to adequately account
for the coupling between inelastic deformation and frac-
ture mechanisms, a free energy contribution Ψ vi related to

2 For sake of brevity, terms arising from external loads are omitted in (6)
and what follows.
3 Note that different from [39,61] and in line with e.g. [17,36], dissi-
pation due to evolution of crack surface is not assumed to contribute
to the free energy Ψ , yet included as a distinct contribution Φ or Π fr

�c
,

respectively, into the pseudo-energy functional Π�c .
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accumulated viscous dissipation is assumed. Contributions
similar to Ψ vi are also considered in other recent phase-field
models of fracture in viscoelastic materials [40,42]. Further-
more, analogue terms are widely spread in modelling of
failure in elasto-plastic materials [36–39,61], where a free
energy contribution related to inelastic deformation, which
is degraded in case of crack growth can be essential for the
description of ductile fracture, cf. [29,30]. 4 In Ψ vi, in order
to keep the formulation as general as possible, the parameter
βvi ∈ [0, 1] is introduced as a weight, cf. [39] and [40] or
[37,38] for analogous assumptions. This constant βvi is con-
ceptionally similar to the Taylor–Quinney parameter widely
spread in the modelling of plasticity [62], which quantifies
the amount of plastic work that remains stored in the mate-
rial. For a rigorous motivation and interpretation ofΨ vi from
a physical point of view, and a numerical investigation in the
kinematically linear regime, the reader is referred to [50].

The specific definitions of ψ st and ψvi considered in this
work are given in Sect. 2.2.5 For the two contributions to the
free energy, any degradation functions gst and gvi satisfying
the conditions (8) can be considered,which, in general, do not
have to coincide. In the literature, different approaches have
been taken, e.g. quartic and cubic expressions [63,64], a sinu-
soidal ansatz [34,45], and parametric functions that include
additional parameters, which can be fitted to the behaviour of
a specific material [20,64–66]. Within the scope of this pub-
lication, gst(d) ≡ gvi(d) ≡ g(d) is assumed. Furthermore,
the frequently adopted [9,17,35,40] quadratic function

g(d) = (1 − k) (1 − d)2 + k, (11)

in which a small residual k is included in order to enhance
numerical stability, is considered.

2.2 Viscoelastic bulk response

2.2.1 Kinematics

The displacement of a material point with the coordinate
X ∈ Ω0 in the reference configuration is denoted by

u(X, t) = χ(X, t) − X , (12)

4 It has to be noted that there are alternative concepts for the phase-field
modelling of ductile failure, also. For example, a degradation function g
which, in addition to the fracture phase-field, depends on a measure of
plastic deformation [30,33], and a fracture toughness that diminishes
with accumulated inelastic strain [34], have been proposed.
5 ψ st and ψvi can be understood as virtually undamaged densities of
free energy with respect to a volume element in the reference configu-
ration, i.e. the respective free energy which would be stored in such a
reference volume element in the absence of damage.

Fig. 3 Generalised Maxwell element—constitutive assumptions

wherein

χ(X, t) : Ω0 × [0, t] → Ω , (X, t) �→ x(X, t) (13)

is the motion function, which can be assumed to be bijective
and continuous in space and time. The deformation gradient
F and its determinant J are then given by

F = (∇Xχ)
 and J = det F > 0. (14)

For the rate-dependent deformation behaviour of the mate-
rial, the approach of Reese andGovindjee [46] is pursued and
a generalised Maxwell model is adopted as shown in Fig. 3.6

In the non-equilibrium, or over-stress branch, deforma-
tion is assumed to consist of an elastic and an inelastic
viscous portion, and the deformation gradient is multiplica-
tively decomposed into

F = Fel · Fvi, (15)

accordingly. Furthermore, following Flory [67], a decom-
position of the deformation gradient into volumetric and
isochoric parts is applied. For the equilibrium branch, the
split is given by

F = J 1/3 I · F, F = J−1/3 F, det F = 1, (16)

wherein I designates the second-order unit tensor and F is
the isochoric portion of the deformation gradient. For the
the non-equilibrium branch, Fel and Fvi are decomposed
separately. Considering, for example, the elastic portion of
deformation, its isochoric part is given by

F
el = J el−1/3

Fel, det F
el = 1, (17)

6 Herein, without loss of generality, only one non-equilibrium branch
is considered, which is sufficient for the material investigated in Sect. 4.
The extension to multiple non-equilibrium branches can be done in a
straightforward manner, though.
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wherein J el = det Fel. For the specific definition of themate-
rial model, the positive definite left and right Cauchy-Green
deformation tensors, b = F · F
 and C = F
 · F, as well as
their elastic counterpartsbel = Fel ·Fel
 and C̃el = Fel
·Fel,
are used, respectively. It has to be noted that C̃el does not refer
to the reference configuration, but to a fictitious intermediate
configuration defined byFvi. The tilde symbol ◦̃ is introduced
to mark quantities which refer to this inelastic intermedi-
ate configuration. Isotropy of the material is assumed and
the constitutive equations are specified in terms of principal
stretches λα and λelβ , which are obtained from the spectral
decompositions

b =
Nλ∑

α=1

λ2α pα or C =
Nλ∑

α=1

λ2α Pα , (18)

bel =
N el

λ∑
β=1

λelβ
2
pelβ or C̃el =

N el
λ∑

β=1

λelβ
2
P̃el

β , (19)

in which Nλ ∈ {1, 2, 3} and N el
λ ∈ {1, 2, 3} are the number

of pair-wise different principal stretches λα and elastic prin-
cipal stretches λelβ , respectively. The second-order projection
tensors, or eigenvalue-base tensors, are obtained from

pα = δ1Nλ I +
∏
γ

b − λ2γ I

λ2α − λ2γ
, γ ∈ [1, Nλ] \ α ⊂ N, (20)

with the Kronecker delta δ�σ given by

δ�σ =
{
1, � = σ

0, � �= σ
, (21)

and equivalent relations for Pα , pelβ and P̃el
β [68,69].7

2.2.2 Specification of free energy densities

Strain energy The strain energy density is additively decom-
posed into an equilibrium and over-stress part. Accordingly,
for the virtually undamaged quantity ψ st,

ψ st = ψ st,eq(C) + ψ st,ov(C,Fvi) (22)

is defined, wherein C and Fvi form the set of independent
thermodynamic state variables considered here, in addi-
tion to the phase-field variable d. Each contribution splits
further into a volumetric portion volψ st,eq and volψ st,ov,
and an isochoric part isoψ st,eq and isoψ st,ov, respectively. A

7 If there are three pair-wise different principal stretches, i.e. Nλ = 3
or N el

λ = 3, the projection tensors can also be represented by means of
the eigenvectors in a straightforward manner, e.g. pα = nα ⊗ nα with
nα denoting the α-th eigenvector of b.

compressible Ogden model [70] is assumed for both the
equilibrium and non-equilibrium branches and the respec-
tive strain energy density contributions are defined to

ψ st,eq = volψ st,eq + isoψ st,eq

= κeq

4

(
J 2 − 2 ln J − 1

)

+
N eq
O∑

p=1

μ
eq
p

α
eq
p

⎛
⎝

Nλ∑
�=1

ν� λ̄
α
eq
p

� − 3

⎞
⎠ , (23)

ψ st,ov = volψ st,ov + isoψ st,ov

= κov

4

(
J el2 − 2 ln J el − 1

)

+
Nov
O∑

p=1

μov
p

αov
p

⎛
⎝

N el
λ∑

σ=1

νelσ

(
λ̄elγ

)αov
p − 3

⎞
⎠ , (24)

wherein λ̄� = J−1/3 λ� and λ̄elσ = J el−1/3
λelσ are the

isochoric total and elastic principal stretches following
from (16) and (17). Their algebraic multiplicity is given by
ν� ∈ {1, 2, 3} and νelσ ∈ {1, 2, 3}, respectively. Furthermore,
the compressionmoduli are denoted by κeq > 0 and κov > 0,
and N eq

O , α
eq
p , μ

eq
p > 0, as well as N ov

O , αov
p , μov

p > 0 are
parameters of the Ogden models. From these constants, the
initial shear moduli and the according Poisson’s ratios can be
defined. For example, for the equilibrium branch, they read

μeq = 1

2

N eq
O∑

p=1

μ
eq
p α

eq
p and νeq = 3 κeq − 2μ

eq
p

2 (3 κeq + μ
eq
p )

, (25)

and similar relations hold for the non-equilibrium branch.
Viscous contribution The degraded free energy contribution
Ψ vi related to inelastic mechanisms is designed such that a
certain portion of accumulated viscous dissipation can enter
the phase-field fracture driving force. Before defining the
respective virtually undamaged quantity ψvi in the finite
viscoelasticity framework, the simple setting of a uniaxial
deformation in the kinematically linear regime is considered
for motivational purpose. Then, in the absence of damage,
viscous dissipation in a material described by means of the
generalised Maxwell model takes the form

Dvi,1D =
t∫

0

η ε̇vi ε̇vi dt̄ ,

in which ε̇vi is the rate of inelastic deformation and η des-
ignates the viscosity of the material. In order to generalise
Dvi,1D, the tensor

dvi = −1

2
L
[
bel

]
· bel−1

, (26)
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is introduced as ameasure of the rate of inelastic deformation
in the finite viscoelasticity setting, wherein

L
[
bel

]
= F · ˙(

Cvi−1
)

· F
 with Cvi = Fvi
 · Fvi (27)

is the Lie derivative of bel. Furthermore, a fully symmetric,
positive definite, isotropic fourth-order tensor

V = 2 isoη ID + 9 volη I ⊗ I (28)

is defined, in which I
D,

I
D
klmn = 1

2
(δkmδln + δknδlm) − 1

3
δklδmn , (29)

is the fully symmetric fourth-order deviator projection tensor.
Therein, isoη, volη > 0 are viscosities with respect to the iso-
choric and volumetric portion of deformation, respectively.
The virtually undamaged free energy density contribution
related to viscous mechanisms is then defined to

ψvi =
t∫

0

dvi : V : dvi dt̄ , (30)

which is positive and monotonically increasing in time.
Remark on the measure of rate of inelastic deformation The
definition of dvi (26) can be written in an alternative form,
which may be more intuitive. For this purpose, the inelastic
velocity gradient

l̃vi = Ḟvi · Fvi−1
(31)

is introduced. It refers to the intermediate configuration
defined by Fvi. The counterpart of l̃vi transformed to the cur-
rent configuration reads

lvi = Fel · l̃vi · Fel−1
. (32)

Assuming that there is no inelastic spin, i.e. l̃vi = d̃vi with
d̃vi = sym l̃vi denoting the rate of inelastic deformation with
respect to the viscous intermediate configuration, (27)1 can
be rewritten as

L
[
bel

]
= −2Fel · d̃vi · Fel
 (33)

and

Fel · d̃vi · Fel−1 = −1

2
L
[
bel

]
· bel−1 = dvi (34)

holds, fromwhich, togetherwith the transformation rule (32),
the definition ofdvi as an Eulerianmeasure of rate of inelastic
deformation becomes clear. For more details, the reader is

referred to [71],where similar kinematic relations are derived
in the context of plasticity.

2.3 Evolution of phase-field

The equation governing the evolution of the fracture phase-
field variable is deduced from the pseudo-energy functional
Π�c by means of the variational derivative

δΠ�c

δd
= −ηf ḋ and ∇Xd · N|∂ Ω0 = 0, (35)

wherein ηf is introduced as a kinetic fracture parameter in
order to avoid discontinuity of the field variables in time
and for numerical purposes, i.e. for enhancing the stabil-
ity of the solution scheme, cf. [35,72] and N denotes the
outward-pointing unit normal vector on ∂Ω0. For the simu-
lations presented in Sect. 4, ηf is chosen such small that its
influence on the simulation results vanishes which is verified
by means of a comparative study of different values.8

Inserting the definitionsmade in the previous sections into
Π�c , the evolution equation (35)1 takes the form

−ηf ḋ = ∂g

∂d

(
ψ st + βvi ψ

vi
)

+ Gc
(

1

2 �c
d − 2 �c ∇X · ∇Xd

) (36)

from which it becomes clear that, depending on the specific
choice of βvi, fracture is driven by stored strain energy and
the free energy contribution related to a portion of accu-
mulated viscous dissipation. It has to be noted that in the
present form (36), the evolution equation enables the phase-
field variable to decrease, i.e. crack healing is not prohibited.
Therefore, a modification is adopted which overcomes this
issue, see Sect. 3.1.

2.4 Rate-dependent fracture toughness

For various materials, in addition to or instead of the defor-
mation behaviour of the bulk material, the resistance against

8 In several other models, e.g. [42,56], ηf is assigned a finite value and
thus considered as an additional material parameter. On the one hand,
such a direct coupling of rate effects into the evolution of phase-field by
means of ḋ can enable more modelling flexibility especially regarding
the post-critical stage of a response. On the other hand, when it comes to
damage, incorporation of a finite ηf is equivalent to assuming a pseudo-
viscous dissipation in addition to proper viscous effects and fracture
dissipation. However, for fracture dissipation, according to the funda-
mental modelling hypothesis (4), the fracture toughness Gc is assumed
to be the essential parameter. Therefore, a toughness depending on rate
of deformation is presumed to be more consistent from an energetic
point of view if a direct coupling of rate-effects into phase-field evolu-
tion is necessary. Furthermore, a finite ηf would also incorporate some
redundant information which should rather be taken into account by the
viscoelastic model for deformation.
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fracture has been reported to depend on rate of deforma-
tion. For instance, in elastomers, at low rates of deformation,
chain entanglements can be resolved, which is not the case
at high rates of deformation. Therefore, the number of chem-
ical bonds that are broken when a crack propagates can
be assumed to rise with rate of deformation and the frac-
ture toughness increases accordingly, cf. [2,73] for a more
detailed discussion and experimental results. Furthermore,
for several natural materials and foods, where the under-
laying microscopic mechanisms can be more complex, a
rate-dependency of Gc has been reported [3,52,53].9 There-
fore, as an extension of the phase-field equation (36) that
has been derived for Gc = const., the fracture toughness is
considered to depend on deformation rate in what follows,
which enables a maximum of flexibility in modelling rate-
dependent fracture processes. For this purpose,

r(d) = ‖d‖F = √
d : d (37)

is introduced as a scalar measure of the rate of deformation
d, which is given by

d = sym
(
Ḟ · F−1

)
. (38)

Furthermore, in line with [74], the sigmoid-shaped function

Gc(d) = G1c + G2c
2

+
(
G2c − G1c

2

)
tanh [c · (r(d) − rref)]

(39)

is adopted, here, see Fig. 4. The phase-field evolution equa-
tion is than, similar to the suggestions made in [32,75], for
instance, extended in non-variational manner. For the case of
Gc(d), it is rewritten to10

−ηf ḋ = ∂g

∂d

(
ψ st + βvi ψ

vi
)

+ Gc(d)

(
1

2 �c
d − 2 �c ∇X · ∇Xd

)
. (40)

In Sect. 4.3, for different parameters G1c , G2c , c, rref, coupling
between rate-dependent deformation and toughness is anal-
ysed.

Fracture pseudo-energy and rate-dependent toughness If
fracture toughness is a function of rate of deformation and

9 It has to be noted that, unlike here, in some publications dealing with
fracture of inelastic materials, Gc is not only regarded as a measure
of dissipation directly coming along with breaking of bonds but also
comprises dissipative mechanisms of the bulk material.
10 Similar to unloading, in principle, an increase in Gc(d) could lead to
unphysical crack healing In Sect. 3.1, a modification is presented that
enables to overcome this issue.

Fig. 4 Rate-dependent fracture toughness function Gc (r(d))

thus implicitly depends on time, density of fracture pseudo-
energy Φfr no longer is proportional to the crack surface
density functional γ�c as it is the case forGc = const. Instead,
Φfr has to be determined by explicitly integrating Φ̇fr accord-
ing to (4) over the process history, i.e.

Φfr =
t∫

0

γ̇�c[t̄] · Gc
[
t̄
]
dt̄ . (41)

In addition, it is noted that, different from e.g. [51], in the
proposed model, rate-dependency of fracture toughness does
not affect the density of free energy Ψ , since dissipation due
to crack growth is not supposed to enter Ψ . Accordingly,
no additional stress terms arise from rate-dependent tough-
ness, see the evaluation of the dissipation inequality below
in Sect. 2.5.

2.5 Stress tensor, viscous evolution and
thermodynamic consistency

Under isothermal conditions, the second law of thermody-
namics can be stated by means of the density of dissipation
power Ḋ as

Ḋ = 1

2
T : Ċ − Ψ̇ ≥ 0, (42)

cf. [76], with T denoting the second Piola–Kirchhoff stress
tensor. For Ψ = Ψ (C,Fvi, d), this inequality can be rewrit-
ten to

Ḋ =
(
1

2
T − g(d)

∂ψ st

∂C

)
: Ċ−∂g

∂d

(
ψ st + βviψ

vi
)

ḋ
︸ ︷︷ ︸

Ḋfr

−g(d)

(
∂ψ st

∂Fvi : Ḟvi + βvi dvi : V : dvi
)

︸ ︷︷ ︸
Ḋvi

≥ 0, (43)
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wherein the contributions to dissipation power density due
to fracture, Ḋfr, and viscous effects, Ḋvi, can be identified.
The standard argument that Ḋ ≥ 0 shall hold for arbitrary
processes leads to the definition of stress

T = 2 g(d)
∂ψ st

∂C
= 2 g(d)

⎛
⎜⎜⎜⎝

∂ψ st,eq

∂C︸ ︷︷ ︸
0Teq/2

+ ∂ψ st,ov

∂C︸ ︷︷ ︸
0Tov/2

⎞
⎟⎟⎟⎠ , (44)

with the virtually undamaged equilibrium and over-stress
tensors denoted by 0Teq and 0Tov, respectively, and the resid-
ual inequalities

Ḋfr ≥ 0 and Ḋvi ≥ 0. (45)

Stress tensor Inserting the definitions of ψ st,eq and ψ st,ov,
Eqs. (23) and (24), into (44), the contributions to the second
Piola–Kirchhoff stress tensor take the form

0Teq =
Nλ∑

β=1

1

λ2β

[ N eq
O∑

p=1

μ
eq
p

⎛
⎝λ̄

α
eq
p

β − 1

3

Nλ∑
�=1

ν� λ̄
α
eq
p

�

⎞
⎠

+ κeq

2
(J 2 − 1)

]
Pβ ,

(46)

0Tov = Fvi−
 ·
{ N el

λ∑
β=1

1[
λelβ

]2
[Nov

O∑
p=1

μov
p

([
λ̄elβ

]αov
p

− 1

3

N el
λ∑

�=1

νelσ

[
λ̄el�

]α
eq
p
)

+ κov

2
(J el2 − 1)

]
P̃el

β

}
· Fvi−1

.

(47)

Residual inequalities As both ψ st and ψvi are positive,
βvi ∈ [0, 1], and due to (8)3, the condition Ḋfr ≥ 0 reduces
to ḋ ≥ 0, i.e. irreversibility of fracture. The fulfilment of this
demand will be addressed in Sect. 3.1.

Due to (7), Ḋvi ≥ 0 reduces to

∂ψ st

∂Fvi : Ḟvi + βvi dvi : V : dvi ≤ 0. (48)

Making use of the relations outlined in Sect. 2.2, after some
lengthy manipulations, the first term can be rewritten as

∂ψ st

∂Fvi : Ḟvi = − 0τov : dvi, (49)

wherein

0τov = 2
∂ψ st

∂bel
· bel = F · 0Tov · F
 (50)

is the virtually undamaged Kirchhoff over-stress. For a more
detailed derivation see also [46]. Then (48) takes the form

(
− 0τov + βviV : dvi

)
: dvi ≤ 0, (51)

fromwhich, in line with [46], the equation governing viscous
evolution

0τov = V : dvi (52)

is defined. By reason of βvi ∈ [0, 1], the quadratic form
obtained from inserting (52) into (51) is compatible with the
second law of thermodynamics.

3 Algorithmic aspects

3.1 Irreversibility of fracture

In order to guarantee the irreversibility of fracture, the history
variable approach of Miehe et al. [17] is pursued. For this
purpose, the phase-field equation (40) is rewritten to

− ηf

Gc ḋ = ∂g

∂d
H +

(
1

2 �c
d − 2 �c ∇X · ∇Xd

)
, (53)

wherein the history variable

H = max
τ∈[0,t]

{
1

Gc(d(τ ))

[
ψ st(τ ) + βvi ψ

vi(τ )
]}

(54)

comprises the maximum of fracture driving force which
has occurred. By means of H, crack healing effects are
prevented.11 If such a history variable was not considered,
these unphysical phenomena could arise from either an
increase in fracture toughness Gc(d) or a decrease in vir-
tually undamaged free energy ψ . With the modified form of
the phase-field evolution (53) at hand, the governing equa-
tions of the model are summarised in Table 1 considering the
total Lagrangian approach.

As an alternative to the history variable approach, in line
with [18,77], Dirichlet boundary conditions can be applied
to the phase-field on all nodes

X irrBC ∈ {X ∈ Ω0 | ∃ τ ∈ [0, t] : d(X, τ ) ≥ dcrit } (55)

11 With this definition ofH, in the absence of gradients, i.e. ∇Xd = 0,
it can be discussed that ḋ ≥ 0 holds, cf. [16]. For the heterogeneous
case, there is strong numerical evidence that ḋ ≥ 0 is also fulfilled.
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Table 1 Governing equations
for the present model following
the total Lagrangian approach:
mechanical equilibrium (a),
phase-field equation (b), viscous
evolution (c), rate-dependent
fracture toughness (d). Without
loss of generality, volume forces
are neglected in (a)

∇X · (T · F
) = 0 (a)

− ηf
Gc ḋ = ∂g

∂d H +
(

1
2 �c

d − 2 �c ∇X · ∇Xd
)

with H = maxτ∈[0,t]
{

1
Gc(d(τ ))

[
ψ st(τ ) + βvi ψ

vi(τ )
]} (b)

0τov = V : dvi with dvi = − 1
2 L

[
bel

] · bel−1
(c)

Gc(d) = G1c+G2c
2 +

( G2c−G1c
2

)
tanh [c · (r(d) − rref)] with r(d) = ‖d‖F (d)

where the phase-field variable has reached a critical value
dcrit:

d(X irrBC)
!= 1 ∀ X irrBC. (56)

For the setups analysed inSect. 4, the two strategies have been
compared, exemplary, and no relevant differences could be
noticed.

3.2 Viscous evolution

For the integration of viscous evolution equation (52), an
operator split scheme of predictor–corrector type is adopted
as proposed in [46].Within the scope of this well-established
approach, the evolution of elastic deformation in the over-
stress branch of the generalised Maxwell element

ḃel = l · bel + bel · l
︸ ︷︷ ︸
predictor

+F · ˙(
Cvi−1

)
· F


︸ ︷︷ ︸
corrector

, (57)

is split into the contributions from change in total deforma-
tion, which is considered in the predictor step, and viscous
evolution, which is accounted for in the inelastic correc-
tor. For the predictor step, viscous deformation Fvi or Cvi

is frozen, giving a trial state of elastic deformation at time
step tn to

nbeltr = nF · n−1Cvi−1 · nF
. (58)

Subsequently, within the corrector step, (57) is evaluated for
the total deformation assumed to be constant, i.e. l = 0,
which, with evolution equation (52) and kinematic relations
(26) and (27) can then be written as

ḃel = −2V−1 :
(
0τov · bel

)
. (59)

Due to isotropy, the principal directions of bel, beltr and
0τov

coincide, whichmakes the evaluation of (59) in terms of elas-
tic principal stretches λelβ attractive. For the viscosity tensor
V defined according to (28), this leads to

d

d t

(
λelβ

)2 = −
[

1
isoη

0τ
ov,dev
β + 2

9 volη
tr 0τov

] (
λelβ

)2
,

(60)

wherein 0τ
ov,dev
β denote the principal components of the

over stress deviator dev 0τov. Within the scope of the FE
framework, differential equation (60) is integrated in an
approximate manner by means of an exponential mapping
ansatz and rewritten in terms of logarithmic elastic principal
stretches εelβ = ln λelβ as

0 = εelβ + �t

[
1

2 isoη

0τ
ov,dev
β + 1

9 volη
tr 0τov

]
− εeltr β =: rβ .

(61)

Generally, εelβ are determined from an iterative solution of
the system of non-linear algebraic equations rβ = 0 with
β ∈ [1, N ] ⊂ N. However, in case of two-dimensional plane
stress setups as considered inSect. 4, in addition to these three
equations, it has to be ensured that the out of plane stresses
vanishes, i.e. 0τov3 = 0 must hold. In these cases, in addition
to εelβ , the out of plane stretch λ3 has to be determined from
the system of equations

w� :=
[
0τov3 r1 r2 r3

]
 = 0. (62)

Regardless ofwhether a plane stress state is considered or not,
the respective system of equations (61) or (62) is solved by
means of a local Newton iteration scheme at each quadrature
point. In the following, the procedure is briefly described for
the case that a plane stress state has to be guaranteed. With
the vector of unknowns then written as

xσ :=
[
λ3 εel1 εel2 εel3

]

(63)

and the local tangent matrix

K�σ = ∂w�

∂xσ

, (64)

the linearisation of (62) around j xσ is given as

j
nw� ≈

4∑
σ=1

j−1
nw� + K�σ

∣∣ j−1
n xσ

(
j
n xσ − j−1

n xσ

)
= 0. (65)

For the specification of the derivatives ∂w�/∂xσ , the reader
is referred to Appendix A. Based on the linearisation, the
Newton procedure is carried out as summarised in Algorithm
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Initialisation at each increment n:

j = 0,

j=0
n xσ =

[
n−1λ3 nεeltr 1 nεeltr 2 εeltr 3

∣∣∣
n−1λ3

]

,

j=0
nw� = w�

∣∣ j=0
n xσ

,
j=0

n K �σ = K�σ

∣∣ j=0
n xσ

while ‖ j
nw�‖∞ > tol do

Solution of the linearised system of equations:

j+1
n xσ = −

4∑
σ=1

j
n K −1

σ�
j
nw� + j

n xσ

Update of dependent quantities:

j+1
nεeltr 3 ,

j+1
nw� ,

j+1
n K

j := j + 1

end

Algorithm 1: Local Newton iteration scheme in case of
plane stress state

box 1. For this, at each increment tn , the iteration scheme is
initialised by means of

j=0
n xσ =

[
n−1λ3 nεeltr 1 nεeltr 2 εeltr 3

∣∣∣
n−1λ3

]

(66)

with

εeltr 3

∣∣∣
n−1λ3

= n−1ε3 + 1

2
ln

[
n−1Cvi−1

33

]
. (67)

Within the iterative solution procedure, special attention has
to be paid to trε

el
3 as it needs to be updated after each local

iteration j according to

j
nεeltr 3 = j

nε3 + 1

2
ln

[
n−1Cvi−1

33

]
(68)

due to the change of ε3 = ln λ3.

3.3 Weak forms of the governing equations

For the derivation of the weak forms of mechanical equilib-
rium and phase-field equation, the test function spaces

Wu j :=
{
δu j ∈ H

1(Ω0)
∣∣ δu j = 0 ∀ X ∈ ∂Ω0 u j

}
,

j ∈ [1, N ] ⊂ N, (69)

and

Wc = H
1(Ω0) (70)

are defined. Therein, H1(Ω0) is the Sobolev space of square
integrable functions possessing square integrable derivatives
in Ω0, and ∂Ω0 u j denotes the parts of the boundary where
the j-component of the displacement vector u is prescribed.
Then, (a) and (b) from Table 1 are multiplied by

δu = [δu1 · · · δuN ]

 , δu j ∈ Wu j , (71)

and δc ∈ Wc, respectively. Integration by parts and making
use of the divergence theorem yields

∫

Ω0

(
T · F
)

: (∇Xδu)
 dV −
∫

∂Ω0

p̂ δu dA = 0, (72)

wherein p̂ denotes the Piola traction vector with its compo-
nents p̂ j prescribed on ∂Ω0\∂Ω0 u j , and

∫

Ω0

(
∂g

∂d
H + 1

2 �c
d + ηf

Gc ḋ

)
δc + 2 �c ∇Xd · ∇Xδc dV

+
∫

∂Ω0

2 �c ∇Xd · N︸ ︷︷ ︸
= 0, cf. (35)

δc dA = 0. (73)

Time discrete forms are obtained by approximating the
respective rates using an Euler backward scheme. For spa-
tial discretization, Galerkin’s method is applied. Then, the
discretized equations are implemented into a standard finite
element framework. The coupled problem is solved bymeans
of a staggered approach, i.e. the mechanical equilibrium
and the phase-field equation are solved in sequential man-
ner. Multiple iterations of this decoupled solution scheme
are performed until a staggered convergence criterion is ful-
filled, which is based on the update of the nodal degrees of
freedom. Furthermore, adaptive control of the time step size
is employed based on a heuristic scheme. For this, depending
on the number of global Newton iterations as well as on the
number of staggered loops, the time step is either lowered
or increased. In addition, if the convergence criteria are not
met after a certain number of Newton iterations or staggered
loops, respectively, a cut back to the last converged increment
is performed and the time step size is lowered, accordingly.
Information on the material tangent that is required for the
iterative solution of (72) is given in Appendix B.

4 Representative simulations

In this section, several numerical examples are presented in
order to analyse the characteristics of the presentmodel and to
demonstrate its flexibility in describing different responses.
Furthermore, the comparison of numerical predictions to
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Fig. 5 Stress response of the bulkmaterial under homogeneous uniaxial
tension—experimental data [42] versus presentmodel for three different
stretch rates λ̇

experimental results of Loew et al. [42] serves for valida-
tion of its predictive capabilities.

4.1 Parameter identification from experimental
data

Within this publication, the viscoelastic behaviour of EPDM
rubber is considered that has been experimentally analysed
in [42].

Bulk response At first, the parameters describing the defor-
mation of the bulk material are determined. For this purpose,
the averaged stress-stretch curves from [42, Fig. 6] are con-
sidered as depicted in Fig. 5. For three different rates of
deformation, these curves have been identified from uniax-
ial tension tests with dumbbell specimens. A homogeneous
uniaxial stress state is assumed and damage is not taken into
account, here. Furthermore, as no information on deforma-
tion in transversal direction is available, νeq = νov = 0.48
is set in order to account for the high resistance against volu-
metric deformation that is typically observed for rubber. For
isochoric and volumetric deformation, an identical relaxation
time

τ =
isoη

2μov =
volη

κov (74)

is assumed. TheOgden parametersμ
eq
p , α

eq
p , μov

p , αov
p aswell

as τ are then identified by means of minimising the deviation
between experimental data and model prediction. In doing
so, following [70, p. 305], it is demanded that the constants

Table 2 Parameters of the finite viscoelasticity model for the deforma-
tion of the bulk material

νeq μ
eq
1 /(N/mm)2 α

eq
1 μ

eq
2 /(N/mm)2 α

eq
2

0.48 −1.103 −4.883 0.0105 7.951

νov μov
1 /(N/mm)2 αov

1 μov
2 /(N/mm)2 αov

2 τ/s

0.48 −0.385 −4.29 10−6 8.4 2.3

satisfy the requirements

α
eq
p μ

eq
p ≥ 0 and α

eq
p ∈ (−∞,−1) ∪ (2,∞) (75)

for any p and similar constraints for the non-equilibrium
branch. To this end, in Matlab R2020b, the GlobalSearch
strategy together with the fmincon algorithm for constrained
optimisation problems is employed.12 For an adequate
approximation of the material behaviour, two Ogden expo-
nents have revealed necessary for both the equilibrium and
over-stress branch, respectively, i.e. N eq

O = N ov
O = 2.13 The

parameters obtained are summarised in Table 2. From Fig. 5
it becomes clear that the finite viscoelasticity formulation
together with the Ogden approach allows for a very good
approximation of the experimental results over the entire
range of stretch λ ∈ [1, 2.5] that has been experimentally
investigated. Furthermore, the present model enables to cap-
ture the rate-dependent response in a more reliable manner
then the linear viscoelasticity model based on the Yeoh-type
strain energy density [42].14

Identification of the fracture parameters With the calibrated
bulk deformation model at hand, the fracture phase-field is
parameterized from SENT experiments, i.e. specimens with
a single pre-existing notch under tension. These experiments
have been conducted at two rates of prescribed displace-
ment [42]. The according specimen geometry is depicted in
Fig. 6.

For the numerically motivated kinetic fracture parameter
and the residual stiffness, the values ηf = 10−4 Ns/mm2 and
k = 10−10, respectively, are chosen. In a convergence study,

12 A proof of uniqueness of the parameters identified, i.e. a global
minimum of discrepancy between model and experiment, can not be
provided. Nevertheless,GlobalSearch involves minimisation for a huge
number of different start values in order to obviate local minima.
13 An increase of the number of Ogden branches to N eq

O = N ov
O = 3

did not lead to a perceptibly better approximation.
14 It has to be noted that the rate-dependency perceptible in Fig. 5 is not
too pronounced. Accordingly, it could be worth investigating a broader
range of stretch rates, since the rate-dependent behaviour of EPDM
rubber can play a crucial role when it comes to failure, e.g. in case of
creep fracture. Furthermore, additional experiments such as relaxation
or creep tests could allow for differentiating between equilibrium and
non-equilibrium contributions to stress in a significantly more accu-
rate manner. However, within this contribution, we proceed with the
experimental results available in the literature.
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Fig. 6 SENT—setup considered for the identification of Gc

these values have revealed sufficiently small so that the influ-
ence of ηf and k on the simulation results vanishes. For all
the simulations presented in this paper, the pre-existing cuts
within the specimens are modelled geometrically by means
of notches. 15

The length scale parameter �c is set to �c = 0.275mm,
which is identical to [42]. In order to enable a step-by-
step analysis of the model, a constant fracture toughness is
assumed, here, and Gc(d) according to (39) is investigated
in Sect. 4.3. Furthermore, with the aim of performing a thor-
ough analysis of viscous fracture driving force contribution
in Sect. 4.2, the two limiting cases βvi = 0 (approach A)
and βvi = 1 (approach B) are considered. Under these two
assumptions, the respective values of Gc are identified from
experimental data. For this purpose, regarding the critical
deformation in SENT for the two rates experimentally inves-
tigated, deviation between simulation and mean values from
the experiments is minimised by means of a gradient-free
approach. Since the specimens are of low thickness, plane
stress conditions are assumed and two-dimensional simula-
tions are performed, here. Due to symmetry, only one half
of the SENT specimen is considered. The mesh consists
of quadratic triangular elements and is refined along the
crack path. h-convergence is verified. The optimal simula-
tion results are compared to the range of experimental data
in Fig. 7 and the parameters of the fracture model are sum-
marised in Table 3. Furthermore, the evolution of the relevant
energetic quantities during the SENT is shown in Fig. 8, for
which the lower displacement rate ˙̄u = 25mm/min is con-
sidered exemplary. For both βvi = 0 with optimal Gc =
10.7N/mm, and βvi = 1 with optimal Gc = 12.0N/mm,
good agreement between simulation and experiment can be
stated. With βvi = 1, a marginally better approximation is
obtained for this setup. However, in both cases, the critical

15 Alternatively, pre-existing cuts can be described using initial con-
ditions for the phase-field variable or the fracture driving force,
respectively. For the setups under consideration, the two approaches
have been compared, exemplary. In general, no significant differences
havebeen stated.However, in case of the non-geometricalmodelling, for
some setups a small additional kink has been observed in the pre-critical
range of the F–u curves, which is not in agreement with experimental
evidence.

force is slightly overestimated.16 Furthermore, especially for
the higher rate ˙̄u = 200mm/min, the simulated F–u curves
donot completely reproduce the smooth decrease experimen-
tally observed in the post-critical stage preceding complete
failure. Instead, the critical point is followed by a sudden drop
of reaction force that, interestingly, does not come alongwith
complete failure yet. It corresponds to crack initiation at the
tip of the pre-existing notch, see Fig. 9, and is succeeded by
a smoother decrease of force for which crack propagation
through the specimen involves a slight increase of external
load before, finally, it comes to complete failure.17 To the
best of the author’s knowledge, such a phenomenon does
not arise in hyperelastic models, whereas it also has been
reported for linear viscoelasticity [42,50]. The effect is the
more pronounced the lower ˙̄u. Apparently, it is provoked
by the rate-dependent behaviour of the bulk material that
involves an increase of effective stiffness as well as the effec-
tive load bearing capacity of the material when, locally in
the vicinity of the crack, rate of deformation suddenly raises
up due to the initiation of fracture. From an energetic point
of view, as it can be seen from Fig. 8, the initiation of the
phase-field crack at the critical point comes along with a
sudden drop of free energy Π sd stored within the specimen
and the fracture pseudo-energy Π fr raises, accordingly. In
the post-critical range, when the crack propagates through
the specimen, Π fr continues to increase, whereas Π sd does
also raise directly after the critical force level, yet starts to
decrease when the displacement load ū approaches its max-
imum value. This behaviour is immaterial of the assumption
made for βvi, i.e. for the portion of viscous dissipation enter-
ing the fracture driving force. For a rigorous analysis within
the small strain context, the reader is referred to the previous
work [50].

16 Exemplary, in addition to the simulations presented in Fig. 7, the
so-called AT-1 model has also been investigated, for which a slightly
different expression for the crack surface density γ�c has been adopted,
cf. e.g. [54]. However, in this case, the approximation of experimental
data has revealedworse compared to theAT-2 approach considered here.
In particular, for the AT-1 model, a more brittle response is predicted
for the SENT, which is not in agreement with experimental evidence.
17 A straightforward way for tuning the model such that it would better
reproduce this specific experimental observation could be defining a
finite ηf ff 0, which leads to a smooth decrease of post-critical F–u
curve instead of a sudden jump, see e.g. [56, Fig. 9] However, as out-
lined in Sect. 2.3, this approach has some important drawbacks which
is why it is not pursued here. For a more expressive investigation, it may
be eligible to thoroughly elaborate on crack initiation mechanisms. For
example, cavitation or void formation are often observed in rubbery
polymers, see e.g. [78], and modified fracture phase-field models that
explicitly take these mechanisms into account have recently been pro-
posed in [15,79], wherein hyperelasticity is assumed for the bulk.
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Fig. 7 SENT—experimental data [42] versus model for approaches A (βvi = 0) and B (βvi = 1)

Table 3 Parameters of the phase-field model calibrated for EPDM rubber with Gc = const. assumed

ηf/(Ns/mm2) k �c/mm βvi Gc/(N/mm)

Approach A 0 10.7

10−4 10−10 0.275

Approach B 1 12.0

Fig. 8 SENT—evolution of the energetic quantities for ˙̄u = 25mmmin−1 and the model approaches A (βvi = 0) and B (βvi = 1). Work of external
forces W ext (grey), pseudo-energy functional Π�c = Π sd

�c
+ Π fr

�c
(blue), stored free energy Π sd

�c
(orange), fracture pseudo-energy Π fr

�c
(green), and

the portion of viscous energy that does not enter the fracture driving force
∫

Ω0

Dvi dV (red). For approach B (βvi = 1), the curves for W ext and Π�c

coincide. (Color figure online)
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Fig. 9 SENT—crack propagation through the specimen for ˙̄u =
200mm/min and βvi = 0 (approach A). The corresponding force–
displacement curve is depicted in Fig. 7. Qualitatively similar results
are obtained for approach B and other ˙̄u

Fig. 10 DENT—setup for model validation and analysis. For compari-
son of model prediction with experimental data from [42], symmetrical
specimens are considered, i.e. m = 75/2mm

4.2 Model validation and analysis of viscous driving
force

For further model validation and analysis, double notched
specimens under tension (DENT ) with varying length of the
pre-existing notch z are considered as depicted in Fig. 10.

At first, a symmetrical specimen geometry is consid-
ered, i.e. m = 75/2mm. The predictions of the model
parameterized in the previous Sect. are compared to experi-
mental data from [42] for z ∈ {9, 5}mm and a constant rate
˙̄u = 75mm/min in Fig. 11. For both approaches A and B,

model predictions fit the experimental results well, which is
also true for z ∈ {7, 3}mm (not depicted). The good agree-
ment demonstrates the predictive capability of the present
model and the suitability of the parameter identification from
experiments with homogeneous and single-notched speci-
mens.

With the aim of more thoroughly analysing the rate-
dependency of responses and elaborating on the driving
force contributions, additional simulations are performed for
z = 7mm and various rates ˙̄u ∈ [12.5, 400] mm/min. The
numerical predictions for the two approaches βvi = 0 and
βvi = 1 are compared in Fig. 12.

Regardless of the approach for the driving force, for high
displacement rates, the responses converge against an upper
elastic limit for which there is almost no viscous dissipation
until failure. For very low ˙̄u, the responses of the structure
likewise approach a lower elastic limiting case where over-
stresses do approximately vanish during entire simulation. In
between, for intermediate displacement rates, the critical dis-
placement level diminishes with ˙̄u for both approaches A and
B. In contrast, regarding the rate-dependency of critical force
level, the model predictions do significantly differ depend-
ing onwhether a viscous fracture driving force contribution is
assumed or not. On the one hand, critical forcemonotonically
increases with rate when there is no such contribution, i.e.
βvi = 0 (A). On the other hand, for βvi = 1 (B), critical force
becomes minimal for intermediate ˙̄u, for which the greatest
critical values of Ψ vi are observed, see Fig. 13. Although no
experimentally-determined force–displacement curves are
available, it can be stated that the former is in agreement
with experimental observations [42], whereas the latter con-
tradicts experimental experience. At least when modelling
fracture of elastomeric materials under monotonic loading,
in some cases, fracture driving force contribution associated
to accumulated viscous dissipation can thus lead to erroneous
model predictions. In other words, modelling approach A
has revealed more plausible, which, in a sense, is differ-
ent from plasticity, where a fracture driving force related
to inelastic mechanisms has revealed advantageous [30,39].
Interestingly, such an observation has not been made in the
previous studywithin the small strain framework [50], where
a less pronounced influence of viscous effects on crack prop-
agation has been observed. This can probably be attributed to
the fact that the present formulation enables to describe larger
deviations away from thermodynamic equilibrium, resulting
in considerably greater viscous contributions to fracture driv-
ing force.

As it has been comprehensively described in [50], it essen-
tially is the change of effective stiffness and the amount of
dissipation until failure that lead to the change of critical force
and displacement level with rate of external load. While the
amount of fracture driving force necessary for crack growth
remains constant, the fracture driving force available for
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Fig. 11 Symmetrical DENT—experimental data [42] versus model prediction for two values of length of pre-existing notch z ∈ {9, 5}mm and
constant ˙̄u. Similar results are obtained for z = 7mm, see Fig. 12, and z = 3mm (not depicted)

Fig. 12 Symmetrical DENT—comparison of model prediction for approaches A and B for various rates and a fixed size of pre-existing notch
z = 7mm

a constant level of deformation can change with rate. On
the one hand, effective stiffness of the viscoelastic material
monotonically increases with increasing rate of deformation.
For a certain external displacement ū prescribed, the density
of strain energy raises with ˙̄u, accordingly. On the other hand,
in case of monotonic loads, the amount of viscous dissipa-
tion and thus, in case of βvi > 0, the level of Ψ vi at failure
becomes maximal for intermediate rates.

Although viscous fracture driving force contribution has
revealed not advantageous for describing failure of elas-
tomers under monotonic loads, it might be suitable for other
classes of materials, e.g. thermoplastics, and especially for
the modelling of fatigue fracture, e.g. with 0 < βvi � 1. In
composites and thermoplasticmaterials, for instance, viscous
dissipation and self-heating mechanisms can have an impor-

tant influence on fatigue life, cf. [80].18 Furthermore, the
viscous dissipative fracture driving force contribution may
also be more suitable for materials that show some fluid-like
properties, so that similar to plasticity, inelastic permanent
deformations play a more important role.

Crack patterns in asymmetrical specimens In addition to
the symmetrical specimens, simulation results are presented
in the following for an asymmetrical DENT geometry as
depicted in Fig. 10 with m = 27.5mm and z = 9mm. Since

18 For example, in the phase-field fatigue fracture model [81], which is
applied to a rubbery polymer, a fatigue fracture driving force is intro-
duced that also incorporates viscous dissipation. However, similar to
[42], amodel of linear viscoelasticity at finite deformation is usedwhich
does not allow for separation of accumulated viscous dissipation and
non-equilibrium part of stored strain energy. As a consequence, entire
viscous dissipation is also included in the quasi-static fracture driving
force contribution.

123



Computational Mechanics (2023) 72:859–883 875

Fig. 13 Symmetrical DENT—free energy contribution related to vis-
cous dissipation (approach B) for various rates and a fixed size of
pre-existing notch z = 7mm

for ductile fracture of metals, where instead of viscoelas-
ticity another class of dissipative materials is involved, the
choice of fracture driving force revealed crucial the appropri-
ate numerical description of asymmetrical crack patterns, cf.
[30], simulations are performed for both approachesA andB.
The corresponding force–displacement curves are depicted
in Fig. 14. The overall rate-dependency of the specimen
response is identical to what has been described above for
the symmetrical geometry. In particular, for βvi = 1, the
numerically predicted critical force becomes minimal for
an intermediate rate of external displacement, which does
hardly coincide with what would be observed in experi-
ments. In Fig. 15, the final crack patterns are compared for
˙̄u = 200mm/min. In order to ease comparison, the phase-
field is shown with respect to the reference domain Ω0.
For both fracture driving forces A and B, the crack pattern
predicted for the viscoelastic material is essential different
from what is typically observed when metals fail in a duc-
tile manner. Instead of a single crack that connects the two
pre-existing notches, two cracks independently propagate
through the specimen. At a certain length, one of the two
stops to propagate, resulting in an asymmetrical final crack
pattern, see Fig. 16. Regardless of βvi and ˙̄u, qualitatively
identical crack paths are predicted.19 However, depending
on βvi, slight differences concerning the final length of the
shorter crack can be stated especially for intermediate rates.
Interestingly, when critical force is reached, the two cracks

19 For all the simulations performed, it is always the right crack tip
which stops propagating at a certain length. It is deemed likely that
this is due to the non-symmetric mesh that has been used for all the
computations.

suddenly propagate over a finite width, which comes along
with a significant abrupt drop of force. For intermediate and
higher rates, similar to SENT geometry, a slight increase
of external displacement ū is necessary to make one of the
cracks propagate further, resulting in a less heavy slope of
the force–displacement curve before it finally comes to catas-
trophic failure. For these higher rates, in the simulations there
is a stage that can be seen as a kind of stick–slip-like crack
propagation, where the crack tip suddenly advances over a
finite distance and then arrests over and over again. Alterna-
tively, this stick–slip behaviour can also be seen as a series
of subsequent initiations of small cracks.20

These effects also lead to a non-smooth F–u curve in
the post-critical range. Interestingly, for very small ˙̄u, such
a behaviour is not simulated. In the literature on dynamic
crack growth, comparable phenomena have been reported,
cf. e.g. [83]. However, it has to be noted that regarding this
particular aspect, the predictive capabilities of the present
model are somewhat limited, as inertia effects are not taken
into account.

For the EPDM rubber for which the model has been
parameterized here, no experimental results are available for
crack propagation in asymmetrical specimens. Nevertheless,
the crack patterns simulated with the present model are in
excellent agreement with what has been observed in exper-
iments for other viscoelastic materials, see e.g. [82]. It is
obvious that, when specimen geometries are similar, these
crack patterns in viscoelastic materials can differ from the
ones that form in elasto-plastic ones, since the inelasticmech-
anisms are essentially different. For example, there typically
is no zone of inelastic localisation in viscoelastic materi-
als whereas localisation of plastic deformation can play an
important role when it comes to ductile fracture of metals.

Creep fracture In addition to fracture under monotonically
increasing loads, a qualitative analysis of creep fracture is
performed by means of one representative example. For this
purpose, the symmetrical DENT geometry with z = 7mm
is revisited. Instead of ū, a traction force F is applied that
linearly increases with time until a certain value Fmax is
reached and is hold constant, subsequently. For two different
values of Fmax, boundary conditions and model predictions
are depicted in Fig. 17 for both approaches A and B. It can be
stated that, generally, creep fracture can be captured regard-
less of the value of the assumption made on fracture driving
force.21 In case of βvi > 0, failure can occur for lower Fmax

20 It is worth mentioning that it has been verified by means of a com-
parative study for different ηf that this stick–slip phenomenon seems
not to be induced by the viscous regularisation of crack growth.
21 For the specific setup considered here, no experimental results are
available. Nevertheless, from [42], it can be reasoned that for both the
lower and the higher value of Fmax considered here, creep fracture
would have to be expected in an experiment which is not captured in
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Fig. 14 Asymmetrical DENT—comparison of specimen responses for approaches A and B for various rates, pre-notch position m = 27.5mm and
notch length z = 7mm

Fig. 15 Asymmetrical DENT—final crack patterns in the reference configuration Ω0 for approaches A and B and ˙̄u = 200mm/min. For the EPDM
rubber considered, no experimental results are available for this setup. Nevertheless, the crack paths resemble experimental observations made for
other viscoelastic materials such as the hydroxyl-terminated polybutadiene (HTPB)-based solid propellant investigated in [82]

and after a shorter amount of creep time than for βvi = 0.
Furthermore, if a fracture driving force contribution fromvis-

Footnote 21 continued
case of approach A. However, this deviation is assumed to essentially
arise from the lack of non-monotonic experimental data for parame-
terization of the viscoelastic bulk deformation model. Since the model
could solely be calibrated from monotonic experiments, an uncertainty
of the prediction in case of creep loads can not be avoided.

cous dissipation is assumed, it can also depend on the rate Ḟ
if creep fracture is predicted, since viscous dissipation van-

ishes for very small Ḟ , see [50] for a discussion in the small
strain context.
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Fig. 16 Asymmetrical DENT—phase-field crack initiation and prop-
agation through the specimen for ˙̄u = 200mm/min and βvi = 0
(approach A). The corresponding force–displacement curve is depicted
in Fig. 14. Qualitatively similar results are obtained for approach B and
other ˙̄u

4.3 Investigation of rate-dependent fracture
toughness

In the foregoing section and the previous work [50], it is
demonstrated that within the scope of an energetic phase-

field fracture approach, a rate-dependent material model for
the bulk induces a certain relationship between critical load
and rate of deformation when Gc is constant. Therefore, in
addition to experimental indication [2,3,52,53,73], there also
is a clearmotivation for assuming a rate-dependent toughness
from a phenomenological point of view. Assuming Gc to be
a function of effective rate of deformation r = ‖d‖F enables
more flexibility in describing the rate-dependent failure of
varied materials. In what follows, this is demonstrated by
means of numerical studies considering both an increase and
a decrease of Gc with r . For this purpose, the symmetrical
DENT setup with z = 7mm and βvi = 0 is revisited. For
Gc, the sigmoid-shaped function (39) is assumed with G1c =
10.7N/mmand βvi = 0 as parameterized for EPDMwhereas
the responses for different G2c > G1c as well as G2c < G1c are
investigated. Apart from that, the parameters are identical to
the ones listed previously.

The case of Gc increasing with rate of deformation is
investigated first. As a representative example, the specimen
response is depicted in Fig. 18 for G2c = 2G1c , rref = 2 s−1,
c = 10/rref. For this specific choice of rref, before it comes to
crack propagation, the effective rates of deformation r satisfy
r � rref within the entire domain for all ˙̄u � 300mm/min.
Through comparison of Figs. 18 and 12, it becomes clear that
for these smaller rates, the pre-critical range of the specimen
response is identical to the case where Gc = G1c = const. In
particular, effective stiffness and critical force raise with rate
˙̄u, whereas critical deformation decreases. When the criti-
cal point is reached and crack propagation starts, effective
rate of deformation r suddenly raises up within the mate-
rial, resulting in an increase of Gc (r(d)). Accordingly, in the
post-critical range of the F–u curves, a slightly less sharp
slope can be observed with respect to Gc = const. However,
this effect is not very pronounced compared to the effects
arising from the rate-dependent toughness when pre-critical
rate of deformation r becomes close to the threshold value
rref.22 In that case, deformation at failure begins to raise with
rate similar to stiffness and critical force. Experimentally,
similar effects can be observed for some natural materials,
see e.g. [84] for an overview, as well as viscoelastic silicone
elastomer based model systems [85].

For the discussion of Gc decreasing with r , G2c = G1c/4,
rref = 2 s−1, c = 5/rref, are considered, exemplary. From
the force–displacement curve depicted in Fig. 19 it appears
that for ˙̄u � 300mm/min, the responses do again coincide
with the case Gc = G1c = const. Naturally, the initiation of
the phase-field crack at the notch tips is immediately fol-
lowed by complete failure, since in this moment, the sudden

22 It has to be noted that, when crack propagation takes place, quantita-
tive predictive capability regarding the rate of deformation is somewhat
limited for present formulation, since inertia effects are not taken into
account.
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Fig. 17 DENT—boundary conditions and model predictions for the investigation of creep fracture

Fig. 18 DENT—model prediction in case of fracture toughness Gc
assumed to increase with effective rate of deformation r

increase in rate of deformation comes along with a drop of
toughness. Nevertheless, for the DENT geometry, similar
behaviour is obtained as simulation result for Gc = const.,
which is in agreement with experiments. For high rates
˙̄u ≥ 400mm/min, where r � rref also holds in pre-critical
range, the decrease of deformation of failure that stems from
the rate-dependent stiffness of the viscoelasticmaterial is fur-
ther intensified by the rate-dependent fracture toughness. In
addition, the critical force does no longer raise up with ˙̄u yet
also decreases. For sugar-based confections [86], a similar
characteristic behaviour has been observed very recently. For
high displacement rates, these materials fail in a brittle man-

Fig. 19 DENT—model prediction in case of fracture toughness Gc
assumed to decrease with effective rate of deformation r

ner, i.e. at small deformation as well as low external force,
whereas at low rates, they can undergo large deformation.23

5 Conclusion and outlook

For the simulation of fracture of materials with rate-
dependent behaviour, a flexible phase-field model is pre-
sented. To this end, the theory of finite viscoelasticity [46] is
adopted for the deformation of the bulk material. The phase-
field model is formulated such that, depending on the choice

23 A publication on experimental and numerical investigation of this
brittle-to-ductile fracture mode transition is in preparation.
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for the parameters, a portion of viscous dissipation can enter
the fracture driving force. Moreover, in addition to the vis-
coelastic model of the bulk material, a fracture toughness
function that depends on rate of deformation can be consid-
ered.

In order to analyse the coupling between different rate
effects, a gradual analysis of the model is performed. The
model of finite viscoelasticity is parameterized for an EPDM
rubber based upon stress-deformation curves from the liter-
ature. Ogden-type strain energy densities are considered for
both the equilibrium and over-stress parts of the response
and very good agreement of the model with experimental
data is obtained. Assuming a constant fracture toughness for
the EPDM rubber, two limiting cases are studied regarding
the fracture driving force and the respective values of tough-
ness are identified from experimentally-determined SENT
force–displacement curves. In doing so, either entire viscous
dissipation or only effectively stored strain energy is assumed
to enter the fracture driving force, respectively. In the absence
of a driving force contribution related to viscous dissipative
mechanisms, very good agreement between model predic-
tions and experiments can be stated for different setups. In
this case, plausible results are obtained over a broad range of
rates of external load and deformation, respectively. On the
contrary, if viscous dissipation is assumed to enter fracture
driving force, erroneous model predictions can arise, here. In
this case, agreement with experimental data is obtained for
some specific rates, only. Accordingly, different from e.g.
phase-field modelling of ductile fracture in metals, a dis-
tinct fracture driving force contribution related to inelastic
dissipative mechanisms as proposed in [42,43] or [40] has
revealed not favourable for viscoelastic materials, in partic-
ular not for rubbery polymers. Furthermore, comparing the
crack paths predicted in asymmetrical DENT specimens, it
is demonstrated that such a driving force contribution is not
necessary in order to predict non-symmetric crack patterns
in an appropriate manner.

By means of a numerical study, it is demonstrated that a
rate-dependent fracture toughness can significantly increase
the capability of the phase-field model in capturing varied
experimentally-observable responses. In particular, it seems
suitable to describe rate-dependent brittle-to-ductile fracture
mode transitions. In contrast, in case of a constant tough-
ness, the rate-dependent model of bulk deformation induces
a certain rate-dependency of critical stress and deforma-
tion, which does not coincide with experimental evidence
for some specific materials. At least from a phenomenolog-
ical point of view, rate-dependent fracture toughness thus
seems to be an essential tool for modelling of rate-dependent
fracture phenomena. While this contribution clearly demon-
strates the potential of a rate-dependent fracture toughness
within the proposed model, a quantitative description of
rate-dependent brittle-to-ductile fracture mode transitions

is beyond its scope. A thorough experimental analysis of
these effects in materials with rate-dependent deformation
behaviour, e.g. caramel-based confections [86], as well as a
quantitative description based upon the framework presented
in this contribution are the subject of current work.
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Appendix

ATangent for the localNewton iteration

For the iterative solution of the viscous evolution equation
(61) in the corrector step, the derivatives
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24 For the implementation of the local Newton iteration, no case-by-
case analysis needs to bemade accounting forwhether there aremultiple
principal stretches and elastic principal stretches or not. Accordingly,
the derivatives are given here with Nλ = N el

λ = 3 assumed. If algebraic
multiplicities νλ, ν

el
σ > 1 were explicitly considered, identical values

for the derivatives would be obtained.
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∂ tr 0τov

∂εelσ
= 3 κov J el2 (78)

are required. For the plane stress case, in addition, the deriva-
tives
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have to be evaluated.

BMaterial tangent

The consistent Lagrangian material tangent
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is determined in order to enable the iterative solution of the
weak form of balance of mechanical equilibrium (72). In
line with e.g. [87], the derivation of the tangent is performed
assuming Nλ = N el

λ = 3 and the case of identical princi-
pal stretches or elastic principal stretches is then a posteriori
addressed bymeans of L’Hôpital’s rule. The equilibrium part
of the virtually undamaged tangent is given by
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wherein N� denote the orthonormal eigenvectors ofC,25 see
e.g. [68,69] or [88] for a derivation of the derivatives of prin-
ciple stretches and projection tensors. Into this expression
(83), for the specific model under consideration,

25 It is assumed that an appropriate orthonormalization method is used
in case of multiple principal stretches.
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can be inserted. In case of multiple principal stretches, i.e.
∃β �= α : λβ = λα , the second term in (83) can be evaluated
making use of L’Hôpital’s rule [87]
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Following [46], for the derivation of 0Cov, a virtually undam-
aged over-stress tensor

0
T̆ov = n−1F

vi · 0Tov · n−1F
vi
 (86)

is introducedwith reference to the intermediate configuration
defined by the viscous deformation gradient of the previous
time step n−1F

vi, i.e. based on the decomposition of the defor-
mation gradient at increment n into

nF = nF
el
tr · n−1F

vi. (87)

With

C̆el
tr = Fel

tr

 · Fel

tr , (88)

the over-stress part of the virtually undamaged material tan-
gent then can be written as

0
C
ov
K L M N = 2

n−1
Fvi

Kγ
−1

n−1Fvi
Mα

−1

· ∂
0
T̆ ov

γ δ

∂C̆el
tr fi︸ ︷︷ ︸

=:0C̆ov
γ δαβ/2

n−1Fvi
Lδ

−1
n−1

Fvi
Nβ

−1, (89)

wherein the Einstein summation convention applies for dou-
ble indices. From this, the over-stress tangent in terms of
the intermediate configuration described by n−1F

vi can be
defined to

0
C̆
ov := ∂

0
T̆ov

∂C̆el
tr

. (90)
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In analogy to (83), this contribution to the material tangent
is given by

0
C̆
ov =

∑
α∈{1,2,3}
β∈{1,2,3}

1

λeltr β

∂
0
T̆ ov

α

∂λeltr β
N̆α ⊗ N̆α ⊗ N̆β ⊗ N̆β

+
∑

α∈{1,2,3}
β∈{1,2,3}\α

0
T̆ ov

β − 0
T̆ ov

α(
λeltr β

)2 − (
λeltr α

)2

N̆α ⊗ N̆β ⊗
(
N̆α ⊗ N̆β + N̆β ⊗ N̆α

)
, (91)

wherein N̆� denote the orthonormal eigenvectors of C̆el
tr and

0
T̆ ov

σ are the eigenvalues of
0
T̆ov. The first term in (91) can

be rewritten making use of

1

λeltr β

∂
0
T̆ ov

α

∂λeltr β
= − 2(

λeltr α
)4 0τovα δαβ + 1(

λeltr α λeltr β

)2
∂ 0τovα

∂εeltr β
.

(92)

Furthermore, for the derivatives with respect to the trial
stretch quantities, use of

0 = ∂r�

∂εeltr σ
, (93)

which holds if the local Newton iteration has converged
towards zero, is made. This assumption leads to

∂εel�

∂εeltr σ
=

(
∂rσ

∂εelσ

)−1

, (94)

which is given by (76) and further specified in Appendix A.
Accordingly, the derivative ∂0τovα /∂εeltr β in (92) can be
expressed as

∂ 0τovα

∂εeltr β
=

3∑
�=1

∂ 0τovα
∂εel�

(
∂r�

∂εelβ

)−1

(95)

with

∂ 0τovα
∂εel�

= ∂ 0τov,devα

∂εel�
+ 1

3

∂ tr 0τov

∂εel�
(96)

and the two contributions in (96) specified by (77) and (78).
In case of multiple elastic principal stretches, i.e. ∃β �= α :
λelβ = λelα , for the treatment of the second term in (91), the
same procedure applies as outlined above for the case ofmul-
tiple principal stretches. In particular, L’Hôpital’s rule reads

lim
λeltr β→λeltr α

0
T̆ ov

β − 0
T̆ ov

α(
λeltr β

)2 − (
λeltr α

)2 = lim
λeltr β→λeltr α

1

2 λeltr β

·
⎛
⎝∂

0
T̆ ov

β

∂λeltr β
− ∂

0
T̆ ov

α

∂λeltr β

⎞
⎠ (97)

with the respective derivatives given by (92).
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